JP2011084734A - Method for producing ferro coke - Google Patents

Method for producing ferro coke Download PDF

Info

Publication number
JP2011084734A
JP2011084734A JP2010201702A JP2010201702A JP2011084734A JP 2011084734 A JP2011084734 A JP 2011084734A JP 2010201702 A JP2010201702 A JP 2010201702A JP 2010201702 A JP2010201702 A JP 2010201702A JP 2011084734 A JP2011084734 A JP 2011084734A
Authority
JP
Japan
Prior art keywords
iron ore
coke
ferro
particle size
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010201702A
Other languages
Japanese (ja)
Inventor
Hidekazu Fujimoto
英和 藤本
Takashi Anyashiki
孝思 庵屋敷
Hideaki Sato
秀明 佐藤
Takeshi Sato
健 佐藤
Hiroyuki Sumi
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010201702A priority Critical patent/JP2011084734A/en
Priority to PCT/JP2010/066272 priority patent/WO2011034195A1/en
Priority to BR112012005754A priority patent/BR112012005754A2/en
Priority to US13/391,660 priority patent/US20120144734A1/en
Priority to KR1020127004912A priority patent/KR20120035946A/en
Priority to CN2010800408932A priority patent/CN102498190A/en
Priority to EP10817308.9A priority patent/EP2463356A4/en
Priority to KR1020147024518A priority patent/KR20140130458A/en
Publication of JP2011084734A publication Critical patent/JP2011084734A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ferro coke for metallurgy, wherein ferro coke having a comparatively small particle diameter and high strength can be produced while maintaining a predetermined reducibility index, by optimizing the particle size of iron ore to be used as a starting material. <P>SOLUTION: In the method for producing ferro coke, ferro coke is produced by mixing coal with iron ore having a maximum particle diameter of 1-2 mm, molding the mixture to produce molded objects, and carbonizing the molded objects. Preferably, an iron content of the iron ore is 63 mass% or less, the proportion of the iron ore to the sum of the coal and the iron ore is 40 mass% or less, and the iron ore is particles sieved out through a sieve having an opening size of 1-2 mm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、石炭と鉄鉱石との混合物を成型して乾留して製造するフェロコークスの製造方法に関する。   The present invention relates to a ferro-coke manufacturing method in which a mixture of coal and iron ore is molded and subjected to dry distillation.

高炉の操業を効率よく行うために、石炭を室炉式のコークス炉で乾留して製造したコークスが高炉に装入されている。高炉内に装入されたコークスには、高炉内の通気をよくするためのスペーサーの役割、還元材としての役割、熱源としての役割などがある。近年、コークスの反応性を向上させるという観点から、石炭に鉄鉱石を混合して成型して乾留し、冶金用のフェロコークスを得る技術が知られている。   In order to efficiently operate the blast furnace, coke produced by dry distillation of coal in a chamber-type coke oven is charged into the blast furnace. The coke charged in the blast furnace has a role of a spacer for improving ventilation in the blast furnace, a role as a reducing material, a role as a heat source, and the like. In recent years, from the viewpoint of improving the reactivity of coke, a technique for obtaining ferro-coke for metallurgy by mixing iron ore with coal, molding and dry distillation is known.

近年、竪型乾留炉を用いた連続式成型コークス製造法が開発されている(例えば、非特許文献1参照。)が、フェロコークスについても同様の竪型乾留炉による製造が検討されている。連続式成型コークス製造法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、竪型シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。成型炭は竪型シャフト炉内を降下しながら徐々に成型コークスとなり竪型シャフト炉底部より送風される冷却ガスにより冷却されて、炉外へ排出される。成型炭は降下中に磨耗を受け粉化するため、高い磨耗強度が要求される。フェロコークスの開発においても同様であり、磨耗強度を表すI型強度(30回転、16mm指数)を重視している。また、上記の竪型乾留炉を用いて乾留して製造されたフェロコークスは高炉の原料として使用する際には、通常コークス(以下、室炉式コークス炉で製造された通常の冶金用コークスを、「室炉コークス」と記載する。)より高炉内での反応負荷が大きいため、高強度なフェロコークスであることが望ましい。   In recent years, a continuous molding coke production method using a vertical carbonization furnace has been developed (see, for example, Non-Patent Document 1), but the production of a ferro-coke using a vertical carbonization furnace is also being studied. In the continuous molding coke manufacturing method, a vertical shaft furnace composed of chamotte bricks instead of silica brick is used as a carbonization furnace, and coal is molded into a predetermined size in the cold and then charged into the vertical shaft furnace. Then, the charcoal is dry-distilled by heating using a circulating heat medium gas to produce a molded coke. The coal is gradually formed into coke while descending the vertical shaft furnace, cooled by the cooling gas blown from the bottom of the vertical shaft furnace, and discharged outside the furnace. Since the charcoal is worn and pulverized during descent, high wear strength is required. The same applies to the development of ferro-coke, emphasizing I-type strength (30 rotations, 16 mm index) representing wear strength. In addition, when ferro-coke produced by carbonization using the above vertical-type carbonization furnace is used as a raw material for a blast furnace, ordinary coke (hereinafter referred to as normal metallurgical coke produced in a chamber-type coke oven is used). , “Reactor coke”)), because the reaction load in the blast furnace is larger than that, it is desirable that the ferro-coke is high strength.

