JP2009097027A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2009097027A
JP2009097027A JP2007267330A JP2007267330A JP2009097027A JP 2009097027 A JP2009097027 A JP 2009097027A JP 2007267330 A JP2007267330 A JP 2007267330A JP 2007267330 A JP2007267330 A JP 2007267330A JP 2009097027 A JP2009097027 A JP 2009097027A
Authority
JP
Japan
Prior art keywords
raw material
ore
sintering
return
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267330A
Other languages
Japanese (ja)
Other versions
JP2009097027A5 (en
JP5315659B2 (en
Inventor
Satohiko Okubo
聡彦 大久保
Masaru Matsumura
勝 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007267330A priority Critical patent/JP5315659B2/en
Publication of JP2009097027A publication Critical patent/JP2009097027A/en
Publication of JP2009097027A5 publication Critical patent/JP2009097027A5/ja
Application granted granted Critical
Publication of JP5315659B2 publication Critical patent/JP5315659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a sintered ore, which can enhance productivity by effectively using a returned ore in a dry state. <P>SOLUTION: (1) In a method of producing sintered ore by using a mixture of grains granulated from a raw material to be sintered and all or some of the return ore which is an additive, as a raw material to be sintered and blended, the method for producing the sintered ore includes setting a ratio of the return ore to be added after the granulation of the raw material to be sintered, at 5 to 25 mass% with respect to the raw material to be sintered and blended. (2) The method decreases a water content in the raw material to be sintered and blended which has been added with the return ore by a range of 0.3 to 1.5 mass% compared to a water content of the granulated raw material to be sintered to which the return ore is not added, by adding the return ore. In the methods (1) or (2) for producing the sintered ore, it is preferable to selectively use a coarse grain portion in the return ore which has been classified into the coarse grain portion and a fine grain portion, as the return ore to be added after the granulation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ドワイトロイド式焼結機(以下、DL式焼結機とも称する)を使用した焼結鉱の製造方法において、焼結用原料を造粒した後に返鉱を添加することにより生産性を向上させることができる焼結鉱の製造方法に関する。   The present invention is a method for producing a sintered ore using a dweroid-type sintering machine (hereinafter also referred to as a DL type sintering machine), and by adding a return ore after granulating a raw material for sintering. The present invention relates to a method for producing sintered ore.

焼結用原料は、複数種類の鉄鉱石、CaO源としての石灰石、SiO2およびMgO源
としての副原料、さらに燃料としての粉コークス、返鉱などから構成されている。通常、これらの原料は、その銘柄毎に原料槽に貯蔵されて、配合に応じて定量切り出しされる。切り出された各原料および燃料は、原料搬送用のベルトコンベアー上で合流し、造粒機まで搬送される。造粒機では、前記の焼結用原料に水分が添加されて造粒が行われる。
The raw material for sintering is composed of a plurality of types of iron ore, limestone as a CaO source, auxiliary raw materials as a source of SiO 2 and MgO, powder coke as a fuel, and return ore. Usually, these raw materials are stored in a raw material tank for each brand, and quantitatively cut out according to the blending. The cut out raw materials and fuel are merged on a belt conveyor for transporting the raw materials and transported to a granulator. In the granulator, the moisture is added to the sintering raw material to perform granulation.

さらに、造粒後の焼結用原料は、原料装入装置のサージホッパーと称されるホッパーから焼結配合原料として焼結機に装入され、パレット上で焼結原料充填層を形成する。焼結原料充填層はパレットとともに水平方向に移送され、充填層の最上部に点火される。その後、焼結原料充填層の上方から下方に向かって、大気中の空気が同層内を通して下方吸引されることによって、粉コークスが燃焼するとともに、燃焼により生成した高温ガスにより原料粒子が加熱昇温される。その結果、原料充填層の上層部から下層部に向かって焼結反応が順次進行する。焼結原料充填層の上層部から下層部まで焼結が完了した塊状物が焼結鉱であり(以下、「焼結ケーキ」とも記す)、焼結機の排鉱部において粗破砕された後に、冷却機により冷却される。   Furthermore, the raw material for sintering after granulation is charged into a sintering machine as a sintering blended raw material from a hopper called a surge hopper of a raw material charging device, and forms a sintered raw material packed layer on a pallet. The sintered raw material packed bed is transferred along with the pallet in the horizontal direction and ignited at the top of the packed bed. After that, air in the atmosphere is sucked downward through the same layer from the upper side to the lower side of the sintered raw material packed layer, so that the powder coke burns and the raw material particles are heated and heated by the high-temperature gas generated by the combustion. Be warmed. As a result, the sintering reaction proceeds sequentially from the upper layer portion to the lower layer portion of the raw material filled layer. The lump that has been sintered from the upper layer part to the lower layer part of the sintered raw material packed layer is sintered ore (hereinafter, also referred to as “sintered cake”), and after being roughly crushed in the exhausting part of the sintering machine And cooled by a cooler.

