JP7227053B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP7227053B2
JP7227053B2 JP2019065260A JP2019065260A JP7227053B2 JP 7227053 B2 JP7227053 B2 JP 7227053B2 JP 2019065260 A JP2019065260 A JP 2019065260A JP 2019065260 A JP2019065260 A JP 2019065260A JP 7227053 B2 JP7227053 B2 JP 7227053B2
Authority
JP
Japan
Prior art keywords
iron ore
ore
sintering
sintered ore
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019065260A
Other languages
Japanese (ja)
Other versions
JP2020164910A (en
Inventor
頌平 藤原
隆英 樋口
一洋 岩瀬
健太 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019065260A priority Critical patent/JP7227053B2/en
Publication of JP2020164910A publication Critical patent/JP2020164910A/en
Application granted granted Critical
Publication of JP7227053B2 publication Critical patent/JP7227053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、下方吸引式の焼結機を用いて焼結される焼結鉱の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing sintered ore that is sintered using a downward suction sintering machine.

高炉製銑法の主原料である焼結鉱は、一般に、図1に示すような、下方吸引式のドワイトロイド焼結機を有する製造工程で製造される。焼結鉱の原料は、粉鉄鉱石(一般に、8mm以下のシンターフィードと呼ばれているもの)や焼結鉱篩下粉、製鉄所内で発生した回収粉、石灰石およびドロマイトなどの含CaO系副原料、生石灰等の造粒助剤、コークス粉や無煙炭などの炭材(凝結材)である。これらの原料は、複数のホッパー1の各々から、コンベヤ上に所定の割合で切り出される。切り出された原料は、ドラムミキサー2、3によって適量の水が加えられ、混合、造粒されて、平均径が3~6mmの擬似粒子である焼結原料にされる。 Sintered ore, which is the main raw material for blast furnace ironmaking, is generally produced in a production process having a downward suction Dwight Lloyd sintering machine as shown in FIG. Raw materials for sintered ore include fine iron ore (generally referred to as sinter feed of 8 mm or less), sintered ore under-sieve powder, recovered powder generated in steel mills, and CaO-containing secondary substances such as limestone and dolomite. They are raw materials, granulation aids such as quicklime, and carbon materials (coagulants) such as coke powder and anthracite. These raw materials are cut from each of a plurality of hoppers 1 onto a conveyor at a predetermined rate. Appropriate amounts of water are added to the cut raw materials by drum mixers 2 and 3, mixed and granulated into sintered raw materials, which are pseudo-particles having an average diameter of 3 to 6 mm.

この焼結原料は、その後、焼結機の原料給鉱部に配設されているサージホッパー5からドラムフィーダー6と切り出しシュート7を介して循環移動するパレット9に装入され、カットゲート8によって400~800mmの厚さの焼結ベッドともいわれる装入層10が形成される。その後、原料給鉱部の下流側に配設された点火炉11によって、装入層10の上表面の炭材が点火されるとともに、パレット9の下方に配設されたウインドボックス12を介して装入層10の上方のガスを下方に吸引することにより、装入層10内の炭材を順次燃焼させ、このときに発生する燃焼熱で焼結原料を溶融させて焼結ケーキを得る。このようにして得た焼結ケーキは、その後、排鉱部で破砕、冷却、整粒されて、約5mm以上の塊成物が成品焼結鉱として回収され高炉に供給される。 The raw material for sintering is then charged from a surge hopper 5 disposed in the raw material feeding section of the sintering machine to a pallet 9 that circulates via a drum feeder 6 and a cutting chute 7, and is fed by a cut gate 8. A charge layer 10, also referred to as a sinter bed, with a thickness of 400-800 mm is formed. After that, the carbonaceous material on the upper surface of the charge layer 10 is ignited by the ignition furnace 11 arranged downstream of the raw material feeding section, and the By sucking the gas above the charge layer 10 downward, the carbonaceous material in the charge layer 10 is sequentially burned, and the sintering raw material is melted by the combustion heat generated at this time to obtain a sintered cake. The sintered cake thus obtained is then crushed, cooled, and granulated in the ore discharge section, and agglomerates having a size of about 5 mm or more are recovered as product sintered ore and supplied to the blast furnace.

上記製造工程において、点火炉11によって点火された装入層10内の炭材は、その後、装入層10内を上層から下層に向かって吸引されるガスによって燃焼を続け、パレット9が下流側に移動するのに伴って次第に装入層10の上層から下層に移行し、厚さ方向に幅をもった燃焼・溶融帯(以降、単に「燃焼帯」ともいう。)を形成する。図2は、点火炉で点火された装入層10の表層の炭材が、吸引されるガスによって燃焼を続けて燃焼帯を形成し、これが装入層10の上層から下層に順次移動し、燃焼帯が通過した後には、焼結反応が完了した焼結層(焼結ケーキ)が形成されていく過程を模式的に示した図である。 In the above manufacturing process, the carbonaceous material in the charged layer 10 ignited by the ignition furnace 11 continues to burn with the gas sucked from the upper layer to the lower layer in the charged layer 10, and the pallet 9 is downstream. , the charge layer 10 gradually shifts from the upper layer to the lower layer, forming a combustion/melting zone (hereinafter also simply referred to as "combustion zone") having a width in the thickness direction. In FIG. 2, the carbonaceous material on the surface of the charge layer 10 ignited in the ignition furnace continues to burn with the sucked gas to form a combustion zone, which sequentially moves from the upper layer to the lower layer of the charge layer 10, After passing through the combustion zone, it is a diagram schematically showing the process of forming a sintered layer (sintered cake) in which the sintering reaction is completed.

上記燃焼帯の溶融部分は、吸引されるガスの流れを阻害するため、焼結時間が延長して生産性が低下する要因となる。また、燃焼帯が上層から下層に移行するのにともない、焼結原料中に含まれる水分は、炭材の燃焼熱で気化して、まだ温度が上昇していない下層の焼結原料中に濃縮し、湿潤帯を形成する。この水分濃度がある程度以上になると、吸引ガスの流路となる焼結原料の粒子間の空隙が水分で埋まり、燃焼帯と同様、通気抵抗を増大させる要因となる。図3は、厚さが600mmの装入層10の中を移動する燃焼帯が、装入層10内のパレット上約400mmの位置(装入層10の表面から200mm下)にあるときの、装入層10内の圧力損失(以下、圧損と記載する)と温度の分布を示したものであり、このときの圧損の分布は、湿潤帯におけるものが約30%、燃焼帯におけるものが約40%であることを示している。 The melted portion of the combustion zone obstructs the flow of the sucked gas, which causes the sintering time to be extended and the productivity to be lowered. In addition, as the combustion zone moves from the upper layer to the lower layer, the moisture contained in the sintering raw material is vaporized by the combustion heat of the carbonaceous material and concentrated in the sintering raw material in the lower layer, where the temperature has not yet risen. and form a wet zone. When the moisture concentration exceeds a certain level, the voids between the particles of the sintering raw material, which are the passages of the suction gas, are filled with moisture, which causes an increase in air flow resistance, as in the case of the combustion zone. FIG. 3 shows the combustion zone moving in the charging layer 10 with a thickness of 600 mm at a position of about 400 mm above the pallet in the charging layer 10 (200 mm below the surface of the charging layer 10). It shows the distribution of pressure loss (hereinafter referred to as pressure loss) and temperature in the charging layer 10. The pressure loss distribution at this time is about 30% in the wet zone and about 30% in the combustion zone. 40%.

