JP6809446B2 - Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore - Google Patents

Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore Download PDF

Info

Publication number
JP6809446B2
JP6809446B2 JP2017249328A JP2017249328A JP6809446B2 JP 6809446 B2 JP6809446 B2 JP 6809446B2 JP 2017249328 A JP2017249328 A JP 2017249328A JP 2017249328 A JP2017249328 A JP 2017249328A JP 6809446 B2 JP6809446 B2 JP 6809446B2
Authority
JP
Japan
Prior art keywords
particles
carbonaceous material
powder
interior
material interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017249328A
Other languages
Japanese (ja)
Other versions
JP2019112704A (en
Inventor
一洋 岩瀬
一洋 岩瀬
山本 哲也
哲也 山本
友司 岩見
友司 岩見
頌平 藤原
頌平 藤原
隆英 樋口
隆英 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017249328A priority Critical patent/JP6809446B2/en
Publication of JP2019112704A publication Critical patent/JP2019112704A/en
Application granted granted Critical
Publication of JP6809446B2 publication Critical patent/JP6809446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材を内装した炭材内装粒子の製造方法および当該炭材内装粒子を焼結原料の一部として製造される炭材内装焼結鉱の製造方法に関する。 The present invention relates to a technique for producing a sintered ore used as a raw material for iron making in a blast furnace or the like. Specifically, the present invention relates to a method for producing carbonaceous material interior particles containing a carbonaceous material and sintering the carbonaceous material internal particles. The present invention relates to a method for producing a carbonaceous material interior sinter produced as a part of a raw material.

高炉製鉄法では、鉄源として焼結鉱や鉄鉱石、ペレットなどを主に用いている。ここで、焼結鉱は、塊成鉱の一種であり、以下の手順にて製造される。まず、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、少なくとも石灰石や生石灰、製鋼スラグなどの石灰含有原料を含む副原料と、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料と、珪石などからなるSiO含有原料と、粉コークスや無煙炭などからなる凝結材と、から構成される造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合、造粒して擬似粒子とする。次いで、擬似粒子とした造粒原料を、焼結機の循環移動するパレットに装入し、造粒原料に含まれる凝結材を燃焼させて焼結ケーキとする。その後、焼結ケーキを、破砕、冷却、整粒し、一定の粒径以上のものを成品焼結鉱として回収している。 In the blast furnace ironmaking method, sintered ore, iron ore, pellets, etc. are mainly used as iron sources. Here, the sinter is a kind of agglomerate ore and is produced by the following procedure. First, iron-containing raw materials such as iron ore and dust having a particle size of 10 mm or less, auxiliary raw materials containing at least lime-containing raw materials such as limestone, fresh lime, and steelmaking slag, and MgO-containing raw materials such as refined nickel slag, dolomite, and serpentine. An appropriate amount of water is added to a granulation raw material composed of a SiO 2- containing raw material such as iron ore and a coagulant material such as coke breeze and smokeless coal, and the mixture is mixed and granulated using a drum mixer or the like. Let it be a pseudo particle. Next, the granulated raw material made into pseudo particles is charged into a pallet that circulates and moves in the sintering machine, and the coagulant contained in the granulated raw material is burned to obtain a sintered cake. After that, the sintered cake is crushed, cooled, and sized, and those having a certain particle size or larger are recovered as a product sintered ore.

従来、焼結ベッド全体を均一に液相焼結する方法が主流であったが、近年、液相焼結主体の部分と、液相生成を抑えた部分とを焼結ベッドに混在させ、あえて不均一な構造を指向する焼結方法が検討されている。この理由は、融点が高く溶融しにくい部分には焼結後に多くの細かい気孔が残存し、当該部分が還元性ガスとの接触面積が大きい還元されやすい焼結鉱組織になるからである。 Conventionally, the method of uniformly performing liquid phase sintering of the entire sintered bed has been the mainstream, but in recent years, a part mainly composed of liquid phase sintering and a part in which liquid phase formation is suppressed are mixed in the sintered bed, and it is intentionally made. Sintering methods that aim for non-uniform structures are being studied. The reason for this is that many fine pores remain after sintering in the portion having a high melting point and being difficult to melt, and the portion becomes a sintered ore structure that is easily reduced and has a large contact area with the reducing gas.

このような塊成鉱の製造方法として、特許文献1には、高融点で液相生成を抑えたものとして、炭材を鉄鉱石粉とCaO含有原料で被覆した湿潤ペレットを作製し、これを従来の液相焼結主体の焼結原料に混合後、下方吸引型焼結機において焼結する方法が開示されている。 As a method for producing such agglomerate ore, Patent Document 1 describes wet pellets in which a carbonaceous material is coated with iron ore powder and a CaO-containing raw material as a method in which liquid phase formation is suppressed at a high melting point. A method of mixing with a sintering raw material mainly composed of liquid phase sintering and then sintering in a downward suction type sintering machine is disclosed.

特許第5790966号公報Japanese Patent No. 5790966

特許文献1に開示されたように、炭材内装焼結鉱は、炭材核を有する炭材内装粒子を、炭材核を有しない通常の造粒粒子に配合して焼結原料とし、焼結機で焼結することで製造される。しかしながら、造粒機で造粒された炭材内装粒子が焼結機へ搬送され、焼結機に装入される工程で崩壊すると液相生成を抑えた部分が生成されず、還元されやすい焼結鉱組織が形成されない。本発明は上記課題を鑑みてなされたものであって、その目的は、焼結機へ搬送され、焼結機に装入される工程において炭材内装粒子の崩壊を抑制できる炭材内装粒子の製造方法を提供することにある。 As disclosed in Patent Document 1, in the coal material interior sinter, coal material interior particles having a carbon material core are mixed with ordinary granulated particles having no carbon material core to be used as a sinter raw material and baked. Manufactured by sintering with a knot. However, when the carbonaceous material interior particles granulated by the granulator are transported to the sintering machine and disintegrate in the process of being charged into the sintering machine, a portion in which liquid phase formation is suppressed is not generated and is easily reduced. No sinter is formed. The present invention has been made in view of the above problems, and an object of the present invention is to obtain carbonaceous material interior particles capable of suppressing the collapse of carbonaceous material interior particles in a process of being transported to a sintering machine and charged into the sintering machine. The purpose is to provide a manufacturing method.