フェロコークスの強度を支配する因子の一つとして、鉄鉱石の粒度が挙げられる。特許文献1には、粒径10mm以下の鉄鉱石を全体量に対し最大75%配合した92ccサイズの成型フェロコークスを製造した旨の記載があり、2mm以上10mm以下の粒径の鉄鉱石を全体量に対し6〜65重量%配合すると鉄鉱石を内装した成型フェロコークスの強度は維持されるとされている。また、特許文献2によれば、フェロコークスは焼結鉱の還元性を促進するので、フェロコークスと焼結鉱(鉄鉱石)とを混合して高炉内に装入している。   One of the factors governing the strength of ferro-coke is the grain size of iron ore. In Patent Document 1, there is a description that a 92 cc sized ferrocoke was produced by blending up to 75% of iron ore with a particle size of 10 mm or less with respect to the total amount. It is said that the strength of the molded ferrocoke with iron ore is maintained when it is blended in an amount of 6 to 65% by weight. According to Patent Document 2, since ferro-coke promotes the reducing property of sintered ore, ferro-coke and sintered ore (iron ore) are mixed and charged into the blast furnace.

特開平08−012975号公報Japanese Patent Application Laid-Open No. 08-012975 特開2006−28594号公報JP 2006-28594 A

日本鉄鋼協会 「連続式成型コークス製造技術の研究成果報告書」1978−1986年Japan Iron and Steel Institute "Continuous Forming Coke Manufacturing Technology Research Results Report" 1978-1986

フェロコークスを高炉へ装入する場合、室炉コークスの装入量が減少するため、高炉の通気性確保が重要となる。このため、高炉上部におけるフェロコークスのサイズは、焼結鉱とほぼ同じ大きさ(6cc程度)とすることが望ましく、特許文献1に記載されている92ccでは大きすぎる。より小さなフェロコークスを製造する場合には配合される鉄鉱石のサイズの上限はより小さくなると考えられる。しかも、鉄鉱石の粒径が小さいと鉄鉱石の還元も進行しやすいので、どのような粒径の鉄鉱石をフェロコークス原料として用いるかは、非常に重要であると考えられる。   When ferro-coke is charged into the blast furnace, it is important to ensure the air permeability of the blast furnace because the amount of chamber coke charged decreases. For this reason, it is desirable that the size of the ferro-coke in the upper part of the blast furnace is approximately the same size as the sintered ore (about 6 cc), and 92 cc described in Patent Document 1 is too large. When producing smaller ferro-coke, the upper limit of the size of the iron ore to be blended is considered to be smaller. Moreover, since the reduction of the iron ore tends to proceed if the particle size of the iron ore is small, it is considered that what particle size of the iron ore is used as the ferrocoke raw material is very important.

一般に製鉄所へ搬入される塊の鉄鉱石は、10mm前後の篩目の篩いで篩い分けされ、粒径の大きい篩い上の鉄鉱石は高炉へ、粒径の小さい篩い下の鉄鉱石は焼結工場へと送られる。篩い下の鉄鉱石をフェロコークス用原料に利用すると粒径10mm以下の鉄鉱石を石炭に配合することになる。篩い下の鉄鉱石をそのまま利用するのか適当な大きさに粉砕して原料とするのかによって、フェロコークス製造の設備構成、設備費、運転費などが変わってくる。したがって、フェロコークス品質(強度、還元率)に及ぼす鉄鉱石サイズの影響を検討する必要がある。粒径10mmの鉄鉱石を含有したフェロコークス(大きさ6cc、平均粒径22mm)は、内部に大きな構造欠陥をもつことになり強度低下が懸念される。しかも鉄鉱石の粒径が大きいと、粒径が小さい場合と比較して、同じ乾留条件でも還元率の低下が考えられる。   Generally, lump iron ores that are carried into steel mills are sieved with a sieve of about 10 mm, and iron ores on a sieve with a large particle size are sintered into a blast furnace, and iron ore under a sieve with a small particle size is sintered. Sent to the factory. When iron ore under the sieve is used as a raw material for ferro-coke, iron ore having a particle size of 10 mm or less is blended with coal. Depending on whether the iron ore under sieving is used as it is or pulverized to an appropriate size, the equipment configuration, equipment cost, operating cost, etc. for ferro-coke production vary. Therefore, it is necessary to examine the effect of iron ore size on ferro-coke quality (strength, reduction rate). Ferro-coke (size 6 cc, average particle size 22 mm) containing iron ore with a particle size of 10 mm has a large structural defect inside, and there is a concern about a decrease in strength. Moreover, when the particle size of the iron ore is large, the reduction rate can be reduced even under the same dry distillation conditions as compared with the case where the particle size is small.