焼結機の生産量(t/h)は、一般に、生産率(t/(h×m))×焼結機面積(m)により決定される。即ち、焼結機の生産量は、焼結機の仕様(機幅、機長)、装入層10の厚さ、焼結原料の嵩密度、焼結(燃焼)時間、成品焼結鉱の歩留などにより決定される。したがって、焼結鉱の生産量を増加させるには、装入層10の厚さを増す、装入層10の通気性(圧損)を改善して焼結時間を短縮する、成品焼結鉱の強度を高めて歩留を向上することが有効であると考えられる。 The production volume (t/h) of the sintering machine is generally determined by the production rate (t/(h×m 2 ))×sintering machine area (m 2 ). That is, the production volume of the sintering machine depends on the specifications of the sintering machine (machine width, machine length), the thickness of the charging layer 10, the bulk density of the sintering raw material, the sintering (combustion) time, and the rate of product sintered ore. Determined by station, etc. Therefore, in order to increase the production of sintered ore, the thickness of the charging layer 10 is increased, the permeability (pressure loss) of the charging layer 10 is improved to shorten the sintering time, and the product sintered ore is produced. It is considered effective to increase the strength and improve the yield.

ところで、焼結用粉鉄鉱石は、近年、高品質鉄鉱石の枯渇によって低品位化している。高品質鉄鉱石の低品位化は、スラグ成分の増加や鉄鉱石のさらなる微粉化を招き、アルミナ(Al)含有量の増大や微粉比率の増大によって造粒性が低下する傾向となっている。その一方で、高炉では溶銑製造コストの低減やCO発生量の低減という観点から低スラグ比が求められており、それに伴い焼結鉱としては、高被還元性かつ高強度のものが求められている。 By the way, fine iron ore for sintering has been degraded in recent years due to depletion of high-quality iron ore. A decrease in the grade of high-quality iron ore leads to an increase in the slag component and a further reduction in the iron ore, and an increase in the alumina (Al 2 O 3 ) content and an increase in the fine powder ratio tend to reduce the granulability. ing. On the other hand, in blast furnaces, a low slag ratio is required from the viewpoint of reducing the production cost of hot metal and reducing the amount of CO2 generated. ing.

このような焼結用粉鉄鉱石を取り巻く環境の中で、スラグ成分の少ない難造粒性の微粉鉄鉱石(粒径150μm以下)を主体とするペレットフィードを使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS法」と記載する)がある。この技術は、ペレットフィードのような微粉を多量に含む鉄鉱石や造粒助剤、凝結材等をドラムミキサーとペレタイザーを使って造粒することで、低スラグ成分で高被還元性の焼結鉱を製造する技術が特許文献1~5に開示されている。 In such an environment surrounding fine iron ore for sintering, high-quality sintered ore is produced using a pellet feed mainly composed of fine iron ore (particle size of 150 μm or less) that is difficult to granulate and has a low slag content. Techniques have been proposed for the production of For example, one of such conventional techniques is the Hybrid Pelletized Sinter method (hereinafter referred to as "HPS method"). This technology uses a drum mixer and a pelletizer to granulate iron ore, which contains a large amount of fine powder, such as pellet feed, granulation aids, and coagulants. Techniques for producing ore are disclosed in Patent Documents 1 to 5.

また、特許文献6には、多段点火焼結法で焼結鉱を製造する方法であって、点火炉の下流側で装入層内に酸素を富化した空気を導入する方法が開示されている。 In addition, Patent Document 6 discloses a method for producing sintered ore by a multi-stage ignition sintering method, in which oxygen-enriched air is introduced into a charge layer downstream of an ignition furnace. there is

特公平2-4658号公報Japanese Patent Publication No. 2-4658 特公平6-21297号公報Japanese Patent Publication No. 6-21297 特公平6-21298号公報Japanese Patent Publication No. 6-21298 特公平6-21299号公報Japanese Patent Publication No. 6-21299 特公平6-60358号公報Japanese Patent Publication No. 6-60358 特開2015-157980号公報JP 2015-157980 A

しかしながら、特許文献1~5に記載されているようなHPS法を用いてペレットフィードを造粒する方法では、造粒中に0.5mm未満の細粒のみならず、10mm超の粗大な粒子も多く生成される。細粒になるほど比表面積は大きくなるので、微粉であるペレットフィードは水分を優先的に吸収し、微粉が単に凝集しただけにすぎない擬似粒子や、核粒子のまわりに微粉が付着した形態の粒径の不揃いな粗大な擬似粒子になる。 However, in the method of granulating a pellet feed using the HPS method as described in Patent Documents 1 to 5, not only fine particles of less than 0.5 mm but also coarse particles of more than 10 mm are produced during granulation. generated a lot. Since the finer the grain, the larger the specific surface area, the pellet feed, which is a fine powder, preferentially absorbs moisture, resulting in quasi-particles in which fine powder is simply agglomerated, and grains in the form of fine powder attached around a core particle. They become coarse pseudo-particles with irregular diameters.

このようにペレットフィード等の粒径が150μm以下である微粉鉄鉱石を多く含む配合原料は、これを造粒すると、粒径が不揃いになると共に、微粉が単に凝集したにすぎない粗大な擬似粒子が生成される。このような粗大な擬似粒子は結合強度が弱いので、焼結機のパレット上に一定の層厚で堆積させると、荷重(圧縮力)が加わったときに崩壊し、当該擬似粒子が粉化して装入層の空隙率の低下を招く。これにより、装入層の通気性は悪化し、焼結原料の燃焼が阻害される。この結果、焼結鉱の焼結時間が長くなり、焼結鉱の生産性が低下する。また、焼結時間を同じとした場合には、焼結が不十分となり、焼結鉱の歩留低下を招き、この場合においても焼結鉱の生産性が低下する。 As described above, when a compounded raw material such as a pellet feed containing a large amount of fine iron ore having a particle size of 150 μm or less is granulated, the particle size becomes irregular and coarse pseudo-particles in which the fine powder is simply agglomerated are formed. is generated. Since such coarse quasi-particles have weak bonding strength, if they are deposited on a pallet of a sintering machine with a certain layer thickness, they will collapse when a load (compressive force) is applied, and the quasi-particles will be pulverized. This leads to a decrease in the porosity of the loading layer. As a result, the permeability of the charging layer is deteriorated, and the combustion of the sintering raw material is inhibited. As a result, the sintering time of the sintered ore becomes long, and the productivity of the sintered ore decreases. Further, if the sintering time is the same, the sintering will be insufficient, leading to a decrease in the yield of the sintered ore, and in this case also the productivity of the sintered ore will decrease.

