JP2019112704A - Manufacturing method of carbonaceous material interior particle, and manufacturing method of carbonaceous material interior sintered ore - Google Patents

Manufacturing method of carbonaceous material interior particle, and manufacturing method of carbonaceous material interior sintered ore Download PDF

Info

Publication number
JP2019112704A
JP2019112704A JP2017249328A JP2017249328A JP2019112704A JP 2019112704 A JP2019112704 A JP 2019112704A JP 2017249328 A JP2017249328 A JP 2017249328A JP 2017249328 A JP2017249328 A JP 2017249328A JP 2019112704 A JP2019112704 A JP 2019112704A
Authority
JP
Japan
Prior art keywords
carbon material
particles
powder
polyvinyl alcohol
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017249328A
Other languages
Japanese (ja)
Other versions
JP6809446B2 (en
Inventor
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
山本 哲也
Tetsuya Yamamoto
哲也 山本
友司 岩見
Tomoji Iwami
友司 岩見
頌平 藤原
Shohei Fujiwara
頌平 藤原
隆英 樋口
Takahide Higuchi
隆英 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017249328A priority Critical patent/JP6809446B2/en
Publication of JP2019112704A publication Critical patent/JP2019112704A/en
Application granted granted Critical
Publication of JP6809446B2 publication Critical patent/JP6809446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a manufacturing method of a carbonaceous material interior particle capable of suppressing collapse of the carbonaceous material interior particle in a process of transportation to a sintering machine and charge into the sintering machine.SOLUTION: A powdery iron-containing raw material, a lime-containing raw material, and an organic binder are mixed to prepare a mixed powder, the mixed powder and a carbonaceous material are granulated to manufacture a carbonaceous material interior particle with an outer layer consisting of the mixed powder formed around the carbonaceous material.SELECTED DRAWING: Figure 1

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材を内装した炭材内装粒子の製造方法および当該炭材内装粒子を焼結原料の一部として製造される炭材内装焼結鉱の製造方法に関する。   The present invention relates to a technique for producing sintered ore used as a raw material for iron making in a blast furnace etc. Specifically, a method for producing carbon interior particles incorporating carbon material and sintering the carbon interior particles The present invention relates to a method of producing a carbon material-embedded sintered ore produced as a part of a raw material.

高炉製鉄法では、鉄源として焼結鉱や鉄鉱石、ペレットなどを主に用いている。ここで、焼結鉱は、塊成鉱の一種であり、以下の手順にて製造される。まず、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、少なくとも石灰石や生石灰、製鋼スラグなどの石灰含有原料を含む副原料と、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料と、珪石などからなるSiO含有原料と、粉コークスや無煙炭などからなる凝結材と、から構成される造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合、造粒して擬似粒子とする。次いで、擬似粒子とした造粒原料を、焼結機の循環移動するパレットに装入し、造粒原料に含まれる凝結材を燃焼させて焼結ケーキとする。その後、焼結ケーキを、破砕、冷却、整粒し、一定の粒径以上のものを成品焼結鉱として回収している。 In the blast furnace iron making method, sintered ore, iron ore, pellets and the like are mainly used as an iron source. Here, sinter is a kind of agglomerated ore and is produced by the following procedure. First, iron-containing raw materials such as iron ore and dust with a particle size of 10 mm or less, secondary raw materials containing lime-containing raw materials such as limestone, quick lime and steelmaking slag at least, MgO containing raw materials such as refined nickel slag, dolomite and serpentine An appropriate amount of water is added to a granulated raw material composed of an SiO 2 -containing raw material made of silica stone etc. and a coagulating material made of powdered coke, anthracite etc, mixed and granulated using a drum mixer etc. It is assumed to be pseudo particle. Next, the granulated raw material in the form of pseudo-particles is loaded into a pallet that circulates and moves in a sintering machine, and the coagulating material contained in the granulated raw material is burned to form a sintered cake. Thereafter, the sinter cake is crushed, cooled and sized, and those having a certain particle size or more are recovered as product sintered ore.

従来、焼結ベッド全体を均一に液相焼結する方法が主流であったが、近年、液相焼結主体の部分と、液相生成を抑えた部分とを焼結ベッドに混在させ、あえて不均一な構造を指向する焼結方法が検討されている。この理由は、融点が高く溶融しにくい部分には焼結後に多くの細かい気孔が残存し、当該部分が還元性ガスとの接触面積が大きい還元されやすい焼結鉱組織になるからである。   In the past, the method of uniformly performing liquid phase sintering on the entire sintering bed has been the mainstream, but in recent years, a part mainly comprising liquid phase sintering and a part suppressing liquid phase generation are mixed in the sintering bed Sintering methods directed to non-uniform structures are being investigated. The reason for this is that many fine pores remain after sintering in a portion having a high melting point and being difficult to melt, and the portion has a sintered ore structure which is easily reduced with a large contact area with a reducing gas.

このような塊成鉱の製造方法として、特許文献1には、高融点で液相生成を抑えたものとして、炭材を鉄鉱石粉とCaO含有原料で被覆した湿潤ペレットを作製し、これを従来の液相焼結主体の焼結原料に混合後、下方吸引型焼結機において焼結する方法が開示されている。   As a method for producing such agglomerated mineral, in Patent Document 1, a wet pellet in which a carbonaceous material is coated with iron ore powder and a CaO-containing raw material is prepared as a high melting point and suppressing liquid phase formation. A method of sintering in a lower suction type sintering machine after being mixed with a sintering material mainly composed of liquid phase sintering is disclosed.

特許第5790966号公報Patent No. 5790966

特許文献1に開示されたように、炭材内装焼結鉱は、炭材核を有する炭材内装粒子を、炭材核を有しない通常の造粒粒子に配合して焼結原料とし、焼結機で焼結することで製造される。しかしながら、造粒機で造粒された炭材内装粒子が焼結機へ搬送され、焼結機に装入される工程で崩壊すると液相生成を抑えた部分が生成されず、還元されやすい焼結鉱組織が形成されない。本発明は上記課題を鑑みてなされたものであって、その目的は、焼結機へ搬送され、焼結機に装入される工程において炭材内装粒子の崩壊を抑制できる炭材内装粒子の製造方法を提供することにある。   As disclosed in Patent Document 1, the carbon material-embedded sintered ore combines the carbon material-embedded particles having a carbon material core with ordinary granulated particles having no carbon material particle as a sintering raw material, It manufactures by sintering with a binder. However, when the carbonaceous material internal particles granulated by the granulator are transported to the sintering machine and disintegrated in the process of being charged into the sintering machine, a portion in which liquid phase generation is suppressed is not generated and it is easy to be reduced No ore formation is formed. This invention is made in view of the said subject, Comprising: The objective is conveyed to a sintering machine, and the carbon interior particle which can suppress collapse of a carbon interior particle in the process inserted into a sintering machine can be suppressed. It is in providing a manufacturing method.

