JP2016191122A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2016191122A
JP2016191122A JP2015072232A JP2015072232A JP2016191122A JP 2016191122 A JP2016191122 A JP 2016191122A JP 2015072232 A JP2015072232 A JP 2015072232A JP 2015072232 A JP2015072232 A JP 2015072232A JP 2016191122 A JP2016191122 A JP 2016191122A
Authority
JP
Japan
Prior art keywords
ore
raw material
mass
fine
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015072232A
Other languages
Japanese (ja)
Other versions
JP6519005B2 (en
Inventor
泰英 山口
Yasuhide Yamaguchi
泰英 山口
松村 勝
Masaru Matsumura
勝 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015072232A priority Critical patent/JP6519005B2/en
Publication of JP2016191122A publication Critical patent/JP2016191122A/en
Application granted granted Critical
Publication of JP6519005B2 publication Critical patent/JP6519005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing sintered ore, in the case of largely blending fine ore (pellet feeder), capable of improving sintered ore productivity and sintered ore strength.SOLUTION: Provided is a method for producing sintered ore having the main granulation stage and auxiliary granulation stage where sintering raw material is divided into the main sintering raw material and auxiliary raw material, and each is mixed and granulated in parallel, the respective granules produced in the main granulation step and auxiliary are mixed, and the mixed granules are fired. In the auxiliary granulation step, the ratio between the fine ores and powder ores as a part of the auxiliary sintering raw material is 1.5/1 to below 3/1, the binder being calcium oxide and cracked ore, and the ratio of the cracked ore is 3 to below 7 mass% to the auxiliary raw material.SELECTED DRAWING: Figure 5

Description

本発明は、焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore.

焼結プロセスは、粉状の鉄鉱石(以下、粉鉱石と記す。)に石灰石や炭材等の副原料を配合してミキサーで混合造粒し、焼結機に装入して焼成することで、塊成化した焼結鉱を製造する。製造された焼結鉱は、高炉に装入され、溶融還元反応を受け銑鉄となる。高炉は巨大な化学反応装置であり、焼結鉱の強度は高炉装入物として求められる重要な要素の一つである。
近年、鉄鉱石は、劣質化し鉄分の低下と脈石成分の増加が進行している。その為、比較的品位の低い鉄鉱石は、粉砕され、鉄分が高い粒子と脈石成分が高い粒子を分離する選鉱処理が施され、鉄分を高めた精鉱(コンセントレート)として出荷される。
精鉱は、選鉱処理工程に粉砕が含まれるため微粉であり、焼結プロセスにおいては慣例的に、単に微粉鉱石、コンク(コンセントレートの略称)、ペレットフィード(PF)等と呼称されている。
粉鉱石の劣質化を補い焼結鉱成分の悪化を抑制する為、近年は上記微粉鉱石を焼結原料として使用する量が増加している。
The sintering process consists of mixing powdered iron ore (hereinafter referred to as powdered ore) with auxiliary materials such as limestone and charcoal, mixing and granulating with a mixer, charging into a sintering machine and firing. To produce agglomerated sintered ore. The manufactured sintered ore is charged into a blast furnace and subjected to a smelting reduction reaction to become pig iron. The blast furnace is a huge chemical reactor, and the strength of the sinter is one of the important factors required for the blast furnace charge.
In recent years, iron ore has deteriorated and the iron content has decreased and the gangue component has increased. Therefore, iron ore of relatively low quality is crushed and subjected to a beneficiation treatment that separates particles having a high iron content and particles having a high gangue component, and is shipped as a concentrate having a high iron content (concentrate).
The concentrate is fine powder because pulverization is included in the beneficiation treatment process, and is conventionally simply called fine ore, conch (abbreviation of concentrate), pellet feed (PF), etc. in the sintering process.
In recent years, the amount of the fine powder ore used as a sintering raw material has increased in order to compensate for the deterioration of the powder ore and suppress the deterioration of the components of the sintered ore.

しかしながら前記微粉鉱石は、焼結機に装入した際に焼結充填層の空隙を閉塞させ、焼結生産性を悪化させる。そこで、微粉鉱石を多量に配合する場合においては、造粒処理を強化し、空隙を閉塞させる未造粒粉を極力低減させる必要がある。
微粉鉱石多配合に対する造粒強化技術として、下記の特許文献および非特許文献が開示されている。
However, the fine ore clogs the voids in the sintered packed bed when charged into the sintering machine, and deteriorates the sintering productivity. Therefore, when blending a large amount of fine ore, it is necessary to reinforce the granulation process and reduce the ungranulated powder that closes the voids as much as possible.
The following patent documents and non-patent documents are disclosed as a granulation strengthening technique for a fine blend of fine ores.

付着粉よりも小さい微粒子(非特許文献2では10μm以下と定義)が擬似粒子間空隙に入り込み造粒を改善することに関する知見が報告されている(非特許文献1、非特許文献2)。   There has been reported a knowledge that fine particles (defined as 10 μm or less in Non-Patent Document 2) smaller than the adhering powder enter the inter-pseudo-particle gap to improve granulation (Non-Patent Document 1 and Non-Patent Document 2).

ブラジル産PFのメジアン径に対して粒径比が0.23倍以下の比率が45%以上(全量0.10倍以下を除く)で、0.23倍を超え250μm以下の比率が55質量%未満に粒度調整した空隙充填用鉄鉱石を得る工程と、前記粒度調整した空隙充填用鉄鉱石を20質量%以上30質量%以下と、前記ブラジル産ペレットフィードを70質量%以上80質量%以下とを混合造粒して造粒物を得る工程と、前記混合造粒して得られた造粒物と、その他の原料を混合した後、焼結機に装入して焼結鉱を製造する工程を実施することを特徴とする微粉原料を用いた焼結鉱の製造方法が開示されている(特許文献1)。   The ratio of the particle size ratio of 0.23 times or less to the median diameter of Brazilian PF is 45% or more (excluding the total amount of 0.10 times or less), and the ratio of more than 0.23 times and 250 μm or less is 55% by mass. A step of obtaining a gap filling iron ore having a particle size adjusted to less than 20% by mass to 30% by mass of the particle size adjusted iron ore and 70% by mass to 80% by mass of the Brazilian pellet feed. A process for obtaining a granulated product by mixing and granulating the mixture, a granulated product obtained by the mixed granulation, and other raw materials are mixed, and then charged into a sintering machine to produce a sintered ore. The manufacturing method of the sintered ore using the fine powder raw material characterized by implementing a process is disclosed (patent document 1).

2.0mm以上の粒状物および0.25mm以下の粉状物を含む鉄鉱石原料と、前記粒状物の周囲に前記粉状物をまたは前記粉状物同士を結合させる炭酸カルシウムとを、第1の造粒装置へ供給して擬似造粒物を製造した後、該擬似造粒物と前記鉄鉱石原料の残りまたは別の鉄鉱石原料とを第2の造粒装置へ供給して造粒物を製造する焼結原料の造粒方法であって、前記粒状物と前記粉状物との質量比(粉状物/粒状物)を0.7以上1.6未満とし、かつ前記粒状物中の多孔質物質を前記鉄鉱石原料の30質量%以上90質量%以下とし、前記第1の造粒装置へ供給される前記炭酸カルシウム量を、該第1の造粒装置へ供給される前記鉄鉱石原料中の0.125mm以下の微粉物の5.0質量%以上10質量%以下とするとともに、前記第1の造粒装置へ供給される前記鉄鉱石原料量を、前記造粒物の10質量%以上50質量%以下とし、更に、前記第1の造粒装置へ、該第1の造粒装置へ供給される前記鉄鉱石原料量の0.01質量%以上0.1質量%以下の分散剤と、予め測定した前記第1の造粒装置へ供給される前記鉄鉱石原料に吸収される含水等量に、更に該含水等量の2.5質量%以上4.0質量%以下の量を加えた水を供給することを特徴とする焼結原料の造粒方法が示されている(特許文献2)。   Iron ore raw material containing a granular material of 2.0 mm or more and a powdery material of 0.25 mm or less, and calcium carbonate that binds the powdery material or the powdery materials around the granular material, To produce a pseudo-granulated product, and then supply the pseudo-granulated product and the remainder of the iron ore raw material or another iron ore raw material to the second granulating device. A granulation method of a sintering raw material for producing a powder, wherein a mass ratio (powder / granule) between the granule and the powder is 0.7 or more and less than 1.6, and in the granule The amount of calcium carbonate supplied to the first granulator is set to 30% by mass to 90% by mass of the iron ore raw material, and the iron ore supplied to the first granulator In addition to the 5.0% by mass to 10% by mass of the fine powder of 0.125 mm or less in the stone raw material, The amount of the iron ore raw material supplied to the granulator is 10% by mass to 50% by mass of the granulated product, and further supplied to the first granulator to the first granulator 0.01% by mass or more and 0.1% by mass or less of the amount of the iron ore raw material to be dispersed, and the water content equivalent to be absorbed by the iron ore raw material supplied to the first granulator measured in advance In addition, a method for granulating a sintered raw material characterized by supplying water to which 2.5% by mass or more and 4.0% by mass or less of the water content is added is disclosed (Patent Document 2). ).