冷却された焼結鉱は5mm程度で篩分けされ、篩上は成品焼結鉱として高炉原料として使用される。一方、篩下焼結鉱は、返鉱として再び焼結用原料に使用される。   The cooled sintered ore is sieved at about 5 mm, and the sieve top is used as a raw material for blast furnace as a product sintered ore. On the other hand, the undersintered ore is used again as a raw material for sintering as a return ore.

前述のとおり、造粒機では、焼結用原料に水分が添加されて造粒が行われる。焼結用原料に水分を添加して造粒操作を行うことにより、水がバインダーとなって原料粒子が相互に付着する。これにより、見掛けの原料粒径(すなわち、造粒後原料粒径)が増大し、焼結用原料が焼結機に供給された際に、原料充填層の空隙率および空隙径が増加して、通気性が向上する。   As described above, in the granulator, moisture is added to the raw material for sintering and granulation is performed. By performing the granulation operation by adding moisture to the raw material for sintering, water becomes a binder and the raw material particles adhere to each other. As a result, the apparent raw material particle size (that is, the raw material particle size after granulation) is increased, and when the raw material for sintering is supplied to the sintering machine, the porosity and the void diameter of the raw material packed layer are increased. , Breathability is improved.

このように、焼結用原料への水分添加操作は、ミキサー内での造粒を容易にし、原料充填層の通気性を向上させるために不可欠である。しかしながら、焼結反応が開始すると、水分が通気性阻害の原因となる。焼結反応が上層部から下層部に進行するにつれて、原料充填層では水分が蒸発し、水蒸気がより下層部へ凝集することにより、原料充填層の通気性が低下する。さらに、水分が蒸発するためには気化熱を要することから、この気化熱を補填するための熱源として高温ガスが必要になるとともに、蒸発した水は水蒸気となって排ガス量を増加させる。すなわち、水分の添加は、通気性の低下および必要ガス量(必要風量)の上昇を招く。   Thus, the operation of adding moisture to the raw material for sintering is indispensable for facilitating granulation in the mixer and improving the air permeability of the raw material packed layer. However, when the sintering reaction starts, moisture causes air permeability inhibition. As the sintering reaction progresses from the upper layer portion to the lower layer portion, moisture evaporates in the raw material packed layer, and water vapor aggregates to the lower layer portion, thereby reducing the air permeability of the raw material packed layer. Furthermore, since the heat of vaporization is required for the water to evaporate, a high-temperature gas is required as a heat source for supplementing the heat of vaporization, and the evaporated water becomes water vapor to increase the amount of exhaust gas. That is, the addition of moisture causes a decrease in air permeability and an increase in required gas volume (necessary air volume).

このように、水分は、通気性を上昇(向上)させるという利点と、通気性を低下(悪化)させるとともに必要ガス量を増大させるという欠点の両面を有している。このため、水分の有する機能を最大限に発揮させ、かつ、その悪影響を可能な限り低減するために、排ガスなどの高温ガス顕熱を有効利用する技術が開示されている。   As described above, moisture has both the advantage of increasing (improving) the air permeability and the drawback of decreasing (deteriorating) the air permeability and increasing the required gas amount. For this reason, a technique for effectively utilizing high-temperature gas sensible heat such as exhaust gas has been disclosed in order to maximize the function of moisture and to reduce the adverse effects as much as possible.

例えば、特許文献1には、パレットへ焼結配合原料を供給する給鉱機と点火炉との間で、高温ガスを原料充填層へ吸引させる予熱焼結法が開示されている。この予熱焼結法によれば、原料温度が上昇することにより、風量が同じであっても焼結速度を高めることができ、風量原単位(単位質量の焼結鉱を製造するために必要なガス量)を低減することができる。また、単位時間あたりの風量を維持することにより、焼結速度の指標となる生産率、すなわち、単位焼結機面積あたり、単位時間あたりの焼結鉱生産量が増加する。さらに、予熱の熱源として排ガス顕熱を利用することにより、総合エネルギー原単位を低減することが可能となる。   For example, Patent Document 1 discloses a preheating sintering method in which a high-temperature gas is sucked into a raw material packed bed between a mineral feeder for supplying a sintered blended raw material to a pallet and an ignition furnace. According to this preheating sintering method, the raw material temperature is increased, so that the sintering rate can be increased even if the air volume is the same, and the air volume basic unit (necessary for producing a unit mass of sintered ore). Gas amount) can be reduced. In addition, by maintaining the air volume per unit time, the production rate that is an index of the sintering speed, that is, the sinter production per unit time increases per unit sintering machine area. Furthermore, the total energy intensity can be reduced by using exhaust gas sensible heat as a heat source for preheating.

しかし、特許文献1で開示された方法では、焼結配合原料をパレット上に供給する給鉱機と点火炉との間で、高温ガスを原料充填層へ吸引することから、ストランド中において予熱領域が必要となる。このため、点火炉より下流のストランドの面積が減少し、生産量が低下するという問題がある。   However, in the method disclosed in Patent Document 1, since a high-temperature gas is sucked into the raw material packed bed between the feeder and the ignition furnace for supplying the sintering compound raw material onto the pallet, the preheating region in the strand Is required. For this reason, there exists a problem that the area of the strand downstream from an ignition furnace reduces and a production amount falls.