このような課題を解決できる本発明の特徴は、以下の通りである。
(1)粉状の鉄含有原料と、石灰含有原料と、有機バインダーと、を混合して混合粉とし、
前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法。
(2)前記有機バインダーは、カルボキシメチルセルロース、ポリビニルアルコール、α化でんぷんおよびリグニンスルホン酸マグネシウムの何れか1つ以上である、(1)に記載の炭材内装粒子の製造方法。
(3)前記ポリビニルアルコールは、ポリビニルアルコール粉である、(2)に記載の炭材内装粒子の製造方法。
(4)前記ポリビニルアルコール粉は、100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉である、(3)に記載の炭材内装粒子の製造方法。
(5)前記混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上3.0質量%以下になるように前記ポリビニルアルコール粉を配合する、(3)または(4)記載の炭材内装粒子の製造方法。
(6)(1)から(5)の何れか1つに記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。
The features of the present invention which can solve such problems are as follows.
(1) A powdery iron-containing material, a lime-containing material, and an organic binder are mixed to form a mixed powder,
A method for producing carbon material-embedded particles, comprising granulating the mixed powder and a carbon material to produce carbon material-containing particles in which an outer layer composed of the powder mixture is formed around a carbon material core.
(2) The method for producing carbon material-containing particles according to (1), wherein the organic binder is any one or more of carboxymethylcellulose, polyvinyl alcohol, gelatinized starch and magnesium lignin sulfonate.
(3) The method for producing carbon material-containing particles according to (2), wherein the polyvinyl alcohol is polyvinyl alcohol powder.
(4) The method for producing carbon material-containing particles according to (3), wherein the polyvinyl alcohol powder is a polyvinyl alcohol powder sieved under a sieve of 100 mesh.
(5) The carbonaceous material interior according to (3) or (4), wherein the polyvinyl alcohol powder is blended so that the blending ratio of polyvinyl alcohol powder to the mixed powder is 0.1 mass% or more and 3.0 mass% or less. Method of producing particles.
(6) Mixing the carbon material interior particles manufactured by the method for manufacturing carbon material interior particles according to any one of (1) to (5) with an iron-containing material, an auxiliary material, and a coagulating material A method for producing a carbon material-embedded sintered ore, which is mixed with granulated particles to be used as a sintering raw material, and the sintering raw material is charged into a pallet of a sintering machine and sintered.

本発明の炭材内装焼結鉱の製造方法を実施することで、圧潰強度の高い炭材内装粒子を製造できるので、焼結機へ搬送され、焼結機に装入される工程において、崩壊する炭材内装粒子を少なくできる。   By carrying out the method for producing a carbon material-embedded sintered ore according to the present invention, carbon material-embedded particles having high crush strength can be produced, so the process of being conveyed to a sintering machine and charged in a sintering machine It is possible to reduce the amount of carbon material interior particles.

本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process 10 of a carbon material interior particle which can implement the manufacturing method of the carbon material interior particle which concerns on this embodiment. 造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。It is a photograph which shows the mixed powder 30 which exists in the granulator 38, the coke particle | grains 32 (The carbon material interior particle | grains in the middle of growth are included), and the carbon material interior particle | grain 40. FIG. 炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process 100 of a carbon material internal sintering ore which can implement the manufacturing method of a carbon material internal sintering ore. 炭材内装粒子の水分含有割合と圧潰強度との関係を示すグラフである。It is a graph which shows the relation between the moisture content rate of carbon material interior particles, and crushing strength. ポリビニルアルコール粉の配合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。It is a graph which shows the relationship between the mixture ratio of polyvinyl alcohol powder, and the crushing strength of carbon material interior particle. 実施例および比較例の焼結鉱のRIを示すグラフである。It is a graph which shows RI of the sintered ore of an Example and a comparative example.

以下、本発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。図1を用いて、本実施形態に係る炭材内装粒子の製造方法を説明する。   Hereinafter, the present invention will be described through embodiments of the present invention. FIG. 1: is a schematic diagram which shows an example of the manufacturing process 10 of a carbon material interior particle which can implement the manufacturing method of the carbon material interior particle which concerns on this embodiment. The manufacturing method of the carbon material interior particle which concerns on this embodiment is demonstrated using FIG.

炭材内装粒子の製造工程10では、まず、貯蔵槽14に貯蔵された鉄鉱石粉12と、貯蔵槽18に貯蔵された生石灰16と、貯蔵槽22に貯蔵されたポリビニルアルコール粉20とがそれぞれの貯蔵槽から搬送機24に所定量切り出される。鉄鉱石粉12、生石灰16およびポリビニルアルコール粉20は、搬送機24によってインテンシブミキサーなどの混練機28に搬送される。鉄鉱石粉12、生石灰16およびポリビニルアルコール粉20は、混練機28で適量の水26とともに混合されて混合粉30となる。   In the process 10 for producing carbon material-embedded particles, first, the iron ore powder 12 stored in the storage tank 14, the quicklime 16 stored in the storage tank 18, and the polyvinyl alcohol powder 20 stored in the storage tank 22 A predetermined amount is cut out from the storage tank to the transfer device 24. The iron ore powder 12, quick lime 16 and polyvinyl alcohol powder 20 are conveyed by the conveyor 24 to the kneading machine 28 such as an intensive mixer. The iron ore powder 12, quick lime 16 and polyvinyl alcohol powder 20 are mixed together with a suitable amount of water 26 by a kneader 28 to form a mixed powder 30.

本実施形態において、鉄鉱石粉12は、粉状の鉄含有原料の一例であり、例えば、粒径が150μm以下、比表面積が1500cm/g程度の鉄鉱石粉である。生石灰16は、石灰含有原料の一例であり、生石灰に代えて、または生石灰とともに石灰石を用いてもよい。但し、混合粉30を造粒するという観点から、造粒効果の高い生石灰を用いることが好ましい。また、焼結時に生じる融液の粘度を増加させるドロマイト[CaMg(CO]を生石灰および/または石灰石に添加してもよい。すなわち、石灰含有原料とは、生石灰、石灰石およびドロマイトの何れか1つ以上を含有する原料である。ポリビニルアルコール粉20は、有機バインダーの一例であり、有機バインダーとしては、カルボキシメチルセルロース、ポリビニルアルコール、α化でんぷんおよびリグニンスルホン酸マグネシウムの何れか1つ以上を用いてよい。 In the present embodiment, the iron ore powder 12 is an example of a powdery iron-containing raw material, and is, for example, an iron ore powder having a particle diameter of 150 μm or less and a specific surface area of about 1500 cm 2 / g. The quicklime 16 is an example of a lime-containing material, and limestone may be used instead of quicklime or together with quicklime. However, from the viewpoint of granulating the mixed powder 30, it is preferable to use quicklime having a high granulation effect. Also, dolomite [CaMg (CO 3 ) 2 ] may be added to the quicklime and / or limestone to increase the viscosity of the melt that occurs during sintering. That is, the lime-containing raw material is a raw material containing any one or more of quick lime, limestone and dolomite. The polyvinyl alcohol powder 20 is an example of an organic binder, and as the organic binder, any one or more of carboxymethyl cellulose, polyvinyl alcohol, gelatinized starch and magnesium lignin sulfonate may be used.