このような課題を解決できる本発明の特徴は、以下の通りである。
(1)粉状の鉄含有原料と、石灰含有原料と、有機バインダーと、を混合して混合粉とし、
前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法。
(2)前記有機バインダーは、カルボキシメチルセルロース、ポリビニルアルコール、α化でんぷんおよびリグニンスルホン酸マグネシウムの何れか1つ以上である、(1)に記載の炭材内装粒子の製造方法。
(3)前記ポリビニルアルコールは、ポリビニルアルコール粉である、(2)に記載の炭材内装粒子の製造方法。
(4)前記ポリビニルアルコール粉は、100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉である、(3)に記載の炭材内装粒子の製造方法。
(5)前記混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上3.0質量%以下になるように前記ポリビニルアルコール粉を配合する、(3)または(4)記載の炭材内装粒子の製造方法。
(6)(1)から(5)の何れか1つに記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。
The features of the present invention that can solve such a problem are as follows.
(1) A powdery iron-containing raw material, a lime-containing raw material, and an organic binder are mixed to form a mixed powder.
A method for producing carbonaceous material interior particles, wherein the mixed powder and the carbonaceous material are granulated to produce carbonaceous material interior particles in which an outer layer made of the mixed powder is formed around a carbon material core.
(2) The method for producing carbonaceous material interior particles according to (1), wherein the organic binder is any one or more of carboxymethyl cellulose, polyvinyl alcohol, pregelatinized starch and magnesium lignin sulfonate.
(3) The method for producing carbonaceous material interior particles according to (2), wherein the polyvinyl alcohol is polyvinyl alcohol powder.
(4) The method for producing carbonaceous material interior particles according to (3), wherein the polyvinyl alcohol powder is a polyvinyl alcohol powder sieved under a sieve with a 100-mesh sieve.
(5) The carbonaceous material interior according to (3) or (4), wherein the polyvinyl alcohol powder is blended so that the blending ratio of the polyvinyl alcohol powder to the mixed powder is 0.1% by mass or more and 3.0% by mass or less. How to make particles.
(6) The carbonaceous material interior particles produced by the method for producing the carbonaceous material interior particles according to any one of (1) to (5) are mixed with an iron-containing raw material, an auxiliary raw material, and a binder. , A method for producing a carbonaceous interior sinter, which is blended with granulated granules to form a sintering raw material, and the sintering raw material is charged into a pallet of a sintering machine and sintered.

本発明の炭材内装焼結鉱の製造方法を実施することで、圧潰強度の高い炭材内装粒子を製造できるので、焼結機へ搬送され、焼結機に装入される工程において、崩壊する炭材内装粒子を少なくできる。 By implementing the method for producing carbon material interior sintered ore of the present invention, it is possible to produce carbon material interior particles having high crushing strength, so that the particles are disintegrated in the process of being transported to the sintering machine and charged into the sintering machine. It is possible to reduce the amount of carbon material interior particles.

本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process 10 of the carbonaceous material interior particle which can carry out the manufacturing method of the carbonaceous material interior particle which concerns on this embodiment. 造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。It is a photograph which shows the mixed powder 30, coke particle 32 (including the growing carbonaceous material interior particle), and carbonaceous material interior particle 40 existing in the granulator 38. 炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process 100 of the coal material interior sintered ore that can carry out the manufacturing method of the coal material interior sintered ore. 炭材内装粒子の水分含有割合と圧潰強度との関係を示すグラフである。It is a graph which shows the relationship between the water content ratio of the carbonaceous material interior particle, and crushing strength. ポリビニルアルコール粉の配合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。It is a graph which shows the relationship between the compounding ratio of polyvinyl alcohol powder, and the crushing strength of carbonaceous material interior particles. 実施例および比較例の焼結鉱のRIを示すグラフである。It is a graph which shows the RI of the sinter of an Example and a comparative example.

以下、本発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。図1を用いて、本実施形態に係る炭材内装粒子の製造方法を説明する。 Hereinafter, the present invention will be described through embodiments of the present invention. FIG. 1 is a schematic view showing an example of a carbonaceous material interior particle manufacturing process 10 in which the method for producing carbonaceous material interior particles according to the present embodiment can be carried out. A method for producing the carbonaceous material interior particles according to the present embodiment will be described with reference to FIG.

炭材内装粒子の製造工程10では、まず、貯蔵槽14に貯蔵された鉄鉱石粉12と、貯蔵槽18に貯蔵された生石灰16と、貯蔵槽22に貯蔵されたポリビニルアルコール粉20とがそれぞれの貯蔵槽から搬送機24に所定量切り出される。鉄鉱石粉12、生石灰16およびポリビニルアルコール粉20は、搬送機24によってインテンシブミキサーなどの混練機28に搬送される。鉄鉱石粉12、生石灰16およびポリビニルアルコール粉20は、混練機28で適量の水26とともに混合されて混合粉30となる。 In the production process 10 of the carbonaceous material interior particles, first, the iron ore powder 12 stored in the storage tank 14, the quicklime 16 stored in the storage tank 18, and the polyvinyl alcohol powder 20 stored in the storage tank 22 are respectively. A predetermined amount is cut out from the storage tank into the transport machine 24. The iron ore powder 12, quicklime 16 and polyvinyl alcohol powder 20 are transported by the transporter 24 to a kneader 28 such as an intensive mixer. The iron ore powder 12, quicklime 16 and polyvinyl alcohol powder 20 are mixed with an appropriate amount of water 26 in the kneader 28 to form a mixed powder 30.

本実施形態において、鉄鉱石粉12は、粉状の鉄含有原料の一例であり、例えば、粒径が150μm以下、比表面積が1500cm/g程度の鉄鉱石粉である。生石灰16は、石灰含有原料の一例であり、生石灰に代えて、または生石灰とともに石灰石を用いてもよい。但し、混合粉30を造粒するという観点から、造粒効果の高い生石灰を用いることが好ましい。また、焼結時に生じる融液の粘度を増加させるドロマイト[CaMg(CO]を生石灰および/または石灰石に添加してもよい。すなわち、石灰含有原料とは、生石灰、石灰石およびドロマイトの何れか1つ以上を含有する原料である。ポリビニルアルコール粉20は、有機バインダーの一例であり、有機バインダーとしては、カルボキシメチルセルロース、ポリビニルアルコール、α化でんぷんおよびリグニンスルホン酸マグネシウムの何れか1つ以上を用いてよい。 In the present embodiment, the iron ore powder 12 is an example of a powdery iron-containing raw material, for example, iron ore powder having a particle size of 150 μm or less and a specific surface area of about 1500 cm 2 / g. Quicklime 16 is an example of a lime-containing raw material, and limestone may be used instead of quicklime or together with quicklime. However, from the viewpoint of granulating the mixed powder 30, it is preferable to use quicklime having a high granulation effect. In addition, dolomite [CaMg (CO 3 ) 2 ], which increases the viscosity of the melt produced during sintering, may be added to quicklime and / or limestone. That is, the lime-containing raw material is a raw material containing any one or more of quicklime, limestone and dolomite. The polyvinyl alcohol powder 20 is an example of an organic binder, and as the organic binder, any one or more of carboxymethyl cellulose, polyvinyl alcohol, pregelatinized starch and magnesium lignin sulfonate may be used.