また、特許文献2には、焼結配合原料をサージホッパーおよび給鉱部に分けて乾燥させる方法が開示されている。しかしながら、特許文献2で開示された方法も、特許文献1で開示された方法と同様に、ストランドにおいて、予熱領域を設ける必要があることから、生産量が低下するという問題がある。   Patent Document 2 discloses a method in which a sintered blending raw material is divided into a surge hopper and a feed section and dried. However, the method disclosed in Patent Document 2 also has a problem in that the production amount decreases because it is necessary to provide a preheating region in the strand as in the method disclosed in Patent Document 1.

特許文献3には、焼結機から排出される高温ガスにより低温の返鉱を加熱し、常温の新たな焼結用原料(以下、「新原料」とも記す)と混合する技術が開示されている。この技術は、加熱後の返鉱の顕熱により原料温度の上昇を図り、予熱による効果を得ることを目的としている。しかし、高温の返鉱を他の焼結用原料に混合し、水を添加して造粒すると、一部の水分が蒸発し、造粒が阻害されるという問題がある。特許文献4では、この造粒の阻害が指摘されており、高温の返鉱は混合造粒前に水添加などによって冷却すべきであることが指摘されている。   Patent Document 3 discloses a technique in which a low-temperature return ore is heated by a high-temperature gas discharged from a sintering machine and mixed with a new raw material for sintering (hereinafter also referred to as “new raw material”) at normal temperature. Yes. The purpose of this technology is to increase the temperature of the raw material by sensible heat of the returned ore after heating, and to obtain the effect of preheating. However, when high temperature return ore is mixed with other raw materials for sintering and water is added to granulate, there is a problem that part of water evaporates and granulation is inhibited. In Patent Document 4, it is pointed out that this granulation is inhibited, and it is pointed out that high-temperature return ore should be cooled by water addition or the like before mixed granulation.

一方、高温ガスによらずに排ガスを用いて乾燥した返鉱を使用して低水分化を図る技術が開示されている。例えば、特許文献5および6には、2台の造粒機を直列に配置して、返鉱を含まない焼結用原料を1次ミキサー(造粒機)において所定量の水分を添加しながら混合し、次いで、2次ミキサー(造粒機)の入側で返鉱を添加し、2次ミキサーで造粒する方法が開示されている。そして、同文献では、上記の方法により、水分が低下し、生産率が改善されたとされている。しかしながら、乾燥した返鉱を使用することにより、調湿混合された焼結用原料から水分が奪われ、これが原因となって、造粒が阻害されるという問題がある。   On the other hand, a technique for reducing moisture by using a return ore that has been dried using exhaust gas without using high-temperature gas is disclosed. For example, in Patent Documents 5 and 6, two granulators are arranged in series, and a raw material for sintering that does not include return is added to a primary mixer (granulator) while adding a predetermined amount of moisture. A method is disclosed in which the mixture is mixed, and then the return ore is added at the entry side of the secondary mixer (granulator) and granulated by the secondary mixer. In the same document, it is said that the water content is reduced and the production rate is improved by the above method. However, the use of the dried return ore has a problem that moisture is deprived from the humidity-mixed sintering raw material, which causes granulation to be inhibited.

特公昭54−024682号公報Japanese Patent Publication No. 54-024682 特開昭60−089526号公報JP 60-089526 A 特開昭53−076903号公報Japanese Patent Laid-Open No. 53-076903 特開平05−009602号公報JP 05-009602 A 特開昭60−052533号公報JP 60-052533 A 特開2000−256756号公報JP 2000-256756 A

上述のとおり、水分に起因する通気性の低下を防止し、さらに必要ガス量の増加を抑制する従来技術には、焼結機のストランド面積の減少により生産量が低下するという問題や、乾燥状態にある返鉱が調湿混合された焼結用原料から水分を奪うことにより、造粒が阻害されるという問題があった。   As described above, the conventional technology that prevents the decrease in air permeability caused by moisture and further suppresses the increase in the required gas amount has the problem that the production amount decreases due to the decrease in the strand area of the sintering machine, and the dry state There is a problem in that granulation is hindered by depriving moisture from the sintering raw material in which the return ore is mixed with moisture.

本発明は、上記の問題に鑑みてなされたものであり、造粒後の焼結用原料中の水分低下処理を、焼結機のストランド上においてではなく、給鉱部(原料装入装置)に達するまでに実施し、さらには、乾燥状態の返鉱を効果的に活用することによって、生産率を増加させることが可能な焼結鉱の製造方法を提供することを目的としている。   The present invention has been made in view of the above problems, and the moisture reduction treatment in the raw material for sintering after granulation is not performed on the strand of the sintering machine, but in the feed section (raw material charging device). The object of the present invention is to provide a method for producing sintered ore that can increase the production rate by effectively utilizing dry ore return.