したがって本発明の目的は、このような従来技術の課題を解決し、比較的粒径の小さいフェロコークスを製造する際に、原料となる鉄鉱石の粒度を適正化することにより、目標の還元率を維持しながら、高強度なフェロコークスを製造することのできる冶金用成型フェロコークスの製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and optimize the particle size of the iron ore used as a raw material when producing a ferro-coke having a relatively small particle size, thereby reducing the target reduction rate. An object of the present invention is to provide a manufacturing method of metallurgical molding ferro-coke which can manufacture high-strength ferro-coke while maintaining the above.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)石炭と、最大粒径が1〜2mmの鉄鉱石とを混合して成型物を製造し、該成型物を乾留することを特徴とするフェロコークスの製造方法。
(2)前記鉄鉱石の鉄含有率が63mass%以下であることを特徴とする(1)に記載のフェロコークスの製造方法。
(3)石炭と鉄鉱石との合計量に対する前記鉄鉱石の配合率が40mass%以下であることを特徴とする(1)または(2)に記載のフェロコークスの製造方法。
(4)前記鉄鉱石が、篩い目1〜2mmの篩いで篩い分けした篩い下であることを特徴とする(1)ないし(3)のいずれか1つに記載のフェロコークスの製造方法。
(5)前記石炭の粒径が、3mm以下であることを特徴とする(1)ないし(4)のいずれか1つに記載のフェロコークスの製造方法。
(6)石炭と、最大粒径が1〜2mmの鉄鉱石と、バインダーとを混合して前記成型物を製造することを特徴とする(1)ないし(5)のいずれか1つに記載のフェロコークスの製造方法。
(7)前記バインダーの添加量が、石炭と鉄鉱石との合計量に対して、4〜6mass%であることを特徴とする(6)に記載のフェロコークスの製造方法。
(8)前記フェロコークスのサイズが、5〜8ccであることを特徴とする(1)ないし(7)のいずれか1つに記載のフェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing ferro-coke, wherein coal and iron ore having a maximum particle size of 1 to 2 mm are mixed to produce a molded product, and the molded product is subjected to dry distillation.
(2) The method for producing ferrocoke according to (1), wherein the iron content of the iron ore is 63 mass% or less.
(3) The method for producing ferro-coke according to (1) or (2), wherein a blending ratio of the iron ore with respect to a total amount of coal and iron ore is 40 mass% or less.
(4) The method for producing ferro-coke according to any one of (1) to (3), wherein the iron ore is under a sieve sieved with a sieve having a sieve mesh of 1 to 2 mm.
(5) The method for producing ferro-coke according to any one of (1) to (4), wherein the coal has a particle size of 3 mm or less.
(6) Coal, iron ore having a maximum particle diameter of 1 to 2 mm, and a binder are mixed to produce the molded product, according to any one of (1) to (5) Ferro-coke manufacturing method.
(7) The method for producing ferro-coke according to (6), wherein the additive amount of the binder is 4 to 6 mass% with respect to the total amount of coal and iron ore.
(8) The ferro-coke manufacturing method according to any one of (1) to (7), wherein the size of the ferro-coke is 5 to 8 cc.

本発明によれば、目標の還元率を維持しながら、高強度なフェロコークスを製造することができる。   According to the present invention, high strength ferro-coke can be produced while maintaining a target reduction rate.

成型物のグリーン強度と鉄鉱石粒径との関係を示すグラフ。The graph which shows the relationship between the green strength of a molding, and an iron ore particle size. 乾留後成型物の還元率と鉄鉱石粒径との関係を示すグラフ。The graph which shows the relationship between the reduction rate of a molding after dry distillation, and an iron ore particle size. 乾留後成型物の強度と鉄鉱石粒径との関係を示すグラフ。The graph which shows the relationship between the intensity | strength of a molding after dry distillation, and an iron ore particle size. 鉄鉱石配合率と乾留後強度との関係を示すグラフ。The graph which shows the relationship between an iron ore compounding rate and the strength after dry distillation.

本発明では、石炭と鉄鉱石との成型物を乾留して粒径の小さい、5〜8cc程度のフェロコークスを製造する際に、最大粒径が1〜2mmの範囲の鉄鉱石を用いて石炭と混合して成型物を製造する。なお、例えば最大粒径が1mmの鉄鉱石とは、粉砕した鉄鉱石を1mmの篩い目の篩を用いて篩い分けを行った、篩い下の鉄鉱石を指し、粒径1mm以下(−1mm)と記載する。したがって、本発明に用いる鉄鉱石としては、原料鉄鉱石をそのまま、あるいは粉砕後に、篩い目1〜2mmの篩いで篩い分けを行い、篩い分けした篩い下を用いることが好ましい。   In the present invention, when a ferro-coke having a small particle size of about 5 to 8 cc is produced by dry distillation of a molded product of coal and iron ore, the iron ore having a maximum particle size of 1 to 2 mm is used to produce coal. To produce a molded product. For example, an iron ore having a maximum particle size of 1 mm refers to an iron ore under sieving obtained by sieving crushed iron ore with a 1 mm sieve mesh, and a particle size of 1 mm or less (−1 mm). It describes. Accordingly, as the iron ore used in the present invention, it is preferable to use the raw ore as it is or after pulverization, and sieved with a sieve having a sieve size of 1 to 2 mm, and the sieved sieve is used.

