JP5540859B2 - Carbon steel interior agglomerate for iron making and method for producing the same - Google Patents

Carbon steel interior agglomerate for iron making and method for producing the same Download PDF

Info

Publication number
JP5540859B2
JP5540859B2 JP2010095952A JP2010095952A JP5540859B2 JP 5540859 B2 JP5540859 B2 JP 5540859B2 JP 2010095952 A JP2010095952 A JP 2010095952A JP 2010095952 A JP2010095952 A JP 2010095952A JP 5540859 B2 JP5540859 B2 JP 5540859B2
Authority
JP
Japan
Prior art keywords
iron
iron oxide
ore
oxidation
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010095952A
Other languages
Japanese (ja)
Other versions
JP2011225926A (en
Inventor
智 町田
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010095952A priority Critical patent/JP5540859B2/en
Publication of JP2011225926A publication Critical patent/JP2011225926A/en
Application granted granted Critical
Publication of JP5540859B2 publication Critical patent/JP5540859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、高炉などで製鉄原料として使用される製鉄用炭材内装塊成鉱およびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to an iron-making carbonaceous material agglomerated ore used as an iron-making raw material in a blast furnace and the like and a method for producing the same.

高炉などでは、現在、主原料として鉄鉱石や焼結鉱などの鉄含有原料が用いられている。例えば、焼結鉱は、粒径が10mm以下の鉄鉱石の他、珪石、蛇紋岩、精錬ニッケルスラグなどからなるSiO含有原料や、石灰石などのCaO含有原料などからなる副原料および、粉コークスや無煙炭などの凝結材である固体燃料を、適量の水分を添加してドラムミキサーなどを用いて混合造粒した後、焼結機で焼成し、得られた焼結ケーキを破砕し整粒して、一定の粒径以上のものを成品焼結鉱として回収した塊成鉱の一種である。 In blast furnaces and the like, iron-containing raw materials such as iron ore and sintered ore are currently used as main raw materials. For example, the sintered ore is composed of iron ore having a particle size of 10 mm or less, a secondary raw material made of SiO 2 containing raw material made of silica, serpentine, refined nickel slag, etc., CaO containing raw material such as limestone, etc., and powder coke A solid fuel, which is a coagulation material such as coal or anthracite, is mixed and granulated using a drum mixer, etc. after adding an appropriate amount of moisture, and then fired with a sintering machine, and the resulting sintered cake is crushed and sized. Thus, it is a kind of agglomerated ore obtained by recovering a product having a certain particle size or more as a product sintered ore.

ところで、製鉄所というのは、文字通り、金属鉄を含有するダストやスラッジ等の酸化鉄が多量に発生する場所である。これらの金属鉄含有ダスト等の酸化鉄は有用な鉄資源であり、塊成鉱用原料として有望である。従来、このような酸化鉄を塊成鉱用原料として有効利用する方法として、特許文献1に開示されているような技術;即ち、製鉄原料用ペレットの製造方法がある。この製鉄原料用ペレットは、鉄含有ダスト等を原料とし、これに石炭やコークスなどの炭材およびバインダーとして澱粉などを加え、これらを混練し、造粒した後、焼成して塊成鉱としたものである。   By the way, the iron mill is a place where iron oxides such as dust and sludge containing metallic iron are generated. Iron oxides such as these metal iron-containing dusts are useful iron resources and are promising as raw materials for agglomeration. Conventionally, as a method of effectively using such iron oxide as a raw material for agglomeration, there is a technique as disclosed in Patent Document 1; This iron-making raw material pellet is made from iron-containing dust, etc., and added to this is a coal or coke or other coal and starch as a binder, kneaded and granulated, and then fired into agglomerated ore Is.

近年、製鉄所における原料処理の考え方について、鉄鉱石やダスト等の鉄資源とコークス等の炭材とを近接配置してなる塊成鉱が注目を浴びている。その理由は、例えば、鉄鉱石原料と炭材とを一つの塊成鉱の中で近接配置すると、鉄鉱石側の還元反応(発熱反応)と炭材側のガス化反応(吸熱反応)とが速い速度で繰り返されることから、製鉄効率が向上すると共に高炉などでの炉内温度を低下させることもできるからである。この点、前記特許文献1に記載されている技術は、単に鉄含有ダストをコークスの存在下で焼成して鉄含有率の高い製鉄用原料を製造する方法であって、製造時にペレット中の炭材が焼失してしまい、実際には鉄鉱石等の鉄含有原料と炭材とが近接配置されたものにはなっていない。また、近接配置を目的として、コークスや鉄鉱石の粒径を単に小さくしただけでは、熱を伝搬するガスの移動抵抗が大きくなりすぎて、却って反応速度の低下を招いて製鉄効率を低下させてしまう。   In recent years, with regard to the concept of raw material processing in steelworks, agglomerated minerals, in which iron resources such as iron ore and dust and carbon materials such as coke are closely arranged, are attracting attention. The reason for this is, for example, when an iron ore raw material and a carbon material are arranged close together in one agglomerate, a reduction reaction (exothermic reaction) on the iron ore side and a gasification reaction (endothermic reaction) on the carbon material side occur. This is because it is repeated at a high speed, so that the iron-making efficiency is improved and the furnace temperature in a blast furnace or the like can be lowered. In this regard, the technique described in Patent Document 1 is a method for simply producing iron-containing raw materials for iron making by firing iron-containing dust in the presence of coke, and the charcoal contained in the pellets during production. The material is burnt down, and in reality, the iron-containing raw material such as iron ore and the carbonaceous material are not closely arranged. In addition, for the purpose of close arrangement, simply reducing the particle size of coke or iron ore would increase the resistance of gas to propagate heat, resulting in a decrease in reaction rate and reduced iron production efficiency. End up.

これに対し、従来、鉄鉱石と炭材との近接配置を目的とした幾つかの技術が提案されている(特許文献2、特許文献3、特許文献4、特許文献5)。これらの技術は、基本的に、鉄含有原料(鉄鉱石等)と石炭とを混合したのち熱間成形して塊成化したもの、あるいは焼成せずに生粒子のまま高炉などにおいて製鉄用原料として使用する方法である。ただし、これらの技術は、均一混合物もしくは、多層化造粒物からなる非焼成塊成鉱であって、それ故に、これを高炉等で使用すると、脱水粉化や還元粉化を招いて、高炉の通気性を阻害するため、使用量が制限されてしまうという問題点がある。   On the other hand, several techniques aiming at the proximity | contact arrangement | positioning of an iron ore and carbon | charcoal material are proposed conventionally (patent document 2, patent document 3, patent document 4, patent document 5). These technologies are basically made by mixing iron-containing raw materials (iron ore, etc.) and coal, then hot forming and agglomerating them, or raw materials for iron making in blast furnaces etc. with raw particles remaining without firing. It is a method to use as. However, these technologies are non-fired agglomerates made of a homogeneous mixture or multi-layered granulated material. Therefore, when this is used in a blast furnace or the like, dehydration powder or reduced powdering is caused. Since the air permeability is hindered, there is a problem that the amount used is limited.