次に、混練機28で混合された混合粉30と、貯蔵槽34に貯蔵されたコークス粒子32と、が搬送機36に所定量切り出され、造粒原料となる。本実施形態では、造粒原料に対するコークス粒子32の配合割合が1質量%以上5質量%以下、より好ましくは、2質量%以上4質量%以下になるように、混合粉30およびコークス粒子32を切り出している。   Next, a predetermined amount of the mixed powder 30 mixed by the kneader 28 and the coke particles 32 stored in the storage tank 34 are cut out by the transfer device 36 to become a granulation raw material. In the present embodiment, the mixed powder 30 and the coke particles 32 are mixed so that the blending ratio of the coke particles 32 to the granulation raw material is 1% by mass to 5% by mass, more preferably 2% by mass to 4% by mass. It is cut out.

本実施形態において、コークス粒子32は、炭材の一例であり、当該炭材は、周囲に混合粉30からなる外層が形成されて炭材核となる。炭材として無煙炭であるホンゲイ炭を用いてもよい。コークス粒子およびホンゲイ炭は揮発分が少ないので、これらを用いることで焼結時に炭材から生じる燃焼ガスが少なくでき、当該炭材内装粒子を用いて製造される炭材内装焼結鉱の強度低下が抑制される。これにより、炭材内装焼結鉱の歩留低下を抑制できる。   In the present embodiment, the coke particles 32 are an example of a carbonaceous material, and the carbonaceous material has an outer layer made of the mixed powder 30 formed around it to be a carbonaceous material core. As the coal material, Honge charcoal which is anthracite may be used. Since coke particles and Hong- ey charcoal have less volatile components, using them makes it possible to reduce the combustion gas generated from the carbonaceous material at the time of sintering and reduce the strength of the carbonaceous material-embedded sintered ore produced using the carbonaceous material-embedded particles. Is suppressed. Thereby, it is possible to suppress the decrease in the yield of the carbon material-embedded sintered ore.

造粒原料は、搬送機36によってディスクペレタイザーなどの造粒機38に搬送される。造粒原料は、造粒機38で適量の水26とともに転動され、水の架橋力等によってコークス粒子32が炭材核となり、その周囲に混合粉30からなる外層が形成された炭材内装粒子40が製造される。   The granulated raw material is conveyed by the conveyer 36 to a granulator 38 such as a disk pelletizer. Granulated raw material is rolled with a suitable amount of water 26 by the granulator 38, and the coke particles 32 become carbon material cores by the cross-linking power of water etc., and carbon material interior where outer layer consisting of mixed powder 30 is formed around it Particles 40 are produced.

図2は、造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。図1に示した炭材内装粒子の製造工程10に従って炭材内装粒子40が製造されるが、炭材内装粒子40の強度が低いと、炭材内装粒子40を焼結機へ搬送し、焼結機に装入される工程で崩壊する。このため、本実施形態に係る炭材内装粒子の製造方法では、鉄鉱石粉12および生石灰16にポリビニルアルコール粉20を配合している。これにより、コークス粒子32の周囲に外層として形成される混合粉30の強度が高められ、焼結機へ搬送し、焼結機に装入される工程における炭材内装粒子40の崩壊を抑制できる。   FIG. 2 is a photograph showing mixed powder 30, coke particles 32 (including carbon interior particles in the process of growth), and carbon interior particles 40 present in the granulator 38. The carbon material-embedded particles 40 are produced according to the production process 10 of carbon material-embedded particles shown in FIG. 1, but if the strength of the carbon material-embedded particles 40 is low, the carbon material-embedded particles 40 are conveyed to a sintering machine and baked. It collapses in the process of being charged into a ligature machine. For this reason, in the method for producing carbon material-embedded particles according to the present embodiment, polyvinyl alcohol powder 20 is blended with iron ore powder 12 and quick lime 16. Thereby, the strength of the mixed powder 30 formed as the outer layer around the coke particles 32 is enhanced, and it is possible to suppress the collapse of the carbonaceous material interior particles 40 in the process of being transported to the sintering machine and inserted into the sintering machine. .

図3は、炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。炭材内装焼結鉱の製造工程100では、図1に示した炭材内装粒子の製造工程10と平行して、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石、生石灰、製鋼スラグなどのCaO含有原料を含む副原料と、粒径3mm未満の粉コークスや無煙炭などからなる凝結材と、を含む原料50を、ドラムミキサー等の造粒機52で造粒して造粒粒子とする。なお、副原料には、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料や、珪石などからなるSiO含有原料が含まれてもよい。 FIG. 3: is a schematic diagram which shows an example of the manufacturing process 100 of a carbon material internal sintering ore which can implement the manufacturing method of a carbon material internal sintering ore. In the production process 100 of the carbon-embedded sintered ore, in parallel with the production process 10 of the carbon-embedded particles shown in FIG. 1, an iron-containing raw material such as iron ore or dust having a particle size of 10 mm or less, limestone, quick lime A granulator 52 such as a drum mixer is used to granulate a raw material 50 containing a secondary material containing a CaO-containing raw material such as steelmaking slag and a coagulating material comprising powdered coke or anthracite with a particle diameter of less than 3 mm. Particulates. The auxiliary materials may include MgO-containing materials such as refined nickel slag, dolomite and serpentine, and SiO 2 -containing materials made of silica stone or the like.

次いで、原料50を造粒した造粒粒子に、炭材内装粒子40を配合して焼結原料とする。焼結原料のうち、原料50を造粒した造粒粒子が液相焼結主体の部分となり、炭材内装粒子40が液相生成を抑えた部分となる。焼結原料に対する炭材内装粒子40の配合割合が10質量%以上30質量%以下になるように、造粒粒子に炭材内装粒子40を配合することが好ましい。これにより、焼結原料の通気性が向上し、炭材内装焼結鉱の生産性が向上する。   Next, the carbon material-embedded particles 40 are mixed with the granulated particles obtained by granulating the raw material 50 to obtain a sintering raw material. Among the sintering raw materials, granulated particles obtained by granulating the raw material 50 become a portion mainly composed of liquid phase sintering, and the carbon material interior particles 40 become a portion where generation of liquid phase is suppressed. It is preferable to mix the carbon material-containing particles 40 with the granulated particles so that the mixing ratio of the carbon material-containing particles 40 to the sintering raw material is 10% by mass or more and 30% by mass or less. Thereby, the air permeability of the sintering raw material is improved, and the productivity of the carbon material-embedded sintered ore is improved.