成型物原料として用いる鉄鉱石を粒径0.25mm以下に粉砕すると、バインダーを多量に添加しないかぎり、成型物強度が低下する。したがって、鉄鉱石を粒径0.25mm以下に粉砕することは好ましくない。一方で、鉄鉱石粒径が2mm以下であれば、成型物乾留後のフェロコークスの還元率を80%以上とすることができる。また、鉄鉱石粒径が1mm以下から3mm以下までであれば、成型物乾留後のフェロコークスのドラム強度を十分に高く維持できる。したがって、粒径を1mm以下から2mm以下までに調整した鉄鉱石を原料として用いることで、還元率、ドラム強度共に高いフェロコークスを得ることができる。   When iron ore used as a molding material is pulverized to a particle size of 0.25 mm or less, the strength of the molding is lowered unless a large amount of binder is added. Therefore, it is not preferable to grind iron ore to a particle size of 0.25 mm or less. On the other hand, if the iron ore particle size is 2 mm or less, the reduction rate of ferro-coke after dry casting can be 80% or more. Moreover, if the iron ore particle size is from 1 mm or less to 3 mm or less, the drum strength of ferro-coke after the dry distillation of the molded product can be maintained sufficiently high. Therefore, by using iron ore whose particle size is adjusted from 1 mm or less to 2 mm or less as a raw material, it is possible to obtain ferro-coke having a high reduction rate and drum strength.

鉄含有率が63mass%超えの鉄鉱石を用いる場合は、鉄鉱石粒径が大きいと鉄鉱石の還元により生成した金属鉄を基点に割れが生じやすくなるため、鉄含有率が63mass%以下の鉄鉱石を用いることが好ましい。63mass%以下の鉄含有率であると、鉄鉱石の粒径を大きくしても、鉄鉱石の還元により生成した金属鉄を基点に割れが生じることがない。前記鉄鉱石の鉄含有率が55〜63mass%であるのがより好ましい。鉄含有率が63mass%超えの鉄鉱石を用いる場合は、鉄鉱石粒径は1mmを超えないことが好ましい。   When using an iron ore with an iron content exceeding 63 mass%, if the iron ore particle size is large, cracking is likely to occur based on metallic iron produced by reduction of the iron ore. Therefore, an iron ore with an iron content of 63 mass% or less is used. It is preferable to use stone. When the iron content is 63 mass% or less, even if the particle size of the iron ore is increased, cracking does not occur based on the metallic iron produced by the reduction of the iron ore. The iron content of the iron ore is more preferably 55 to 63 mass%. When using iron ore with an iron content exceeding 63 mass%, the iron ore particle size preferably does not exceed 1 mm.

成型物原料として用いる石炭は、粒径3mm以下に粉砕して用いることが好ましい。粒径が3mmを超えると、乾留中の成型物同士の融着が起きやすく、また成型物乾留後のフェロコークスの強度が向上しない場合がある。フェロコークスの強度向上の点からは、石炭の粒径を2mm以下とすることが、より好ましい。石炭は微粘結炭、非粘結炭を配合したものを用いることが好ましい。   The coal used as the molding material is preferably pulverized to a particle size of 3 mm or less. If the particle size exceeds 3 mm, fusion between the molded products during dry distillation tends to occur, and the strength of ferrocoke after the molded product dry distillation may not be improved. From the viewpoint of improving the strength of ferro-coke, it is more preferable that the particle size of the coal be 2 mm or less. As the coal, it is preferable to use a mixture of slightly caking coal and non-caking coal.

鉄鉱石は原料全体量(石炭と鉄鉱石との合計量)に対して40mass%以下配合することが好ましい。前記鉄鉱石の配合率が1〜40mass%であるのがより好ましく、10〜40mass%であるのが最も好ましい。鉄鉱石配合率が40mass%を超えると、成型物中で相対的に石炭の粘結成分が減少し、鉄鉱石の還元に伴いフェロコークス中のカーボンが消費されフェロコークス内部が多孔質化するため、強度が大幅に低下する。   The iron ore is preferably blended in an amount of 40 mass% or less based on the total amount of raw materials (total amount of coal and iron ore). The blending ratio of the iron ore is more preferably 1 to 40 mass%, and most preferably 10 to 40 mass%. If the iron ore content exceeds 40 mass%, the caking component of coal is relatively reduced in the molded product, and the carbon in the ferrocoke is consumed as the iron ore is reduced, and the ferrocoke becomes porous. , The strength is greatly reduced.