これに対し、上記従来技術(特許文献2〜5)が抱えている上述した問題点のない解決方法の例として、特許文献6に開示のものでは、金属鉄および/または炭素を含有する鉄源原料を核とし、その核の外周に酸化鉄を被覆してなる多層構造の塊成鉱を、300〜1300℃の酸化性雰囲気中で焼成した高温焼成塊成鉱を提案している。   On the other hand, as an example of a solution without the above-mentioned problems possessed by the conventional techniques (Patent Documents 2 to 5), the one disclosed in Patent Document 6 is an iron source containing metallic iron and / or carbon A high-temperature fired agglomerate is proposed in which a multi-layered agglomerate with a raw material as a core and iron oxide coated around the core is fired in an oxidizing atmosphere at 300 to 1300 ° C.

特開2001−348625号公報JP 2001-348625 A 特許第3502008号公報Japanese Patent No. 3502008 特許第2502011号公報Japanese Patent No. 2502011 特開2005−344181号公報JP 2005-344181 A 特開2002−241853号公報JP 2002-241853 A 特開平10−183262号公報JP-A-10-183262

製鉄用塊成鉱の製造に際し、特許文献1〜6に記載されているような前記各従来技術の場合、前述したように、強度が不足したり、粉化が激しく操業時に、通気性障害を招きやすいとか、高温焼成を必要とする点で生産性が悪くかつ低温還元をしにくい、という問題点があった。   In the case of each prior art as described in Patent Documents 1 to 6 in the production of iron agglomerates, as mentioned above, the strength is insufficient or the powder is severely pulverized. There are problems that it is easy to invite, and that productivity is low and low temperature reduction is difficult because high temperature firing is required.

本発明は、従来技術が抱えている上述した問題点の克服を目指して鋭意研究して、開発した技術であり、その目的とするところは、製鉄原料として適当な大きさと十分な強度を有し、反応しやすい構造と低温還元が可能な鉄含有原料と炭材とが近接配置された炭材内装塊成鉱を得るための技術を提案することにある。   The present invention is a technique developed by earnestly researching and overcoming the above-mentioned problems of the prior art, and the object is to have an appropriate size and sufficient strength as a steelmaking raw material. The purpose is to propose a technique for obtaining an agglomerated carbonaceous material agglomerate in which a reactive structure, an iron-containing raw material capable of low-temperature reduction, and a carbonaceous material are arranged in close proximity.

本発明は、上記課題を解決し、所期の目的を達成するために、化鉄粉もしくは鉄鉱石粉の外側に酸化鉄粉を被覆してなる鉄含有原料中に、−3mmの大きさのコークス粉を分散状態で含む塊成鉱であって、この塊成鉱上記鉄含有原料の外層部が、下記式により算出される酸化度Ioにおいて、平均酸化度Io(ave)が0.92未満を示す低酸化度の酸化鉄からなることを特徴とする製鉄用炭材内装塊成鉱である。

Io=[(FeO%×0.223)+(全Fe%−金属製Fe%
−FeO%×0.777)×0.430]/(全Fe%×0.430)
The present invention is to solve the above problems, in order to achieve the intended purpose, the iron-containing raw material formed by coating the iron oxide powder to the outside of the oxidation of iron powder or iron ore fines, of -3mm size of It is an agglomerate containing coke powder in a dispersed state, and the outer layer portion of the iron-containing raw material in the agglomerate has an oxidation degree Io calculated by the following formula, and an average oxidation degree Io (ave) of 0. It is a carbonaceous material-incorporated agglomerated mineral for iron making, comprising an iron oxide shell having a low oxidation degree of less than 92 .
Record
Io = [(FeO% × 0.223) + (Total Fe% −Fe% made of metal)
-FeO% × 0.777) × 0.430] / (total Fe% × 0.430)

また、本発明は、酸化鉄粉もしくは鉄鉱石粉の外側に酸化鉄粉を被覆してなる鉄含有原料中に内装状態の炭材を含む炭材内装塊成鉱の製造に当たり、酸化鉄粉もしくは鉄鉱石粉と炭材と、造粒機を使って混合造粒し、次いで、その造粒物の外表面に金属鉄含有酸化鉄粉を被覆して、下記式により算出される酸化度Ioにおいて、平均酸化度Io(ave)が0.92未満を示す低酸化度の酸化鉄殻を被覆形成することを特徴とする製鉄用炭材内装塊成鉱の製造方法を提案する。

Io=[(FeO%×0.223)+(全Fe%−金属製Fe%
−FeO%×0.777)×0.430]/(全Fe%×0.430)
Further, the present invention relates to the production of a carbonaceous material agglomerated ore containing iron material in an interior state in an iron-containing raw material formed by coating iron oxide powder or iron oxide powder on the outside of the iron oxide powder or iron ore powder. a stone powder and a carbonaceous material, mixing granulation using a granulator, then coated with a metallic iron-containing iron oxide powder on the outer surface of the granules, the degree of oxidation Io calculated by the following equation, A method for producing a carbonaceous material-containing agglomerated ore for iron making, characterized in that a low oxidation degree iron oxide shell having an average oxidation degree Io (ave) of less than 0.92 is formed.
Record
Io = [(FeO% × 0.223) + (Total Fe% −Fe% made of metal)
-FeO% × 0.777) × 0.430] / (total Fe% × 0.430)

また、本発明における塊成鉱ならびにその製造方法においては、
(1)前記低酸化度の酸化鉄殻は、少なくとも金属鉄を含有する酸化鉄粉からなること、
(2)前記酸化鉄殻の外表面に、高酸化度の酸化鉄からなる硬質薄層を有すること、
(3)前記酸化鉄が、主に製鉄所発生ダストまたはミルスケールで構成されていること、
(4)前記酸化鉄殻形成後は、大気中で200℃以上300℃未満の温度で、0.5〜5時間加熱する酸化処理をすることにより、該酸化鉄殻表面にのみ高酸化度の酸化鉄からなる硬質薄層を形成すること、
が、より好適な上記課題の解決手段となる。
Moreover, in the agglomerated mineral and the production method thereof in the present invention,
(1) the oxidation Tetsukara of low oxidation degree of iron oxide powder Tona Rukoto containing at least metallic iron,
(2) having a hard thin layer made of iron oxide having a high degree of oxidation on the outer surface of the iron oxide shell;
(3) that the iron oxide shell, are composed primarily of steelworks dust generated or mill scale,
(4) After the formation of the iron oxide shell, an oxidation treatment is performed by heating in the atmosphere at a temperature of 200 ° C. or more and less than 300 ° C. for 0.5 to 5 hours, so that only the surface of the iron oxide shell has a high degree of oxidation. Forming a hard thin layer of iron oxide,
However, this is a more preferable means for solving the above problems.