次に、混練機28で混合された混合粉30と、貯蔵槽34に貯蔵されたコークス粒子32と、が搬送機36に所定量切り出され、造粒原料となる。本実施形態では、造粒原料に対するコークス粒子32の配合割合が1質量%以上5質量%以下、より好ましくは、2質量%以上4質量%以下になるように、混合粉30およびコークス粒子32を切り出している。 Next, the mixed powder 30 mixed by the kneader 28 and the coke particles 32 stored in the storage tank 34 are cut out in a predetermined amount by the conveyor 36 and used as a raw material for granulation. In the present embodiment, the mixed powder 30 and the coke particles 32 are mixed so that the blending ratio of the coke particles 32 with respect to the granulation raw material is 1% by mass or more and 5% by mass or less, more preferably 2% by mass or more and 4% by mass or less. It is cut out.

本実施形態において、コークス粒子32は、炭材の一例であり、当該炭材は、周囲に混合粉30からなる外層が形成されて炭材核となる。炭材として無煙炭であるホンゲイ炭を用いてもよい。コークス粒子およびホンゲイ炭は揮発分が少ないので、これらを用いることで焼結時に炭材から生じる燃焼ガスが少なくでき、当該炭材内装粒子を用いて製造される炭材内装焼結鉱の強度低下が抑制される。これにより、炭材内装焼結鉱の歩留低下を抑制できる。 In the present embodiment, the coke particles 32 are an example of a carbonaceous material, and the coal material has an outer layer made of a mixed powder 30 formed around the coke material to form a core of the carbon material. Anthracite charcoal, Hongei charcoal, may be used as the charcoal material. Since coke particles and Hongei charcoal have low volatile content, the amount of combustion gas generated from the sinter during sintering can be reduced by using them, and the strength of the sinter inside the sinter produced using the sinter is reduced. Is suppressed. As a result, it is possible to suppress a decrease in the yield of the sinter for the interior of the carbonaceous material.

造粒原料は、搬送機36によってディスクペレタイザーなどの造粒機38に搬送される。造粒原料は、造粒機38で適量の水26とともに転動され、水の架橋力等によってコークス粒子32が炭材核となり、その周囲に混合粉30からなる外層が形成された炭材内装粒子40が製造される。 The granulating raw material is conveyed by the conveying machine 36 to the granulating machine 38 such as a disc pelletizer. The granulation raw material is rolled together with an appropriate amount of water 26 by the granulator 38, and the coke particles 32 become the carbon material core due to the cross-linking force of water or the like, and the outer layer composed of the mixed powder 30 is formed around the coke material interior. Particle 40 is produced.

図2は、造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。図1に示した炭材内装粒子の製造工程10に従って炭材内装粒子40が製造されるが、炭材内装粒子40の強度が低いと、炭材内装粒子40を焼結機へ搬送し、焼結機に装入される工程で崩壊する。このため、本実施形態に係る炭材内装粒子の製造方法では、鉄鉱石粉12および生石灰16にポリビニルアルコール粉20を配合している。これにより、コークス粒子32の周囲に外層として形成される混合粉30の強度が高められ、焼結機へ搬送し、焼結機に装入される工程における炭材内装粒子40の崩壊を抑制できる。 FIG. 2 is a photograph showing the mixed powder 30, coke particles 32 (including growing carbonaceous material interior particles), and carbonaceous material interior particles 40 existing in the granulator 38. The carbonaceous material internal particles 40 are produced according to the production process 10 of the carbonaceous material internal particles shown in FIG. 1. However, if the strength of the carbon material internal particles 40 is low, the carbon material internal particles 40 are conveyed to the sintering machine and baked. It collapses in the process of being charged into the particle. Therefore, in the method for producing carbonaceous material interior particles according to the present embodiment, polyvinyl alcohol powder 20 is blended with iron ore powder 12 and quicklime 16. As a result, the strength of the mixed powder 30 formed as an outer layer around the coke particles 32 is increased, and it is possible to suppress the collapse of the carbonaceous material interior particles 40 in the process of transporting the mixed powder 30 to the sintering machine and charging the coke particles 32 into the sintering machine. ..

図3は、炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。炭材内装焼結鉱の製造工程100では、図1に示した炭材内装粒子の製造工程10と平行して、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石、生石灰、製鋼スラグなどのCaO含有原料を含む副原料と、粒径3mm未満の粉コークスや無煙炭などからなる凝結材と、を含む原料50を、ドラムミキサー等の造粒機52で造粒して造粒粒子とする。なお、副原料には、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料や、珪石などからなるSiO含有原料が含まれてもよい。 FIG. 3 is a schematic view showing an example of a production process 100 of a carbonaceous interior sintered ore in which a method for producing a carbonaceous interior sintered ore can be carried out. In the production process 100 of the carbon material interior sintered ore, in parallel with the production process 10 of the carbon material interior particles shown in FIG. 1, iron-containing raw materials such as iron ore and dust having a particle size of 10 mm or less, limestone, and fresh lime. , A raw material 50 containing an auxiliary raw material containing a CaO-containing raw material such as steelmaking slag and a coagulant made of powdered coke or smokeless coal having a particle size of less than 3 mm is granulated by a granulator 52 such as a drum mixer. It is a grain size. The auxiliary raw material may include an MgO-containing raw material such as refined nickel slag, dolomite, and serpentinite, and a SiO 2- containing raw material made of silica stone or the like.

次いで、原料50を造粒した造粒粒子に、炭材内装粒子40を配合して焼結原料とする。焼結原料のうち、原料50を造粒した造粒粒子が液相焼結主体の部分となり、炭材内装粒子40が液相生成を抑えた部分となる。焼結原料に対する炭材内装粒子40の配合割合が10質量%以上30質量%以下になるように、造粒粒子に炭材内装粒子40を配合することが好ましい。これにより、焼結原料の通気性が向上し、炭材内装焼結鉱の生産性が向上する。 Next, the carbonaceous material interior particles 40 are mixed with the granulated particles obtained by granulating the raw material 50 to obtain a sintered raw material. Of the sintering raw materials, the granulated particles obtained by granulating the raw material 50 serve as a portion mainly composed of liquid phase sintering, and the carbonaceous material interior particles 40 serve as a portion in which liquid phase formation is suppressed. It is preferable to add the carbonaceous material interior particles 40 to the granulated particles so that the mixing ratio of the carbonaceous material interior particles 40 with respect to the sintering raw material is 10% by mass or more and 30% by mass or less. As a result, the air permeability of the sinter raw material is improved, and the productivity of the sinter for the interior of the carbonaceous material is improved.