本発明者らは、生産性を向上させ、かつ、造粒を阻害しない焼結鉱の製造方法について検討を行い、下記(a)〜(c)の知見を得た。   The present inventors have studied a method for producing a sintered ore that improves productivity and does not inhibit granulation, and obtained the following findings (a) to (c).

(a)造粒の際に水分を添加すると、水を媒体として粒子同士が毛管力により接近する。そして、水は粒子同士の結合体(以下、「造粒後原料」とも記す)の表層部に移動する。この粒子および水の移動が造粒現象であり、水分量が不足すると、毛管力の機能が低下し、造粒作用が阻害される。一方、一定水分量以上になると、造粒作用は飽和する。したがって、造粒の際に添加する水分量には適正範囲が存在する。   (A) When moisture is added during granulation, the particles approach each other by capillary force using water as a medium. Then, the water moves to the surface layer portion of a combined body of particles (hereinafter also referred to as “post-granulation raw material”). The movement of the particles and water is a granulation phenomenon. When the amount of water is insufficient, the function of capillary force is lowered and the granulation action is inhibited. On the other hand, when the water content exceeds a certain level, the granulating action is saturated. Therefore, there is an appropriate range for the amount of water added during granulation.

(b)造粒後原料の表層部に移動した水だけを除去すれば、造粒後原料の崩壊は起こらない。また、水分の除去方法としては、低水分で比較的乾燥状態の原料を添加することが効果的であり、焼結工場において発生する返鉱の添加が有効である。しかし、返鉱の発生量と、焼結用原料の表層部に移動した水を除去するために必要な返鉱の量とは必ずしも一致しない。   (B) If only the water moved to the surface layer part of the raw material after granulation is removed, the raw material after granulation does not collapse. As a method for removing moisture, it is effective to add a raw material having a low moisture and a relatively dry state, and it is effective to add return ore generated in a sintering plant. However, the amount of return ore generated is not necessarily the same as the amount of return ore required for removing the water transferred to the surface layer portion of the sintering raw material.

(c)添加する返鉱を選択的に粗粒に限定することにより、添加する返鉱を細粒に限定した場合に比較して、焼結鉱の生産率を高めることができる。   (C) By selectively limiting the return ore to be added to coarse particles, the production rate of the sintered ore can be increased as compared with the case where the return ore to be added is limited to fine particles.

本発明は、上記の知見に基づいて完成されたものであり、下記の(1)〜(3)に示される焼結鉱の製造方法を要旨としている。   This invention is completed based on said knowledge, and makes the summary the manufacturing method of the sintered ore shown by following (1)-(3).

(1)焼結用原料を造粒した後に、全部または一部の返鉱を添加した混合物を焼結配合原料として用いる焼結鉱の製造方法において、焼結配合原料に対して造粒後に添加する返鉱の比率を5〜25質量%とすることを特徴とする焼結鉱の製造方法(以下、「第1発明」とも記す)。   (1) After granulating a raw material for sintering, in a method for producing a sintered ore using a mixture obtained by adding all or part of the return mineral as a raw material for sintered blending, added to the sintered blended raw material after granulation A method for producing a sintered ore, characterized in that the ratio of the ore to be returned is 5 to 25% by mass (hereinafter also referred to as “first invention”).

(2)焼結用原料を造粒した後に、全部または一部の返鉱を添加した混合物を焼結配合原料として用いる焼結鉱の製造方法において、該返鉱の添加により、造粒後の返鉱添加前における焼結用原料の水分含有率に比べて返鉱添加後における焼結配合原料の水分含有率を0.3〜1.5質量%の範囲で減少させることを特徴とする焼結鉱の製造方法(以下、「第2発明」とも記す)。   (2) In the method for producing sintered ore using a mixture obtained by adding all or part of the return mineral as a sintering compounding material after granulating the sintering raw material, Compared with the moisture content of the raw material for sintering before the addition of the return mineral, the moisture content of the sintered blending material after the addition of the return mineral is reduced in the range of 0.3 to 1.5% by mass. A method for producing the ore (hereinafter also referred to as “second invention”).

(3)前記造粒後に添加する返鉱として、粗粒部分と細粒部分とに分級された返鉱のうちの粗粒部分を選択的に用いることを特徴とする前記(1)または(2)に記載の焼結鉱の製造方法(以下、「第3発明」とも記す)。   (3) The above-mentioned (1) or (2), wherein a coarse portion of the return mineral classified into a coarse portion and a fine portion is selectively used as the return ore added after the granulation. ) Of the sintered ore described below (hereinafter also referred to as “third invention”).