本発明者等は、鉄鉱石、炭材、副原料および返鉱からなる焼結原料に、粒子径250μm以下の比率が80質量%以上であってT.Fe(全鉄)を60質量%以上含有する特定銘柄の微粉鉄鉱石を全焼結原料中の13.20質量%よりも高く20.00質量%以下で含み、前記焼結原料を2分して別々の造粒系統で混合、調湿および造粒処理し、別々に造粒された焼結原料を合流して焼成するに際して、前記微粉鉄鉱石の50%以上を有する方の造粒系統(造粒系統B)の焼結原料に、鉄鉱石を湿式粉砕してなる鉄鉱石スラリーが含まれ、前記鉄鉱石スラリーは、回転駆動する鉛直中心軸にスクリュー翼を備えた円筒容器からなる粉砕部と、重力および遠心力の作用により分級する分級部と、分級部で分級したアンダーフローを粉砕部の円筒容器に循環させる循環部と、を有する竪型粉砕機を用いて製造される、ことを特徴とする焼結原料の造粒方法を示した(特許文献3)。   The inventors of the present invention have stated that the ratio of the particle diameter of 250 μm or less to the sintered raw material composed of iron ore, carbonaceous material, auxiliary raw material, and return ore is 80% by mass or more and T.I. A specific brand of fine iron ore containing Fe (total iron) in an amount of 60% by mass or more is contained in an amount higher than 13.20% by mass and less than or equal to 20.00% by mass in the total sintered raw material, When mixing, humidity conditioning and granulation treatment in separate granulation systems, and sintering the separately granulated sintering raw materials, the granulation system (granulation of the one having 50% or more of the fine iron ore is formed. The sintered raw material of the grain system B) includes an iron ore slurry obtained by wet-pulverizing iron ore, and the iron ore slurry includes a pulverizing unit including a cylindrical container having a screw blade on a vertical center shaft that is driven to rotate. Manufactured by using a vertical crusher having a classification part classified by the action of gravity and centrifugal force, and a circulation part for circulating the underflow classified in the classification part to the cylindrical container of the pulverization part A method for granulating sintered raw material was shown (Patent Document 3) .

特開2013−32568号公報JP 2013-32568 A 特許第5063978号公報Japanese Patent No. 5063978 国際公開第2013/054471号International Publication No. 2013/054471

岡田ら:鉄と鋼 Vol.92(2006),735Okada et al .: Iron and Steel Vol.92 (2006), 735 河内ら:鉄と鋼 Vol.94(2008), No.11, p475Kawauchi et al .: Iron and Steel Vol.94 (2008), No.11, p475

上記に開示されている特許文献においては、それぞれ以下の様な問題点が残っている。
特許文献1において、ペレットフィードと粒度調整した空隙充填用鉄鉱石を造粒した擬似粒子は、後述するP型擬似粒子である。P型擬似粒子は、C型擬似粒子に比べ、粒子強度に劣っており、造粒後のハンドリング過程での崩壊を招きやすいという問題がある。
In the patent documents disclosed above, the following problems remain.
In Patent Document 1, pseudo particles obtained by granulating pellet feed and iron ore for void filling whose particle size is adjusted are P-type pseudo particles described later. P-type pseudo particles are inferior in particle strength to C-type pseudo particles, and there is a problem in that they tend to collapse in the handling process after granulation.

特許文献2において、0.25mm以下の粉状物と2mm以上の粒状物との質量比(粉状物/粒状物)を、0.7以上1.6未満と規定しているが、粉鉱石は通常0.25mm以下も含む広い粒度分布を有しており、粉状物/粒状物比は低いもので0.15程度、高いものでは0.7程度となるものも存在する。一方、粉砕工程を経る選鉱処理微粉鉱石は0.25mm以下の粒子を多量に含んでいる一方で2mm以上は一切含んでいない。
以上を鑑みるに、粉状物/粒状物が0.7以上1.6未満の範囲では、粉鉱石にも0.25mm以下が多く含まれているため、微粉鉱石(0.25mm以下)の使用量の制限を受け、微粉鉱石/粉鉱石の比率にすると1:1程度しか配合できず、微粉鉱石多配合という目的においては1.6より大きい範囲でも造粒性を維持改善可能な方法が求められる。
In Patent Document 2, the mass ratio (powder / granular material) between a powdery material of 0.25 mm or less and a granular material of 2 mm or more is defined as 0.7 or more and less than 1.6. Usually has a wide particle size distribution including not more than 0.25 mm, and there is a powdery / granular material ratio as low as about 0.15 and as high as about 0.7. On the other hand, the beneficiation-treated fine ore that has undergone the pulverization step contains a large amount of particles of 0.25 mm or less, but does not contain any of 2 mm or more.
In view of the above, when the powdery / granular material is in the range of 0.7 to less than 1.6, the fine ore (0.25 mm or less) is used because the powdered ore contains a large amount of 0.25 mm or less. The amount of fine ore / fine ore is limited by the amount, and only about 1: 1 can be blended. For the purpose of multiple fine ore blending, a method that can maintain and improve the granulation property even in a range larger than 1.6 is required. It is done.

特許文献3の方法では、破砕鉱石は、特定の湿式装置を前提としていると共に、その添加量に関しては、ペレットフィード1%に対し破砕鉱石0.01%と記載はされているにすぎず、粒子強度の高い擬似粒子の形成のためには、改善の余地がある。
更に、上記の特許文献1〜特許文献3では、微粉鉱石を使用した場合における焼結鉱生産性の低下に対する手段としてはそれぞれ上記の如く方法が示されているものの、背景で述べた様に焼結における重要な要素の一つである焼結鉱強度に対しては、いずれにおいても言及されていない。
In the method of Patent Document 3, the crushed ore is premised on a specific wet apparatus, and the addition amount is only described as crushed ore 0.01% with respect to 1% of pellet feed. There is room for improvement in the formation of quasi-particles with high strength.
Furthermore, in the above-mentioned Patent Documents 1 to 3, although the above-mentioned methods are shown as means for reducing the productivity of sintered ore when fine ore is used, as described in the background, No mention is made of sinter strength, which is one of the important factors in the crystallization.

選鉱処理で発生する微粉鉱石(主としてPF)の多量使用が望まれる。微粉鉱石を多量に使用する焼結鉱の製造においては、粉鉱石に、微粉鉱石を混合し、バインダーを用いて強度の高い擬似粒子を造粒し、鉱石充填層の空隙率を確保して、焼結機の通気性を維持しなければならない。微粉鉱石を多量に配合する場合に、強度の高い擬似粒子を造粒するためには、粉鉱石と微粉鉱石配合割合、バインダーとしての生石灰と破砕鉱石の使用割合を適正化することが重要である。
本発明の目的は、微粉鉱石を多量に配合する場合に、粒子強度の高い擬似粒子を形成し、燒結鉱生産性と燒結鉱強度を向上することが可能な焼結鉱の製造方法を提供することである。
A large amount of fine ore (mainly PF) generated in the beneficiation process is desired. In the production of sintered ore using a large amount of fine ore, the fine ore is mixed with fine ore, and high-strength pseudo particles are granulated using a binder to ensure the porosity of the ore packed bed, The air permeability of the sintering machine must be maintained. In order to granulate high-strength pseudo particles when blending a large amount of fine ore, it is important to optimize the blend ratio of fine ore and fine ore, and the use ratio of quick lime and crushed ore as a binder .
An object of the present invention is to provide a method for producing a sintered ore capable of forming pseudo particles having high particle strength and improving sintered ore productivity and sintered ore strength when a large amount of fine ore is blended. That is.