炭材内装粒子が配合された焼結原料は、下方吸引式焼結機60のサージホッパーに搬入される。焼結原料は、サージホッパーから無端移動式のパレットに装入され、装入層が形成される。装入層は、上方に設置された点火炉によって点火され、下方に設置されたウインドボックスから上方のガスを下方に吸引されることで装入層は順次燃焼、焼結される。装入層は、当該燃焼により発生する燃焼熱で焼結されて焼結ケーキとなる。焼結ケーキは、排鉱部で破砕および整粒され、粒径4mm以上の塊成物が成品の炭材内装焼結鉱として回収される。このようにして製造された炭材内装焼結鉱が高炉70の製鉄原料として使用される。なお、本実施形態における粒径とは、JIS(日本工業規格) Z 8801−1に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径4mm以上とは、JIS Z 8801−1に準拠した公称目開き4mmの篩を用いて篩上に篩分けされる粒径をいう。 The sintering raw material containing the carbonaceous material interior particles is carried into the surge hopper of the downward suction type sintering machine 60. The sintered raw material is charged from the surge hopper into an endlessly movable pallet to form an charged layer. The charge layer is ignited by an ignition furnace installed above, and the upper gas is sucked downward from the wind box installed below, so that the charge layer is sequentially burned and sintered. The charging layer is sintered by the heat of combustion generated by the combustion to form a sintered cake. The sintered cake is crushed and sized at the sinter part, and agglomerates having a particle size of 4 mm or more are recovered as a sinter for the interior of carbonaceous materials. The carbonaceous interior sintered ore produced in this way is used as a raw material for steelmaking in the blast furnace 70. The particle size in the present embodiment is a particle size sieved using a sieve having a nominal opening according to JIS (Japanese Industrial Standards) Z 8801-1, and for example, a particle size of 4 mm or more is defined as a particle size of 4 mm or more. The particle size that is sieved onto a sieve using a sieve with a nominal opening of 4 mm in accordance with JIS Z 8801-1.

本実施形態に係る炭材内装粒子の製造方法で用いるコークス粒子32の粒径は、2mm以上であることが好ましい。粒径が2mm以上のコークス粒子を用いることで、炭材内装粒子を配合した焼結原料を焼結機で焼結する工程でコークス粒子が消失してしまうことを抑制できる。コークス粒子32の粒径は、3mm以上であることがより好ましい。粒径が3mm以上の炭材を用いることで、コークス粒子の消失をさらに抑制できる。 The particle size of the coke particles 32 used in the method for producing the carbonaceous material interior particles according to the present embodiment is preferably 2 mm or more. By using coke particles having a particle size of 2 mm or more, it is possible to prevent the coke particles from disappearing in the step of sintering the sintering raw material containing the carbonaceous material interior particles with a sintering machine. The particle size of the coke particles 32 is more preferably 3 mm or more. By using a carbonaceous material having a particle size of 3 mm or more, the disappearance of coke particles can be further suppressed.

一方、粒径が大きいコークス粒子を用いると、焼結時にコークスから発生する燃焼ガス量が増加し、炭材内装焼結鉱においてコークス粒子を被覆する外層に亀裂が生じる。コークス粒子を被覆する外層に亀裂が生じると炭材内装焼結鉱の強度が大きく低下し、この結果、炭材内装焼結鉱の歩留が大きく低下する。このため、コークス粒子32の粒径は、8mm以下であることが好ましく、6mm以下であることがより好ましい。 On the other hand, when coke particles having a large particle size are used, the amount of combustion gas generated from coke during sintering increases, and cracks occur in the outer layer covering the coke particles in the carbonaceous material interior sinter. When the outer layer covering the coke particles is cracked, the strength of the carbonaceous interior sinter is greatly reduced, and as a result, the yield of the carbonaceous interior sinter is significantly reduced. Therefore, the particle size of the coke particles 32 is preferably 8 mm or less, and more preferably 6 mm or less.

また、製造される炭材内装粒子40の粒径は、8mm以上18mm以下であることが好ましい。上述したように、粒径が4mm以上の炭材内装焼結鉱が成品焼結鉱として回収され、粒径4mm未満の焼結鉱は、焼結原料にリサイクル(返鉱)される。また、炭材内装粒子40は、焼結機で焼結すると水分の蒸発や部分的な溶融によって体積が小さくなる。従って、炭材内装粒子40がそのまま焼結されたとしても返鉱にならないように、炭材内装粒子40の粒径は、8mm以上であることが好ましく、10mm以上であることがより好ましい。 Further, the particle size of the produced carbonaceous material interior particles 40 is preferably 8 mm or more and 18 mm or less. As described above, the carbonaceous interior sinter having a particle size of 4 mm or more is recovered as a product sinter, and the sinter having a particle size of less than 4 mm is recycled (returned) into a sintering raw material. Further, when the carbonaceous material interior particles 40 are sintered by a sintering machine, the volume becomes smaller due to evaporation of water or partial melting. Therefore, the particle size of the carbonaceous material interior particles 40 is preferably 8 mm or more, and more preferably 10 mm or more so that even if the carbonaceous material interior particles 40 are sintered as they are, they do not return ore.

一方、炭材内装粒子40に形成されたコークス粒子32の外層の厚さが5mmを超えると、限られた焼結時間内に炭材内装粒子40の全ての外層を焼結することが困難になる。焼結が不十分な部分が炭材内装焼結鉱に存在すると、炭材内装焼結鉱の強度は低下し、炭材内装焼結鉱の歩留が低下する。従って、炭材内装粒子40の外層の厚さは5mm以下であることが好ましく、例えば、コークス粒子32の粒径が8mmであって外層の厚さが5mmである場合の炭材内装粒子の粒径は18mmになる。このため、炭材内装粒子40の粒径は18mm以下であることが好ましい。 On the other hand, if the thickness of the outer layer of the coke particles 32 formed on the carbon material inner particles 40 exceeds 5 mm, it becomes difficult to sinter all the outer layers of the carbon material inner particles 40 within a limited sintering time. Become. If a portion of insufficient sintering is present in the sinter for the interior of the carbonaceous material, the strength of the sinter for the interior of the carbonaceous material decreases, and the yield of the sinter for the interior of the carbon material decreases. Therefore, the thickness of the outer layer of the carbonaceous material interior particles 40 is preferably 5 mm or less. For example, the particles of the carbonaceous material interior particles when the particle size of the coke particles 32 is 8 mm and the thickness of the outer layer is 5 mm. The diameter will be 18 mm. Therefore, the particle size of the carbonaceous material interior particles 40 is preferably 18 mm or less.