また、特許文献6に記載されているような多段点火焼結法においても、ペレットフィード等の粒径が150μm以下である微粉鉄鉱石を用いると、造粒中に微粉が単に凝集しただけにすぎない粗大な擬似粒子が生成されるので焼結鉱の生産性は低下する。 In addition, even in the multi-stage ignition sintering method as described in Patent Document 6, when fine iron ore having a particle size of 150 μm or less is used in pellet feed or the like, the fine powder simply aggregates during granulation. The productivity of the sintered ore is lowered because coarse pseudo-particles are generated.

本発明は、上記課題を鑑みてなされたものであり、その目的は、粒径が150μm以下である微粉鉄鉱石を焼結原料として使用する場合において、擬似粒子の崩壊を抑制して、焼結鉱の生産性の低下を抑制できる焼結鉱の製造方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to suppress the collapse of pseudo-particles and sinter when fine iron ore having a particle size of 150 μm or less is used as a sintering raw material. An object of the present invention is to provide a method for producing sintered ore capable of suppressing a decrease in ore productivity.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)焼結機の原料給鉱部で循環移動するパレット上に鉄鉱石と炭材とを含む焼結原料を装入して装入層を形成した後、前記原料給鉱部の下流側に配設した点火炉で前記装入層の上表面の炭材に点火し、パレット下方に配設したウインドボックスで前記装入層の上方のガスを吸引し、前記ガスを前記装入層に導入して前記装入層の炭材を燃焼させることにより焼結鉱を製造する焼結鉱の製造方法であって、前記鉄鉱石は、粒径が150μm以下である微粉鉄鉱石を含み、前記微粉鉄鉱石の一部または全部を成型物として前記焼結原料に混合する、焼結鉱の製造方法。
(2)前記鉄鉱石は、5質量%以上50質量%以下の微粉鉄鉱石を含み、前記微粉鉄鉱石の50質量%以上を成型物とする、(1)に記載の焼結鉱の製造方法。
The features of the present invention for solving such problems are as follows.
(1) After forming a charging layer by charging sintering raw materials containing iron ore and carbonaceous material onto pallets that circulate in the raw material feeding section of the sintering machine, downstream of the raw material feeding section The charcoal material on the upper surface of the charging layer is ignited by the ignition furnace provided in the pallet, the gas above the charging layer is sucked by the wind box provided below the pallet, and the gas is passed to the charging layer. A method for producing sintered ore by introducing and burning the carbonaceous material in the charging layer to produce sintered ore, wherein the iron ore contains fine iron ore having a particle size of 150 μm or less, and the A method for producing sintered ore, comprising mixing part or all of fine iron ore as a molding with the sintering raw material.
(2) The method for producing sintered ore according to (1), wherein the iron ore contains 5% by mass or more and 50% by mass or less of fine iron ore, and 50% by mass or more of the fine iron ore is used as a molded product. .

本発明の焼結鉱の製造方法を実施することにより、微粉鉄鉱石の一部または全部は成型物とされるので、微粉鉄鉱石が凝集した粗大な擬似粒子の生成が抑制され、焼結鉱の生産性の低下が抑制される。また、本発明の焼結鉱の製造方法は、従来の焼結機を用いることができるので、簡便な設備を用いながら、粒径が150μm以下である微粉鉄鉱石を含む鉄鉱石を用いて、焼結鉱の生産性を低下させることなく焼結鉱を製造できる。 By carrying out the method for producing sintered ore of the present invention, part or all of the fine iron ore is molded, so the generation of coarse pseudo-particles in which the fine iron ore aggregates is suppressed, and the sintered ore decrease in productivity is suppressed. In addition, since the method for producing sintered ore of the present invention can use a conventional sintering machine, it is possible to A sintered ore can be manufactured without lowering the productivity of the sintered ore.

焼結鉱の製造方法を説明する図である。It is a figure explaining the manufacturing method of a sintered ore. 焼結層が形成されていく過程を模式的に示した図である。It is the figure which showed typically the process by which a sintered layer is formed. 焼結途中における原料装入層内の圧力損失と温度の分布を模式的に示した図である。FIG. 4 is a diagram schematically showing the distribution of pressure loss and temperature in the raw material charged layer during sintering. ペレットフィードの有無における擬似粒子の粒度分布の差を示すグラフである。4 is a graph showing the difference in particle size distribution of pseudo-particles with and without pellet feed. 本実施形態に係る焼結鉱の製造方法が適用できる焼結鉱の製造工程を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the manufacturing process of the sintered ore which can apply the manufacturing method of the sintered ore which concerns on this embodiment. 粒径150μm以下の微粉比率と焼結鉱の生産率との関係を示すグラフである。It is a graph which shows the relationship between the fine powder ratio of 150 micrometers or less in particle size, and the production rate of a sintered ore.

本発明は、粒径が150μm以下である微粉鉄鉱石の一部または全部を成型物とすることで、擬似粒子の粉化による装入層10の通気性の悪化を抑制して、焼結鉱の生産性の低下を抑制するものである。まず、粒径が150μm以下である微粉鉄鉱石を含む焼結原料の特性について説明する。 In the present invention, part or all of fine iron ore having a particle size of 150 μm or less is molded to suppress deterioration of the permeability of the charging layer 10 due to pulverization of pseudo-particles, and sintered ore It is intended to suppress the decline in productivity. First, the characteristics of the raw material for sintering containing iron ore fine powder having a particle size of 150 μm or less will be described.

図4は、ペレットフィードの有無における擬似粒子の粒度分布の差を示すグラフである。図4において黒プロットは、粒径が150μm以下の微粉鉄鉱石であるペレットフィードが配合されていない鉄鉱石の粒度分布を示している。また、白プロットは、黒プロットで粒度分布が示された鉄鉱石に粒径が150μm以下の微粉鉄鉱石であるペレットフィードを40質量%配合したものの粒度分布を示している。 FIG. 4 is a graph showing the difference in particle size distribution of pseudo-particles with and without pellet feed. In FIG. 4, black plots indicate the particle size distribution of iron ore not blended with pellet feed, which is fine iron ore with a particle size of 150 μm or less. The white plot shows the particle size distribution of the iron ore whose particle size distribution is indicated by the black plot and 40% by mass of pellet feed, which is fine iron ore having a particle size of 150 μm or less.