本発明の要旨とするところは、以下である。
(1)焼結原料を、主焼結原料と副焼結原料とに分け、それぞれを混合・造粒する、主造粒工程と、副造粒工程とを並列で有し、
前記主造粒工程と前記副造粒工程で製造したそれぞれの造粒物を合わせ、前記合わせた造粒物を焼成する焼結鉱の製造方法であって、
前記副造粒工程は、
前記副焼結原料の一部である微粉鉱石と粉鉱石の比が1.5/1以上3/1未満であり、バインダーが、生石灰と破砕鉱石であって、前記破砕鉱石は、前記副焼結原料に対し3質量%以上7質量%未満であることを特徴とする焼結鉱の製造方法。
(2)(1)に記載の焼結鉱の製造方法において、
前記副造粒工程に用いられる前記生石灰が1.7質量%以上3.5質量%以下であることを特徴とする焼結鉱の製造方法。
(3)(1)又は(2)に記載の焼結鉱の製造方法において、
前記破砕鉱石は、4質量%以上の結晶水を含有する鉱石を湿式破砕したものであり、粒度は、10μm以下の割合が60質量%以上であることを特徴とする焼結鉱の製造方法。
(4)(1)乃至(3)のいずれかに記載の焼結鉱の製造方法において、
前記破砕鉱石は、回転駆動する鉛直中心軸にスクリュー翼を備えた円筒容器からなる粉砕部と、重力および遠心力の作用により分級する分級部と、分級部で分級したアンダーフローを粉砕部の円筒容器に循環させる循環部と、を有する竪型粉砕機を用いて破砕された湿式破砕鉱石であることを特徴とする焼結鉱の製造方法。
(5)(1)乃至(3)のいずれかに記載の焼結鉱の製造方法において、
前記微粉鉱石は、鉄鉱石の選鉱処理工程で発生する選鉱処理微粉鉱石であることを特徴とする焼結鉱の製造方法。
The gist of the present invention is as follows.
(1) The sintering raw material is divided into a main sintering raw material and a sub-sintering raw material, each of which is mixed and granulated, and has a main granulation step and a sub-granulation step in parallel.
A method for producing a sintered ore comprising combining each granulated product produced in the main granulation step and the sub-granulation step, and firing the combined granulated product,
The sub-granulation step includes
The ratio of fine ore and fine ore which is a part of the auxiliary sintered raw material is 1.5 / 1 or more and less than 3/1, the binder is quick lime and crushed ore, and the crushed ore is The manufacturing method of the sintered ore characterized by being 3 mass% or more and less than 7 mass% with respect to a sintering raw material.
(2) In the method for producing a sintered ore according to (1),
The said quicklime used for the said auxiliary granulation process is 1.7 mass% or more and 3.5 mass% or less, The manufacturing method of the sintered ore characterized by the above-mentioned.
(3) In the method for producing a sintered ore according to (1) or (2),
The method for producing sintered ore, wherein the crushed ore is obtained by wet crushing ore containing 4% by mass or more of crystal water, and the particle size is 60% by mass or more at a ratio of 10 μm or less.
(4) In the method for producing a sintered ore according to any one of (1) to (3),
The crushed ore includes a pulverizing unit composed of a cylindrical container having screw blades on a rotationally driven vertical central axis, a classification unit classified by the action of gravity and centrifugal force, and an underflow classified by the classification unit in a cylinder of the pulverizing unit A method for producing a sintered ore, which is a wet crushed ore crushed by using a vertical crusher having a circulation part circulated in a container.
(5) In the method for producing a sintered ore according to any one of (1) to (3),
The method for producing a sintered ore, wherein the fine ore is a beneficiation treated fine ore generated in a beneficiation process of iron ore.

微粉鉱石を多量に配合する場合に、燒結鉱生産性と燒結鉱強度を向上することが可能な焼結鉱の製造方法を提供することができる。   When blending a large amount of fine ore, it is possible to provide a method for producing a sintered ore that can improve sintered ore productivity and sintered ore strength.

造粒処理系統のフローを示す図。The figure which shows the flow of a granulation processing system. 粉鉱石と微粉鉱石の粒度分布を示す図。The figure which shows the particle size distribution of a fine ore and a fine ore. C型の擬似粒子とP型の擬似粒子の構造を模式的に示す図。The figure which shows typically the structure of a C-type pseudo particle and a P-type pseudo particle. 微粉鉱石/粉鉱石の比率を変えた場合の、擬似粒子構造変化を示す図。The figure which shows the pseudo-particle structure change at the time of changing the ratio of a fine ore / a fine ore. 副造粒工程の破砕鉱石(質量%)と擬似粒子径(mm)の関係を示す図。The figure which shows the relationship between the crushing ore (mass%) of a secondary granulation process, and a pseudo particle diameter (mm). 副造粒工程の破砕鉱石(質量%)と原料層冷間通気性(JPU)の関係を示す図。The figure which shows the relationship between the crushing ore (mass%) of a subgranulation process, and raw material layer cold air permeability (JPU). 副造粒工程の破砕鉱石(質量%)とFFS(mm/min)の関係を示す図。The figure which shows the relationship between the crushing ore (mass%) of a secondary granulation process, and FFS (mm / min). 副造粒工程の破砕鉱石(質量%)と焼結鉱強度TI(%)の関係を示す図。The figure which shows the relationship between the crushing ore (mass%) of a secondary granulation process, and sintered ore intensity | strength TI (%). 副造粒工程の破砕鉱石(質量%)と焼結成品歩留り(+5mm%)の関係を示す図。The figure which shows the relationship between the crushing ore (mass%) of a secondary granulation process, and a sintered product yield (+5 mm%). 副造粒工程の破砕鉱石(質量%)と焼結生産性(t/d/m)を示す図。The figure which shows the crushing ore (mass%) and sintering productivity (t / d / m < 2 >) of a secondary granulation process.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1に本実施形態における造粒処理系統のフローを示す。いわゆる分割造粒法である。
図1に示すように、焼結原料を主焼結原料群と、副焼結原料群とに分け、それぞれを混合・造粒する。主焼結原料群を造粒する主造粒工程と、副焼結原料群を造粒する副造粒工程とを並列に有し、主造粒工程と副造粒工程で製造したそれぞれの造粒物を合わせ、合わせた造粒物を焼成するものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a flow of the granulation processing system in the present embodiment. This is a so-called split granulation method.
As shown in FIG. 1, the sintering raw material is divided into a main sintering raw material group and a sub-sintering raw material group, and each is mixed and granulated. The main granulation process for granulating the main sintering raw material group and the sub-granulation process for granulating the sub-sintering raw material group are arranged in parallel. The granules are combined and the combined granules are fired.

主造粒工程では、主焼結原料群である鉄含有原料、副原料、返鉱、ダスト及び炭材をミキサーで混合・造粒することによって擬似粒子の造粒物を製造する。尚、一つのドラムミキサーによる混合・造粒でもよい。
副造粒工程では、微粉鉱石、粉鉱石、破砕鉱石及び生石灰を混合・造粒して擬似粒子の造粒物を製造する。
副造粒工程は、例えば、高速撹拌ミキサーと皿型ペレタイザーから成るが、これに限らない。
本願発明の分割造粒は、主造粒工程と副造粒工程のそれぞれで造粒した造粒物を混合するのみで、更に造粒することなく充填層に装入する。造粒による擬似粒子の崩壊を防止するためである。この点で、副造粒工程で製造した造粒物を、他の原料と共に主造粒工程で造粒する特許文献2に記載の発明とは相違する。
以下、副造粒工程について詳細に記述する。
In the main granulation step, a pseudo-granulated product is produced by mixing and granulating the iron-containing raw material, auxiliary raw material, return mineral, dust, and carbonaceous material, which are the main sintered raw material group, with a mixer. In addition, mixing and granulation by one drum mixer may be used.
In the auxiliary granulation step, fine ore, fine ore, crushed ore and quicklime are mixed and granulated to produce a granulated product of pseudo particles.
The auxiliary granulation step includes, for example, a high-speed stirring mixer and a dish type pelletizer, but is not limited thereto.
In the divided granulation of the present invention, the granulated product granulated in each of the main granulation step and the sub-granulation step is mixed, and is charged into the packed bed without further granulation. This is to prevent the pseudo particles from collapsing due to granulation. In this respect, the granulated product produced in the sub-granulation process is different from the invention described in Patent Document 2 in which granulation is performed in the main granulation process together with other raw materials.
Hereinafter, the auxiliary granulation process will be described in detail.

(副焼結原料群)
副焼結原料群は、造粒を強化する対象の微粉原料、造粒の核となる粉鉱石、並びにバインダーとしての生石灰等および破砕用鉱石を含む。また、微粉原料の造粒を阻害しない範囲で適時種々の焼結原料を含めることができる。
副焼結原料群の中の微粉原料としては、例えば、カナダ産やブラジル産の精鉱(ペレットフィード)が挙げられる。副造粒工程において微粉原料を使用するのは、主造粒工程で造粒機として用いられるドラムミキサーが、微粉原料の造粒に不向きなためである。
副焼結原料群の中の粉鉱石としては、通常焼結鉱の製造で使用されるシンターフィード(以下、SFと記す。)、具体的にはピソライト系鉱石などが挙げられる。
(Sub-sintering raw material group)
The auxiliary sintering raw material group includes a fine powder raw material to be strengthened for granulation, a fine ore serving as a nucleus of granulation, quick lime as a binder, and a crushing ore. Moreover, various sintering raw materials can be included in a timely manner as long as the granulation of the fine powder raw material is not hindered.
Examples of the fine powder material in the auxiliary sintered material group include Canadian or Brazilian concentrate (pellet feed). The reason why the fine powder material is used in the sub-granulation process is that the drum mixer used as a granulator in the main granulation process is not suitable for granulating the fine powder material.
Examples of the fine ore in the auxiliary sintered raw material group include a sinter feed (hereinafter referred to as SF) that is usually used in the production of sintered ore, and specifically a pisolite ore.

(微粉鉱石を多量に配合する場合の擬似粒子の形成について)
図2に粉鉱石A,B,Cと微粉鉱石Aの粒度分布を示す。粉鉱石は、10μm以下〜10000μm(10mm)程度の幅広い粒度分布を有するのに対し、微粉鉱石は、95質量%以上は、1mm以下であり、かつ、10μm(0.010mm)の極微粉はほとんどない。
(About the formation of pseudo particles when a large amount of fine ore is blended)
FIG. 2 shows the particle size distribution of fine ore A, B, C and fine ore A. Fine ore has a wide particle size distribution of about 10 μm or less to 10000 μm (10 mm), whereas fine ore is 95% by mass or more and 1 mm or less, and most of 10 μm (0.010 mm) ultrafine powders. Absent.