また、本実施形態に係る炭材内装粒子の製造方法では、バインダーとして、有機バインダーであるポリビニルアルコールを用いている。有機バインダーは、炭材内装粒子40の焼結時の燃焼によって揮発するので、焼結後の炭材内装焼結鉱に残存しない。このため、有機バインダーを用いることで、当該バインダーを用いることによる炭材内装粒子40への影響、および、当該炭材内装粒子40を含む焼結原料を焼結して製造される炭材内装焼結鉱への影響を小さくできる。 Further, in the method for producing carbonaceous material interior particles according to the present embodiment, polyvinyl alcohol, which is an organic binder, is used as the binder. Since the organic binder volatilizes due to combustion of the carbonaceous material interior particles 40 during sintering, it does not remain in the coal material internal sintered ore after sintering. Therefore, by using an organic binder, the effect of using the binder on the carbonaceous material interior particles 40 and the carbonaceous material internal firing produced by sintering the sintering raw material containing the carbonaceous material internal particles 40. The impact on sinter can be reduced.

また、本実施形態に係る炭材内装粒子の製造方法では、有機バインダーとして、粉状のポリビニルアルコール粉20を用いた例を示した。しかしながら、粉状の有機バインダーに限られず、有機バインダーをある濃度で溶解させた有機バインダー溶液を用いてもよい。 Further, in the method for producing carbonaceous material interior particles according to the present embodiment, an example in which powdered polyvinyl alcohol powder 20 is used as the organic binder is shown. However, it is not limited to the powdery organic binder, and an organic binder solution in which the organic binder is dissolved at a certain concentration may be used.

但し、炭材内装粒子の品質を一定に保つには、炭材内装粒子40の水分含有量およびバインダー含有量を一定にすることが求められるところ、仮に、有機バインダー溶液を撹拌機あるいは造粒機内で鉄鉱石粉12を含む原料に噴霧すると、鉄鉱石粉12の持込み水分が変動した際に、溶液中のバインダー濃度を、鉄鉱石粉12を含む原料の持込み水分に合わせて制御する必要がある。さらに、有機バインダー溶液の濃度が異なると有機バインダー溶液の粘度も異なり、当該粘度に応じて有機バインダー溶液の噴霧条件を調整する必要がある。 However, in order to keep the quality of the iron ore interior particles constant, it is required to keep the water content and the binder content of the iron ore interior particles 40 constant. Therefore, tentatively, the organic binder solution is mixed in the stirrer or the granulator. When the raw material containing the iron ore powder 12 is sprayed with, when the water content of the iron ore powder 12 fluctuates, it is necessary to control the binder concentration in the solution according to the water content of the raw material containing the iron ore powder 12. Further, if the concentration of the organic binder solution is different, the viscosity of the organic binder solution is also different, and it is necessary to adjust the spraying conditions of the organic binder solution according to the viscosity.

このため、バインダーとしては、ポリビニルアルコール粉20のような粉状バインダーを用いることが好ましい。有機バインダーとして、粉状バインダーを用いることで、上述した制御を行うことなく、有機バインダーと鉄鉱石原料に配合し、撹拌するだけで均一に混合できる。これにより、炭材内装粒子40の強度は、全体的に平均して向上し、炭材内装粒子40の品質を一定に保つことができる。 Therefore, it is preferable to use a powdery binder such as polyvinyl alcohol powder 20 as the binder. By using a powdery binder as the organic binder, the organic binder and the iron ore raw material can be mixed and uniformly mixed without the above-mentioned control. As a result, the strength of the carbonaceous material interior particles 40 is improved on average as a whole, and the quality of the carbonaceous material interior particles 40 can be kept constant.

さらに、100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉を用いることが好ましい。100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉の粒径は150μm以下になるので、ポリビニルアルコール粉を混合する鉄鉱石粉12の粒径と同程度になる。このように、ポリビニルアルコール粉と鉄鉱石粉12との粒径を同程度にすることで粒径差による偏析が抑制されてさらに均一に混合でき、炭材内装粒子40の品質を一定に保つことができる。 Further, it is preferable to use polyvinyl alcohol powder sieved under a sieve with a 100 mesh sieve. Since the particle size of the polyvinyl alcohol powder sieved under the sieve with a 100-mesh sieve is 150 μm or less, it is about the same as the particle size of the iron ore powder 12 mixed with the polyvinyl alcohol powder. By making the particle sizes of the polyvinyl alcohol powder and the iron ore powder 12 about the same in this way, segregation due to the difference in particle size can be suppressed and the mixture can be mixed more uniformly, and the quality of the carbonaceous material interior particles 40 can be kept constant. it can.

次に、炭材内装粒子40の強度について説明する。炭材内装粒子40が製造されてから下方吸引式焼結機60に装入されるまでに、炭材内装粒子40は、複数の搬送コンベアを乗り継ぐ。このため、炭材内装粒子40は、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐える強度を有することが好ましい。まず、圧潰強度を変えた炭材内装粒子を試験的に製造し、搬送コンベアの乗り継ぎとパレット装入を行った後における炭材内装粒子の崩壊状況を確認した。その結果、炭材内装粒子の圧潰強度を9.8N/個以上にすることで、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐え、下方吸引式焼結機60への直送が可能になることが判明した。なお、本実施形態において、圧潰強度とは、圧縮試験機を用いて、圧縮速度1mm/minで炭材内装粒子を圧縮して測定される最大強度である。 Next, the strength of the carbonaceous material interior particles 40 will be described. From the time when the carbonaceous material interior particles 40 are manufactured to the time when they are charged into the downward suction type sintering machine 60, the carbon material internal particles 40 transfer to a plurality of conveyors. Therefore, it is preferable that the carbonaceous material interior particles 40 have a strength to withstand the connection between a plurality of conveyors and the impact at the time of loading the pallet of the downward suction type sintering machine 60. First, the carbonaceous interior particles having different crushing strengths were experimentally produced, and the collapse state of the carbonaceous interior particles after the transfer of the conveyor and the pallet loading was confirmed. As a result, by setting the crushing strength of the carbonaceous material interior particles to 9.8 N / piece or more, it can withstand the impact of connecting multiple conveyors and loading the pallet of the downward suction type sintering machine 60, and is a downward suction type. It has been found that direct delivery to the sintering machine 60 is possible. In the present embodiment, the crushing strength is the maximum strength measured by compressing the carbonaceous material interior particles at a compression rate of 1 mm / min using a compression tester.