本発明において、「焼結用原料」とは、鉄鉱石、およびCaO源、SiO2源、MgO
源などの副原料、および粉コークスなどの燃料、返鉱など、またはそれらの混合物であって、焼結機に装入する前に各種の処理を受ける原料であり、また、「焼結配合原料」とは、焼結機に装入され、パレット上で焼結原料充填層を形成する原料を意味する。
In the present invention, the “sintering raw material” refers to iron ore, a CaO source, a SiO 2 source, and MgO.
A secondary material such as a source and a fuel such as powdered coke, a return or the like, or a mixture thereof, which is subjected to various treatments before being charged into a sintering machine. "Means a raw material charged in a sintering machine and forming a sintered raw material packed layer on a pallet.

本発明の焼結鉱の製造方法によれば、焼結鉱の製造方法において、焼結用原料を造粒した後に、返鉱を焼結配合原料に対して5〜25質量%の比率で添加し、この混合物を焼成することにより、焼結鉱の生産性が大幅に改善される。また、焼結用原料を造粒した後に返鉱を、造粒後の返鉱添加前の焼結用原料の水分含有率に比べて返鉱添加後の焼結配合原料水分が0.3〜1.5質量%の範囲で低下するように添加し、この混合物を焼成することによっても、焼結鉱の生産性が改善される。   According to the method for producing sintered ore of the present invention, in the method for producing sintered ore, after granulating the raw material for sintering, the return ore is added at a ratio of 5 to 25% by mass with respect to the raw material for sintering. By firing this mixture, the productivity of sintered ore is greatly improved. Further, after the granulation of the raw material for sintering, the return mineral is compared with the moisture content of the raw material for sintering before the addition of the return mineral after granulation. The productivity of sintered ore is also improved by adding this so as to decrease in the range of 1.5% by mass and firing this mixture.

前記のとおり、本発明は、造粒した焼結用原料に返鉱を添加することにより焼結配合原料の低水分化を図り、生産性の向上を達成する焼結鉱の製造方法であり、第1発明は添加する返鉱の量を、また第2発明は水分の低下量を調整することを特徴としている。そして、第3発明は、第1発明および第2発明において、発生する返鉱量が添加する返鉱量に比べ多い場合における添加返鉱の粒度ついての実施態様である。以下に、本発明を上記のように規定した理由および好ましい範囲について説明する。   As described above, the present invention is a method for producing a sintered ore that achieves an improvement in productivity by reducing the moisture content of the sintered blended raw material by adding return mineral to the granulated sintering raw material, The first invention is characterized by adjusting the amount of return ore being added, and the second invention is characterized by adjusting the amount of water decrease. And the 3rd invention is the embodiment about the particle size of the addition ore in the case where the amount of the return ore generated is larger than the amount of the return ore to be added in the first and second inventions. Below, the reason and preferable range which prescribed | regulated this invention as mentioned above are demonstrated.

(1)発明の態様および好ましい範囲
十分な造粒効果を確保するには、造粒のために必要な毛管力の作用が発揮されるための適度の水分量が必要である。このため、水分含有率は、未造粒粉が十分少なくなるように比較的高い値に調整することが望ましい。焼結用原料の配合条件によって必要な水分量は変化する。例えば、マラマンバ鉱石やピソライト鉱石のように吸水性の高い焼結用原料については、多量の水分が必要となる。これに対して、ブラジル系赤鉄鉱のように吸水性の低い焼結用原料の場合は、必要な水分量は比較的少なくてよい。上記のように、水分量は、焼結用原料の配合条件に応じて、適宜、調整することが望ましい。
(1) Aspects and preferred ranges of the invention In order to ensure a sufficient granulation effect, an appropriate amount of water is required for the action of capillary force necessary for granulation. For this reason, it is desirable to adjust the moisture content to a relatively high value so that the ungranulated powder is sufficiently reduced. The amount of water required varies depending on the blending conditions of the raw materials for sintering. For example, a large amount of moisture is required for a raw material for sintering having high water absorption, such as maramamba ore and pisolite ore. On the other hand, in the case of a raw material for sintering having a low water absorption like Brazilian hematite, the required amount of water may be relatively small. As described above, it is desirable that the water content is appropriately adjusted according to the blending conditions of the raw materials for sintering.

また、返鉱に用いる原料としては、冷却機への投入前の段階で篩分処理された篩下鉱、冷却機での冷却以降の段階で篩分処理された篩下鉱、集塵機から回収されたダスト、高炉への装入前に篩分処理された篩下鉱などが該当する。このように、焼結工場およびその周辺で発生する返鉱の全部または一部を、造粒後の焼結用原料に添加することができる。   In addition, the raw material used for the return ore is recovered from the sieving ore that has been sieved in the stage before charging into the cooler, the sieving ore that has been sieved in the stage after cooling in the cooler, and the dust collector. Dust, sieving ores that have been subjected to sieving before charging into the blast furnace. In this way, all or part of the return ore generated in the sintering factory and the vicinity thereof can be added to the raw material for sintering after granulation.