本発明に係る炭材内装塊成鉱ならびにその製造方法によれば、少なくとも金属鉄および/または劣質の鉄鉱石粉などを含有しているために低酸化度となっている酸化鉄であって、例えば、製鉄所で発生する各種のダストやミルスケールなどの低酸化度の酸化鉄粉を用い、さらには生塊成鉱を酸化処理して焼成することで、高炉等の原料として用いる上で十分な強度を有する上、酸化鉄と炭材とが近接配置された炭材内装塊成鉱を容易に得ることができる。その結果、こうした塊成鉱が製鉄原料として用いられた場合、反応効率の向上、炉内温度の低下、燃料比の低減をもたらし、製鉄コストの低減にも寄与する。
また、本発明によれば、常に外表面に位置して外層となる低酸化度酸化鉄殻の厚さを1〜15mmとすることにより、炭材内装塊成鉱の大きさを20〜25mm程度にすることができ、高炉などで使用される原料として最も好適な大きさのものが得られる。
さらに、本発明によれば、酸化鉄殻の最外層部には酸化処理によって、薄く硬質の薄層を有するものになるので、高強度での塊成鉱が得られる。
According to the carbonaceous material-incorporated agglomerated mineral according to the present invention and the method for producing the same, it is iron oxide having a low degree of oxidation because it contains at least metallic iron and / or inferior iron ore powder, By using low-oxidation iron oxide powders such as various dusts and mill scales generated at steelworks, and further by oxidizing and firing raw agglomerated ore, it is sufficient for use as a raw material for blast furnaces, etc. In addition to having strength, it is possible to easily obtain a carbonaceous material-incorporated agglomerated mineral in which iron oxide and a carbonaceous material are arranged in proximity. As a result, when such agglomerated ore is used as a raw material for iron making, it leads to an improvement in reaction efficiency, a reduction in furnace temperature, a reduction in fuel ratio, and a reduction in iron making cost.
In addition, according to the present invention, the thickness of the low oxidation iron oxide shell that is always located on the outer surface and becomes the outer layer is set to 1 to 15 mm, so that the size of the carbonaceous material agglomerated ore is about 20 to 25 mm. A material having the most suitable size as a raw material used in a blast furnace or the like can be obtained.
Furthermore, according to the present invention, since the outermost layer portion of the iron oxide shell has a thin and hard thin layer by oxidation treatment, an agglomerate with high strength can be obtained.

炭材−鉄含有原料間の距離と反応速度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the distance between carbon | charcoal material-iron containing raw materials, and reaction rate. 従来高炉内現象と発明例との炭材−鉄含有原料間の還元反応とガス化反応を対比する説明図である。It is explanatory drawing which contrasts the reduction reaction and gasification reaction between the carbonaceous material-iron-containing raw materials of the conventional blast furnace phenomenon and the invention example. 炭材内装塊成鉱における還元反応とガス化反応の説明図である。It is explanatory drawing of the reduction reaction and gasification reaction in a carbonaceous material agglomerated ore. 炭材と酸化鉄とを近接配置したときの炉内温度推移のグラフである。It is a graph of the temperature transition in a furnace when arrange | positioning a carbon material and iron oxide close. 本発明に係る炭材内装塊成鉱の一部切欠き模式図および断面図である。It is the partially notched schematic diagram and sectional drawing of the carbonaceous material interior agglomerated mineral which concern on this invention. 本発明製造方法の一例を示す工程図である。It is process drawing which shows an example of this invention manufacturing method. 酸化処理前後における塊成鉱の断面を示す顕微鏡等の写真等である。It is the photograph etc. of the microscope etc. which show the cross section of the agglomerate before and behind oxidation treatment. 本発明の炭材内装塊成鉱の一実施形態における焼成温度及びCO、COの推移を示すグラフである。Firing temperature and CO in an embodiment of the carbonaceous material interior mass Naruko of the present invention, the transition of the CO 2 is a graph showing. 炭材内装塊成鉱と焼結鉱の圧壊強度の対比図である。It is a contrast diagram of the crushing strength of a carbonaceous material agglomerated ore and sintered ore.

以下に、本発明に係る炭材内装塊生鉱の一実施形態について説明する。図1、図2は、本発明に係る炭材内装塊生鉱を開発する契機となった考え方、即ち、炭材と鉄鉱石や焼結鉱などの鉄含有原料との距離と、鉄含有原料の還元反応速度との関係を説明する図である。一般に、コークスなどの炭材と鉄含有原料との距離は小さいほど、反応速度は速くなる。例えば、高炉の炉頂から原料を装入する場合、鉄鉱石や焼結鉱などの鉄含有原料とコークスなどの炭材とは、それぞれ20〜40mm程度の大きさのものを、図2(a)、(b)に示すように、層状に分別装入するのが普通である。この場合において、焼結鉱等の鉄含有原料層と炭材層とをそれぞれ薄層化すれば、炭材と焼結鉱等との距離は小さくなり、反応速度が速くなると考えられる。   Below, one Embodiment of the carbonaceous material interior agglomerate which concerns on this invention is described. FIG. 1 and FIG. 2 are the ideas that triggered the development of the carbonaceous material-rich agglomerate according to the present invention, that is, the distance between the carbonaceous material and the iron-containing raw material such as iron ore and sintered ore, and the iron-containing raw material. It is a figure explaining the relationship with the reductive reaction speed | rate. In general, the smaller the distance between the carbonaceous material such as coke and the iron-containing raw material, the faster the reaction rate. For example, when the raw material is charged from the top of the blast furnace, the iron-containing raw material such as iron ore and sintered ore and the carbonaceous material such as coke are each about 20 to 40 mm in size, as shown in FIG. As shown in (b) and (b), it is common to carry out fractional charging in layers. In this case, it is considered that if the iron-containing raw material layer such as sintered ore and the carbon material layer are thinned, the distance between the carbon material and the sintered ore becomes smaller and the reaction rate becomes faster.

この点、こうした両者の接触による反応速度を飛躍的に速くするためには、鉄含有原料と炭材との混合装入が有効であると考えられる。ただし、前述したように、単に、鉄含有原料と炭材とを混合装入するだけでは、伝熱手段であるガスの移動抵抗が大きすぎて、却って反応速度が遅くなる。   In this respect, in order to dramatically increase the reaction rate due to the contact between the two, it is considered that mixing charging of the iron-containing raw material and the carbonaceous material is effective. However, as described above, if the iron-containing raw material and the carbonaceous material are simply mixed and charged, the movement resistance of the gas, which is a heat transfer means, is too large, and the reaction rate becomes slow.

そこで、近年、反応速度を向上させる方法として考えられてきたのが、図1の概念図に示すような、フェロコークスや炭材内装塊成鉱、炭材の超微細化などの技術である。フェロコークスは、炭材と鉄鉱石を混合し、焼き固めたものであり、炭材内装塊成鉱は、鉄含有原料中に炭材を充填内装してなるものであり、そして、超微細化は、主として炭材を微細化して使用する方法である。   Therefore, in recent years, techniques such as ferro-coke, carbonaceous material agglomerated minerals, and ultrafine refinement of carbonaceous materials have been considered as methods for improving the reaction rate, as shown in the conceptual diagram of FIG. Ferro-coke is a mixture of charcoal and iron ore, which is baked and hardened. Carbonaceous agglomerated ore is an iron-containing raw material filled with carbonaceous material and is ultrafine. Is a method in which carbonaceous materials are mainly refined and used.