成型物を製造する際には石炭と鉄鉱石とにバインダーを添加することが好ましい。バインダーの添加量は、石炭と鉄鉱石との合計量に対して、4〜6mass%とすることが好ましい。   When manufacturing a molding, it is preferable to add a binder to coal and iron ore. The addition amount of the binder is preferably 4 to 6 mass% with respect to the total amount of coal and iron ore.

石炭と鉄鉱石との成型物は、例えば、石炭と鉄鉱石とバインダーとを高速ミキサーにて混練し、成型機を用いて製造する。成型物を乾留炉等を用いて乾留して、フェロコークスを製造する。   The molded product of coal and iron ore is produced by, for example, kneading coal, iron ore, and a binder with a high-speed mixer and using a molding machine. Ferro-coke is produced by carbonizing the molded product using a carbonization furnace or the like.

フェロコークスは、0.5〜25ccのサイズとすることができるが、5〜8ccであるのが好ましい。高炉の通気性を確保するために、焼結鉱とほぼ同じ大きさの6ccとすることが望ましいからである。   Ferro-coke can be 0.5-25 cc in size, preferably 5-8 cc. This is because, in order to ensure the air permeability of the blast furnace, it is desirable to use 6 cc which is almost the same size as the sintered ore.

石炭と鉄鉱石とを原料として、フェロコークスの製造試験を行った。フェロコークス原料成型物の成型条件を表1に示す。   Ferro-coke production tests were conducted using coal and iron ore as raw materials. Table 1 shows molding conditions of the ferro-coke raw material molding.

Figure 2011084734
Figure 2011084734

成型物を成型する際にバインダーを石炭、鉄鉱石原料質量全体に対し6mass%添加し、高速ミキサーにて140〜160℃で約2分間混練した。ダブルロール型成型機を用いて、混練した原料でブリケットを製造した。成型機のロールのサイズは650mmφ×104mmとし、周速0.2m/s、線圧(成型圧)4〜5t/cmで成型した。成型物のサイズは30mm×25mm×18mm(6cc)であり、形状は卵型である。   When molding the molded product, a binder was added in an amount of 6 mass% with respect to the total mass of coal and iron ore raw material, and kneaded at 140 to 160 ° C. for about 2 minutes with a high-speed mixer. Briquettes were produced from the kneaded raw materials using a double roll type molding machine. The size of the roll of the molding machine was 650 mmφ × 104 mm, and the molding was performed at a peripheral speed of 0.2 m / s and a linear pressure (molding pressure) of 4 to 5 t / cm. The size of the molded product is 30 mm × 25 mm × 18 mm (6 cc), and the shape is an egg shape.

成型物の原料条件を表2に示す。   Table 2 shows the raw material conditions of the molded product.

Figure 2011084734
Figure 2011084734

石炭は全量粒径3mm以下となるように粉砕した。石炭は微粘結炭と非粘結炭の配合とした。鉄鉱石の粒径は粉砕後の篩い分けにより、0.1mm以下(−0.1mm)、0.25mm以下(−0.25mm)、0.5mm以下(−0.5mm)、1.0mm以下(−1.0mm)、1.5mm以下(−1.5mm)、2.0mm以下(−2.0mm)、2.5mm以下(−2.5mm)、3.0mm以下(−3.0mm)のそれぞれに調製した。鉄鉱石は原料全体量に対して30mass%となるように石炭に配合した。鉄含有率の異なる鉄鉱石を4種類準備し、試験に供した。使用した各鉄鉱石の鉄含有率を表3に示す。   The coal was pulverized so that the total particle size was 3 mm or less. The coal was a mixture of slightly caking coal and non-caking coal. The particle size of iron ore is 0.1 mm or less (-0.1 mm), 0.25 mm or less (-0.25 mm), 0.5 mm or less (-0.5 mm), 1.0 mm or less by sieving after grinding. (−1.0 mm), 1.5 mm or less (−1.5 mm), 2.0 mm or less (−2.0 mm), 2.5 mm or less (−2.5 mm), 3.0 mm or less (−3.0 mm) Of each. Iron ore was blended with coal so as to be 30 mass% with respect to the total amount of the raw material. Four types of iron ores with different iron contents were prepared and used for the test. Table 3 shows the iron content of each iron ore used.

Figure 2011084734
Figure 2011084734

一例として、使用した鉄鉱石Aの粒径−1.0mm、−1.5mm、−2.0mmについての粒度分布を表4に示す。   As an example, Table 4 shows the particle size distributions of the used iron ore A with respect to particle sizes of −1.0 mm, −1.5 mm, and −2.0 mm.