炭材内装粒子が配合された焼結原料は、下方吸引式焼結機60のサージホッパーに搬入される。焼結原料は、サージホッパーから無端移動式のパレットに装入され、装入層が形成される。装入層は、上方に設置された点火炉によって点火され、下方に設置されたウインドボックスから上方のガスを下方に吸引されることで装入層は順次燃焼、焼結される。装入層は、当該燃焼により発生する燃焼熱で焼結されて焼結ケーキとなる。焼結ケーキは、排鉱部で破砕および整粒され、粒径4mm以上の塊成物が成品の炭材内装焼結鉱として回収される。このようにして製造された炭材内装焼結鉱が高炉70の製鉄原料として使用される。なお、本実施形態における粒径とは、JIS(日本工業規格) Z 8801−1に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径4mm以上とは、JIS Z 8801−1に準拠した公称目開き4mmの篩を用いて篩上に篩分けされる粒径をいう。   The sintering raw material into which the carbon material-embedded particles are blended is carried into the surge hopper of the lower suction type sintering machine 60. The sintering material is charged from the surge hopper to an endless moving pallet to form a charging bed. The charge layer is ignited by an igniter installed at the upper side, and the upper layer is sucked downward from the wind box provided at the lower side to sequentially burn and sinter the charge layer. The charge layer is sintered by the heat of combustion generated by the combustion to form a sintered cake. The sinter cake is crushed and sized in a discharge section, and agglomerates having a particle size of 4 mm or more are recovered as a carbon-containing internal sinter ore. The carbon material-embedded sintered ore produced in this manner is used as a steelmaking material of the blast furnace 70. In addition, the particle size in this embodiment is a particle size sieved using the sieve of the nominal opening according to JIS (Japanese Industrial Standard) Z 8801-1, and for example, the particle size of 4 mm or more is The particle size to be sieved on a sieve using a sieve with a nominal opening of 4 mm in accordance with JIS Z 8801-1.

本実施形態に係る炭材内装粒子の製造方法で用いるコークス粒子32の粒径は、2mm以上であることが好ましい。粒径が2mm以上のコークス粒子を用いることで、炭材内装粒子を配合した焼結原料を焼結機で焼結する工程でコークス粒子が消失してしまうことを抑制できる。コークス粒子32の粒径は、3mm以上であることがより好ましい。粒径が3mm以上の炭材を用いることで、コークス粒子の消失をさらに抑制できる。   It is preferable that the particle size of the coke particle 32 used by the manufacturing method of the carbon material interior particle which concerns on this embodiment is 2 mm or more. By using the coke particles having a particle diameter of 2 mm or more, it is possible to suppress the disappearance of the coke particles in the step of sintering the sintering material containing the carbon material-containing particles in a sintering machine. The particle size of the coke particles 32 is more preferably 3 mm or more. By using a carbon material having a particle size of 3 mm or more, the disappearance of coke particles can be further suppressed.

一方、粒径が大きいコークス粒子を用いると、焼結時にコークスから発生する燃焼ガス量が増加し、炭材内装焼結鉱においてコークス粒子を被覆する外層に亀裂が生じる。コークス粒子を被覆する外層に亀裂が生じると炭材内装焼結鉱の強度が大きく低下し、この結果、炭材内装焼結鉱の歩留が大きく低下する。このため、コークス粒子32の粒径は、8mm以下であることが好ましく、6mm以下であることがより好ましい。   On the other hand, when coke particles having a large particle size are used, the amount of combustion gas generated from coke during sintering increases, and cracking occurs in the outer layer covering the coke particles in the carbon material-embedded sintered ore. When the outer layer covering the coke particles is cracked, the strength of the carbonaceous material-containing sintered ore is greatly reduced, and as a result, the yield of the carbonaceous material-containing sintered ore is greatly reduced. Therefore, the particle diameter of the coke particles 32 is preferably 8 mm or less, and more preferably 6 mm or less.

また、製造される炭材内装粒子40の粒径は、8mm以上18mm以下であることが好ましい。上述したように、粒径が4mm以上の炭材内装焼結鉱が成品焼結鉱として回収され、粒径4mm未満の焼結鉱は、焼結原料にリサイクル(返鉱)される。また、炭材内装粒子40は、焼結機で焼結すると水分の蒸発や部分的な溶融によって体積が小さくなる。従って、炭材内装粒子40がそのまま焼結されたとしても返鉱にならないように、炭材内装粒子40の粒径は、8mm以上であることが好ましく、10mm以上であることがより好ましい。   Moreover, it is preferable that the particle size of the carbonaceous material interior particle 40 manufactured is 8 mm or more and 18 mm or less. As described above, a carbon material-embedded sintered ore having a particle size of 4 mm or more is recovered as a product sintered ore, and a sintered ore having a particle size of less than 4 mm is recycled (return mineral) as a sintering raw material. In addition, when the carbonaceous material-embedded particles 40 are sintered in a sintering machine, the volume is reduced due to evaporation of moisture and partial melting. Therefore, the particle size of the carbon material-embedded particles 40 is preferably 8 mm or more, and more preferably 10 mm or more so that the carbon material-embedded particles 40 are not sintered as they are.

一方、炭材内装粒子40に形成されたコークス粒子32の外層の厚さが5mmを超えると、限られた焼結時間内に炭材内装粒子40の全ての外層を焼結することが困難になる。焼結が不十分な部分が炭材内装焼結鉱に存在すると、炭材内装焼結鉱の強度は低下し、炭材内装焼結鉱の歩留が低下する。従って、炭材内装粒子40の外層の厚さは5mm以下であることが好ましく、例えば、コークス粒子32の粒径が8mmであって外層の厚さが5mmである場合の炭材内装粒子の粒径は18mmになる。このため、炭材内装粒子40の粒径は18mm以下であることが好ましい。   On the other hand, when the thickness of the outer layer of the coke particles 32 formed in the carbon material-embedded particles 40 exceeds 5 mm, it is difficult to sinter all the outer layers of the carbon material-embedded particles 40 within a limited sintering time. Become. If a portion with insufficient sintering is present in the carbonaceous material-containing sintered ore, the strength of the carbonaceous material-containing sintered ore decreases and the yield of the carbonaceous material-containing sintered ore decreases. Therefore, it is preferable that the thickness of the outer layer of the carbonaceous material interior particle 40 is 5 mm or less, for example, the particle size of the carbonaceous material interior particle when the particle size of the coke particles 32 is 8 mm and the thickness of the outer layer is 5 mm. The diameter is 18 mm. For this reason, it is preferable that the particle size of the carbon material interior particle 40 is 18 mm or less.