粉鉱石と微粉鉱石を混合し、生石灰等のバインダーを用いて造粒すると、粉鉱石と微粉鉱石の配合割合により、C型の擬似粒子又はP型の擬似粒子が形成される。
図3に、C型擬似粒子とP型擬似粒子の形態を模式的に示す。
C型擬似粒子(composite型)は、比較的粗大な粒子を核として、周囲に核粒子よりも小さい微粉が付着して形成された形態である。焼結原料の造粒においては、一般的に、1mm以上程度の粒子が核、それより小さい粒子が付着粉となる。尚、0.25mm以下程度の微粉粒子が特に付着粉となり易く、0.25mmより大きく1mmより小さい粒子は、中間粒子と呼ばれ、核と付着粉のいずれにもなり難い粒子である。また、焼結原料の造粒においては、C型の造粒物形態が主である。
When the fine ore is mixed and granulated using a binder such as quick lime, C-type pseudo particles or P-type pseudo particles are formed depending on the blending ratio of the fine ore and fine ore.
FIG. 3 schematically shows the form of C-type pseudo particles and P-type pseudo particles.
The C-type pseudo particle (composite type) is a form in which relatively coarse particles are used as nuclei and fine powder smaller than the core particles is attached to the periphery. In granulation of a sintering raw material, generally, particles of about 1 mm or more are nuclei and smaller particles are adhering powder. Note that fine powder particles of about 0.25 mm or less are particularly likely to be adhered powder, and particles larger than 0.25 mm and smaller than 1 mm are called intermediate particles, and are particles that are unlikely to be both cores and adhered powder. Moreover, in granulation of a sintering raw material, a C-shaped granule form is main.

P型擬似粒子(Pellet型)は、核を持たず、1mm以下の粒子のみが集合した形態である。微粉鉱石は上述した様にほぼ全量が1mm以下の粒子で構成されることから、当該微粉鉱石を多量使用すると、P型擬似粒子形態の造粒物が生成される。
選鉱処理により発生する微粉鉱石を多量に使用するという目的に鑑みれば、P型擬似粒子の造粒物を作成することが有効であると見える。しかし、以下に述べるように、擬似粒子の圧潰強度が小さいという問題がある。
P-type pseudo particles (Pellet type) do not have nuclei and have a form in which only particles of 1 mm or less are aggregated. As described above, since the fine ore is almost composed of particles of 1 mm or less, if a large amount of the fine ore is used, a granulated product in the form of P-type pseudo particles is generated.
In view of the purpose of using a large amount of fine ore generated by the beneficiation treatment, it seems effective to produce a granulated product of P-type pseudo particles. However, as described below, there is a problem that the crushing strength of the pseudo particles is small.

本発明において、破砕鉱石とは、粉鉱石を極微粉の10μm以下に粉砕した鉱石であり、
微粉鉱石の間に形成される隙間を埋め、生石灰と共にバインダーとして機能する。即ち、微粉鉱石は、1mm以下であるが、10μm以下の極微粉が少ないので、微粉鉱石の粒子間を埋める鉱石が少なく、造粒性が劣る。そこで、微粉鉱石の粒子間を埋める鉱石として、10μm以下の破砕鉱石(極微粉)が微粉鉱石間の隙間を埋めるとともに、バインダーとしても機能する。
In the present invention, the crushed ore is an ore obtained by pulverizing a fine ore to a fine powder of 10 μm or less,
It fills the gaps formed between fine ores and functions as a binder together with quicklime. That is, although the fine ore is 1 mm or less, since there are few very fine powders of 10 μm or less, there are few ores that fill between the particles of the fine ore and the granulation property is poor. Therefore, as an ore that fills between particles of fine ore, a crushed ore (ultra fine powder) of 10 μm or less fills a gap between fine ores and also functions as a binder.

(C型擬似粒子とP型擬似粒子の強度について)
造粒で形成された擬似粒子は、造粒機から排出された後、ベルトコンベアの乗り継ぎ、サージホッパーへの供給、サージホッパー内での荷下がり、焼結機内への装入時等において、落下衝撃力や粒子同士の圧縮・剪断力を受ける。さらに、焼成中においても、焼き締まりや湿潤帯・乾燥帯・燃焼帯形成に伴う圧縮・剪断力を受ける。その結果、擬似粒子は、破損される恐れがある。したがって、擬似粒子は、一定の強度が必要である。
(Intensity of C-type pseudo particles and P-type pseudo particles)
Pseudo particles formed by granulation fall after being discharged from the granulator, when connecting to a belt conveyor, supplying to a surge hopper, unloading in a surge hopper, charging into a sintering machine, etc. It receives impact force and compression / shear force between particles. Further, during firing, it is subjected to compression / shearing force due to compaction, wet zone, dry zone, and combustion zone formation. As a result, the pseudo particles may be damaged. Therefore, the pseudo particle needs a certain strength.

C型造粒物とP型造粒物は、その形態の相違により、強度が相違すると考えられる。そこで、擬似粒子の強度の比較試験を行った。微粉鉱石2.3と粉鉱石1の比で生石灰4%により造粒したC型造粒物と、粉鉱石を配合せずにバインダーとして生石灰4%と破砕鉱石5%を用いて造粒したP型造粒物の圧潰強度を比較した。C型造粒物と、P型造粒物のそれぞれを、乾燥機で水分0%まで乾燥し、一軸圧縮試験機を用いて圧潰強度を測定した。結果を表1に示す。C型造粒物は、バインダーとなる破砕鉱石の添加量が少ないにもかかわらず、P型造粒物の約5倍の圧潰強度を示した。   The C-type granulated product and the P-type granulated product are considered to have different strengths due to the difference in form. Therefore, a comparative test of the strength of the pseudo particles was performed. P type granulated using C-type granulated product granulated with 4% quick lime at a ratio of fine ore 2.3 and fine ore 1 and 4% quick lime and 5% crushed ore as binder without blending fine ore The crushing strength of the granulated product was compared. Each of the C-type granulated product and the P-type granulated product was dried to a moisture of 0% with a dryer, and the crushing strength was measured using a uniaxial compression tester. The results are shown in Table 1. The C-type granulated product exhibited a crushing strength about 5 times that of the P-type granulated product, although the amount of crushed ore serving as a binder was small.

Figure 2016191122
Figure 2016191122

C型造粒物の場合は中心に核が存在する為、核に到達したところで大きな抵抗力が働き造粒物の崩壊が抑制されると考えられる。これに対し、核が存在しないP型造粒物は、C型と比較すると強度に劣る。
即ち、C型造粒物は、造粒物が崩壊してしまう様な大きな力を受けた場合においてもP型造粒物に対して有利であると考えられる。C型造粒物は、大きな圧縮力や剪断力を受けた場合、核に到達したところで大きな抵抗力が働く為、付着粉層の一部分のみが削げ落ちる様な、部分的な造粒物破壊形態になると考えられる。
In the case of a C-type granulated product, a nucleus is present at the center, and therefore it is considered that a large resistance acts when the nucleus reaches the nucleus and the collapse of the granulated product is suppressed. On the other hand, the P-type granulated product having no nucleus is inferior in strength as compared with the C-type.
That is, the C-type granulated product is considered to be advantageous over the P-type granulated product even when it receives a large force that causes the granulated product to collapse. C type granulated product is a partial granule destruction mode in which only a part of the adhering powder layer is scraped off when a large compressive force or shear force is applied and a large resistance acts when it reaches the core. It is thought that it becomes.

これに対し、P型造粒物は、核が存在しない為、圧縮力、剪断力のいずれでも、一定以上の力を受けてある限界点を超えると、粒子全体が崩壊する様な造粒物破壊形態になると考えられる。
以上より、P型造粒物は搬送中に造粒物が受ける力に耐え得る十分な強度を有さない為に途中で崩壊してしまい、焼結機の充填層内において空隙を閉塞させ、焼結生産性を低下させることが懸念される。また、焼結機の充填層内における通気性の悪化は、全体的な生産性の低下に加えて、充填層内の一部のみに通風が偏り焼成不良部分が発生する、いわゆるムラ焼け現象を引き起こすことが懸念される。焼成不良部分の存在は、成品歩留や焼結鉱強度の低下に繋がると考えられる。
上記の様に、焼結プロセスにおける微粉鉱石多量使用においては、造粒物形態の制御、より詳細にはP型造粒物の作成を極力抑制しつつ微粉鉱石を多量使用することが重要であると考えられる。
On the other hand, since the P-type granulated product does not have a nucleus, both the compressive force and the shearing force are subjected to a force exceeding a certain level and exceed the limit point. It is considered to be a form of destruction.
From the above, the P-type granulated product collapses in the middle because it does not have sufficient strength to withstand the force received by the granulated product during transportation, and closes the voids in the packed bed of the sintering machine, There is a concern that the sintering productivity may be reduced. In addition, the deterioration of the air permeability in the packed bed of the sintering machine causes a so-called uneven burn phenomenon in which the ventilation is unevenly generated only in a part of the packed bed and a defective firing portion is generated in addition to the decrease in overall productivity. There is concern about causing it. Presence of defective firing parts is thought to lead to a decrease in product yield and strength of sintered ore.
As described above, when using a large amount of fine ore in the sintering process, it is important to use a large amount of fine ore while controlling the form of the granulated product, more specifically, suppressing the creation of the P-type granulated product as much as possible. it is conceivable that.