図4に示すようにペレットフィードを40質量%の比率で配合すると、黒プロットで示されていた粒度分布は、白プロットで示した粒度分布になる。すなわち、ペレットフィードを40質量%の比率で混合させることで、細粒(0.5mm未満)のみならず、粗大(10mm超)な擬似粒子も多く生成された。微粉鉄鉱石は、濡れ性が同じであれば細粒ほど比表面積が大きく水分をより吸収するので、粉体間に多くの水分を保持する。このため、微粉鉄鉱石は、微粉鉄鉱石ではない粗粒鉄鉱石に対して優先的に水分を吸収する。そして、水分を吸収するとともに微粉鉄鉱石どうしが凝集して、単に微粉鉄鉱石が凝集した粗大な擬似粒子が生成する。なお、本実施形態において、粒径および比率は、JIS Z 8801-1に準拠した目開きの篩いを用いて篩うことで原料を各粒度に分け、各粒度の質量をそれぞれ測定し、各粒度の質量と全体の質量から、各粒度の比率を算出している。例えば、「粒径150μm以下のペレットフィードを40質量%配合する」とは、JIS Z 8801-1に準拠した公称目開き150μmの篩を通過したペレットフィードを、鉄鉱石全体の質量に対する割合が40%になるように配合することをいう。 When the pellet feed is blended at a ratio of 40% by mass as shown in FIG. 4, the particle size distribution indicated by black plots becomes the particle size distribution indicated by white plots. That is, by mixing the pellet feed at a ratio of 40% by mass, not only fine particles (less than 0.5 mm), but also many coarse (more than 10 mm) pseudo-particles were produced. If the wettability of fine iron ore is the same, the finer the iron ore, the larger the specific surface area and the more water it absorbs. Therefore, fine iron ore preferentially absorbs moisture with respect to coarse-grained iron ore that is not fine iron ore. Then, as the water is absorbed, the fine iron ore aggregates together to form coarse pseudo-particles simply aggregated from the fine iron ore. In the present embodiment, the particle size and ratio are determined by sieving the raw material into each particle size by sieving using a sieve with openings in accordance with JIS Z 8801-1, measuring the mass of each particle size, and measuring each particle size. The ratio of each particle size is calculated from the mass and the total mass. For example, "blending 40% by mass of a pellet feed with a particle size of 150 μm or less" means that the pellet feed passed through a sieve with a nominal opening of 150 μm in accordance with JIS Z 8801-1 is mixed with a ratio of 40 to the mass of the entire iron ore. %.

このような微粉鉄鉱石が凝集した粗大な擬似粒子は結合強度が弱く、焼結機のパレット上に堆積されると、荷重(圧縮力)が加わったときに崩壊し、当該擬似粒子が粉化して装入層10の空隙率を低下させる。これにより、装入層10の通気性は悪化し、焼結原料の燃焼が阻害される。この結果、焼結鉱の焼結時間が長くなり、焼結鉱の生産性が低下する。 Coarse quasi-particles, which are agglomerates of such fine iron ore, have weak bonding strength, and when deposited on the pallet of a sintering machine, they collapse when a load (compressive force) is applied, and the quasi-particles are pulverized. to reduce the porosity of the loading layer 10 . As a result, the permeability of the charge layer 10 is deteriorated, and combustion of the sintering raw material is inhibited. As a result, the sintering time of the sintered ore becomes long, and the productivity of the sintered ore decreases.

そこで、本実施形態の焼結鉱の製造方法では、粒径が150μm以下である微粉鉄鉱石の一部または全部を成型物としている。これにより、擬似粒子の結合強度が向上し擬似粒子の崩壊が抑制される。この結果、擬似粒子の粉化による装入層10の通気性の悪化が抑制され、焼結鉱の生産性の低下を抑制できる。 Therefore, in the method for producing sintered ore according to the present embodiment, part or all of the iron ore fine powder having a particle size of 150 μm or less is used as a molding. This improves the bonding strength of the pseudo-particles and suppresses the disintegration of the pseudo-particles. As a result, deterioration of the permeability of the charging layer 10 due to pulverization of the pseudo-particles can be suppressed, and a decrease in productivity of the sintered ore can be suppressed.

焼結原料に配合される炭材としては、粒径3mm未満が50質量%以上である炭材を用いることが好ましい。粒径3mm未満が50質量%以上である炭材を用いることで、炭材を装入層10の上層へ偏析させるとともに燃焼性を高めることができ、装入層10の焼結反応を促進できる。 As the carbonaceous material to be blended with the raw material for sintering, it is preferable to use a carbonaceous material having a particle size of less than 3 mm in an amount of 50% by mass or more. By using a carbonaceous material containing 50% by mass or more of particles having a particle diameter of less than 3 mm, the carbonaceous material can be segregated in the upper layer of the charging layer 10 and the combustibility can be enhanced, thereby promoting the sintering reaction of the charging layer 10. .

図5は、本実施形態に係る焼結鉱の製造方法が適用できる焼結鉱の製造工程を示す模式図である。図5において、図1と同じ設備には同じ符号を付して重複説明を省略する。本実施形態に係る焼結鉱の製造方法では、複数のホッパー1から、焼結原料に含まれる粒径が150μm以下である微粉鉄鉱石の一部または全部が切り出されて成型設備4で成型される。成型された微粉鉄鉱石は、ドラムミキサー2、3等によって擬似粒子に造粒された焼結原料に混合される。その後、焼結原料は、循環移動するパレット9に装入されて焼結され、焼結鉱が製造される。ドラムミキサー2ならびに成型設備4へは、それぞれ独立して任意の配合で複数のホッパー1から各種原料を切出すことができる。また、成型設備4で微粉鉄鉱石を成型する際には、セメント、ベントナイトなどの無機バインダーおよびピッチ、PVA、α化澱粉などの有機バインダーのうち1種以上を添加して成型後の強度を向上させてもよい。また、ドラムミキサー2および成型設備4のいずれか一方、または、両方の前に混合設備を設けて撹拌混合を実施してもよい。 FIG. 5 is a schematic diagram showing a sintered ore manufacturing process to which the sintered ore manufacturing method according to the present embodiment can be applied. In FIG. 5, the same equipment as in FIG. 1 is given the same reference numerals, and redundant description is omitted. In the method for producing sintered ore according to the present embodiment, part or all of the iron ore fine powder having a particle size of 150 μm or less contained in the sintering raw material is cut out from the plurality of hoppers 1 and molded by the molding equipment 4. be. The molded fine iron ore is mixed with the sintering raw material granulated into pseudo-particles by drum mixers 2, 3 and the like. After that, the raw material for sintering is put into a circulating pallet 9 and sintered to produce a sintered ore. To the drum mixer 2 and the molding equipment 4, various raw materials can be independently discharged from a plurality of hoppers 1 in an arbitrary composition. Further, when molding the fine iron ore in the molding equipment 4, one or more of inorganic binders such as cement and bentonite and organic binders such as pitch, PVA, and alpha starch are added to improve the strength after molding. You may let Moreover, either one of the drum mixer 2 and the molding equipment 4, or a mixing equipment may be provided in front of both to perform stirring and mixing.