反応速度を向上させるという、これらの考え方は、図2(b)に示すような理論に基づいたものである。即ち、図2は、鉄鉱石と炭材とが近接しているときの熱の交換と反応の関係を示している。鉄鉱石側では、FeとCOが反応して、FeとCOとなる還元反応が起き、このときの反応は発熱反応である。一方、炭材側では、COとCとが反応してCOを発生する、ブドワール反応と呼ばれるガス化反応(ガス改質反応)が起き、この反応は吸熱反応である。従って、鉄鉱石等と炭材とが近接していると、発熱反応である還元反応と吸熱反応であるガス化反応とが速い速度で繰り返される結果、製鉄効率が向上すると共に、外部から必要とする熱供給も少なくてすむことから、炉内温度の低下も期待できる。 These ideas of improving the reaction rate are based on the theory as shown in FIG. That is, FIG. 2 shows the relationship between heat exchange and reaction when the iron ore and the carbonaceous material are close to each other. On the iron ore side, Fe 2 O 3 and CO react to cause a reduction reaction to become Fe and CO 2, and the reaction at this time is an exothermic reaction. On the other hand, on the carbon material side, a gasification reaction (gas reforming reaction) called a Budoir reaction occurs in which CO 2 and C react to generate CO, and this reaction is an endothermic reaction. Therefore, if the iron ore and the carbonaceous material are close to each other, the reduction reaction that is an exothermic reaction and the gasification reaction that is an endothermic reaction are repeated at a high rate. Since less heat supply is required, a decrease in the furnace temperature can be expected.

従って、鉄含有原料と炭材とが互いに近くにあること、即ち、近接配置することが有効であることがわかる。このような考え方の下では、予め鉄含有原料と炭材とを混合すると共に、その炭材を鉄含有原料中に埋設してなる炭材内装塊成鉱というものが、究極の炭材−鉄含有原料の近接配置の形態となり得る。   Therefore, it can be seen that it is effective that the iron-containing raw material and the carbonaceous material are close to each other, that is, close to each other. Under such a concept, an iron-containing raw material and a carbonaceous material are mixed in advance, and a carbonaceous material agglomerated mineral in which the carbonaceous material is embedded in the iron-containing raw material is the ultimate carbonaceous material-iron. It can be in the form of a close arrangement of the contained raw materials.

このように、炭材−鉄含有原料を近接配置したものにおいては、ガス化反応に必要な熱が該炭材内装塊成鉱の内部に及ぶと、図3に示すように、そのガス化反応で発生したCOとFeが還元反応を起こし、その還元反応で発生したCOがガス化反応を導くといったように、塊成鉱の内部から外部に向って反応が連鎖的に起こり、内部のFeが順次に自己還元されてFe(金属鉄)が生じさせるものと考えられる。従って、この場合、塊成鉱内部で反応が進むことから外部からの熱供給は少なくて済み、その分だけ、炉内温度を低下させることができるようになるのである。 In this way, in the case where the carbonaceous material and the iron-containing raw material are arranged close to each other, when the heat necessary for the gasification reaction reaches the inside of the carbonaceous material agglomerated ore, as shown in FIG. The reaction occurs in a chain from the inside of the agglomerate to the outside, such as the CO and Fe n O m generated in the above cause a reduction reaction, and the CO 2 generated in the reduction reaction leads to a gasification reaction. It is considered that the internal Fe n O m is successively self-reduced to produce Fe (metallic iron). Therefore, in this case, since the reaction proceeds inside the agglomerate, the heat supply from the outside can be reduced, and the temperature in the furnace can be lowered accordingly.

このような考え方に基づいて、鉄鉱石や焼結鉱などの鉄含有原料と炭材との高温混練物(炭材内装塊成鉱)を用いて高炉シミュレータで還元速度(還元率)を求めると、図4に示すように、炭材内装塊成鉱は、炭材を含んでいない焼結鉱に比べると、高炉内での炉内温度を低くすることができると考えられる。こうした高炉の炉内温度の低下は、単に炭材や羽ロからの送風の原単位の低減だけでなく、炉体の長寿命化を始め、二酸化炭素の発生量を相対的に抑制できる等のメリットもある。   Based on this concept, when using a blast furnace simulator to determine the reduction rate (reduction rate) using a high-temperature kneaded product (carbon material-incorporated agglomerate) of iron-containing raw materials such as iron ore and sintered ore and carbonaceous materials As shown in FIG. 4, the carbonaceous agglomerated ore is considered to be able to lower the furnace temperature in the blast furnace as compared to the sintered ore containing no carbonaceous material. Such a decrease in the furnace temperature of the blast furnace is not only a reduction in the basic unit of air blown from charcoal materials and feathers, but also a longer life of the furnace body, and the generation amount of carbon dioxide can be relatively suppressed. There are also benefits.

図5は、本発明に係る炭材内装塊成鉱の実施形態を示す一部切欠き状態の模式図および断面図である。図5(a)に示す例は、金属鉄を含有する原料、例えば、各種製鉄ダストやミルスケール粉等の酸化鉄粉2とその中に、−3mm(3mmの篩目をパスする粉)の大きさのコークス粉1が分散状態で含まれる塊成鉱であり、この塊成鉱の少なくとも外層部は、厚さが1〜10mm程度の低酸化度の酸化鉄の殻、即ち酸化鉄殻2で覆われた状態の、全体の粒径が20〜25mmφである炭材内装塊成鉱の例である。   FIG. 5 is a schematic view and a cross-sectional view of a partially cut state showing an embodiment of the carbonaceous material-incorporated agglomerated mineral according to the present invention. The example shown in FIG. 5 (a) is a raw material containing metallic iron, for example, iron oxide powder 2 such as various iron-making dust and mill scale powder, and -3 mm (powder that passes 3 mm sieve mesh) in it. It is an agglomerated mineral containing coke powder 1 in a dispersed state, and at least the outer layer part of this agglomerated mineral is a low-oxidized iron oxide shell having a thickness of about 1 to 10 mm, that is, an iron oxide shell 2. This is an example of a carbonaceous material-incorporated agglomerated mineral with an overall particle size of 20 to 25 mm.

また、図5(b)に示す例は、鉄鉱石粉3とその中に、−3mmの大きさのコークス粉1が分散状態で含まれている状態の造粒物の、さらにその外側部分に、製鉄ダストやミルスケール粉等からなる酸化鉄粉を5〜15mm程度の層厚で被覆して、いわゆる酸化鉄殻2が被覆形成された全体の粒径が20〜30mmφとなった2層構造の塊成鉱である。
なお、上記鉄鉱石としては、好ましくはロメラル鉄鉱石やウクライナ鉄鉱石、キャロルレイク鉄鉱石などのような劣質の鉄鉱石粉を10〜2mmφ程度の造粒物として形成したものである。
Further, in the example shown in FIG. 5 (b), the iron ore powder 3 and the granulated product in a state where the coke powder 1 having a size of -3 mm is contained in a dispersed state in the iron ore powder 3 and the outer portion thereof. A two-layer structure in which iron oxide powder made of iron dust, mill scale powder, etc. is coated with a layer thickness of about 5 to 15 mm, so that the total particle size on which the so-called iron oxide shell 2 is formed is 20 to 30 mmφ. It is an agglomerate.
In addition, as said iron ore, Preferably, inferior iron ore powders, such as a romeral iron ore, a Ukrainian iron ore, a carol lake iron ore, are formed as a granulated material about 10-2 mmphi.