(擬似粒子の造粒試験について)
擬似粒子は、微粉鉱石と粉鉱石の配合比率により、C型擬似粒子又はP型擬似粒子の形成形態が異なると考えられる.そこで、微粉鉱石の割合を変更し、擬似粒子の形態を調査する試験を実施した。模型皿型ペレタイザーにより造粒し、作成した擬似粒子の構造解析を行った。
表2に試験に用いた鉱石を示す。微粉鉱石/粉鉱石の比を変更した配合条件で3kgとなる様に原料を準備した。微粉鉱石は、北米産微粉鉱石と南米産微粉鉱石の2つを用いた。粉鉱石は、豪州産粉鉱石を用いた。
混練機で1分間混合した後に水を加えてさらに2分間混練し、600mm径、角度50°の皿型ペレタイザーで12rpmにて5分間造粒した。
(About the granulation test of pseudo particles)
Pseudoparticles are considered to have different formation forms of C-type pseudoparticles or P-type pseudoparticles depending on the mixing ratio of fine ore and fine ore. Therefore, a test was conducted in which the proportion of fine ore was changed and the morphology of pseudo particles was investigated. The structure analysis of the pseudo particles produced by granulating with a model dish type pelletizer was performed.
Table 2 shows the ores used in the test. The raw material was prepared so that it might become 3 kg on the mixing | blending conditions which changed the ratio of a fine ore / powder ore. Two fine ores were used: North American fine ore and South American fine ore. As the powder ore, Australian powder ore was used.
After mixing with a kneader for 1 minute, water was added and the mixture was further kneaded for 2 minutes, and granulated for 5 minutes at 12 rpm with a dish-type pelletizer having a 600 mm diameter and an angle of 50 °.

Figure 2016191122
Figure 2016191122

各条件で作成した擬似粒子について、2mm以上の擬似粒子を回収し、水洗して付着粉層を洗い流して核粒子と付着粉それぞれの重量を測定し、C型擬似粒子とP型擬似粒子の比率を算出した。
図4に、微粉鉱石/粉鉱石の比を変えた場合の、擬似粒子の構造変化を示す。
北米産、南米産微粉鉱石のいずれにおいても、微粉鉱石/粉鉱石=3/1以上になると、C型擬似粒子の生成だけで消費されなかった微粉鉱石が集合し、核を持たないP型擬似粒子が生成され始めるのが確認された。
For pseudo particles created under each condition, collect 2 mm or more of pseudo particles, wash with water, wash away the adhering powder layer, measure the weight of each of the core particles and adhering powder, and the ratio of C type pseudo particles to P type pseudo particles Was calculated.
FIG. 4 shows the structural change of the pseudo particles when the ratio of fine ore / fine ore is changed.
In both North American and South American fine ores, when fine ore / powder ore = 3/1 or more, fine ore that was not consumed just by the generation of C-type pseudoparticles gathers and has no P-type pseudo It was confirmed that particles began to be generated.

前述のように、P型擬似粒子の圧潰強度は小さい
擬似粒子の強度が低いと、造粒後、焼結機への搬送中の乗り継ぎベルト又は焼結機への装入時の衝撃により、擬似粒子が崩壊する恐れがある。
そこで、微粉鉱石と粉鉱石の比は、図4より、微粉鉱石/粉鉱石で、3/1未満が望まれる。
一方、微粉鉱石/粉鉱石で、1.5/1未満では、C型擬似粒子の作成は容易であるものの微粉鉱石多配合の目的に合致しない。
したがって、微粉鉱石と粉鉱石の割合は、微粉鉱石/粉鉱石で、1.5/1以上3/1未満が好ましい。
As described above, the crushing strength of the P-type pseudo particles is small. When the strength of the pseudo particles is low, the pseudo-particles have a low crushing strength due to impact during loading into the connecting belt or the sintering machine being conveyed to the sintering machine. Particles may collapse.
Therefore, the ratio of fine ore to fine ore is desired to be less than 3/1 in FIG.
On the other hand, if it is fine ore / powder ore and less than 1.5 / 1, creation of C-type pseudo particles is easy, but it does not meet the purpose of blending fine ore.
Therefore, the ratio of fine ore to fine ore is fine fine ore / fine ore and is preferably 1.5 / 1 or more and less than 3/1.

(破砕用鉱石)
破砕用鉱石は、上記生石灰等とともに、造粒時のバインダーとして作用する。
破砕用鉱石は、ゲーサイトを多く含む高結晶水鉱石が好ましく、なかでもピソライト系鉱石がより好ましい。これは、ヘマタイト鉱石等と比較して、ゲーサイト鉱石の硬度は小さいので破砕が容易であること、造粒時にバインダーとしての水中分散性が高いこと、及び、付着力が高いため強固な疑似粒子が製造可能なことによる。
破砕鉱石の粒度は、−10μmが60質量%以上が好ましい。60質量%未満では、バインダーとしての効果が小さくなるからである。
(Crushing ore)
The crushing ore acts as a binder during granulation together with the quicklime and the like.
The crushing ore is preferably a high crystal water ore containing a lot of goethite, and more preferably a pisolite ore. This is because the hardness of goethite ore is small compared to hematite ore, etc., so that it is easy to crush, has high dispersibility in water as a binder during granulation, and has strong adhesion because of its high adhesion. Because it can be manufactured.
As for the particle size of the crushed ore, −10 μm is preferably 60% by mass or more. It is because the effect as a binder will become small if it is less than 60 mass%.

(副造粒工程における破砕鉱石の使用割合について)
副造粒工程において、破砕鉱石の使用割合は、後述する実施例において詳述するが、副焼結原料の全体に対し3質量%以上7質量%未満であることが好ましい。3質量%未満では効果が小さく、7質量%以上になると、粒子が過剰に粗大化し、焼成時に十分に溶融同化が進行せず、焼成後に崩壊し易く、焼結鉱生産性向上に寄与しないと共に強度も低下するからである。
特許文献3では、副造粒工程において、ペレットフィード1%に対し破砕鉱石0.01%と記載されている。しかし、本発明は、圧潰強度の高いC型擬似粒子の形成を目指すものであり、核となる粉鉱石を含めた副焼結原料の全体を考慮する必要がある。そこで、本発明では、微粉鉱石/粉鉱石で1.5/1以上3/1未満であり、微粉鉱石を副焼結原料の全体に対し3質量%以上7質量%未満であることが好ましいと考えた。
(About the proportion of crushed ore used in the secondary granulation process)
In the auxiliary granulation step, the use ratio of the crushed ore will be described in detail in Examples described later, but it is preferably 3% by mass or more and less than 7% by mass with respect to the entire auxiliary sintered raw material. If the amount is less than 3% by mass, the effect is small, and if it is 7% by mass or more, the particles become excessively coarse, melt assimilation does not proceed sufficiently at the time of firing, easily collapse after firing, and does not contribute to improving the productivity of sintered ore. This is because the strength also decreases.
In Patent Document 3, it is described that the crushed ore is 0.01% with respect to 1% of the pellet feed in the auxiliary granulation step. However, the present invention aims at the formation of C-type pseudo particles having high crushing strength, and it is necessary to consider the whole of the auxiliary sintering raw material including the fine ore serving as a nucleus. Therefore, in the present invention, the fine ore is preferably 1.5 / 1 or more and less than 3/1, and the fine ore is preferably 3% by mass or more and less than 7% by mass with respect to the whole auxiliary sintering raw material. Thought.

(湿式粉砕機)
破砕用鉱石は、湿式破砕され、湿式粉砕機としては、湿式ボールミルが挙げられる。湿式ボールミルは、ミル内部に破砕媒体である鉄球が充填された構成である。湿式破砕は、前記破砕用鉱石を生石灰等と共に破砕する湿式混合破砕でもよい。
上記構成の湿式ボールミルを用いた粉砕では、先ず、ミル内部へ水とともに原料(破砕用鉱石又は破砕用鉱石と生石灰等)を投入する。そして、ミルを回転させることによって、ミル内でボールと原料とを移動させる。これにより、原料同士或いは原料と鉄球との間に剪断力や圧縮力が作用することで、原料が微粉砕される。
(Wet grinding machine)
The crushing ore is wet crushed, and the wet pulverizer includes a wet ball mill. The wet ball mill has a structure in which iron balls as a crushing medium are filled inside the mill. The wet crushing may be a wet mixed crushing that crushes the ore for crushing together with quicklime or the like.
In the pulverization using the wet ball mill having the above configuration, first, raw materials (crushed ore or crushed ore and quicklime, etc.) are put into the mill together with water. Then, the ball and the raw material are moved in the mill by rotating the mill. Thus, the raw material is finely pulverized by applying a shearing force or a compressive force between the raw materials or between the raw material and the iron ball.