返鉱は、一般に、造粒前の焼結用原料に配合されて造粒機に供給され、他の焼結用原料とともに造粒される。しかしながら、返鉱は焼結鉱の細粒部分であり、粘着性が低いことから、造粒を施しても造粒後の原料化に寄与しにくい。特に、篩下鉱は粒径0.25mm以下の比率が10質量%以下と低く、造粒に寄与し難いとされる粒径2〜0.25mmの占める比率が高い。したがって、篩下鉱は造粒後の焼結用原料に添加するのが最も有効である。   The returned ore is generally blended with a sintering raw material before granulation, supplied to a granulator, and granulated together with other sintering raw materials. However, return ore is a fine-grained portion of sintered ore and has low adhesiveness, so even if granulation is performed, it is difficult to contribute to the materialization after granulation. In particular, the ratio of sieving ore is as low as 10% by mass or less with a particle size of 0.25 mm or less, and the ratio of particle size of 2 to 0.25 mm that is considered difficult to contribute to granulation is high. Therefore, it is most effective to add sieving ore to the raw material for sintering after granulation.

以下に、焼結配合原料に対し造粒後に添加する返鉱の比率、返鉱の添加前後における焼結配合原料の水分含有率、および添加する返鉱の粒度についての各範囲、ならびに造粒機の好ましい種類について述べる。   Below, the ratio of the return mineral added after granulation to the sintered blending raw material, the moisture content of the sintered blended raw material before and after the addition of the return mineral, and the ranges of the particle size of the returned ore to be added, and the granulator The preferred types of are described.

造粒後の焼結用原料に返鉱を添加することによる水分含有率の減少量は、0.3〜1.5質量%程度が好ましい。水分含有率の減少量が0.3質量%未満では、十分な焼結鉱の増産効果が得られず、一方、水分含有率の減少量が1.5質量%を超えて高くなると、造粒後原料の崩壊が起こり、増産効果が得られないからである。このような水分含有率の減少量を実現するには、焼結配合原料に対して、乾燥状態の返鉱量に換算して5〜25質量%程度の返鉱を添加する必要がある。   The amount of decrease in the water content by adding the return mineral to the sintered raw material after granulation is preferably about 0.3 to 1.5% by mass. When the amount of decrease in water content is less than 0.3% by mass, a sufficient effect of increasing the production of sintered ore cannot be obtained. On the other hand, when the amount of decrease in water content exceeds 1.5% by mass, granulation is performed. This is because the subsequent raw material collapses and the production increase effect cannot be obtained. In order to realize such a decrease in the moisture content, it is necessary to add about 5 to 25% by mass of returned mineral to the sintered blended raw material in terms of the amount of returned mineral in a dry state.

一方で、返鉱の発生量は、焼結機毎に差異があり、焼結配合原料に対して20〜30質量%程度と幅を有し、必ずしも返鉱の添加量とは一致しない。返鉱の発生量が過剰の場合は、添加する返鉱の選択が必要となる。この場合、粒度の粗い返鉱を焼結配合原料に選択的に添加し、粒度の細かい返鉱を造粒前の焼結用原料に配合することにより、より大きい増産効果が得られる。   On the other hand, the amount of return ore generated differs depending on the sintering machine, has a width of about 20 to 30% by mass with respect to the sintered blending raw material, and does not necessarily match the amount of return ore added. When the amount of return ore is excessive, it is necessary to select the return ore to be added. In this case, a larger production increase effect can be obtained by selectively adding the coarse ore returning ore to the sintering blended raw material and blending the fine grain return ore to the sintering raw material before granulation.

返鉱の分級点は、造粒に寄与しにくい0.25mm以上とすることが好ましい。また、分級機の種類については特に規定しないが、例えば、振動式篩機、固定式篩機、遠心力式篩機または風力式分級機などが使用できる。   The classification point for return ore is preferably set to 0.25 mm or more which does not contribute to granulation. Further, the type of classifier is not particularly specified, but for example, a vibration sieve, a fixed sieve, a centrifugal sieve or a wind classifier can be used.

造粒機の種類は、特に規定しないが、例えば、転動型造粒機や高速攪拌ミキサーなどが使用できる。転動型造粒機としては、ドラムミキサーの他にディスクペレタイザーが挙げられる。また、高速攪拌ミキサーと転動型造粒機とを併用すると、原料粒子がねっか処理されて、造粒後原料の結合強度が飛躍的に向上することが確認されている。結合強度が高い場合には、造粒後原料の表面から返鉱へと水分が移動する際に、造粒状態が維持されるので、高速攪拌ミキサーと転動型造粒機とを併用することが有効である。   The type of granulator is not particularly defined, but for example, a rolling granulator or a high-speed stirring mixer can be used. Examples of the rolling granulator include a disk pelletizer in addition to a drum mixer. Further, it has been confirmed that when a high-speed stirring mixer and a rolling granulator are used in combination, the raw material particles are treated in a rough manner, and the bond strength of the raw materials after granulation is dramatically improved. When the bond strength is high, the granulated state is maintained when moisture moves from the surface of the raw material after granulation to the return to the ore, so use a high-speed stirring mixer and a rolling granulator together. Is effective.