なお、図5(c)は、図5(a)の例の炭材内装塊成鉱の例の断面図であり、図5(b)のものを含めて、これらの塊成鉱は、完全な炭材内装構造となっている。それ故に、図2(a)に示す従来技術のように、反応域内を流れるガスを介して反応熱やCO、COが移動するのではなく、本発明にあっては、図2(b)に示すように、一つの粒子(塊成鉱)内に互いが隣り合うように接近した位置で、還元反応とコークスのガス化反応が同時に進行するようになるので、反応が高速度・高効率にかつ低温で進行するようになる。 In addition, FIG.5 (c) is sectional drawing of the example of the carbonaceous material agglomerated mineral of the example of FIG.5 (a), and these agglomerates including the thing of FIG.5 (b) are complete. It has a charcoal interior structure. Therefore, unlike the prior art shown in FIG. 2 (a), the reaction heat, CO, and CO 2 do not move through the gas flowing in the reaction zone. In the present invention, FIG. 2 (b) As shown in Fig. 3, the reduction reaction and coke gasification reaction proceed simultaneously at a position close to each other in one particle (agglomerated ore), so the reaction is fast and efficient. And proceed at low temperatures.

図5(c)は、中心部にコークス粒子と製鉄ダストや直接還元炉等発生粉(RHF粉)、ミルスケール粉等の酸化鉄粉とを、バインダー(澱粉水溶液3%)を介してペレタイザーに混合し、20〜15mmφ程度の大きさの造粒粒子とする。そして、さらにその外側に、上記酸化鉄粉を被覆して炭材が内装された状態の、見掛上2層構造の造粒粒子としたものについての断面図であり、約23mmφの大きさの炭材内装塊成鉱としたものである。   Fig. 5 (c) shows coke particles, iron-making dust, direct reduction furnace generated powder (RHF powder), iron oxide powder such as mill scale powder in the center of the pelletizer via a binder (starch aqueous solution 3%). Mix to obtain granulated particles having a size of about 20 to 15 mmφ. And it is sectional drawing about what was made into the granulated particle of the apparent two-layer structure of the state which coat | covered the said iron oxide powder and the carbonaceous material was further comprised in the outer side, and is a size of about 23 mmphi It is a carbonaceous material agglomerated ore.

本発明に係る炭材内装塊成鉱において特徴的な事項は、以下に詳しく説明するように、表面層が低酸化度の酸化鉄殻2にて構成されている塊成鉱を大気雰囲気下の中低温域(300℃程度未満)の温度で2〜5時間の中低温での酸化処理を施して、最外層部分にのみ薄くて硬い高酸化度の硬質薄層4(図7参照)が形成する点の構成にある。   A characteristic matter in the carbonaceous material-containing agglomerated mineral according to the present invention is that, as will be described in detail below, the agglomerated mineral whose surface layer is composed of iron oxide shells 2 having a low degree of oxidation is treated in an atmospheric atmosphere. Oxidation treatment at medium to low temperature for 2 to 5 hours at a temperature in the middle to low temperature range (less than about 300 ° C.) forms a thin, hard, high-oxidation hard thin layer 4 (see FIG. 7) only on the outermost layer. It is in the configuration of points to be

かかる酸化処理のため、前記生塊成鉱を電気炉等の加熱炉内に装入し、200℃以上300℃未満の中低温域での焼成、即ち、大気雰囲気中で2〜5時間程度の酸化処理を行い、前記低酸化度酸化鉄殻2の最外層部分に、薄い高酸化度の膜、高酸化度の酸化鉄からなる硬質薄層を生成させて、製鉄用炭材内装塊成鉱とする。   For this oxidation treatment, the green agglomerated ore is charged into a heating furnace such as an electric furnace, and is fired in a medium to low temperature range of 200 ° C. or more and less than 300 ° C., that is, about 2 to 5 hours in an air atmosphere. Oxidation treatment is performed, and a thin thin layer of high oxidation degree and a hard thin layer made of high oxidation degree iron oxide are formed in the outermost layer portion of the low oxidation degree iron oxide shell 2 to form a carbonaceous material agglomerated mineral for iron making. And

このような酸化処理を行って得られる炭材内装塊成鉱は、この処理にもかかららず、内部のコークス粒子は、中心部にほぼ初期のままの状態で残留したものになる。そして、この炭材内装塊成鉱の前記酸化鉄殻2は、表1ならびに図7に示すように、FeOならびに金属鉄(M.Fe)減る一方で、Feの量と見掛比重は増加したものになる。しかも、前記酸化鉄殻2の最外層の部分は、酸化と緻密化が一層進行し、それ故に焼結鉱並みの冷間強度を有すると共に、焼結鉱よりも優れた被還元性を有するものになる。 The carbonaceous material agglomerated ore obtained by performing such an oxidation treatment is not subjected to this treatment, and the internal coke particles remain in the center in an almost initial state. And, as shown in Table 1 and FIG. 7, the iron oxide shell 2 of this carbonaceous material agglomerated mineral is reduced in FeO and metallic iron (M.Fe), while the amount of Fe 2 O 3 and apparent specific gravity. Will increase. In addition, the outermost layer portion of the iron oxide shell 2 is further oxidized and densified, and thus has a cold strength comparable to that of sintered ore and a reducibility superior to that of sintered ore. become.

Figure 0005540859
Figure 0005540859

本発明において、炭材内装塊成鉱の酸化鉄殻2を構成する鉄含有原料としては、基本的に、製鉄所で多量に発生する各種製鉄ダストやミルスケールの如き酸化鉄粉、即ち、金属鉄含有原料が好適に用いられる。一方、内部に位置する内装炭材としては、粒径が−3mm(篩目寸法のマンダー)、好ましくは1mmのコークス粉を用いる。   In the present invention, the iron-containing raw material constituting the iron oxide shell 2 of the carbonaceous material agglomerated ore is basically iron oxide powders such as various ironmaking dusts and mill scales that are generated in large quantities at ironworks, that is, metal An iron-containing raw material is preferably used. On the other hand, as an interior carbon material located inside, coke powder having a particle size of -3 mm (muzzle size), preferably 1 mm is used.

前記酸化鉄の1つである製鉄ダストは、代表的な金属鉄含有量が20〜50mass%、T.Feが60mass%以上だと、炭材内装塊成鉱の酸化鉄殻2として十分な鉄分を有するものと言える。一方、粒径が−3mmのコークス粉は、高炉に用いられるコークスが20〜40mmの大きさであることを考えると、高炉用原料としては使用に適しないものであって、再処理を必要とするものの有効利用するから、コスト的に有利である。   The iron-making dust that is one of the iron oxides has a typical metal iron content of 20 to 50 mass%, T.I. When Fe is 60 mass% or more, it can be said that it has sufficient iron content as the iron oxide shell 2 of the carbonaceous material agglomerated ore. On the other hand, the coke powder having a particle size of -3 mm is not suitable for use as a raw material for blast furnace, considering that the coke used in the blast furnace is 20 to 40 mm, and requires reprocessing. However, since it is used effectively, it is advantageous in terms of cost.