本発明における湿式ボールミルとしては、縦型ボールミル、より具体的にはタワーミルが好ましい。
タワーミルは、回転駆動する鉛直中心軸にスクリュー翼を備えた円筒容器からなる粉砕部と、重力及び遠心力の作用により分級する分級部と、分級部で分級したアンダーフローを粉砕部の円筒容器に循環させる循環部を備える。また、円筒容器内には粉砕媒体として鉄球が装入されている。
上記構成のタワーミルによる微粉砕では、先ず、円筒容器内へ水とともに原料(破砕用鉱石又は破砕用鉱石と生石灰等)を投入する。投入された原料は、スクリュー翼によって持ち上げられて上方に巻き上げられ、また、侍従によって下方に落下する運動を繰り返す。これらの複合的な運動により、原料同士或いは原料と鉄球との間に剪断力や圧縮力が作用することで、原料が微粉砕される。微粉砕された原料は、水と懸濁してスラリーを形成する。微粉砕された原料を含むスラリーは分級部へと移動され、ここで、粗分級される。分級された粗粒の原料を含むスラリーは、循環部により、粉砕部へと送られ、そこで再度粉砕される。なお、投入した原料のうち、微粉砕によって粒径が低下した原料は、原料層の上方へと徐々に移動するので、粗粒状態の原料が鉄球近傍に位置することになる。このため、湿式ボールミルでは、粗粒状態の原料が選択的に破砕されるので、結果として効率的な作業が行われる。
The wet ball mill in the present invention is preferably a vertical ball mill, more specifically a tower mill.
The tower mill is a pulverization unit consisting of a cylindrical container with screw blades on the rotationally driven vertical center axis, a classification part classified by the action of gravity and centrifugal force, and an underflow classified by the classification part in the cylindrical container of the pulverization part. A circulation unit for circulation is provided. Further, an iron ball is charged as a grinding medium in the cylindrical container.
In the fine pulverization by the tower mill having the above-described configuration, first, raw materials (crushing ore or crushing ore and quicklime, etc.) are put into the cylindrical container together with water. The charged raw material is lifted up by the screw blades and rolled up, and the movement of dropping downward by the slave is repeated. By these combined movements, the raw material is finely pulverized by the action of shearing force and compressive force between the raw materials or between the raw material and the iron ball. The finely pulverized raw material is suspended with water to form a slurry. The slurry containing the finely pulverized raw material is moved to a classification unit, where it is roughly classified. The classified slurry containing the coarse raw material is sent to the pulverization section by the circulation section, where it is pulverized again. Note that, among the charged raw materials, the raw material whose particle size has been reduced by fine pulverization gradually moves above the raw material layer, so that the raw material in a coarse state is located in the vicinity of the iron ball. For this reason, in the wet ball mill, the raw material in a coarse particle state is selectively crushed, and as a result, efficient work is performed.

(生石灰等)
生石灰は、造粒時のバインダーとして作用する。焼結原料に対し、通常、生石灰の使用
量は、2%程度であるが、生石灰は高価であり、極力、生石灰を、バインダー機能を有する破砕鉱石に置換するのが好ましい。
生石灰は、副造粒工程で用いられることが好ましいが、後述する図5〜図10より、1.8質量%以上3.5質量%以下が特に好ましい。
また、本実施形態では、生石灰の代替えとして消石灰も使用できる。消石灰を使用する場合、生石灰の使用量とCa分が同量になる量を使用する。例えば、生石灰を15質量%配合するとき、Ca分で、15質量%の生石灰に相当する消石灰は、1.32倍(74/56)の20質量%になる。
また、生石灰又は消石灰に代えて、製鋼スラグを使用してもよい。本実施形態において、製鋼スラグは、製鋼の脱硅、脱硫、脱炭の各工程において生成するスラグである。このうち、脱硫スラグは、FeOとCaOの含有率が高く、これを湿式破砕することで、破砕された鉱石成分と生石灰成分とが混合状態のスラリーを得ることが可能となるため、特に好ましい。
(Quicklime etc.)
Quicklime acts as a binder during granulation. Usually, the amount of quicklime used is about 2% with respect to the sintering raw material, but quicklime is expensive, and it is preferable to replace quicklime with a crushed ore having a binder function as much as possible.
Although quicklime is preferably used in the sub-granulation step, it is particularly preferably 1.8% by mass or more and 3.5% by mass or less from FIGS.
In this embodiment, slaked lime can also be used as an alternative to quick lime. When using slaked lime, use the amount that uses the same amount of quick lime and Ca. For example, when 15 mass% of quicklime is blended, the slaked lime corresponding to 15 mass% of quicklime is 20% by mass of 1.32 (74/56).
Steelmaking slag may be used instead of quick lime or slaked lime. In this embodiment, steelmaking slag is slag produced | generated in each process of degassing, desulfurization, and decarburization of steelmaking. Among these, desulfurization slag is particularly preferable because it has a high content of FeO and CaO, and by wet crushing it, it is possible to obtain a slurry in which the crushed ore component and quicklime component are mixed.

(高速撹拌混練機)
副造粒工程の混合・造粒で使用される高速撹拌混練機としては、アイリッヒミキサー型、レディゲミキサー型、ダウミキサー等を用いることができる。
レディゲミキサーは、円筒内に設けられた1軸シャフトに鋤状ショベルを有し、かつ円筒内面に複数のチョッパーを有する構造であり、回転する鋤状ショベルと、複数のチョッパーによって原料を混練するように構成されたものである。ダウミキサーは、混練用翼を有するシャフトを2本備え、これらのシャフトの回転速度を不等速にすることで、原料を混練するように構成されたものである。
(High-speed stirring kneader)
As a high-speed stirring kneader used in the mixing / granulation in the sub-granulation process, an Eirich mixer type, a Redige mixer type, a Dow mixer, or the like can be used.
The Redige mixer has a structure in which a uniaxial shaft provided in a cylinder has a bowl-shaped shovel and a plurality of choppers on the inner surface of the cylinder, and the raw material is kneaded by the rotating bowl-shaped shovel and the plurality of choppers. It is comprised as follows. The Dow mixer includes two shafts having kneading blades, and is configured to knead the raw materials by making the rotational speeds of these shafts unequal.

図1の造粒処理において、副造粒工程の破砕鉱石の使用割合が、焼結鉱生産性と燒結鉱強度に及ぼす影響を焼結鍋試験で調査した。
(原料配合)
表3に、主造粒工程と副造粒工程の原料配合を示す。また、表4には副造粒工程のみの内訳を示す。主造粒工程の原料配合をほぼ一定とし、副造粒工程の生石灰を1.8質量%、2.7質量%、3.5質量%とし、それぞれのレベルで、破砕鉱石を0質量%、3.0質量%、5.0質量%、7.0質量%に変更する試験を行った。
In the granulation process of FIG. 1, the influence of the use ratio of the crushed ore in the auxiliary granulation step on the sinter productivity and the sintered ore strength was investigated by a sintering pot test.
(Raw material combination)
Table 3 shows the raw material composition of the main granulation step and the sub-granulation step. Table 4 shows a breakdown of only the auxiliary granulation process. The raw material composition of the main granulation step is almost constant, the quick lime of the secondary granulation step is 1.8 mass%, 2.7 mass%, 3.5 mass%, and at each level, the crushed ore is 0 mass%, A test was performed to change the mass to 3.0 mass%, 5.0 mass%, and 7.0 mass%.

Figure 2016191122
Figure 2016191122

Figure 2016191122
Figure 2016191122

主造粒工程は、主焼結原料、返鉱および粉コークスを、600mm長、500mm径のドラム型ミキサーに投入し、2分間転動して各原料を混合した後、水分量が7.0%になるように、ミキサー内に所定量の水を注水しながら25rpmで3分45秒間転動し、造粒を行った。
副造粒工程は、副焼結原料を容量10リットルの高速攪拌ミキサーに投入し、水を添加して1分間混合攪拌した後に、580mm径のパンペレタイザーに投入し、傾斜角49度、回転数31rpmの条件で1wet−kgで原料を投入していき、排出された造粒物を順次回収した。
主造粒工程と副造粒工程のそれぞれで製造した造粒物を、15秒間軽混合し、合わせた造粒物とした。
In the main granulation step, the main sintered raw material, return mineral and coke breeze are put into a 600 mm long, 500 mm diameter drum mixer, rolled for 2 minutes, and mixed with each raw material. The mixture was rolled for 3 minutes and 45 seconds at 25 rpm while pouring a predetermined amount of water into the mixer to perform granulation.
In the auxiliary granulation step, the auxiliary sintered raw material is put into a high-speed stirring mixer with a capacity of 10 liters, water is added and mixed and stirred for 1 minute, and then put into a 580 mm diameter pan pelletizer with an inclination angle of 49 degrees and a rotational speed. The raw material was charged at 1 wet-kg under the condition of 31 rpm, and the discharged granulated material was sequentially collected.
The granulated product produced in each of the main granulation step and the sub-granulation step was lightly mixed for 15 seconds to obtain a combined granulated product.