炭材内装粒子の圧潰強度を9.8N/個以上にするには、ヘマタイトを主体鉱物とする鉄鉱石粉であれば、1800〜2000cm/g程度のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上となる鉄鉱石粉を使用する必要がある。しかしながら、現在、鉄鉱石市場で流通しているヘマタイト精鉱微粉の多くは、Blaine比表面積が500〜1500cm/g程度、45μm以下となる鉄鉱石粉の含有割合が35〜75質量%程度である。従って、これら原料をこのまま用いても圧潰強度9.8N/個以上の炭材内装粒子を製造できない。 In order to increase the crushing strength of the carbonaceous interior particles to 9.8 N / piece or more, iron ore powder containing hematite as the main mineral has a Braine specific surface area of about 1800 to 2000 cm 2 / g or an iron ore having a particle size of 45 μm or less. It is necessary to use iron ore powder having a stone powder content of 80% by mass or more. However, most of the hematite concentrate fine powder currently distributed in the iron ore market has a Braine specific surface area of about 500 to 1500 cm 2 / g and a content ratio of iron ore powder of about 45 μm or less of about 35 to 75% by mass. .. Therefore, even if these raw materials are used as they are, it is not possible to produce carbonaceous material interior particles having a crushing strength of 9.8 N / piece or more.

一方、ボールミル等を用いて鉄鉱石粉を粉砕することで、1800cm/g以上のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上が達成できるが、設備コストやランニングコストが高くなる。そこで、炭材の周囲に形成される外層の混合粉30にポリビニルアルコール粉20を配合し、炭材内装粒子の圧潰強度を9.8N/個以上にできるか否かを確認するべく、図1に示した炭材内装粒子の製造工程10に従って、炭材内装粒子の製造試験を行った。 On the other hand, by crushing the iron ore powder using a ball mill or the like, the content ratio of the iron ore powder having a Braine specific surface area of 1800 cm 2 / g or more or a particle size of 45 μm or less can be achieved of 80% by mass or more, but the equipment cost and running can be achieved. The cost is high. Therefore, in order to confirm whether or not the crushing strength of the carbonaceous material interior particles can be increased to 9.8 N / piece or more by blending the polyvinyl alcohol powder 20 with the outer layer mixed powder 30 formed around the carbonaceous material, FIG. The production test of the carbonaceous material interior particles was carried out according to the production process 10 of the carbonaceous material interior particles shown in 1.

炭材内装粒子の製造試験は、以下の手順にて実施した。まず、粒径150μm以下であってBlaine比表面積が1500cm/gの鉄鉱石粉と、粒径75μm以下の生石灰と、粒径150μm以下のポリビニルアルコール粉とを、質量比で95:4:1の割合で配合し、インテンシブミキサーを用いて均一に混合して混合粉とした。この混合粉と、粒径2mm以上8mm以下のコークス粒子を質量比98:2の割合で配合して造粒原料とした。この造粒原料を、ディスクペレタイザーを用いて転動させて造粒原料を造粒し、炭材の周囲に混合粉からなる外層が形成された炭材内装粒子を製造した。造粒原料の造粒に必要な水は、インテンシブミキサーおよびディスクペレタイザー内へ適量噴霧して供給した。 The production test of the carbonaceous material interior particles was carried out according to the following procedure. First, iron ore powder having a particle size of 150 μm or less and a Braine specific surface area of 1500 cm 2 / g, quicklime having a particle size of 75 μm or less, and polyvinyl alcohol powder having a particle size of 150 μm or less are mixed in a mass ratio of 95: 4: 1. The mixture was mixed in a ratio and uniformly mixed using an intensive mixer to obtain a mixed powder. This mixed powder and coke particles having a particle size of 2 mm or more and 8 mm or less were mixed at a mass ratio of 98: 2 to prepare a granulation raw material. This granulation raw material was rolled using a disc pelletizer to granulate the granulation raw material, and carbon material inner particles in which an outer layer made of a mixed powder was formed around the carbon material were produced. The water required for granulation of the granulation raw material was supplied by spraying an appropriate amount into the intensive mixer and the disc pelletizer.

図4は、本実施形態に係る炭材内装粒子の製造方法で製造された炭材内装粒子の水分含有割合と圧潰強度との関係を示すグラフである。図4において、横軸は炭材内装粒子の水分含有割合(質量%)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。炭材内装粒子が造粒された直後の水分含有割合は7〜8質量%であり、この時点で炭材内装粒子の圧潰強度は、9.8N/個以上となった。この結果から、Blaine比表面積が1800cm/g未満または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%未満の鉄鉱石粉を用いた場合であっても、当該鉄鉱石粉を含む混合粉に対するポリビニルアルコール粉の配合割合が1質量%以上となるようにポリビニルアルコール粉を配合することで、9.8N/個以上の圧潰強度を有する炭材内装粒子を製造できることが確認された。一方、ポリビニルアルコール粉を配合しない場合には、炭材内装粒子の圧潰強度は2.0〜3.9N/個となり、9.8N/個以上の圧潰強度にできなかった。 FIG. 4 is a graph showing the relationship between the water content ratio of the carbonaceous material interior particles produced by the method for producing the carbonaceous material interior particles according to the present embodiment and the crushing strength. In FIG. 4, the horizontal axis is the water content ratio (mass%) of the carbonaceous material interior particles, and the vertical axis is the crushing strength (N / piece) of the carbonaceous material interior particles. Immediately after the carbonaceous material interior particles were granulated, the water content was 7 to 8% by mass, and at this point, the crushing strength of the carbonaceous material interior particles was 9.8 N / piece or more. From this result, even when iron ore powder having a Braine specific surface area of less than 1800 cm 2 / g or a particle size of 45 μm or less and an iron ore powder having a content of less than 80% by mass is used, the mixed powder containing the iron ore powder is used. It was confirmed that the carbonaceous material interior particles having a crushing strength of 9.8 N / piece or more can be produced by blending the polyvinyl alcohol powder so that the blending ratio of the polyvinyl alcohol powder is 1% by mass or more. On the other hand, when the polyvinyl alcohol powder was not blended, the crushing strength of the carbonaceous material interior particles was 2.0 to 3.9 N / piece, and the crushing strength could not be 9.8 N / piece or more.