このように、本実施形態に係る焼結鉱の製造方法は、微粉鉄鉱石を成型する成型設備4を追加すれば既存の焼結機をそのまま用いて実施できる。このため、本実施形態に係る焼結鉱の製造方法は、簡便な設備を用いながら、粒径が150μm以下である微粉鉄鉱石を含む焼結原料から、焼結鉱の生産性の低下を抑制しながら焼結鉱を製造できる。 As described above, the method for producing sintered ore according to the present embodiment can be carried out using an existing sintering machine as it is by adding molding equipment 4 for molding fine iron ore. For this reason, the method for producing sintered ore according to the present embodiment suppresses a decrease in productivity of sintered ore from sintering raw materials containing fine iron ore having a particle size of 150 μm or less while using simple equipment. sintered ore can be produced.

上述したように、焼結原料の鉄鉱石に微粉鉄鉱石が多く含まれる場合に、微粉鉄鉱石どうしが単に凝集したにすぎない結合強度の弱い粗大な擬似粒子が生成するので、鉄鉱石中に粒径150μm以下の微粉鉄鉱石を多く含む場合に、本実施形態の焼結鉱の製造方法による焼結鉱の生産性低下の抑制効果が大きくなる。このため、本実施形態の焼結鉱の製造方法においては、焼結原料の鉄鉱石中に粒径150μm以下の微粉鉄鉱石を10質量%より多く配合することが好ましい。なお、本実施形態において、鉄鉱石とは、粒径が150μm以下である微粉鉄鉱石と、粒径が150μmより大きい粗粒鉄鉱石を有する鉄鉱石を意味する。また、微粉鉄鉱石とは、鉱石の銘柄にかかわらず、鉄鉱石であって粒径が150μm以下である粒子の全てを指す。 As described above, when the iron ore used as the raw material for sintering contains a large amount of fine iron ore, coarse pseudo-particles with weak bonding strength, which are simply agglomeration of fine iron ore, are generated. When a large amount of fine iron ore having a particle size of 150 μm or less is contained, the effect of suppressing a decrease in productivity of sintered ore by the method for producing sintered ore of the present embodiment is increased. For this reason, in the method for producing sintered ore according to the present embodiment, it is preferable to add more than 10% by mass of fine iron ore having a particle size of 150 μm or less to iron ore as a raw material for sintering. In the present embodiment, iron ore means iron ore including fine iron ore with a particle size of 150 μm or less and coarse iron ore with a particle size of more than 150 μm. In addition, fine iron ore refers to all iron ore particles having a particle size of 150 μm or less, regardless of the brand of the ore.

また、点火炉11の点火手段も特に限定するものではないが、製鉄所の副生ガスであるCガス、BガスまたはMガス等の気体燃料を用いたバーナーを用いることが好ましい。なお、製鉄所において多く使用されているLNGやLPG、都市ガス等の気体燃料を用いたバーナーを使用してよい。また、装入層10上表層の粉コークス等の凝結材を短時間で着火するために、バーナーに供給される支燃性ガス中の酸素濃度を増加させてバーナーの火炎温度を高めてもよい。 Also, the ignition means of the ignition furnace 11 is not particularly limited, but it is preferable to use a burner using gaseous fuel such as C gas, B gas or M gas, which is a by-product gas of steelworks. A burner using gaseous fuel such as LNG, LPG, or city gas, which is often used in steelworks, may be used. Further, in order to ignite the coke fine or other condensate on the upper surface layer of the charged layer 10 in a short time, the oxygen concentration in the combustion-supporting gas supplied to the burner may be increased to raise the flame temperature of the burner. .

さらに、装入層10の上層部に焼結に必要な温度を十分に確保することを目的として、装入層10の上層部に気体燃料を導入させてもよい。この場合に、点火炉11の直後から排鉱部までの区間の概ね1/3の区間に、装入層10の上方にフードを有する気体燃料供給装置を設け、その内部に気体燃料供給配管を配設して気体燃料を供給する。この気体燃供給装置を利用して、その内部に酸素供給配管を配設し、酸素ガスを供給し、酸素富化空気の酸素濃度を増加させてもよい。なお、気体燃料としては、Cガス、Bガス、Mガス、LNG、LPGおよび都市ガスの少なくとも1種を用いてよい。 Further, gaseous fuel may be introduced into the upper layer portion of the charged layer 10 for the purpose of sufficiently securing the temperature required for sintering in the upper layer portion of the charged layer 10 . In this case, a gaseous fuel supply device having a hood is provided above the charge layer 10 in approximately 1/3 of the section from immediately after the ignition furnace 11 to the ore discharge section, and a gaseous fuel supply pipe is installed inside it. to supply gaseous fuel. Using this gaseous combustion supply device, an oxygen supply pipe may be arranged inside to supply oxygen gas to increase the oxygen concentration of the oxygen-enriched air. At least one of C gas, B gas, M gas, LNG, LPG and city gas may be used as the gaseous fuel.

内径が300mmφ×高さが400mmの円筒状の焼結実験装置(以下、焼結鍋と記載する)を使用して焼結実験を行なった。粒径が150μm以下である微粉鉄鉱石の全量をダブルロール式のブリッケットマシンを用いて機械的に圧密して1.5ccの成型物とした。成型物の落下強度は、1mの高さから落下させた200gの成型物における5mm以上の質量割合で評価した。5mm以上の成型物の質量割合は、落下後の成型物を目開き5mmの篩で篩上となった成型物の質量を測定し、当該質量を全成型物の質量で除することで算出した。本実施例で用いた成型物の落下強度は52質量%であった。 A sintering experiment was conducted using a cylindrical sintering experimental apparatus (hereinafter referred to as a sintering pot) having an inner diameter of 300 mmφ and a height of 400 mm. The entire amount of fine iron ore having a particle size of 150 μm or less was mechanically compacted using a double roll briquette machine to form a 1.5 cc molding. The drop strength of the molded article was evaluated by the mass ratio of 5 mm or more in a 200 g molded article dropped from a height of 1 m. The mass ratio of the molded product of 5 mm or more was calculated by measuring the mass of the molded product that passed through a sieve with an opening of 5 mm after dropping, and dividing the mass by the mass of the entire molded product. . The drop strength of the molding used in this example was 52% by mass.