(焼結鍋試験)
前記造粒工程で製造した合わせた造粒物を直径300mm、高さ500mmの円筒容器に焼結原料を装入して、原料充填層を形成した。次に円筒容器下部から負圧9.8kPa(1000mmHO)で下方吸引を開始し、計測された風量から充填層の焼成前の冷間通気性をJPU(Japan Permeability Unit)で求めた。そして、負圧9.8kPaでの下方吸引を継続しながらバーナーで原料層の表面を1分間点火することにより焼成を行った。
なお、円筒容器には一定の層高毎に熱電対を挿入し、その温度変化測定値から、燃焼前線降下速度(FFS:Flame Front Speed)を算出した。また、風箱にも熱電対を配置し、排ガス温度が最大値を示した時間の3分後を焼成終了時間とした。
焼成終了後に得られた焼結ケーキは、高さ2mから4回落下させた後、直径5mmの角型の篩で分級し、その篩上を成品焼結鉱として、+5mmの成品歩留を評価した。また、焼成終了時間と成品歩留から、生産率を算出した。更に、成品歩留評価後の成品焼結鉱について回転強度(TI)を測定した。
(Sintering pot test)
The combined granulated product produced in the granulation step was charged into a cylindrical container having a diameter of 300 mm and a height of 500 mm to form a raw material packed layer. Next, downward suction was started from the lower part of the cylindrical container at a negative pressure of 9.8 kPa (1000 mmH 2 O), and the cold air permeability before firing of the packed bed was determined by JPU (Japan Permeability Unit) from the measured air volume. Then, firing was performed by igniting the surface of the raw material layer with a burner for 1 minute while continuing the downward suction at a negative pressure of 9.8 kPa.
In addition, the thermocouple was inserted into the cylindrical container for every fixed layer height, and the combustion front descending speed (FFS: Flame Front Speed) was calculated from the temperature change measurement value. Further, a thermocouple was also arranged in the wind box, and the firing end time was defined as 3 minutes after the time when the exhaust gas temperature showed the maximum value.
The sintered cake obtained after the completion of firing was dropped 4 times from 2m in height, and then classified with a square-shaped sieve having a diameter of 5mm, and the product yield of + 5mm was evaluated using the sieve as a product sintered ore. did. The production rate was calculated from the firing end time and the product yield. Furthermore, rotational strength (TI) was measured for the product sintered ore after product yield evaluation.

(焼結試験結果)
試験結果を図5〜図10に示す。
図5で、副造粒工程のいずれの生石灰の使用割合においても、破砕鉱石の使用割合の増加に従い、擬似粒子径(mm)は増大する傾向にある。これは、微粒子である破砕鉱石の増加により、核粒子を取り巻く微粒子層の増加によると考えられる。
図6で、副造粒工程のいずれの生石灰の使用割合においても、破砕鉱石の使用割合の増加に従い、原料層冷間通気性(JPU)は増加する傾向である。これは、擬似粒子径(mm)の増大によると考えられる。
図7で、副造粒工程のいずれの生石灰の使用割合においても、破砕鉱石の使用割合の増加に従い、燃焼前線降下速度(FFS(mm/min))は、増加する傾向である。 これは、擬似粒子径(mm)の増大による原料層冷間通気性(JPU)の増加によると考えられる。
(Sintering test results)
The test results are shown in FIGS.
In FIG. 5, the pseudo particle diameter (mm) tends to increase as the use ratio of crushed ore increases in any use ratio of quick lime in the secondary granulation step. This is thought to be due to an increase in the fine particle layer surrounding the core particle due to an increase in the crushed ore which is a fine particle.
In FIG. 6, the raw layer cold air permeability (JPU) tends to increase as the usage rate of crushed ore increases in any usage rate of quick lime in the auxiliary granulation step. This is thought to be due to an increase in the pseudo particle size (mm).
In FIG. 7, the combustion front descent rate (FFS (mm / min)) tends to increase with an increase in the usage rate of crushed ore in any usage rate of quick lime in the secondary granulation step. This is considered to be due to an increase in raw material layer cold air permeability (JPU) due to an increase in the pseudo particle diameter (mm).

図8で、副造粒工程のいずれの生石灰の使用割合においても、破砕鉱石の使用割合の増加に従い、焼結強度(TI(%))は増大する傾向にあるが、破砕鉱石の使用割合が7質量%になると、焼結強度(TI(%))は低下する。これは、擬似粒子径(mm)が粗大化し(図5)、原料層冷間通気性(JPU)は増加し(図6)、燃焼前線降下速度(FFS(mm/min))は増加するが、粒子が過剰に粗大化したため焼成時に十分に溶融同化が進行せず、焼成後に崩壊し易く、強度が低下したと考えられる。
図9で、副造粒工程のいずれの生石灰の使用割合においても、破砕鉱石の使用割合が7質量%になると、焼結成品歩留(+5mm%)は低下する。これは、破砕鉱石の使用割合が7質量%になると、焼結強度(TI(%))が低下するからと考えられる(図8)。
図10で、いずれの生石灰の使用割合においても、破砕鉱石の使用割合が5質量%までは、焼結生産率(t/d/m)は増加するが、破砕鉱石の使用割合が7質量%になると、焼結生産率(t/d/m)は低下する、これは、破砕鉱石の使用割合が7質量%になると焼結鉱強度が低下し(図8)、焼結歩留が低下(図9)することによると考えられる。
In FIG. 8, the sintering strength (TI (%)) tends to increase with an increase in the usage rate of crushed ore in any usage rate of quick lime in the sub-granulation process. When it becomes 7 mass%, sintering strength (TI (%)) will fall. This is because the pseudo particle diameter (mm) becomes coarse (FIG. 5), the raw material layer cold air permeability (JPU) increases (FIG. 6), and the combustion front descending speed (FFS (mm / min)) increases. It is considered that since the particles were excessively coarsened, melt assimilation did not proceed sufficiently at the time of firing, were easily disintegrated after firing, and the strength was lowered.
In FIG. 9, the sintered product yield (+5 mm%) decreases when the use ratio of crushed ore reaches 7 mass% in any use ratio of quick lime in the auxiliary granulation step. This is presumably because the sintering strength (TI (%)) decreases when the use ratio of the crushed ore is 7 mass% (FIG. 8).
In FIG. 10, the sintering production rate (t / d / m 2 ) increases up to 5% by mass of the crushed ore up to 5% by mass, but the usage rate of the crushed ore is up to 7% by mass. %, The sinter production rate (t / d / m 2 ) decreases. This is because the sinter strength decreases when the use ratio of crushed ore reaches 7% by mass (FIG. 8), and the sintering yield increases. This is considered to be due to the decrease (FIG. 9).

以上より、副造粒工程に用いられる微粉鉱石と粉鉱石の比が1.5/1以上3/1未満であり、副造粒工程の破砕鉱石の使用割合が3質量%以上7質量%未満であれば、焼結生産率(t/d/m)が高く、焼結強度(TI(%))も高い焼結鉱を製造することができる。
この場合、副造粒工程に生石灰を用いることが好ましいが、1.8質量%以上3.5質量%以下が特に好ましい。
From the above, the ratio of fine ore and fine ore used in the secondary granulation process is 1.5 / 1 or more and less than 3/1, and the use ratio of the crushed ore in the secondary granulation process is 3% by mass or more and less than 7% by mass. If so, a sintered ore having a high sintering production rate (t / d / m 2 ) and a high sintering strength (TI (%)) can be produced.
In this case, it is preferable to use quick lime in the auxiliary granulation step, but 1.8% by mass to 3.5% by mass is particularly preferable.

微粉鉱石を多量に配合する場合に、粒子強度の高い擬似粒子を形成し、燒結鉱生産性と燒結鉱強度の向上を可能とする焼結鉱の製造方法に利用することができる。   When a large amount of fine ore is blended, pseudo-particles with high particle strength can be formed, which can be used in a method for producing sintered ore that can improve sintered ore productivity and sintered ore strength.