Figure 2011084734
Figure 2011084734

縦横300mm、高さ400mmの乾留缶に成型物を3kg充填し、炉壁温度1000℃で6時間乾留し、フェロコークスを製造した。   3 kg of the molded product was filled in a dry distillation can having a length and width of 300 mm and a height of 400 mm, followed by dry distillation at a furnace wall temperature of 1000 ° C. for 6 hours to produce ferro-coke.

図1に成型物の強度(グリーン強度)と鉄鉱石粒径との関係を示す。成型物強度はI型ドラム試験装置(内径130mm×700mmの円筒状)を用いて、1分間に20回転の回転速度で30回転させた後の16mm以上の残存率により評価を行った。鉱石A〜Dの、どの鉱石を用いた場合も、鉄鉱石を全量0.25mm以下に粉砕すると、成型物強度は低下した。鉄鉱石を細かく粉砕すると粒子外表面積が上昇し必要なバインダー量が増加するが、本実験ではバインダー量一定で試験したためこのような結果になったと考えられる。鉄鉱石粒径0.5mm以下〜3mm以下まででは、鉱石種が変わらなければ、成型物の強度に大きな差は認められなかった。   FIG. 1 shows the relationship between the strength (green strength) of the molded product and the iron ore particle size. The strength of the molded product was evaluated by using a type I drum test apparatus (cylindrical shape having an inner diameter of 130 mm × 700 mm) based on a residual rate of 16 mm or more after 30 rotations at a rotation speed of 20 rotations per minute. In any of the ores A to D, when the iron ore was pulverized to a total amount of 0.25 mm or less, the strength of the molded product was reduced. When iron ore is finely pulverized, the outer surface area of the particles increases and the amount of binder required increases, but in this experiment, it was considered that this result was obtained because the test was performed with a constant amount of binder. In the iron ore particle size of 0.5 mm or less to 3 mm or less, no significant difference was observed in the strength of the molded product unless the ore species changed.

図2に成型物乾留後の還元率と鉄鉱石粒径との関係を示す。鉄鉱石粒径が0.5mm以下であると還元率はほぼ一定だったが、それ以上の粒径では還元率は次第に低下し、鉄鉱石粒径3mm以下では概ね10%低下している。鉄鉱石中心部分の還元が低下しているためであると推察される。目標の還元率を80%以上とすると、いずれの鉱石種においても鉄鉱石粒径は2mm以下とすることが望ましい。   FIG. 2 shows the relationship between the reduction ratio after dry casting and the iron ore particle size. The reduction rate was almost constant when the iron ore particle size was 0.5 mm or less, but the reduction rate gradually decreased when the particle size was larger than that, and decreased approximately 10% when the iron ore particle size was 3 mm or less. This is presumably because the reduction of the iron ore center part has decreased. Assuming that the target reduction rate is 80% or more, the iron ore particle size is desirably 2 mm or less in any ore type.

図3に成型物乾留後の強度と鉄鉱石粒径との関係を示す。乾留後強度はドラム試験装置を用いて、150回転させた後の6mm以上の残存率により評価を行った。鉄含有率63mass%以下の鉱石A、B、Cは鉄鉱石粒径0.5mm以下で強度が低下した。鉄鉱石粒径が細かくなると鉄鉱石の還元の進行に伴うコークス部分の多孔質化(気孔率上昇)が起こったことが一因と考えられる。乾留後強度(ドラム強度)の目標値を82以上とすると、鉄鉱石粒径を全量1mm以下から3mm以下までとすれば、ドラム強度の目標値をクリアすることが分かる。一方、鉄含有率65.5mass%の鉱石Dでは鉄鉱石粒径が1mmを超えると強度低下が認められた。鉄鉱石Dの粉砕後の外観を観察すると先のとがった扁平な形状の粒子が存在していることが分かり、鉄鉱石粒径が大きいと強度試験時の衝撃により鉄鉱石の還元により生成した金属鉄を基点に割れが生じたと推察される。鉄含有率63mass%以下の鉱石では、鉄鉱石粒径1mm以下から2mm以下まででは、目標還元率を維持し強度も目標値となることが分かる。   FIG. 3 shows the relationship between the strength after dry casting and the iron ore particle size. The strength after dry distillation was evaluated by using a drum tester with a residual rate of 6 mm or more after 150 rotations. The ores A, B and C having an iron content of 63 mass% or less had a reduced strength when the iron ore particle size was 0.5 mm or less. One possible reason is that when the iron ore particle size becomes finer, the coke portion becomes porous (increased porosity) as the iron ore reduction proceeds. It can be seen that if the target value of strength after dry distillation (drum strength) is 82 or more, the target value of drum strength is cleared if the total iron ore particle size is 1 mm or less to 3 mm or less. On the other hand, in the ore D having an iron content of 65.5 mass%, a decrease in strength was observed when the iron ore particle diameter exceeded 1 mm. Observation of the appearance of iron ore D after crushing reveals that there are particles with a pointed flat shape. If the iron ore particle size is large, the metal produced by the reduction of iron ore due to impact during the strength test It is inferred that cracking occurred starting from iron. It can be seen that the ore having an iron content of 63 mass% or less maintains the target reduction rate and the strength reaches the target value when the iron ore particle size is 1 mm or less to 2 mm or less.