なお、本実施例ではバインダーを使用しないで微粉鉄鉱石を成型したが、バインダーを添加して微粉鉄鉱石を成型してもよい。例えば、α化澱粉を1質量%添加して成型することで、成型物の落下強度を1.5倍程度高めることができる。これにより、強い衝撃が発生する搬送手段を用いることができるので、搬送設備の設計自由度が向上する。また、微粉鉄鉱石に石灰石などの副原料や、炭材や、粒径が150μmより大きい鉄鉱石などの焼結鉱の原料を合計で25質量%配合しても落下強度の低下は1割程度であり、微粉鉄鉱石に微粉鉄鉱石以外の焼結鉱の原料を配合して成型したとしても成型物の落下強度の低下はほとんどなかった。 In this example, the fine iron ore was molded without using a binder, but the fine iron ore may be molded with a binder added. For example, by adding 1% by mass of pregelatinized starch and molding, the drop strength of the molding can be increased by about 1.5 times. As a result, it is possible to use conveying means that generate a strong impact, thereby improving the degree of freedom in designing the conveying equipment. In addition, even if a total of 25% by mass of auxiliary raw materials such as limestone, carbon materials, and sintered ore raw materials such as iron ore with a particle size larger than 150 μm is added to the fine iron ore, the drop strength is reduced by about 10%. Thus, even if the powdered iron ore was blended with a sintered ore raw material other than the powdered iron ore and molded, the drop strength of the molded product hardly decreased.

成型物の強度は、圧潰強度で評価される場合もあるが、成型物が水分を含む場合であって搬送時の衝撃で崩壊する否かを評価する場合、圧潰強度を用いることは好ましくない。例えば、10~15mm程度の粒径の成型物について、セメント等を入れて乾燥させた圧潰強度が5kgf/pである成型物と、デンプンやポリビニルアルコールをバインダーとして使用した圧潰強度が1kgf/pである成型物を比較した場合、圧潰強度はセメントを使用した成型物の方が高いが、コンベア等で搬送された後に5mm以上であった成形物の比率で比較すると、デンプンやポリビニルアルコールをバインダーとして使用した成型物の方が逆に高くなる。デンプンやポリビニルアルコールをバインダーとして使用した成型物は、湿潤状態で可塑性があり、落下衝撃を受けた場合に塑性的に変形するものの粒子が崩壊することが少ない。一方、セメント等を入れて乾燥させたブリケットでは落下衝撃を受けると脆性的に壊れてしまう。成型した原料を焼結機で使用するには、ドラムミキサーから焼結機の装入部までのベルトコンベヤでの乗り継ぎ等による落下衝撃に耐える必要があるので、その強度の評価方法としては、圧潰強度ではなく落下強度の方が好ましい。 The strength of the molded product may be evaluated by crushing strength, but when evaluating whether or not the molded product will collapse due to the impact during transportation when the molded product contains moisture, it is not preferable to use the crushing strength. For example, for molded products with a particle size of about 10 to 15 mm, a molded product with a crushing strength of 5 kgf/p when dried with cement or the like, and a crushing strength of 1 kgf/p using starch or polyvinyl alcohol as a binder. When comparing certain moldings, the crushing strength of moldings using cement is higher. Conversely, the used molding becomes more expensive. A molded product using starch or polyvinyl alcohol as a binder is plastic in a wet state, and although it is plastically deformed when subjected to a drop impact, the particles are less likely to disintegrate. On the other hand, briquettes that are dried with cement or the like are brittle and break when subjected to a drop impact. In order to use the molded raw material in a sintering machine, it is necessary to withstand the drop impact due to the transfer of the belt conveyor from the drum mixer to the charging part of the sintering machine. Drop strength is preferred over strength.

成型物以外の焼結原料を直径1mのドラムミキサーを用いて、8rpmで300秒間回転させて擬似粒子とし、成型物を所定の割合で混合した後、焼結実験装置に当該擬似粒子を400mmの厚さまで装入して装入層を形成させ、その上表面を、プロパンを燃料としたバーナーを用いて60秒間加熱して点火し、焼結鍋の下部から700mmAqで吸引して、焼結ケーキを作製した。なお、擬似粒子と成型物を混合した焼結原料には、凝結材として粉コークスを5質量%添加した。また、いずれの実験も原料水分が平均7.5質量%で一定となるように調製した。 Using a drum mixer with a diameter of 1 m, the sintering raw materials other than the molded product are rotated at 8 rpm for 300 seconds to form pseudo-particles, and the molded product is mixed at a predetermined ratio. Charged to thickness to form a charge layer, the upper surface of which was ignited by heating for 60 seconds using a propane-fueled burner, and suctioned from the bottom of the sintering pan at 700 mmAq to form a sinter cake. was made. In addition, 5% by mass of coke powder was added as a coagulant to the sintering raw material in which the pseudo-particles and the molding were mixed. Also, in all experiments, the raw material moisture content was adjusted to a constant average of 7.5% by mass.

上記焼結実験においては、焼結鍋の下部から排出される燃焼排ガスの温度を測定し、点火からこの温度がピークに達した時点までの時間を焼結時間とした。また、焼結実験終了後、焼結ケーキを2mの高さから1回落下させ、10mm篩目の上に残った焼結鉱を成品として定義した。焼結鉱の歩留は、10mm以上の成品焼結鉱の質量を焼結ケーキの質量で除して算出した。また、焼結鍋の断面積(m)と、成品焼結鉱の重量(t)と、焼結時間(h)と、から単位炉床面積(m)、単位時間(h)当たりの焼結鉱生産量(t)である焼結鉱の生産率(t/(h×m))を算出した。 In the above sintering experiment, the temperature of the flue gas discharged from the lower part of the sintering pot was measured, and the sintering time was defined as the time from ignition to the point when this temperature reached its peak. After the sintering experiment was completed, the sintered cake was dropped once from a height of 2 m, and the sintered ore remaining on the 10 mm sieve mesh was defined as the product. The yield of the sintered ore was calculated by dividing the mass of the product sintered ore having a size of 10 mm or more by the mass of the sintered cake. In addition, from the cross-sectional area (m 2 ) of the sintering pot, the weight (t) of the product sintered ore, and the sintering time (h), the unit hearth area (m 2 ), per unit time (h) A sintered ore production rate (t/(h×m 2 )), which is a sintered ore production amount (t), was calculated.

焼結実験に用いた鉄鉱石は粒径150μmより大きい粗粒鉄鉱石であり、縮分器を用いて2等分した一方の粗粒鉄鉱石を粉砕して、粒径150μm以下および粒径150μmより大きい粒度のみ異なる2種の鉄鉱石を調製した。化学組成は、SiOが4.9質量%、Alが1.8質量%であった。焼結原料の塩基度(CaO/SiO)は、石灰石の配合量を調整して2.0とした。また、実際の焼結機で使用する焼結原料を模擬し、5mm以下の焼結鉱(返鉱)を20質量%配合した。成型した微粉鉄鉱石を混合した焼結実験では、微粉鉄鉱石の全てを成型物とした。 The iron ore used in the sintering experiment is a coarse-grained iron ore with a grain size larger than 150 μm. Two iron ores were prepared that differed only in larger particle size. The chemical composition was 4.9% by weight of SiO2 and 1.8% by weight of Al2O3 . The basicity (CaO/SiO 2 ) of the raw material for sintering was adjusted to 2.0 by adjusting the amount of limestone. In addition, 20% by mass of sintered ore (return ore) having a diameter of 5 mm or less was added to simulate the sintering raw material used in an actual sintering machine. In the sintering experiment in which the molded fine iron ore was mixed, all of the fine iron ore was used as a molding.