Claims (5)

焼結原料を、主焼結原料と副焼結原料とに分け、それぞれを混合・造粒する、主造粒工程と、副造粒工程とを並列で有し、
前記主造粒工程と前記副造粒工程で製造したそれぞれの造粒物を合わせ、前記合わせた造粒物を焼成する焼結鉱の製造方法であって、
前記副造粒工程は、
前記副焼結原料の一部である微粉鉱石と粉鉱石の比が1.5/1以上3/1未満であり、バインダーが、生石灰と破砕鉱石であって、前記破砕鉱石は、前記副焼結原料に対し3質量%以上7質量%未満であることを特徴とする焼結鉱の製造方法。
The sintering raw material is divided into a main sintering raw material and a sub-sintering raw material, each of which is mixed and granulated, having a main granulation step and a sub-granulation step in parallel.
A method for producing a sintered ore comprising combining each granulated product produced in the main granulation step and the sub-granulation step, and firing the combined granulated product,
The sub-granulation step includes
The ratio of fine ore and fine ore which is a part of the auxiliary sintered raw material is 1.5 / 1 or more and less than 3/1, the binder is quick lime and crushed ore, and the crushed ore is The manufacturing method of the sintered ore characterized by being 3 mass% or more and less than 7 mass% with respect to a sintering raw material.
請求項1に記載の焼結鉱の製造方法において、
前記副造粒工程に用いられる前記生石灰が1.7質量%以上3.5質量%以下であることを特徴とする焼結鉱の製造方法。
In the manufacturing method of the sintered ore of Claim 1,
The said quicklime used for the said auxiliary granulation process is 1.7 mass% or more and 3.5 mass% or less, The manufacturing method of the sintered ore characterized by the above-mentioned.
請求項1又は請求項2に記載の焼結鉱の製造方法において、
前記破砕鉱石は、4質量%以上の結晶水を含有する鉱石を湿式破砕したものであり、粒度は、10μm以下の割合が60質量%以上であることを特徴とする焼結鉱の製造方法。
In the manufacturing method of the sintered ore of Claim 1 or Claim 2,
The method for producing sintered ore, wherein the crushed ore is obtained by wet crushing ore containing 4% by mass or more of crystal water, and the particle size is 60% by mass or more at a ratio of 10 μm or less.
請求項1乃至請求項3のいずれかに記載の焼結鉱の製造方法において、
前記破砕鉱石は、回転駆動する鉛直中心軸にスクリュー翼を備えた円筒容器からなる粉砕部と、重力および遠心力の作用により分級する分級部と、分級部で分級したアンダーフローを粉砕部の円筒容器に循環させる循環部と、を有する竪型粉砕機を用いて破砕された湿式破砕鉱石であることを特徴とする焼結鉱の製造方法。
In the manufacturing method of the sintered ore in any one of Claims 1 thru | or 3,
The crushed ore includes a pulverizing unit composed of a cylindrical container having screw blades on a rotationally driven vertical central axis, a classification unit classified by the action of gravity and centrifugal force, and an underflow classified by the classification unit in a cylinder of the pulverizing unit A method for producing a sintered ore, which is a wet crushed ore crushed by using a vertical crusher having a circulation part circulated in a container.
請求項1乃至請求項3のいずれかに記載の焼結鉱の製造方法において、
前記微粉鉱石は、鉄鉱石の選鉱処理工程で発生する選鉱処理微粉鉱石であることを特徴とする焼結鉱の製造方法。
In the manufacturing method of the sintered ore in any one of Claims 1 thru | or 3,
The method for producing a sintered ore, wherein the fine ore is a beneficiation treated fine ore generated in a beneficiation process of iron ore.
JP2015072232A 2015-03-31 2015-03-31 Method of producing sintered ore Active JP6519005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072232A JP6519005B2 (en) 2015-03-31 2015-03-31 Method of producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072232A JP6519005B2 (en) 2015-03-31 2015-03-31 Method of producing sintered ore

Publications (2)

Publication Number Publication Date
JP2016191122A true JP2016191122A (en) 2016-11-10
JP6519005B2 JP6519005B2 (en) 2019-05-29

Family

ID=57246348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072232A Active JP6519005B2 (en) 2015-03-31 2015-03-31 Method of producing sintered ore

Country Status (1)

Country Link
JP (1) JP6519005B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097387A1 (en) * 2016-11-28 2018-05-31 주식회사 포스코 Granulated product manufacturing apparatus, sintered ore manufacturing apparatus comprising same, and sintered ore manufacturing method
KR101908482B1 (en) 2016-11-28 2018-12-10 주식회사 포스코 Method of sintered ore
CN114480839A (en) * 2021-12-24 2022-05-13 武汉悟拓科技有限公司 Sintering mixture magnetized water granulation process based on electrostatic dispersion of powder fuel
WO2022259656A1 (en) * 2021-06-11 2022-12-15 Jfeスチール株式会社 Ore crushing method and pellet production method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350770A (en) * 2004-05-13 2005-12-22 Nippon Steel Corp Method for pretreating raw material for sintering
JP2007138245A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Pretreatment for sintering raw material and method for producing sintered ore
JP2007162127A (en) * 2005-11-17 2007-06-28 Nippon Steel Corp Method for pretreating raw material for sintering, and method for manufacturing sintered ore
JP2013032568A (en) * 2011-08-02 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method of manufacturing sintered ore using fine powder raw material
WO2013054471A1 (en) * 2011-10-11 2013-04-18 新日鐵住金株式会社 Method for granulation of sintering raw material
JP2013253281A (en) * 2012-06-06 2013-12-19 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore
JP2014012864A (en) * 2012-07-03 2014-01-23 Nippon Steel & Sumitomo Metal Method for treating raw material prior to sintering
KR101366167B1 (en) * 2013-01-21 2014-02-25 주식회사 제철세라믹 Sintering binder and production method of sintered one pellet using the binder and fine powdered magnetite iron one
JP2014051694A (en) * 2012-09-05 2014-03-20 Nippon Steel & Sumitomo Metal Method of adding condensation material into sintering raw material
JP2014129571A (en) * 2012-12-28 2014-07-10 Nippon Steel & Sumitomo Metal Pretreatment method of to-be-sintered raw ingredient

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350770A (en) * 2004-05-13 2005-12-22 Nippon Steel Corp Method for pretreating raw material for sintering
JP2007138245A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Pretreatment for sintering raw material and method for producing sintered ore
JP2007162127A (en) * 2005-11-17 2007-06-28 Nippon Steel Corp Method for pretreating raw material for sintering, and method for manufacturing sintered ore
JP2013032568A (en) * 2011-08-02 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method of manufacturing sintered ore using fine powder raw material
WO2013054471A1 (en) * 2011-10-11 2013-04-18 新日鐵住金株式会社 Method for granulation of sintering raw material
JP2013253281A (en) * 2012-06-06 2013-12-19 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore
JP2014012864A (en) * 2012-07-03 2014-01-23 Nippon Steel & Sumitomo Metal Method for treating raw material prior to sintering
JP2014051694A (en) * 2012-09-05 2014-03-20 Nippon Steel & Sumitomo Metal Method of adding condensation material into sintering raw material
JP2014129571A (en) * 2012-12-28 2014-07-10 Nippon Steel & Sumitomo Metal Pretreatment method of to-be-sintered raw ingredient
KR101366167B1 (en) * 2013-01-21 2014-02-25 주식회사 제철세라믹 Sintering binder and production method of sintered one pellet using the binder and fine powdered magnetite iron one

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097387A1 (en) * 2016-11-28 2018-05-31 주식회사 포스코 Granulated product manufacturing apparatus, sintered ore manufacturing apparatus comprising same, and sintered ore manufacturing method
KR101908482B1 (en) 2016-11-28 2018-12-10 주식회사 포스코 Method of sintered ore
KR101908483B1 (en) * 2016-11-28 2018-12-19 주식회사 포스코 Manufacturing apparatus for lump, manufacturing apparatus for sintered ore using the same and method thereof
WO2022259656A1 (en) * 2021-06-11 2022-12-15 Jfeスチール株式会社 Ore crushing method and pellet production method
JP7364128B2 (en) 2021-06-11 2023-10-18 Jfeスチール株式会社 Method for crushing ore and manufacturing method for pellets
CN114480839A (en) * 2021-12-24 2022-05-13 武汉悟拓科技有限公司 Sintering mixture magnetized water granulation process based on electrostatic dispersion of powder fuel

Also Published As

Publication number Publication date
JP6519005B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5644955B2 (en) Granulation method of sintering raw material
RU2612477C2 (en) Metallic iron producton method
JP5569658B2 (en) Method for producing granulated raw material for sintering, apparatus for producing the same, and method for producing sintered ore for blast furnace
JP2011084734A (en) Method for producing ferro coke
JP6519005B2 (en) Method of producing sintered ore
JP6330536B2 (en) Pretreatment method of sintering raw materials
JP6369113B2 (en) Method for producing sintered ore
JP2015054980A (en) Method of producing granulation raw material for sintering
JP5910831B2 (en) Method for producing granulated raw material for sintering
JP6337737B2 (en) Method for producing sintered ore
JP6468367B2 (en) Method for producing sintered ore
JP2014201763A (en) Method for producing granulation raw material for sintering
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP7024647B2 (en) Granulation method of raw material for sintering
JP7024649B2 (en) Granulation method of raw material for sintering
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP7024648B2 (en) Granulation method of raw material for sintering
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP5983949B2 (en) Method for producing granulated raw material for sintering
JP2022129839A (en) Method of producing sintered ore
JP5831397B2 (en) Method for producing sintered ore
JP2015078400A (en) Method of producing sintered ore
JP6102826B2 (en) Sinter ore granulation equipment
JP2020094248A (en) Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6519005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151