図4に鉱石Aと鉱石Cについて、鉄鉱石配合率と乾留後強度との関係を示す。鉄鉱石配合率40mass%までは、鉄鉱石の配合比率が上昇するに従い乾留後強度は徐々に低下した。一方で鉄鉱石配合率が40mass%を超えると大幅な強度低下が認められた。鉄鉱石配合率が上昇すると石炭の粘結成分が減少すること、鉄鉱石の還元に伴いフェロコークス中のカーボンが消費されフェロコークス内部が多孔質化することが強度低下の原因と考えられる。   FIG. 4 shows the relationship between the iron ore blending ratio and the strength after dry distillation for ore A and ore C. Up to 40 mass% of iron ore blending strength, the strength after dry distillation gradually decreased as the iron ore blending ratio increased. On the other hand, when the iron ore compounding ratio exceeded 40 mass%, a significant decrease in strength was observed. It is considered that the caking component of coal decreases as the iron ore content increases, and that the carbon in the ferrocoke is consumed as the iron ore is reduced and the inside of the ferrocoke becomes porous, resulting in a decrease in strength.

Claims (8)

石炭と、最大粒径が1〜2mmの鉄鉱石とを混合して成型物を製造し、該成型物を乾留することを特徴とするフェロコークスの製造方法。   A method for producing ferro-coke, which comprises mixing coal and iron ore having a maximum particle size of 1 to 2 mm to produce a molded product, and subjecting the molded product to dry distillation. 前記鉄鉱石の鉄含有率が63mass%以下であることを特徴とする請求項1に記載のフェロコークスの製造方法。   The method for producing ferro-coke according to claim 1, wherein the iron content of the iron ore is 63 mass% or less. 石炭と鉄鉱石との合計量に対する前記鉄鉱石の配合率が40mass%以下であることを特徴とする請求項1または請求項2に記載のフェロコークスの製造方法。   The method for producing ferrocoke according to claim 1 or 2, wherein a blending ratio of the iron ore with respect to a total amount of coal and iron ore is 40 mass% or less. 前記鉄鉱石が、篩い目1〜2mmの篩いで篩い分けした篩い下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のフェロコークスの製造方法。   The method for producing ferro-coke according to any one of claims 1 to 3, wherein the iron ore is under a sieve sieved with a sieve having a sieve mesh of 1 to 2 mm. 前記石炭の粒径が、3mm以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のフェロコークスの製造方法。   The method for producing ferro-coke according to any one of claims 1 to 4, wherein the coal has a particle size of 3 mm or less. 石炭と、最大粒径が1〜2mmの鉄鉱石と、バインダーとを混合して前記成型物を製造することを特徴とする請求項1ないし請求項5のいずれか1項に記載のフェロコークスの製造方法。   The ferro-coke according to any one of claims 1 to 5, wherein the molding is produced by mixing coal, iron ore having a maximum particle size of 1 to 2 mm, and a binder. Production method. 前記バインダーの添加量が、石炭と鉄鉱石との合計量に対して、4〜6mass%であることを特徴とする請求項6に記載のフェロコークスの製造方法。   The method for producing ferro-coke according to claim 6, wherein the added amount of the binder is 4 to 6 mass% with respect to the total amount of coal and iron ore. 前記フェロコークスのサイズが、5〜8ccであることを特徴とする請求項1ないし請求項7のいずれか1項に記載のフェロコークスの製造方法。   The ferro-coke manufacturing method according to any one of claims 1 to 7, wherein a size of the ferro-coke is 5 to 8 cc.
JP2010201702A 2009-09-15 2010-09-09 Method for producing ferro coke Withdrawn JP2011084734A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010201702A JP2011084734A (en) 2009-09-15 2010-09-09 Method for producing ferro coke
PCT/JP2010/066272 WO2011034195A1 (en) 2009-09-15 2010-09-14 Process for producing ferro coke
BR112012005754A BR112012005754A2 (en) 2009-09-15 2010-09-14 method for making a carbon and iron composite
US13/391,660 US20120144734A1 (en) 2009-09-15 2010-09-14 Method for manufacturing carbon iron composite
KR1020127004912A KR20120035946A (en) 2009-09-15 2010-09-14 Process for producing ferro coke
CN2010800408932A CN102498190A (en) 2009-09-15 2010-09-14 Process for producing ferro coke
EP10817308.9A EP2463356A4 (en) 2009-09-15 2010-09-14 Process for producing ferro coke
KR1020147024518A KR20140130458A (en) 2009-09-15 2010-09-14 Process for producing ferro coke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009212822 2009-09-15
JP2010201702A JP2011084734A (en) 2009-09-15 2010-09-09 Method for producing ferro coke

Publications (1)

Publication Number Publication Date
JP2011084734A true JP2011084734A (en) 2011-04-28