(2)焼結鉱製造のプロセスフロー
本発明に基づくプロセスフローの例を下記に示す。図1は、第1発明および第2発明に対応するプロセスフローを示す図である。同図中の矢印は焼結用原料、焼結配合原料および返鉱などの流れを示す。焼結用原料6は、原料搬送用のベルトコンベアー上で合流し、造粒機3まで搬送される。造粒機3では、焼結用原料6に水分7が添加されて造粒が行われる。造粒後の焼結用原料5は、ベルトコンベアーを乗り継いで原料装入装置のサージホッパー2まで搬送される。添加された返鉱4は、ベルトコンベアーからベルトコンベアーへの乗継ぎの際や、ベルトコンベアーから原料装入装置のサージホッパー2への乗継ぎの際に、造粒後の焼結用原料5と混合される。この混合の際に、造粒後の焼結用原料5の表面に存在する表面水分が返鉱4へと移動する。
(2) Process flow of sinter ore production An example of a process flow based on the present invention is shown below. FIG. 1 is a diagram showing a process flow corresponding to the first invention and the second invention. The arrows in the figure indicate the flow of the raw material for sintering, the raw material for sintering, and the return ore. The raw material 6 for sintering joins on the belt conveyor for raw material conveyance, and is conveyed to the granulator 3. In the granulator 3, granulation is performed by adding moisture 7 to the sintering raw material 6. The granulated sintering raw material 5 is transferred to the surge hopper 2 of the raw material charging device via a belt conveyor. The added ore 4 is added to the sintered raw material 5 after granulation when transferring from the belt conveyor to the belt conveyor or when transferring from the belt conveyor to the surge hopper 2 of the raw material charging device. Mixed. During this mixing, the surface moisture present on the surface of the sintering raw material 5 after granulation moves to the return mineral 4.

なお、返鉱4は、焼結機1から排出された焼結ケーキを破砕処理し、篩分処理した際に発生する篩下鉱10、冷却機から排出された後で篩分処理した際に発生する篩下鉱11および冷却機9の排ガスから回収されたダスト12などから構成されている。   The return ore 4 is obtained by crushing the sintered cake discharged from the sintering machine 1 and sieving after the sieving ore 10 generated when sieving. It consists of the generated ore 11 and dust 12 recovered from the exhaust gas of the cooler 9.

図2は、第3発明に対応するプロセスフローを示す図である。焼結用原料6は、原料搬送用のベルトコンベアー上で合流し、造粒機3まで搬送される。造粒機3では、焼結用原料6に水分7が添加されて造粒が行われる。造粒後の焼結用原料5は、ベルトコンベアーを乗り継いで原料装入装置のサージホッパー2まで搬送される。返鉱4は篩8により分級され、篩上の返鉱14(すなわち、粗粒の返鉱)はベルトコンベアーからベルトコンベアーへの乗継ぎの際や、ベルトコンベアーから原料装入装置のサージホッパー2への乗継ぎの際に、造粒後の焼結用原料5と混合される。この混合の際に、造粒後の焼結用原料5の表面に存在する表面水分が返鉱14へと移動する。一方、篩下の返鉱15(すなわち、細粒の返鉱)は焼結用原料6とともに造粒される。   FIG. 2 is a diagram showing a process flow corresponding to the third invention. The raw material 6 for sintering joins on the belt conveyor for raw material conveyance, and is conveyed to the granulator 3. In the granulator 3, granulation is performed by adding moisture 7 to the sintering raw material 6. The granulated sintering raw material 5 is transported to the surge hopper 2 of the raw material charging device via a belt conveyor. The return ore 4 is classified by the sieve 8, and the return ore 14 on the sieve (that is, the coarse return) is transferred from the belt conveyor to the belt conveyor or from the belt conveyor to the surge hopper 2 of the raw material charging device. At the time of transit to, it is mixed with the sintering raw material 5 after granulation. During the mixing, the surface moisture present on the surface of the sintering raw material 5 after granulation moves to the return mineral 14. On the other hand, the undermining 15 (that is, the fine-grained ore) is granulated together with the raw material 6 for sintering.

図1および図2に示すように、第1発明、第2発明および第3発明では、焼結配合原料を焼結機に装入する前に造粒原料の低水分化を行うので、焼結機に予熱ゾーンを設ける必要がない。これにより、焼結機における焼結面積が削減されることがなく、したがって、焼結鉱の生産性を確保した上で造粒原料の低水分化を実現することができる。   As shown in FIG. 1 and FIG. 2, in the first invention, the second invention, and the third invention, the granulated raw material is reduced in moisture before charging the sintered blending raw material into the sintering machine. There is no need to provide a preheating zone in the machine. As a result, the sintering area in the sintering machine is not reduced, and therefore the moisture content of the granulated raw material can be reduced while securing the productivity of the sintered ore.