なお、本発明において、外層殻の成分として製鉄ダストやミルスケールの酸化鉄に着目した理由は、これらは、金属鉄分を多く含み、Fe、FeO、Feを主成分とする低酸化度のものだからである。このことは、この酸化鉄については、中低温域の大気中では酸化しやすく、それは、この酸化処理により、前記酸化鉄殻2の外層にある鉄が該酸化処理により高酸化度の酸化鉄に変化しやすいこと、即ち、酸化鉄殻2部分の最外層の部分が、酸化によって硬化して、より高酸化度の薄い膜状の硬質薄層4を生成して強化できることを意味している。 In the present invention, the reason for paying attention to iron-making dust and mill-scale iron oxide as a component of the outer shell is that they contain a large amount of metallic iron and have a low oxidation degree mainly composed of Fe, FeO, and Fe 2 O 3. Because it is a thing. This means that this iron oxide is easily oxidized in the air in the middle and low temperature range, and this oxidation treatment converts the iron in the outer layer of the iron oxide shell 2 to iron oxide with a high degree of oxidation by the oxidation treatment. This means that it is easy to change, that is, the outermost layer portion of the iron oxide shell 2 can be hardened by oxidation to produce a thin film-like hard thin layer 4 with a higher degree of oxidation, which can be strengthened.

本発明において、前記低酸化度の酸化鉄は、下式により算出される酸化度Ioにおいて、Io<0.92の酸化鉄原料と鉄鉱石とを混合し、平均酸化度Io(ave)が0.92未満としたものを用いることが好ましい。なお、下記式は、含有するFe分が全てFeとなったときの酸素量に対する対象酸化鉄中のFeと結合した酸素量の割合を示すものである。即ち、Fe分が全てFeになったとき、Io=1.0である。
Io=[(FeO%×0.223)+(全Fe%−金属製Fe%
−FeO%×0.777)×0.430]/(全Fe%×0.430)
In the present invention, the iron oxide having a low oxidation degree is obtained by mixing an iron oxide raw material of Io <0.92 and iron ore at an oxidation degree Io calculated by the following formula, and an average oxidation degree Io (ave) is 0. It is preferable to use one less than .92. Incidentally, the following equation shows the ratio of amount of oxygen combined with Fe in the subject the iron oxide for oxygen amount when the Fe content containing becomes all Fe 2 O 3. That is, when all the Fe content is Fe 2 O 3 , Io = 1.0.
Io = [(FeO% × 0.223) + (Total Fe% −Fe% made of metal)
-FeO% × 0.777) × 0.430] / (total Fe% × 0.430)

次に、本発明に係る炭材内装塊成鉱の製造方法の具体例を説明する。この例では、図6に示すように、酸化鉄含有原料として、製鉄ダスト(OGダスト)を70μm以下(63μm以下)に粉砕し、これに−3mmの粉コークスと7mass%の澱粉水溶液を添加混練し、次いで、これらを400mmφパン型ペレタイザーで20mmφの大きさに造粒した後、得られた造粒粉を別のパンペレタイサーに入れて+3mm肥厚化させて約23mmφの塊成鉱とした。OGダストとコークス粉の体積比は、約65:35であった。その後、得られた造粒物を、電気炉に装入し、空気雰囲気中、290℃で5時間加熱して酸化処理した。送風量は15 1m/minとし、温度は送風量で調整した。 Next, the specific example of the manufacturing method of the carbonaceous material agglomerated mineral which concerns on this invention is demonstrated. In this example, as shown in FIG. 6, iron-making dust (OG dust) is pulverized to 70 μm or less (63 μm or less) as an iron oxide-containing raw material, and -3 mm powder coke and 7 mass% starch aqueous solution are added and kneaded thereto. Then, these were granulated to a size of 20 mmφ with a 400 mmφ bread type pelletizer, and then the obtained granulated powder was put into another pan pelletizer to be thickened by +3 mm to obtain an agglomerate of about 23 mmφ. The volume ratio of OG dust and coke powder was about 65:35. Then, the obtained granulated material was charged in an electric furnace and oxidized at 290 ° C. for 5 hours in an air atmosphere. The air flow rate was set to 15 1 m 3 / min, and the temperature was adjusted by the air flow rate.

その結果、前記製鉄ダスト、造粒後(焼成前)の炭材内装塊成鉱(生造粒物)、造粒後酸化処理した炭材内装塊成鉱ならびに硬質薄層部分の平均的成分組成例を表2に示す。なお、図8は、焼成(酸化処理)中の炉内温度、試料(外皮)温度、CO、CO濃度を示す。この図に示すように、前記焼成中、COの発生はほとんど見られなかった。また、炉内温度が290℃であるのに対し、COの発生と、M.Fe、FeOの酸化発熱が起こり、試料(外皮)温度は450℃まで到達した。その結果、表層酸化が進んで、外殻部分(硬質薄層4)が硬化し緻密化した様子が観察された。また、酸化反応により、M.FeとFeOが減少する一方、Feは増加し、フリーCも減少しており発熱による反応促進が起っていると考えられる。 As a result, the average component composition of the iron making dust, the agglomerated carbonaceous material agglomerated (raw granulated material) after granulation (before firing), the agglomerated carbonaceous material agglomerated mineral after granulation, and the hard thin layer portion An example is shown in Table 2. FIG. 8 shows the furnace temperature, sample (outer skin) temperature, CO, and CO 2 concentration during firing (oxidation treatment). As shown in this figure, almost no CO was generated during the firing. Further, while the furnace temperature is 290 ° C., the generation of CO 2 and the M.P. Oxidation heat generation of Fe and FeO occurred, and the sample (outer skin) temperature reached 450 ° C. As a result, it was observed that surface oxidation progressed and the outer shell portion (hard thin layer 4) was cured and densified. In addition, M. While Fe and FeO decrease, Fe 2 O 3 increases and free C also decreases, and it is considered that the reaction is accelerated by heat generation.

Figure 0005540859
Figure 0005540859

次いで、焼成後の炭材内装塊成鉱を押圧して圧壊強度を調べたところ、図9に示すように、この炭材内装塊成鉱の圧壊強度は90kgf以上で、平均値も115kgfであり、高炉操業に供している焼結鉱と同程度である。例えば、圧壊強度が低いと、高炉内に充填されたとき、自重で粉化するおそれがあり、粉化した場合、粒径が小さくなって目詰まりを起こし、炉内反応ガスの流動を妨げて製鉄効率が低下する。この点、高炉操業に供している焼結鉱と同程度の圧壊強度があれば、高炉内で粉砕するようなことがなく、製鉄(製銑)効率の低下を招くことはない。しかも、前述したように、炭材と鉄鉱石とが互いに近接した位置にあると、構造的に反応しやすいものになると共に、低い炉内温度で効果的に反応させることができるようなものになる。   Next, when the crushing strength was examined by pressing the calcined carbonaceous agglomerated mineral as shown in FIG. 9, the crushing strength of this carbonaceous material agglomerated ore was 90 kgf or more, and the average value was 115 kgf. It is the same level as sintered ore used for blast furnace operation. For example, if the crushing strength is low, there is a risk of pulverization by its own weight when filled in the blast furnace. When pulverized, the particle size becomes small and clogging may occur, preventing the flow of reaction gas in the furnace. Steelmaking efficiency is reduced. In this respect, if there is a crushing strength comparable to that of the sintered ore used for blast furnace operation, it will not be crushed in the blast furnace and will not cause a reduction in iron making (iron making) efficiency. Moreover, as described above, when the carbonaceous material and the iron ore are located close to each other, it becomes structurally easy to react and can react effectively at a low furnace temperature. Become.