図6は、粒径150μm以下の微粉比率と焼結鉱の生産率との関係を示すグラフである。図6に示したグラフにおいて、横軸は鉄鉱石中の粒径が150μm以下の微粉鉄鉱石の比率を示す微粉化率(質量%)であり、縦軸は焼結鉱の生産率(t/(h×m))である。 FIG. 6 is a graph showing the relationship between the ratio of fine powder having a particle size of 150 μm or less and the production rate of sintered ore. In the graph shown in FIG. 6, the horizontal axis is the pulverization rate (% by mass) indicating the ratio of fine iron ore having a particle size of 150 μm or less in the iron ore, and the vertical axis is the production rate of sintered ore (t / (h×m 2 )).

図6から、微粉鉄鉱石を成型物にしていない場合、鉄鉱石中の粒径150μm以下の微粉化率(以下、微粉化率と記載する)の増加に伴って、焼結鉱の生産率が大幅に低下した。微粉比率を20質量%とした焼結試験により得られた焼結ケーキを高さ方向に3等分し、上層、中層および下層に分けて焼結鉱の歩留を評価したところ、微粉比率10質量%とした焼結試験と比較して、上層での焼結鉱の歩留の低下が大きく、これが焼結鉱の生産率を低下させる原因となっていた。 From FIG. 6, when fine iron ore is not molded, the production rate of sintered ore increases as the pulverization rate of iron ore with a particle size of 150 μm or less (hereinafter referred to as the pulverization rate) increases. decreased significantly. The sintered cake obtained by the sintering test with a fine powder ratio of 20% by mass was divided into three equal parts in the height direction, and the yield of the sintered ore was evaluated by dividing it into the upper layer, the middle layer and the lower layer, and the fine powder ratio was 10. The yield of sintered ore in the upper layer was greatly reduced compared to the sintering test in which mass % was used, and this was the cause of the decrease in the production rate of sintered ore.

また、図6から、微粉鉄鉱石の全量を成型物とした場合、鉄鉱石中の粒径150μm以下の微粉化率を5質量%以上とすることで、150μm以下の微粉鉄鉱石を含まない場合よりも焼結鉱の生産率が増加した。また、鉄鉱石中の粒径150μm以下の微粉化率が5質量%以上50質量%以下までは微粉化率の増加に伴って焼結鉱の生産率が増加した。一方、鉄鉱石中の微粉化率を50質量%より高くすると、焼結鉱の生産率が若干低下した。これは、微粉炭の成型物の配合割合が増え、装入層の通気性が高くなり過ぎて逆に歩留りが低下し、これにより、焼結鉱の生産率が低下したものと考えられる。 Further, from FIG. 6, when the total amount of fine iron ore is used as a molded product, the fine powder ratio of 150 μm or less in the iron ore is set to 5% by mass or more, so that the fine iron ore of 150 μm or less is not included. The production rate of sintered ore increased. In addition, when the pulverization rate of iron ore having a particle size of 150 μm or less was 5% by mass or more and 50% by mass or less, the production rate of sintered ore increased as the pulverization rate increased. On the other hand, when the pulverization rate in iron ore was made higher than 50% by mass, the production rate of sintered ore slightly decreased. This is probably because the blending ratio of pulverized coal moldings increased, and the permeability of the charged layer became too high, conversely decreasing the yield, thereby decreasing the production rate of sintered ore.

鉄鉱石が粒径150μm以下の微粉鉄鉱石を含むと、単に凝集しただけにすぎない結合強度の弱い粗大な擬似粒子が生成され、当該擬似粒子の崩壊により通気性が悪化し、焼結鉱の生産率が低下する。これに対し、粒径150μm以下の微粉鉄鉱石を成型し、鉄鉱石に当該成型物を含めることで、粒径150μm以下の微粉鉄鉱石を含まない鉄鉱石を用いた場合よりも焼結鉱の生産率を高めることができるので、スラグ成分の少ない難造粒性の微粉であるペレットフィードを用いて、スラグ比率の低い焼結鉱を高い生産性で製造できる。さらに、成型された粒径150μm以下の微粉鉄鉱石を5質量%以上50質量%以下で含む鉄鉱石を用いることで、さらに、焼結鉱の生産性を高めることができる。 If the iron ore contains fine iron ore with a particle size of 150 μm or less, coarse pseudo-particles that are merely agglomerated and have weak bonding strength are generated. Productivity drops. On the other hand, by molding fine iron ore with a particle size of 150 μm or less and including the molded product in the iron ore, the amount of sintered ore is lower than when iron ore that does not contain fine iron ore with a particle size of 150 μm or less is used. Since the production rate can be increased, sintered ore with a low slag ratio can be produced with high productivity using a pellet feed that is a difficult-to-granulate fine powder with a small slag component. Furthermore, by using the iron ore containing 5% by mass or more and 50% by mass or less of the molded fine iron ore having a particle size of 150 μm or less, the productivity of the sintered ore can be further increased.

なお、本実施例では、粒径が150μm以下である微粉鉄鉱石の全部を成型物とした例を示したが、これに限らない。微粉鉄鉱石の少なくとも一部を成型物とすれば、成型せずに微粉鉄鉱石のまま用いた場合よりも擬似粒子の粉化が抑制され、焼結鉱の生産率の低下を抑制できる。さらに、成型物とする微粉鉄鉱石が多いほど擬似粒子の粉化が抑制され、焼結鉱の生産率の低下が抑制されることから、粒径150μm以下の微粉鉄鉱石の50質量%以上を成型物とすることが好ましく、粒径150μm以下の微粉鉄鉱石の全てを成型物とすることがより好ましい。粒径150μm以下の微粉鉄鉱石の50質量%以上を成型物とした場合、焼結鉱の生産率は、鉄鉱石の微粉化率にかかわらず、図6における「成型」と「成形なし」の中間以上の生産率となり、微粉化率が0の場合の生産率以上となる。 In this example, an example was shown in which all of the iron ore fine powder having a particle size of 150 μm or less was molded, but the present invention is not limited to this. If at least a part of the fine iron ore is made into a molded product, pulverization of pseudo-particles can be suppressed more than when the fine iron ore is used as it is without molding, and a decrease in the production rate of sintered ore can be suppressed. Furthermore, the more the fine iron ore to be molded, the more the pulverization of pseudo-particles is suppressed, and the decrease in the production rate of sintered ore is suppressed. Molding is preferable, and it is more preferable to mold all of the fine iron ore having a particle size of 150 μm or less. When 50% by mass or more of the fine iron ore with a particle size of 150 μm or less is used as the molded product, the production rate of the sintered ore is the same as the “molding” and “no molding” in FIG. 6 regardless of the pulverization rate of the iron ore. The production rate is intermediate or higher, and is higher than the production rate when the pulverization rate is 0.