また、本実施形態に係る炭材内装粒子の製造方法では、バインダーとして、有機バインダーであるポリビニルアルコールを用いている。有機バインダーは、炭材内装粒子40の焼結時の燃焼によって揮発するので、焼結後の炭材内装焼結鉱に残存しない。このため、有機バインダーを用いることで、当該バインダーを用いることによる炭材内装粒子40への影響、および、当該炭材内装粒子40を含む焼結原料を焼結して製造される炭材内装焼結鉱への影響を小さくできる。   Moreover, in the manufacturing method of the carbon material interior particle which concerns on this embodiment, the polyvinyl alcohol which is an organic binder is used as a binder. The organic binder is volatilized by combustion at the time of sintering of the carbon material-embedded particles 40, and therefore does not remain in the carbon material-embedded sintered ore after sintering. For this reason, by using the organic binder, the influence on the carbon material interior particles 40 by using the binder, and the carbon material interior baking manufactured by sintering the sintering material containing the carbon material interior particles 40 It can reduce the impact on coal mining.

また、本実施形態に係る炭材内装粒子の製造方法では、有機バインダーとして、粉状のポリビニルアルコール粉20を用いた例を示した。しかしながら、粉状の有機バインダーに限られず、有機バインダーをある濃度で溶解させた有機バインダー溶液を用いてもよい。   Moreover, in the manufacturing method of the carbon material interior particle which concerns on this embodiment, the example using the powdery polyvinyl alcohol powder 20 was shown as an organic binder. However, the present invention is not limited to the powdery organic binder, and an organic binder solution in which the organic binder is dissolved at a certain concentration may be used.

但し、炭材内装粒子の品質を一定に保つには、炭材内装粒子40の水分含有量およびバインダー含有量を一定にすることが求められるところ、仮に、有機バインダー溶液を撹拌機あるいは造粒機内で鉄鉱石粉12を含む原料に噴霧すると、鉄鉱石粉12の持込み水分が変動した際に、溶液中のバインダー濃度を、鉄鉱石粉12を含む原料の持込み水分に合わせて制御する必要がある。さらに、有機バインダー溶液の濃度が異なると有機バインダー溶液の粘度も異なり、当該粘度に応じて有機バインダー溶液の噴霧条件を調整する必要がある。   However, in order to keep the quality of the carbon material-embedded particles constant, it is required to make the water content and the binder content of the carbon material-embedded particles 40 constant. If the water content of the iron ore powder 12 fluctuates, it is necessary to control the binder concentration in the solution in accordance with the water content of the material containing the iron ore powder 12 when the water content of the iron ore powder 12 fluctuates. Furthermore, if the concentration of the organic binder solution is different, the viscosity of the organic binder solution is also different, and it is necessary to adjust the spray conditions of the organic binder solution according to the viscosity.

このため、バインダーとしては、ポリビニルアルコール粉20のような粉状バインダーを用いることが好ましい。有機バインダーとして、粉状バインダーを用いることで、上述した制御を行うことなく、有機バインダーと鉄鉱石原料に配合し、撹拌するだけで均一に混合できる。これにより、炭材内装粒子40の強度は、全体的に平均して向上し、炭材内装粒子40の品質を一定に保つことができる。   For this reason, it is preferable to use a powdery binder such as polyvinyl alcohol powder 20 as the binder. By using a powdery binder as the organic binder, it is possible to mix uniformly with the organic binder and the iron ore raw material only by stirring, without performing the control described above. As a result, the strength of the carbon material-embedded particles 40 can be generally improved on average, and the quality of the carbon material-containing particles 40 can be kept constant.

さらに、100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉を用いることが好ましい。100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉の粒径は150μm以下になるので、ポリビニルアルコール粉を混合する鉄鉱石粉12の粒径と同程度になる。このように、ポリビニルアルコール粉と鉄鉱石粉12との粒径を同程度にすることで粒径差による偏析が抑制されてさらに均一に混合でき、炭材内装粒子40の品質を一定に保つことができる。   Furthermore, it is preferable to use polyvinyl alcohol powder sieved under a 100-mesh sieve. Since the particle size of the polyvinyl alcohol powder sieved under a 100-mesh sieve is 150 μm or less, the particle size of the iron ore powder 12 to be mixed with the polyvinyl alcohol powder is almost the same. As described above, by making the particle sizes of the polyvinyl alcohol powder and the iron ore powder 12 equal, segregation due to the particle size difference can be suppressed and mixing can be performed more uniformly, and the quality of the carbon material interior particles 40 can be kept constant. it can.

次に、炭材内装粒子40の強度について説明する。炭材内装粒子40が製造されてから下方吸引式焼結機60に装入されるまでに、炭材内装粒子40は、複数の搬送コンベアを乗り継ぐ。このため、炭材内装粒子40は、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐える強度を有することが好ましい。まず、圧潰強度を変えた炭材内装粒子を試験的に製造し、搬送コンベアの乗り継ぎとパレット装入を行った後における炭材内装粒子の崩壊状況を確認した。その結果、炭材内装粒子の圧潰強度を9.8N/個以上にすることで、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐え、下方吸引式焼結機60への直送が可能になることが判明した。なお、本実施形態において、圧潰強度とは、圧縮試験機を用いて、圧縮速度1mm/minで炭材内装粒子を圧縮して測定される最大強度である。   Next, the strength of the carbonaceous material interior particles 40 will be described. The carbon material-embedded particles 40 transit a plurality of transport conveyors until the carbon material-embedded particles 40 are manufactured and then inserted into the lower suction type sintering device 60. For this reason, it is preferable that the carbon material-embedded particles 40 have a strength that can withstand the impact when connecting a plurality of conveyers and loading the pallets of the lower suction type sintering machine 60. First, carbon material-embedded particles having different crushing strengths were experimentally produced, and the state of collapse of the carbon material-embedded particles after transfer and pallet loading of the conveyer was confirmed. As a result, by setting the crushing strength of the carbon material interior particle to 9.8 N / piece or more, it withstands the connection of a plurality of conveyers and the impact at the time of pallet loading of the lower suction type sintering machine 60, and the lower suction type It was found that direct feeding to the sintering machine 60 was possible. In the present embodiment, the crushing strength is the maximum strength measured by compressing the carbon material-containing particles at a compression speed of 1 mm / min using a compression tester.