また、図4に示すように、乾燥させて水分含有割合を小さくすると、炭材内装粒子の圧潰強度は向上する。特に、炭材内装粒子の含有水分量を2質量%以下にすることで、炭材内装粒子の圧潰強度を大きく向上することから、炭材内装粒子の含有水分量を2質量%以下に乾燥させることが好ましく、炭材内装粒子の含有水分量を1質量%以下に乾燥させることがより好ましい。これにより、有機バインダーの配合量を増やすことなく、炭材内装粒子の強度を向上できる。 Further, as shown in FIG. 4, when the water content is reduced by drying, the crushing strength of the carbonaceous material interior particles is improved. In particular, by reducing the water content of the carbonaceous material interior particles to 2% by mass or less, the crushing strength of the carbonaceous material interior particles is greatly improved. Therefore, the water content of the carbonaceous material interior particles is dried to 2% by mass or less. It is preferable, and it is more preferable to dry the water content of the carbonaceous material interior particles to 1% by mass or less. As a result, the strength of the carbonaceous material interior particles can be improved without increasing the blending amount of the organic binder.

次に、鉄鉱石粉と、生石灰と、ポリビニルアルコール粉との質量比が、95.9:4.0:0.1と、95.0:4.0:1.0と、94.0:4.0:2.0と、93.0:4.0:3.0と、になるように配合割合を変えて炭材内装粒子を製造し、各炭材内装粒子の圧潰強度を測定した。その結果を図5に示す。 Next, the mass ratios of iron ore powder, quicklime, and polyvinyl alcohol powder were 95.9: 4.0: 0.1, 95.0: 4.0: 1.0, and 94.0: 4. The carbonaceous material interior particles were produced by changing the mixing ratio so as to be 0.0: 2.0 and 93.0: 4.0: 3.0, and the crushing strength of each carbon material internal particle was measured. The result is shown in FIG.

図5は、ポリビニルアルコール粉の配合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。図5において、横軸は混合粉に対するポリビニルアルコール粉の配合割合(質量%)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。図5に示すように、混合粉に対するポリビニルアルコール粉の配合割合を高くすることで、炭材内装粒子の圧潰強度を向上できる。一方、ポリビニルアルコール粉の配合割合を2質量%より高くしても炭材内装粒子の圧潰強度が向上せず、飽和傾向が見られた。さらに、混合粉に対するポリビニルアルコール粉の配合割合が3質量%以上となるようにポリビニルアルコール粉を配合すると、鉄鉱石粉の持ち込み水および造粒時に供給される水にポリビニルアルコール粉が溶け込み、粘度が上昇して安定した造粒が困難になった。これらの結果から、混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上3.0質量%以下となるようにポリビニルアルコール粉を配合することが好ましく、混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上2.0質量%以下となるようにポリビニルアルコール粉を配合することがさらに好ましいことがわかる。 FIG. 5 is a graph showing the relationship between the mixing ratio of polyvinyl alcohol powder and the crushing strength of the carbonaceous material interior particles. In FIG. 5, the horizontal axis is the mixing ratio (mass%) of the polyvinyl alcohol powder to the mixed powder, and the vertical axis is the crushing strength (N / piece) of the carbonaceous material interior particles. As shown in FIG. 5, the crushing strength of the carbonaceous material interior particles can be improved by increasing the mixing ratio of the polyvinyl alcohol powder to the mixed powder. On the other hand, even if the compounding ratio of the polyvinyl alcohol powder was higher than 2% by mass, the crushing strength of the carbonaceous material interior particles did not improve, and a saturation tendency was observed. Further, when the polyvinyl alcohol powder is mixed so that the mixing ratio of the polyvinyl alcohol powder to the mixed powder is 3% by mass or more, the polyvinyl alcohol powder dissolves in the water brought in of the iron ore powder and the water supplied at the time of granulation, and the viscosity increases. As a result, stable granulation became difficult. From these results, it is preferable to mix the polyvinyl alcohol powder so that the mixing ratio of the polyvinyl alcohol powder to the mixed powder is 0.1% by mass or more and 3.0% by mass or less, and the mixing ratio of the polyvinyl alcohol powder to the mixed powder. It can be seen that it is more preferable to blend the polyvinyl alcohol powder so that the content is 0.1% by mass or more and 2.0% by mass or less.

以上、説明したように、本実施形態に係る炭材内装粒子の製造方法を実施することで、圧潰強度の高い炭材内装粒子を製造できるので、焼結機へ搬送され、焼結機に装入される工程において、崩壊する炭材内装粒子を少なくできる。そして、当該炭材内装粒子を含む焼結原料を焼結して炭材内装焼結鉱を製造することで、焼結鉱に還元されやすい焼結鉱組織が多く形成され、炭材内装焼結鉱の還元効率の向上が実現できる。 As described above, by implementing the method for producing the carbonaceous material interior particles according to the present embodiment, the carbonaceous material interior particles having high crushing strength can be produced, so that the particles are transported to the sintering machine and mounted on the sintering machine. It is possible to reduce the amount of carbonaceous material interior particles that disintegrate in the process of being inserted. Then, by sintering the sintering raw material containing the sinter interior particles to produce the sinter for the sinter, a large amount of sinter structure that is easily reduced to the sinter is formed, and the sinter for the interior of the sinter. Improvement of ore reduction efficiency can be realized.

また、Blaine比表面積が1800cm/g未満または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%未満の鉄鉱石粉を用いた場合であっても、混合粉に対するポリビニルアルコール粉の配合割合が1質量%以上となるようにポリビニルアルコール粉を配合することで、焼結機へ直送できる強度の高い炭材内装粒子を製造できることが確認された。 Further, even when iron ore powder having a specific surface area of less than 1800 cm 2 / g or a particle size of 45 μm or less and an iron ore powder having a content of less than 80% by mass is used, the mixing ratio of polyvinyl alcohol powder to the mixed powder is still high. It was confirmed that by blending polyvinyl alcohol powder so as to be 1% by mass or more, it is possible to produce highly strong carbonaceous material interior particles that can be directly sent to the sintering machine.

次に炭材内装粒子を含む焼結原料を焼結して製造された炭材内装焼結鉱の還元反応性を確認した結果を説明する。図6は、実施例および比較例の焼結鉱のRIを示すグラフである。RIは、焼結鉱の被還元性を示す指標であって、JIS M 8713に準拠して測定される値である。 Next, the result of confirming the reduction reactivity of the sinter for the interior of the carbonaceous material produced by sintering the sintering raw material containing the inner particles of the carbonaceous material will be described. FIG. 6 is a graph showing RI of sinters of Examples and Comparative Examples. RI is an index showing the reducibility of the sinter, and is a value measured in accordance with JIS M 8713.