Family

ID=43758792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201702A Withdrawn JP2011084734A (en) 2009-09-15 2010-09-09 Method for producing ferro coke

Country Status (7)

Country Link
US (1) US20120144734A1 (en)
EP (1) EP2463356A4 (en)
JP (1) JP2011084734A (en)
KR (2) KR20140130458A (en)
CN (1) CN102498190A (en)
BR (1) BR112012005754A2 (en)
WO (1) WO2011034195A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103756701B (en) * 2014-01-21 2015-11-25 河北联合大学 Hyperergy coke and production method thereof
JP6179732B2 (en) * 2014-10-20 2017-08-16 Jfeスチール株式会社 Method of molding coal or a mixture of coal and metal oxide
JP6210156B2 (en) * 2015-02-06 2017-10-11 Jfeスチール株式会社 Ferro-coke manufacturing method
WO2016208434A1 (en) * 2015-06-24 2016-12-29 Jfeスチール株式会社 Method for producing molded product for ferro-coke
EP3315585B1 (en) 2015-06-24 2019-12-25 JFE Steel Corporation Method for producing ferrocoke
JP6384598B2 (en) 2016-02-24 2018-09-05 Jfeスチール株式会社 Ferro-coke manufacturing method
CN106635067A (en) * 2016-11-24 2017-05-10 武汉科思瑞迪科技有限公司 Shaft furnace process for producing iron coke
CN106916599A (en) * 2017-02-08 2017-07-04 中冶南方工程技术有限公司 A kind of iron coke process units and method
CN109097515B (en) * 2018-08-31 2020-03-20 攀钢集团攀枝花钢铁研究院有限公司 Method for preparing iron coke by sintering return ores of high-titanium schreyerite and iron coke prepared by method
CN111944937A (en) * 2019-05-14 2020-11-17 宝山钢铁股份有限公司 Preparation method of carbon-iron composite furnace charge
CN110491454B (en) * 2019-08-09 2022-11-18 中冶赛迪工程技术股份有限公司 Blast furnace smelting cost management method and system and computer-storable medium
CN113736932A (en) * 2020-05-29 2021-12-03 宝山钢铁股份有限公司 Preparation method of carbon-iron composite furnace charge

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665579A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Method for compounding raw material of coal briquet for producing metallurgical formed coke
JP3487912B2 (en) 1994-07-04 2004-01-19 新日本製鐵株式会社 Molded coke containing iron ore, method for producing molded coke, and method for operating blast furnace
CN1077602C (en) * 1999-08-20 2002-01-09 方新贵 Spheroidized iron-coke ore solidified rapidly at middle temp and its apparatus
JP4487564B2 (en) * 2002-12-25 2010-06-23 Jfeスチール株式会社 Ferro-coke manufacturing method
JP2005053986A (en) * 2003-08-07 2005-03-03 Nippon Steel Corp Method for producing ferrocoke for blast furnace
JP4556525B2 (en) 2004-07-16 2010-10-06 Jfeスチール株式会社 Blast furnace operation method
JP2007119601A (en) * 2005-10-28 2007-05-17 Jfe Steel Kk Method for producing ferrocoke
JP4892929B2 (en) * 2005-11-01 2012-03-07 Jfeスチール株式会社 Ferro-coke manufacturing method
JP5011956B2 (en) * 2005-11-28 2012-08-29 Jfeスチール株式会社 Ferro-coke and method for producing sintered ore
JP4935133B2 (en) * 2006-03-17 2012-05-23 Jfeスチール株式会社 Ferro-coke and method for producing sintered ore

Also Published As

Publication number Publication date
KR20120035946A (en) 2012-04-16
WO2011034195A1 (en) 2011-03-24
BR112012005754A2 (en) 2016-02-16
KR20140130458A (en) 2014-11-10
EP2463356A4 (en) 2014-06-11
EP2463356A1 (en) 2012-06-13
CN102498190A (en) 2012-06-13
US20120144734A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
WO2011034195A1 (en) Process for producing ferro coke
JPH0121855B2 (en)
JP6421666B2 (en) Method for producing sintered ore
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JP2016191122A (en) Method for producing sintered ore
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP6273983B2 (en) Blast furnace operation method using reduced iron
JP5365044B2 (en) Ferro-coke manufacturing method
JP5365043B2 (en) Ferro-coke manufacturing method
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP5768563B2 (en) Blast furnace operation method
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP2007063605A (en) Method for manufacturing carbonaceous-material-containing agglomerate
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6016001B1 (en) Ferro-coke manufacturing method
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP2011037963A (en) Manufacturing method for ferro-coke
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5292884B2 (en) Blast furnace operation method
JP2021025112A (en) Method for manufacturing sintered ore
JP2019104947A (en) Ore containing carbon and production method for the same
WO2019008675A1 (en) Carbon material interior ore and production method therefor
JP2015074799A (en) Blast furnace operation method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203