炭材内装粒子の圧潰強度を9.8N/個以上にするには、ヘマタイトを主体鉱物とする鉄鉱石粉であれば、1800〜2000cm/g程度のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上となる鉄鉱石粉を使用する必要がある。しかしながら、現在、鉄鉱石市場で流通しているヘマタイト精鉱微粉の多くは、Blaine比表面積が500〜1500cm/g程度、45μm以下となる鉄鉱石粉の含有割合が35〜75質量%程度である。従って、これら原料をこのまま用いても圧潰強度9.8N/個以上の炭材内装粒子を製造できない。 Iron ore powder that contains hematite as the main mineral for making the crushing strength of carbon material interior particles 9.8 N / piece or more, an iron ore with a Blaine specific surface area of about 1800 to 2000 cm 2 / g or a particle size of 45 μm or less It is necessary to use iron ore powder in which the content ratio of stone powder is 80% by mass or more. However, most of the hematite concentrate fine powder currently distributed in the iron ore market have a content of iron ore powder having a Blaine specific surface area of about 500 to 1,500 cm 2 / g, 45 μm or less, about 35 to 75 mass% . Therefore, even if these raw materials are used as they are, it is not possible to produce carbon material-embedded particles having a crushing strength of 9.8 N / piece or more.

一方、ボールミル等を用いて鉄鉱石粉を粉砕することで、1800cm/g以上のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上が達成できるが、設備コストやランニングコストが高くなる。そこで、炭材の周囲に形成される外層の混合粉30にポリビニルアルコール粉20を配合し、炭材内装粒子の圧潰強度を9.8N/個以上にできるか否かを確認するべく、図1に示した炭材内装粒子の製造工程10に従って、炭材内装粒子の製造試験を行った。 On the other hand, by crushing iron ore powder using a ball mill etc., the content ratio of iron ore powder which becomes Blaine specific surface area of 1800 cm 2 / g or more or particle diameter 45 μm or less can be achieved 80 mass% or more. The cost is high. Therefore, in order to confirm whether the crushing strength of the carbon material interior particles can be 9.8 N / piece or more, the polyvinyl alcohol powder 20 is mixed with the mixed powder 30 of the outer layer formed around the carbon material, as shown in FIG. According to production process 10 of carbon material-embedded particles shown in, the production test of carbon material-embedded particles was performed.

炭材内装粒子の製造試験は、以下の手順にて実施した。まず、粒径150μm以下であってBlaine比表面積が1500cm/gの鉄鉱石粉と、粒径75μm以下の生石灰と、粒径150μm以下のポリビニルアルコール粉とを、質量比で95:4:1の割合で配合し、インテンシブミキサーを用いて均一に混合して混合粉とした。この混合粉と、粒径2mm以上8mm以下のコークス粒子を質量比98:2の割合で配合して造粒原料とした。この造粒原料を、ディスクペレタイザーを用いて転動させて造粒原料を造粒し、炭材の周囲に混合粉からなる外層が形成された炭材内装粒子を製造した。造粒原料の造粒に必要な水は、インテンシブミキサーおよびディスクペレタイザー内へ適量噴霧して供給した。 The production test of the carbon material-embedded particles was carried out according to the following procedure. First, an iron ore powder having a particle diameter of 150 μm or less and a Blaine specific surface area of 1,500 cm 2 / g, quick lime having a particle diameter of 75 μm or less, and a polyvinyl alcohol powder having a particle diameter of 150 μm or less is 95: 4: 1 by mass ratio The mixture was compounded in proportions and uniformly mixed using an intensive mixer to obtain a mixed powder. This mixed powder and coke particles having a particle diameter of 2 mm or more and 8 mm or less were blended at a mass ratio of 98: 2 to obtain a granulation raw material. The granulated raw material was rolled using a disc pelletizer to granulate the granulated raw material, thereby producing carbon material-embedded particles in which an outer layer made of mixed powder was formed around the carbon material. Water necessary for granulation of the granulation raw material was supplied by spraying appropriate amounts into an intensive mixer and a disk pelletizer.

図4は、本実施形態に係る炭材内装粒子の製造方法で製造された炭材内装粒子の水分含有割合と圧潰強度との関係を示すグラフである。図4において、横軸は炭材内装粒子の水分含有割合(質量%)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。炭材内装粒子が造粒された直後の水分含有割合は7〜8質量%であり、この時点で炭材内装粒子の圧潰強度は、9.8N/個以上となった。この結果から、Blaine比表面積が1800cm/g未満または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%未満の鉄鉱石粉を用いた場合であっても、当該鉄鉱石粉を含む混合粉に対するポリビニルアルコール粉の配合割合が1質量%以上となるようにポリビニルアルコール粉を配合することで、9.8N/個以上の圧潰強度を有する炭材内装粒子を製造できることが確認された。一方、ポリビニルアルコール粉を配合しない場合には、炭材内装粒子の圧潰強度は2.0〜3.9N/個となり、9.8N/個以上の圧潰強度にできなかった。 FIG. 4 is a graph showing the relationship between the moisture content ratio of the carbon material-embedded particles produced by the method for producing carbon material-embedded particles according to the present embodiment and the crushing strength. In FIG. 4, the horizontal axis represents the moisture content ratio (mass%) of the carbon material-containing particles, and the vertical axis represents the crushing strength (N / piece) of the carbon material-containing particles. The moisture content ratio immediately after granulation of the carbon material-embedded particles was 7 to 8% by mass, and at this point of time, the crushing strength of the carbon material-embedded particles was 9.8 N / piece or more. From this result, even when iron ore powder having a content of iron ore powder having a Blaine specific surface area of less than 1800 cm 2 / g or a particle size of 45 μm or less is used, the mixed powder containing iron ore powder is It was confirmed that carbon material interior particles having a crushing strength of 9.8 N / piece or more can be produced by blending the polyvinyl alcohol powder so that the blending ratio of the polyvinyl alcohol powder is 1% by mass or more. On the other hand, when the polyvinyl alcohol powder was not blended, the crushing strength of the carbon material-embedded particles was 2.0 to 3.9 N / piece, and the crushing strength of 9.8 N / piece or more could not be obtained.

また、図4に示すように、乾燥させて水分含有割合を小さくすると、炭材内装粒子の圧潰強度は向上する。特に、炭材内装粒子の含有水分量を2質量%以下にすることで、炭材内装粒子の圧潰強度を大きく向上することから、炭材内装粒子の含有水分量を2質量%以下に乾燥させることが好ましく、炭材内装粒子の含有水分量を1質量%以下に乾燥させることがより好ましい。これにより、有機バインダーの配合量を増やすことなく、炭材内装粒子の強度を向上できる。   Further, as shown in FIG. 4, when the moisture content ratio is reduced by drying, the crushing strength of the carbon material-embedded particle is improved. In particular, by setting the moisture content of the carbonaceous material interior particles to 2% by mass or less, the crushing strength of the carbonaceous material interior particles is greatly improved, so the moisture content of the carbonaceous material interior particles is dried to 2 mass% or less It is preferable that the moisture content of the carbon material-embedded particles be dried to 1% by mass or less. Thereby, the strength of the carbon material-containing particle can be improved without increasing the blending amount of the organic binder.