なお、本発明に係る炭材内装塊成鉱を、高炉装入原料の一部として使用する場合、10mass%未満、あるいは20mass%未満の使用量であれば、高炉装入までの輸送に耐えられる程度の圧壊強度があれば十分である。例えば、必要な圧壊強度は50kgf以上、好ましくは焼結鉱と同程度の90kgfであればよい。また、コークス粉は3〜15mm程度の小塊を粉砕して使用してもよい。   In addition, when using the carbonaceous material agglomerated ore according to the present invention as a part of the raw material for blast furnace charging, if the amount used is less than 10 mass% or less than 20 mass%, it can withstand transport until blast furnace charging. A degree of crushing strength is sufficient. For example, the required crushing strength may be 50 kgf or more, preferably 90 kgf, which is about the same as that of sintered ore. The coke powder may be used after pulverizing a small lump of about 3 to 15 mm.

このように本発明に係る炭材内装塊成鉱では、酸化鉄殻2の最外層部分が酸化処理によって酸化が進み、その表面層にのみ高酸化度酸化鉄からなる硬化薄膜4を有する酸化鉄殻2で被われた状態になるため、圧壊強度90kgf以上の炭材内装塊成鉱が得られる。従って、これを高炉などの製鉄炉の塊成鉱として用いると、高炉炉内温度の低下をもたらすと共に、製鉄効率の向上を図ることができると共に、コストの低い小塊コークスやリサイクルダストを用いて製造できるので塊成鉱そのもののコストも低廉化する。   Thus, in the carbonaceous agglomerated ore according to the present invention, the outermost layer portion of the iron oxide shell 2 is oxidized by the oxidation treatment, and the iron oxide having the hardened thin film 4 made of high-oxidized iron oxide only on the surface layer. Since it will be in the state covered with the shell 2, a carbonaceous material agglomerated mineral with a crushing strength of 90 kgf or more is obtained. Therefore, if this is used as an agglomeration of an iron furnace such as a blast furnace, the temperature inside the blast furnace can be lowered and the efficiency of iron making can be improved, and low-cost coke or recycled dust can be used. Since it can be manufactured, the cost of the agglomerate itself is reduced.

なお、前記中間層3に用いられる鉄鉱石としては、ロメラル鉄鉱石やウクライナ鉄鉱石、キャロルレイク鉄鉱石など、好ましくはマグネタイト系硬質鉱石粉を5〜10mm程度の厚みで炭材核1の表面に被覆し、また、この中間層3の表面に形成する酸化鉄殻2としては、OGダストなどの各種製鉄ダスト、回転炉床炉等の直接還元炉発生粉(RHF粉)、あるいはミルスケールなどの酸化鉄が好適に用いられる。前記各原料粉の成分組成、熱量を下記の表3に示す。   The iron ore used for the intermediate layer 3 is preferably a magnetic iron ore, such as romeral iron ore, carol lake iron ore, and preferably a magnetite hard ore powder having a thickness of about 5 to 10 mm on the surface of the carbon material core 1. The iron oxide shell 2 that is coated and formed on the surface of the intermediate layer 3 includes various types of iron dust such as OG dust, direct reduction furnace generated powder (RHF powder) such as a rotary hearth furnace, or mill scale. Iron oxide is preferably used. The component composition and heat quantity of each raw material powder are shown in Table 3 below.

Figure 0005540859
Figure 0005540859

内容積3000m級の大型高炉に、焼結鉱を用いる通常操業時の配合に対し、その一部(10mass%)を本発明に係る図5(a)に示す炭材内装塊成鉱(表4に化学成分を示す)で代替した高炉操業を行ったところ、該炭材内装塊成鉱自体の被還元性が上昇(焼結鉱6.05%→塊成鉱95.8%)することに伴い、高炉内ガス利用率が改善され、還元剤炉は合計で10kg/t低減し、ボッシュガス量の低下の影響等により、出銑比は2%(2.25→2.29t/D/m)上昇し、本発明に係る塊成鉱を高炉操業に用いることの有効性が確められた。なお、下記の表5に高炉の操業条件、操業結果について示す。 The internal volume of 3000 m 3 grade large blast furnaces, with respect to the formulation of the normal operation using the sintered ore, carbonaceous material interior mass Naruko (table shown in FIG. 5 (a) according to the present invention a part of the (10 mass%) When the blast furnace operation replaced by the chemical component is performed in (4), the reducibility of the carbonaceous agglomerate itself increases (sintered ore 6.05% → agglomerated 95.8%). As a result, the gas utilization rate in the blast furnace is improved, the reducing agent furnace is reduced by 10 kg / t in total, and the output ratio is 2% (2.25 → 2.29 t / D) due to the influence of the decrease in the amount of Bosch gas. / M 3 ), and the effectiveness of using the agglomerated ore according to the present invention for blast furnace operation was confirmed. Table 5 below shows the operating conditions and results of the blast furnace.

なお、この高炉操業で用いた炭材内装塊成鉱は、焼結鉱と比べて、還元性の解析から有効拡散係数(De)は、焼結鉱:0.20×10−4/sに対し、2.0×10−4/sと10倍も高く、還元粉化特性(JIS RD)も、焼結鉱:20.2%に対し、31.6%と高いものであり、これらの差が上記高炉操業に反映されたものと考えられる。 In addition, the carbon material agglomerated ore used in this blast furnace operation has an effective diffusion coefficient (De) of sintered ore of 0.20 × 10 −4 m 2 / 2.0 × 10 −4 m 2 / s, which is 10 times higher than s, and the reduction powdering property (JIS RD) is 31.6% higher than that of sintered ore: 20.2%. These differences are considered to be reflected in the above blast furnace operation.

Figure 0005540859
Figure 0005540859

Figure 0005540859
Figure 0005540859

本発明の技術は、例示した高炉操業用原料だけに限らず、他の製鉄用冶金炉の原料としても有効であり、その製造方法は、他の塊成鉱を製造する技術として応用が可能である。   The technology of the present invention is not limited to the exemplified raw materials for blast furnace operation, but is also effective as a raw material for other metallurgical furnaces for iron making, and the production method can be applied as a technology for producing other agglomerates. is there.