図6に示した比較例では、ポリビニルアルコール粉が混合されず、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊したことを模擬し、炭材内装粒子を含まない焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。一方、実施例では、ポリビニルアルコール粉が配合され、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊しないとして、炭材内装粒子を内数で約7質量%(約50t/h相当)配合した焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。 In the comparative example shown in FIG. 6, it is simulated that the polyvinyl alcohol powder is not mixed and the carbonaceous material interior particles are disintegrated in the process of being transported to and charged into the sintering machine, and the sintering material does not contain the carbonaceous material internal particles. The raw material was charged into the sinter at a charging rate of 650 t / h to produce sinter. On the other hand, in the embodiment, assuming that the carbonaceous material interior particles do not disintegrate in the process of blending the polyvinyl alcohol powder and transporting and charging it to the sintering machine, the amount of the carbonaceous material interior particles is about 7% by mass (about 50 t / /). (Equivalent to h) The blended sintering raw material was charged into a sinter at a charging rate of 650 t / h to produce a sinter.

図6に示すように、実施例の炭材内装焼結鉱のRIは、比較例の焼結鉱のRIより3%高くなることが確認された。この結果から、本実施形態に係る炭材内装粒子の製造方法を用いて圧潰強度の高い炭材内装粒子を製造することで、焼結機へ搬送、装入される工程で崩壊する炭材内装粒子を少なくでき、これにより、当該炭材内装粒子を含む焼結原料から製造される炭材内装焼結鉱の被還元性を向上できることがわかる。 As shown in FIG. 6, it was confirmed that the RI of the carbonaceous interior sinter of the example was 3% higher than the RI of the sinter of the comparative example. From this result, by producing the carbonaceous material interior particles having high crushing strength by using the method for producing the carbonaceous material interior particles according to the present embodiment, the carbon material interior that collapses in the process of being transported to the sintering machine and charged. It can be seen that the number of particles can be reduced, and as a result, the reducibility of the sinter for the sinter which is produced from the sinter raw material containing the sinter for the sinter can be improved.

10 炭材内装粒子の製造工程
12 鉄鉱石粉
14 貯蔵槽
16 生石灰
18 貯蔵槽
20 ポリビニルアルコール粉
22 貯蔵槽
24 搬送機
26 水
28 混練機
30 混合粉
32 コークス粒子
34 貯蔵槽
36 搬送機
38 造粒機
40 炭材内装粒子
50 原料
52 造粒機
60 下方吸引式焼結機
70 高炉
100 炭材内装焼結鉱の製造工程
10 Manufacturing process of carbonaceous material interior particles 12 Iron ore powder 14 Storage tank 16 Fresh lime 18 Storage tank 20 Polyvinyl alcohol powder 22 Storage tank 24 Transporter 26 Water 28 Kneader 30 Mixing powder 32 Coke particles 34 Storage tank 36 Transporter 38 Granulator 40 Coal material interior particles 50 Raw material 52 Granulator 60 Downward suction type sintering machine 70 Blast furnace 100 Coal material interior sintered ore manufacturing process

Claims (3)

粉状の鉄含有原料と、石灰含有原料と、ポリビニルアルコール粉と、を混合して混合粉とし、
前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法であって、
前記混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上3.0質量
%以下になるように前記ポリビニルアルコール粉を配合する、炭材内装粒子の製造方法。
A powdery iron-containing raw material, a lime-containing raw material, and a polyvinyl alcohol powder are mixed to form a mixed powder.
A method for producing carbonaceous material interior particles, wherein the mixed powder and the carbonaceous material are granulated to produce carbonaceous material interior particles in which an outer layer made of the mixed powder is formed around the carbon material core .
The mixing ratio of polyvinyl alcohol powder to the mixed powder is 0.1% by mass or more and 3.0% by mass.
% Or less, a method for producing carbonaceous material interior particles, in which the polyvinyl alcohol powder is blended.
前記ポリビニルアルコール粉は、100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉である、請求項に記載の炭材内装粒子の製造方法。 The method for producing carbonaceous material interior particles according to claim 1 , wherein the polyvinyl alcohol powder is a polyvinyl alcohol powder sieved under a sieve with a 100-mesh sieve. 請求項1または請求項に記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、
前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。
The carbonaceous material interior particles produced by the method for producing carbonaceous material interior particles according to claim 1 or 2 , are converted into granulated particles obtained by mixing and granulating an iron-containing raw material, an auxiliary raw material, and a coagulant. Blend and use as a sintering raw material
A method for producing a carbonaceous interior sinter, in which the sintering raw material is charged into a pallet of a sintering machine and sintered.
JP2017249328A 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore Active JP6809446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017249328A JP6809446B2 (en) 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249328A JP6809446B2 (en) 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore

Publications (2)

Publication Number Publication Date
JP2019112704A JP2019112704A (en) 2019-07-11
JP6809446B2 true JP6809446B2 (en) 2021-01-06

Family

ID=67221351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249328A Active JP6809446B2 (en) 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore

Country Status (1)

Country Link
JP (1) JP6809446B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012026123B1 (en) * 2010-04-14 2018-04-17 Nippon Steel & Sumitomo Metal Corporation METHOD OF PRODUCING SINTER
JP5540859B2 (en) * 2010-04-19 2014-07-02 Jfeスチール株式会社 Carbon steel interior agglomerate for iron making and method for producing the same
JP5747675B2 (en) * 2011-06-14 2015-07-15 新日鐵住金株式会社 Carbon material reforming equipment

Also Published As

Publication number Publication date
JP2019112704A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP5375742B2 (en) Granulation method of sintering raw material
JP6686974B2 (en) Sintered ore manufacturing method
JPH024658B2 (en)
JP5051317B1 (en) Method for manufacturing raw materials for sintering
JP2014214334A (en) Method for manufacturing sintered ore
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2007169707A (en) Method for producing dephosphorizing agent for steelmaking using sintering machine
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP5146573B1 (en) Method for manufacturing raw materials for sintering
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JPS60131930A (en) Pellet for sintered ore
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
CN102046819B (en) Process for producing cement-bonded ore agglomerates
JP4261672B2 (en) Granulation method of sintering raw material
KR20190089179A (en) Method for producing sintered ores
JP6333770B2 (en) Method for producing ferronickel
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP2014214339A (en) Method for producing sintered ore
JP2018141204A (en) Production method of grain particle for carbonaceous material inner package
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
CN107674971B (en) Raw material treatment method
JP2009030116A (en) Method for producing ore raw material for blast furnace
JP5167641B2 (en) Method for producing sintered ore
JP5126580B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6809446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250