次に、鉄鉱石粉と、生石灰と、ポリビニルアルコール粉との質量比が、95.9:4.0:0.1と、95.0:4.0:1.0と、94.0:4.0:2.0と、93.0:4.0:3.0と、になるように配合割合を変えて炭材内装粒子を製造し、各炭材内装粒子の圧潰強度を測定した。その結果を図5に示す。   Next, the mass ratio of iron ore powder, quick lime, and polyvinyl alcohol powder is 95.9: 4.0: 0.1, 95.0: 4.0: 1.0, 94.0: 4. The blending ratio was changed so that 0.2.0 and 93.0: 4.0: 3.0, and the carbon material interior particles were manufactured, and the crushing strength of each carbon material interior particle was measured. The results are shown in FIG.

図5は、ポリビニルアルコール粉の配合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。図5において、横軸は混合粉に対するポリビニルアルコール粉の配合割合(質量%)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。図5に示すように、混合粉に対するポリビニルアルコール粉の配合割合を高くすることで、炭材内装粒子の圧潰強度を向上できる。一方、ポリビニルアルコール粉の配合割合を2質量%より高くしても炭材内装粒子の圧潰強度が向上せず、飽和傾向が見られた。さらに、混合粉に対するポリビニルアルコール粉の配合割合が3質量%以上となるようにポリビニルアルコール粉を配合すると、鉄鉱石粉の持ち込み水および造粒時に供給される水にポリビニルアルコール粉が溶け込み、粘度が上昇して安定した造粒が困難になった。これらの結果から、混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上3.0質量%以下となるようにポリビニルアルコール粉を配合することが好ましく、混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上2.0質量%以下となるようにポリビニルアルコール粉を配合することがさらに好ましいことがわかる。   FIG. 5 is a graph showing the relationship between the blending ratio of polyvinyl alcohol powder and the crushing strength of carbon material-containing particles. In FIG. 5, the horizontal axis represents the mixing ratio (mass%) of polyvinyl alcohol powder to the mixed powder, and the vertical axis represents the crushing strength (N / piece) of the carbon material-embedded particles. As shown in FIG. 5, the crushing strength of the carbon material-embedded particles can be improved by increasing the blending ratio of the polyvinyl alcohol powder to the mixed powder. On the other hand, even when the blending ratio of polyvinyl alcohol powder was higher than 2% by mass, the crushing strength of the carbon material-embedded particles was not improved, and a saturation tendency was observed. Furthermore, when polyvinyl alcohol powder is blended so that the blending ratio of polyvinyl alcohol powder to mixed powder is 3% by mass or more, polyvinyl alcohol powder dissolves in water carried in iron ore powder and water supplied at the time of granulation, and viscosity increases. And stable granulation became difficult. From these results, it is preferable to blend polyvinyl alcohol powder so that the blending ratio of polyvinyl alcohol powder to mixed powder is 0.1 mass% or more and 3.0 mass% or less, and blending ratio of polyvinyl alcohol powder to mixed powder It can be seen that it is more preferable to blend polyvinyl alcohol powder such that the content is 0.1% by mass or more and 2.0% by mass or less.

以上、説明したように、本実施形態に係る炭材内装粒子の製造方法を実施することで、圧潰強度の高い炭材内装粒子を製造できるので、焼結機へ搬送され、焼結機に装入される工程において、崩壊する炭材内装粒子を少なくできる。そして、当該炭材内装粒子を含む焼結原料を焼結して炭材内装焼結鉱を製造することで、焼結鉱に還元されやすい焼結鉱組織が多く形成され、炭材内装焼結鉱の還元効率の向上が実現できる。   As described above, by carrying out the method for producing carbon material interior particles according to the present embodiment, carbon material interior particles having high crush strength can be produced, and therefore, they are transported to a sintering machine and are mounted on a sintering machine. In the process of entering, it is possible to reduce the number of colliding carbon material particles. And by sintering the sintering raw material containing the said carbon material interior particle, and producing a carbon material interior sinter ore, many sintered mineral structures which are easily reduced to sinter are formed, and the carbon material interior sintering is carried out. The improvement of the reduction efficiency of the ore can be realized.

また、Blaine比表面積が1800cm/g未満または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%未満の鉄鉱石粉を用いた場合であっても、混合粉に対するポリビニルアルコール粉の配合割合が1質量%以上となるようにポリビニルアルコール粉を配合することで、焼結機へ直送できる強度の高い炭材内装粒子を製造できることが確認された。 In addition, even when iron ore powder having a content of iron ore powder having a Blaine specific surface area of less than 1800 cm 2 / g or a particle diameter of 45 μm or less is used, the blending ratio of polyvinyl alcohol powder to mixed powder is It was confirmed that by blending polyvinyl alcohol powder so as to be 1% by mass or more, carbon material-embedded particles having high strength that can be directly sent to a sintering machine can be produced.

次に炭材内装粒子を含む焼結原料を焼結して製造された炭材内装焼結鉱の還元反応性を確認した結果を説明する。図6は、実施例および比較例の焼結鉱のRIを示すグラフである。RIは、焼結鉱の被還元性を示す指標であって、JIS M 8713に準拠して測定される値である。   Next, the results of confirming the reduction reactivity of the carbon material-embedded sintered ore produced by sintering the sintering material containing the carbon material-embedded particles will be described. FIG. 6 is a graph showing RI of sintered ore of Examples and Comparative Examples. RI is an index showing the reducibility of sintered ore, and is a value measured in accordance with JIS M 8713.

図6に示した比較例では、ポリビニルアルコール粉が混合されず、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊したことを模擬し、炭材内装粒子を含まない焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。一方、実施例では、ポリビニルアルコール粉が配合され、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊しないとして、炭材内装粒子を内数で約7質量%(約50t/h相当)配合した焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。   In the comparative example shown in FIG. 6, the polyvinyl alcohol powder is not mixed, and it is simulated that the carbon material internal particle has collapsed in the process of being transported and inserted into the sintering machine, and the sintering is performed without the carbon material internal particle. The raw material was charged into the sintering machine at a charging rate of 650 t / h to produce sintered ore. On the other hand, in the example, it is assumed that the internal particles of the carbon material do not collapse in the process of mixing the polyvinyl alcohol powder and conveying and charging to the sintering machine, the internal particles of the carbon material are about 7 mass% (about 50 t / h) Equivalently, the compounded sintering raw material was charged into a sintering machine at a charging rate of 650 t / h to produce sintered ore.