以上、説明したように、粒径が150μm以下の微粉鉄鉱石を含む鉄鉱石を焼結原料として用いる場合に、本実施形態の焼結鉱の製造方法を用いることで、微粉鉄鉱石が凝集した擬似粒子の粉化による通気性の悪化が抑制され、焼結鉱の生産性の低下を抑制できる。また、微粉鉄鉱石の全てを成型物とすることで、スラグ成分の少ない難造粒性の微粉であるペレットフィードを多量に含む焼結原料を用いて、スラグ比率の低い焼結鉱を高い生産性で製造できるので、当該焼結鉱を高炉原料に用いることで高炉操業のスラグ比の低減にも寄与できる。 As described above, when iron ore containing fine iron ore having a particle size of 150 μm or less is used as a raw material for sintering, the fine iron ore is aggregated by using the method for producing sintered ore of the present embodiment. Deterioration of air permeability due to pulverization of pseudo-particles is suppressed, and a decrease in productivity of sintered ore can be suppressed. In addition, by making all of the iron ore fines into moldings, sintered ore with a low slag ratio can be produced at a high rate by using a sintering raw material containing a large amount of pellet feed, which is a fine powder that is difficult to granulate with a low slag content. Since the sintered ore can be produced with high elasticity, the use of the sintered ore as a blast furnace raw material can contribute to the reduction of the slag ratio in blast furnace operation.

1 ホッパー
2 ドラムミキサー
3 ドラムミキサー
4 成型設備
5 サージホッパー
6 ドラムフィーダー
7 切り出しシュート
8 カットゲート
9 パレット
10 装入層
11 点火炉
12 ウインドボックス(風箱)
1 Hopper 2 Drum Mixer 3 Drum Mixer 4 Molding Equipment 5 Surge Hopper 6 Drum Feeder 7 Cutting Chute 8 Cut Gate 9 Pallet 10 Charge Layer 11 Ignition Furnace 12 Wind Box

Claims (1)

焼結機の原料給鉱部で循環移動するパレット上に鉄鉱石と炭材とを含む焼結原料を装入して装入層を形成した後、前記原料給鉱部の下流側に配設した点火炉で前記装入層の上表面の炭材に点火し、パレット下方に配設したウインドボックスで前記装入層の上方のガスを吸引し、前記ガスを前記装入層に導入して前記装入層の炭材を燃焼させることにより焼結鉱を製造する焼結鉱の製造方法であって、
前記鉄鉱石は、粒径が150μm以下である微粉鉄鉱石を含み、
前記微粉鉄鉱石の全部を圧密した成型物として前記焼結原料に混合することとし
前記鉄鉱石は、単位炉床面積における単位時間当たりの焼結鉱生産量である生産率と、前記鉄鉱石中の前記微粉鉄鉱石の比率である微粉化率との関係に基づき、前記微粉化率の増加に伴って前記生産率が増加する30質量%以上50質量%以下の前記微粉化率の前記微粉鉄鉱石を含む、
焼結鉱の製造方法。
A sintering raw material containing iron ore and carbonaceous material is charged onto a pallet that circulates in the raw material feeding section of the sintering machine to form a charged layer, and then the sintering raw material is arranged downstream of the raw material feeding section. The carbonaceous material on the upper surface of the charging bed is ignited in the ignition furnace, the gas above the charging bed is sucked by the wind box arranged below the pallet, and the gas is introduced into the charging bed. A sintered ore production method for producing sintered ore by burning the carbonaceous material of the charging layer,
The iron ore includes fine iron ore having a particle size of 150 μm or less,
All of the fine iron ore is mixed into the sintering raw material as a compacted compact,
The iron ore is pulverized based on the relationship between the production rate, which is the amount of sintered ore produced per unit time in a unit hearth area, and the pulverization rate, which is the ratio of the fine iron ore in the iron ore. containing the fine iron ore with the pulverization rate of 30% by mass or more and 50% by mass or less, in which the production rate increases as the rate increases,
A method for producing sintered ore.
JP2019065260A 2019-03-29 2019-03-29 Method for producing sintered ore Active JP7227053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065260A JP7227053B2 (en) 2019-03-29 2019-03-29 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065260A JP7227053B2 (en) 2019-03-29 2019-03-29 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2020164910A JP2020164910A (en) 2020-10-08
JP7227053B2 true JP7227053B2 (en) 2023-02-21

Family

ID=72716707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065260A Active JP7227053B2 (en) 2019-03-29 2019-03-29 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP7227053B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232238A (en) * 1983-06-14 1984-12-27 Nippon Kokan Kk <Nkk> Production of sintered ore
JP4918754B2 (en) * 2004-05-19 2012-04-18 Jfeスチール株式会社 Semi-reduced sintered ore and method for producing the same
JP6330536B2 (en) * 2014-07-14 2018-05-30 新日鐵住金株式会社 Pretreatment method of sintering raw materials
JP6686974B2 (en) * 2016-06-22 2020-04-22 Jfeスチール株式会社 Sintered ore manufacturing method
KR101908483B1 (en) * 2016-11-28 2018-12-19 주식회사 포스코 Manufacturing apparatus for lump, manufacturing apparatus for sintered ore using the same and method thereof

Also Published As

Publication number Publication date
JP2020164910A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
TW562860B (en) Method for producing reduced iron
JP5194378B2 (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
AU2019391453B2 (en) Sintered ore manufacturing method
US4504306A (en) Method of producing agglomerates
JP2009097027A (en) Method for producing sintered ore
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP6988844B2 (en) Sintered ore manufacturing method
JP4984488B2 (en) Method for producing semi-reduced sintered ore
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
JP7227053B2 (en) Method for producing sintered ore
WO1994005817A1 (en) Method for producing sintered ore
JP5561443B2 (en) Method for producing sintered ore
JP6020840B2 (en) Sintering raw material manufacturing method
JP5206030B2 (en) Method for producing sintered ore
JP6988778B2 (en) Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
JP5126580B2 (en) Method for producing sintered ore
JP4078285B2 (en) Blast furnace operation method
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2001262241A (en) Method for producing sintered ore containing carbon
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
RU2774518C1 (en) Method for obtaining sintered ore
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP2001348622A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220405

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220705

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221018

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221206

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230110

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230207

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230209

R150 Certificate of patent or registration of utility model

Ref document number: 7227053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150