1 コークス粉
2 酸化鉄殻
3 鉄鉱石粉
4 硬質薄層
1 Coke powder 2 Iron oxide shell 3 Iron ore powder 4 Hard thin layer

Claims (6)

化鉄粉もしくは鉄鉱石粉の外側に酸化鉄粉を被覆してなる鉄含有原料中に、−3mmの大きさのコークス粉を分散状態で含む塊成鉱であって、この塊成鉱上記鉄含有原料の外層部が、下記式により算出される酸化度Ioにおいて、平均酸化度Io(ave)が0.92未満を示す低酸化度の酸化鉄からなることを特徴とする製鉄用炭材内装塊成鉱。

Io=[(FeO%×0.223)+(全Fe%−金属製Fe%
−FeO%×0.777)×0.430]/(全Fe%×0.430)
Iron-containing raw material formed by coating the iron oxide powder to the outside of the oxidation of iron powder or iron ore fines, a lump formed ore containing coke powder size of -3mm a dispersed state, in the mass Naruko The outer layer part of the iron-containing raw material is made of an iron oxide shell having a low oxidation degree in which the average oxidation degree Io (ave) is less than 0.92 at an oxidation degree Io calculated by the following formula: Carbonaceous agglomerate.
Record
Io = [(FeO% × 0.223) + (Total Fe% −Fe% made of metal)
-FeO% × 0.777) × 0.430] / (total Fe% × 0.430)
前記低酸化度の酸化鉄殻は、少なくとも金属鉄を含有する酸化鉄粉からなることを特徴とする請求項1に記載の製鉄用炭材内装塊成鉱。 The oxidation Tetsukara of low oxidation degree, steel carbon material interior mass Naruko according to claim 1, wherein the iron oxide powder Tona Rukoto containing at least metallic iron. 前記酸化鉄殻の外表面に、高酸化度の酸化鉄からなる硬質薄層を有することを特徴とする請求項1または2に記載の製鉄用炭材内装塊成鉱。 Wherein the outer surface of the iron oxide shell, steel carbon material interior mass Naruko according to claim 1 or 2 characterized by having a hard thin layer made of a high oxidation degree of iron oxide. 前記酸化鉄が、主に製鉄所発生ダストまたはミルスケールで構成されていることを特徴とする請求項1〜のいずれか1に記載の製鉄用炭材内装塊成鉱。 The said iron oxide shell is mainly comprised with the ironworks generation | occurrence | production dust or the mill scale, The carbon material interior agglomerated mineral for iron manufacture of any one of Claims 1-3 characterized by the above-mentioned. 酸化鉄粉もしくは鉄鉱石粉の外側に酸化鉄粉を被覆してなる鉄含有原料中に内装状態の炭材を含む炭材内装塊成鉱の製造に当たり、酸化鉄粉もしくは鉄鉱石粉と炭材と、造粒機を使って混合造粒し、次いで、その造粒物の外表面に金属鉄含有酸化鉄粉を被覆して、下記式により算出される酸化度Ioにおいて、平均酸化度Io(ave)が0.92未満を示す低酸化度の酸化鉄殻を被覆形成することを特徴とする製鉄用炭材内装塊成鉱の製造方法。

Io=[(FeO%×0.223)+(全Fe%−金属製Fe%
−FeO%×0.777)×0.430]/(全Fe%×0.430)
It strikes the manufacture of carbonaceous material interior mass Naruko containing carbonaceous material of the interior state of iron-containing raw material formed by coating the iron oxide powder to the outside of the iron oxide powder or iron ore fines, the iron oxide powder or iron ore fines and carbonaceous material Then, the mixture is granulated using a granulator, and then the outer surface of the granulated product is coated with iron oxide powder containing metal iron. In the degree of oxidation Io calculated by the following formula, the average degree of oxidation Io (ave A method for producing a carbonaceous material-containing agglomerated ore for iron making, characterized in that an iron oxide shell having a low oxidation degree of less than 0.92 is formed.
Record
Io = [(FeO% × 0.223) + (Total Fe% −Fe% made of metal)
-FeO% × 0.777) × 0.430] / (total Fe% × 0.430)
前記酸化鉄殻形成後は、大気中で200℃以上300℃未満の温度で、0.5〜5時間加熱する酸化処理をすることにより、該酸化鉄殻表面にのみ高酸化度の酸化鉄からなる硬質薄層を形成することを特徴とする請求項に記載の製鉄用炭材内装塊成鉱の製造方法。 After the formation of the iron oxide shell, an oxidation treatment is performed by heating in the atmosphere at a temperature of 200 ° C. or higher and lower than 300 ° C. for 0.5 to 5 hours. The method for producing a carbonaceous material-containing agglomerated mineral for iron making according to claim 5 , wherein a hard thin layer is formed.
JP2010095952A 2010-04-19 2010-04-19 Carbon steel interior agglomerate for iron making and method for producing the same Active JP5540859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095952A JP5540859B2 (en) 2010-04-19 2010-04-19 Carbon steel interior agglomerate for iron making and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095952A JP5540859B2 (en) 2010-04-19 2010-04-19 Carbon steel interior agglomerate for iron making and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011225926A JP2011225926A (en) 2011-11-10
JP5540859B2 true JP5540859B2 (en) 2014-07-02

Family

ID=45041637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095952A Active JP5540859B2 (en) 2010-04-19 2010-04-19 Carbon steel interior agglomerate for iron making and method for producing the same

Country Status (1)

Country Link
JP (1) JP5540859B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915864B2 (en) * 2013-05-17 2016-05-11 Jfeスチール株式会社 Agglomerate production method
KR20160003860A (en) 2013-07-10 2016-01-11 제이에프이 스틸 가부시키가이샤 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
JP6273983B2 (en) * 2014-04-04 2018-02-07 新日鐵住金株式会社 Blast furnace operation method using reduced iron
JP6525806B2 (en) * 2015-08-10 2019-06-05 日本製鉄株式会社 Pretreatment method of steelmaking dust
CN109328238A (en) 2016-06-22 2019-02-12 杰富意钢铁株式会社 The manufacturing method of the sinter of interior packet Carbon Materials
BR112019013087B1 (en) 2016-12-28 2023-04-18 Jfe Steel Corporation SINTERIZED ORE MANUFACTURING METHOD
JP6809446B2 (en) * 2017-12-26 2021-01-06 Jfeスチール株式会社 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
CN113969328A (en) * 2020-07-23 2022-01-25 宝山钢铁股份有限公司 Carbon-iron composite furnace charge and preparation method thereof
CN115181597A (en) * 2022-06-30 2022-10-14 武汉钢铁有限公司 Biomass fuel, preparation method thereof and application thereof in iron ore sintering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754232A (en) * 1980-09-17 1982-03-31 Res Assoc Residual Oil Process<Rarop> Manufacture of raw material-briquette for reduced iron production
JP2008214715A (en) * 2007-03-06 2008-09-18 Jfe Steel Kk Method for manufacturing nonfired agglomerated ore for iron manufacture

Also Published As

Publication number Publication date
JP2011225926A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5540859B2 (en) Carbon steel interior agglomerate for iron making and method for producing the same
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
EP2189546B2 (en) Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
TWI396745B (en) Method for producing reduced iron pellet and method for producing pig iron
US20120103136A1 (en) Apparatus and method for producing reduced iron from alkali-containing ironmaking dust serving as material
JP5540806B2 (en) Carbon steel interior agglomerate for iron making and method for producing the same
JP2009102746A (en) Method for producing pig iron
CA2766256C (en) Carbon composite agglomerate for producing reduced iron and method for producing reduced iron using the same
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
TWI649429B (en) Manufacturing method of sintered ore
JP5521387B2 (en) Method for producing reduced iron molded body and method for producing pig iron
JP2012107271A (en) Production method for reduced iron
WO2017221774A1 (en) Method for manufacturing carbon-material-incorporated sintered ore
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JP2012067332A (en) Nonfired carbonaceous-material-containing agglomerated ore for iron manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250