図6に示すように、実施例の炭材内装焼結鉱のRIは、比較例の焼結鉱のRIより3%高くなることが確認された。この結果から、本実施形態に係る炭材内装粒子の製造方法を用いて圧潰強度の高い炭材内装粒子を製造することで、焼結機へ搬送、装入される工程で崩壊する炭材内装粒子を少なくでき、これにより、当該炭材内装粒子を含む焼結原料から製造される炭材内装焼結鉱の被還元性を向上できることがわかる。   As shown in FIG. 6, it was confirmed that the RI of the carbon material-containing sintered ore of the example is 3% higher than the RI of the sintered ore of the comparative example. From this result, by producing carbon internal particle having high crush strength using the method of producing carbon internal particle according to the present embodiment, the carbon internal collapsing in the process of being transported and inserted into the sintering machine It can be seen that the particles can be reduced, and the reducibility of the carbon material-embedded sintered ore produced from the sintering material containing the carbon material-embedded particles can be improved.

10 炭材内装粒子の製造工程
12 鉄鉱石粉
14 貯蔵槽
16 生石灰
18 貯蔵槽
20 ポリビニルアルコール粉
22 貯蔵槽
24 搬送機
26 水
28 混練機
30 混合粉
32 コークス粒子
34 貯蔵槽
36 搬送機
38 造粒機
40 炭材内装粒子
50 原料
52 造粒機
60 下方吸引式焼結機
70 高炉
100 炭材内装焼結鉱の製造工程
DESCRIPTION OF SYMBOLS 10 Production process of carbon material internal particle 12 Iron ore powder 14 Storage tank 16 Fresh lime 18 Storage tank 20 Polyvinyl alcohol powder 22 Storage tank 24 Carrier 28 Water 28 Kneader 30 Mixed powder 32 Coke particles 34 Storage tank 36 Carrier 38 Granulator 40 Charcoal internal particle 50 Raw material 52 Granulator 60 Lower suction type sintering machine 70 Blast furnace 100 Production process of carbon internal sinter

Claims (6)

粉状の鉄含有原料と、石灰含有原料と、有機バインダーと、を混合して混合粉とし、
前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法。
Mixing powdered iron-containing raw material, lime-containing raw material, and organic binder into mixed powder,
A method for producing carbon material-embedded particles, comprising granulating the mixed powder and a carbon material to produce carbon material-containing particles in which an outer layer composed of the powder mixture is formed around a carbon material core.
前記有機バインダーは、カルボキシメチルセルロース、ポリビニルアルコール、α化でんぷんおよびリグニンスルホン酸マグネシウムの何れか1つ以上である、請求項1に記載の炭材内装粒子の製造方法。   The method for producing carbon material-embedded particles according to claim 1, wherein the organic binder is any one or more of carboxymethylcellulose, polyvinyl alcohol, gelatinized starch and magnesium lignin sulfonate. 前記ポリビニルアルコールは、ポリビニルアルコール粉である、請求項2に記載の炭材内装粒子の製造方法。   The method for producing carbon material-containing particles according to claim 2, wherein the polyvinyl alcohol is polyvinyl alcohol powder. 前記ポリビニルアルコール粉は、100メッシュの篩で篩下に篩分けされたポリビニルアルコール粉である、請求項3に記載の炭材内装粒子の製造方法。   The method for producing carbon material-containing particles according to claim 3, wherein the polyvinyl alcohol powder is a polyvinyl alcohol powder sieved under a sieve of 100 mesh. 前記混合粉に対するポリビニルアルコール粉の配合割合が0.1質量%以上3.0質量%以下になるように前記ポリビニルアルコール粉を配合する、請求項3または請求項4に記載の炭材内装粒子の製造方法。   5. The carbon material-containing particle according to claim 3, wherein the polyvinyl alcohol powder is blended such that the blending ratio of polyvinyl alcohol powder to the mixed powder is 0.1 mass% or more and 3.0 mass% or less. Production method. 請求項1から請求項5の何れか一項に記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、
前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。
A carbon material-containing particle produced by the method for producing carbon material-containing particle according to any one of claims 1 to 5 is mixed with an iron-containing material, an auxiliary material, and a coagulating material, and granulated. Blended into granulated particles to make a sintering material,
A method for producing a carbon material-embedded sintered ore, wherein the sintering raw material is charged into a pallet of a sintering machine and sintered.
JP2017249328A 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore Active JP6809446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017249328A JP6809446B2 (en) 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249328A JP6809446B2 (en) 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore

Publications (2)

Publication Number Publication Date
JP2019112704A true JP2019112704A (en) 2019-07-11
JP6809446B2 JP6809446B2 (en) 2021-01-06

Family

ID=67221351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249328A Active JP6809446B2 (en) 2017-12-26 2017-12-26 Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore

Country Status (1)

Country Link
JP (1) JP6809446B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129388A1 (en) * 2010-04-14 2011-10-20 新日本製鐵株式会社 Process for production of sintered mineral
JP2011225926A (en) * 2010-04-19 2011-11-10 Jfe Steel Corp Agglomerated ore including carbonaceous material for iron-making, and producing method therefor
JP2013001924A (en) * 2011-06-14 2013-01-07 Nippon Steel & Sumitomo Metal Corp Carbonaceous material modification equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129388A1 (en) * 2010-04-14 2011-10-20 新日本製鐵株式会社 Process for production of sintered mineral
JP2011225926A (en) * 2010-04-19 2011-11-10 Jfe Steel Corp Agglomerated ore including carbonaceous material for iron-making, and producing method therefor
JP2013001924A (en) * 2011-06-14 2013-01-07 Nippon Steel & Sumitomo Metal Corp Carbonaceous material modification equipment

Also Published As

Publication number Publication date
JP6809446B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6686974B2 (en) Sintered ore manufacturing method
JP2016191122A (en) Method for producing sintered ore
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP4261672B2 (en) Granulation method of sintering raw material
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP5821362B2 (en) Method for manufacturing raw materials for sintering
JP5146573B1 (en) Method for manufacturing raw materials for sintering
JP2018141204A (en) Production method of grain particle for carbonaceous material inner package
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP6988844B2 (en) Sintered ore manufacturing method
KR101526451B1 (en) Method for manufacturing sintered ore
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP5206030B2 (en) Method for producing sintered ore
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
CN107674971B (en) Raw material treatment method
JP5126580B2 (en) Method for producing sintered ore
JP4630091B2 (en) Pretreatment method of sintering raw material
JP2016211032A (en) Method for producing ferronickel
JP5167641B2 (en) Method for producing sintered ore
JPH0797639A (en) Method of granulating raw material for sintering
JP7227053B2 (en) Method for producing sintered ore
JP7024649B2 (en) Granulation method of raw material for sintering
KR101486869B1 (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6809446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250