(実施例1)
第1発明および第2発明の効果を確認するため、焼結配合原料を60kg使用したバッチ式焼結試験を実施し、通気性および生産率を評価した。
Example 1
In order to confirm the effects of the first invention and the second invention, a batch-type sintering test using 60 kg of a sintered compounding raw material was performed, and the air permeability and the production rate were evaluated.

1.試験条件
(1)原料配合
本試験に使用した焼結用原料の化学成分組成および配合率を表1に示す。
1. Test conditions (1) Raw material blending Table 1 shows the chemical component composition and blending ratio of the raw materials for sintering used in this test.

Figure 2009097027
Figure 2009097027

同表に示すとおり、配合率は、鉄鉱石、副原料(ドロマイト、蛇紋粉)、石灰石および生石灰の総和を100とした新原料に対する比率により表示した。また、粉コークスの配合率は、新原料の総和に対する外数比率により表示した。上記の新原料に粉コークスおよび返鉱を加えたものを全原料とし、返鉱配合率は全原料に対して10質量%とした。   As shown in the table, the blending ratio was expressed as a ratio to the new raw material where the sum of iron ore, auxiliary raw materials (dolomite, serpentine powder), limestone and quicklime was 100. Moreover, the compounding ratio of the powder coke was indicated by the ratio of the external number to the total sum of the new raw materials. The above-mentioned new raw material plus powdered coke and return ore was used as the total raw material, and the return rate was 10% by mass with respect to the total raw material.

返鉱は、実機焼結機の冷却機9から排出された後に、篩分処理された篩下鉱10を使用した。図3は、実施例1において使用した返鉱の粒度分布を示す図である。同図に示されたように、本返鉱の粒度分布は、0.25mm以下の比率が7質量%と低い。   For the return ore, the sieving ore 10 subjected to sieving after being discharged from the cooler 9 of the actual sintering machine was used. FIG. 3 is a graph showing the particle size distribution of the returned ore used in Example 1. As shown in the figure, the particle size distribution of this ore is as low as 7% by mass with a ratio of 0.25 mm or less.

(2)造粒方法
造粒機としてドラムミキサーを用い、4分間造粒した。本発明例の試験番号E1は、造粒後に返鉱を添加し、スコップを用いた手混ぜにより返鉱を配合した。比較例の試験番号E2およびE3は、造粒前に他の焼結用原料とともに返鉱を配合して造粒を行った。ここで、水分値については、返鉱の添加前における水分含有率を造粒時の水分含有率と規定し、返鉱の添加後における水分含有率を焼成時の水分含有率と規定した。すなわち、「造粒時の水分含有率」とは、造粒直後の焼結用原料の水分含有率(質量%)を意味し、「焼成時の水分含有率」とは、造粒後に返鉱を添加した焼結配合原料の焼成段階における水分含有率(質量%)を意味する。したがって、返鉱を添加した後に造粒する比較例では、造粒時の水分含有率と焼成時の水分含有率とは同じ値となる。
(2) Granulation method Using a drum mixer as a granulator, granulation was performed for 4 minutes. Test No. E1 of the present invention was obtained by adding the return mineral after granulation and blending the return mineral by hand mixing with a scoop. Test numbers E2 and E3 of the comparative examples were granulated by blending the return mineral together with other sintering raw materials before granulation. Here, regarding the moisture value, the moisture content before the addition of the return mineral was defined as the moisture content at the time of granulation, and the moisture content after the addition of the return mineral was defined as the moisture content at the time of firing. That is, “moisture content at the time of granulation” means the moisture content (mass%) of the raw material for sintering immediately after granulation, and “moisture content at the time of firing” means return to mineral after granulation. Means the moisture content (% by mass) in the firing stage of the sintered blended raw material to which is added. Therefore, in the comparative example in which granulation is performed after the return ore is added, the moisture content during granulation and the moisture content during firing are the same value.

表2に水分含有率および返鉱添加条件を示した。   Table 2 shows the moisture content and the conditions for adding ore return.

Figure 2009097027
Figure 2009097027

同表において、比較例の試験番号E2は、本発明例の試験番号E1の焼成時の水分含有率である7.3質量%と同量の水分含有率とし、比較例の試験番号E3は、本発明例の試験番号E1の造粒時の水分含有率である7.9質量%と同量の水分含有率とした。また、高温返鉱としては、実験室の加熱炉により600℃に加熱した返鉱試料を使用した。   In the same table, the test number E2 of the comparative example is the moisture content of the same amount as 7.3% by mass, which is the moisture content at the time of firing of the test number E1 of the present invention, and the test number E3 of the comparative example is The moisture content was the same as 7.9% by mass, which is the moisture content during granulation of test number E1 of the present invention. Moreover, as the high-temperature return ore, a return ore sample heated to 600 ° C. by a laboratory heating furnace was used.

(3)焼成試験方法
直径300mm×深さ500mmの円筒型焼結鍋試験装置に焼結配合原料を装入し、焼成試験を行った。焼成試験に際し、焼結鍋内の吸引圧力は9.807×103Pa(1000mmAq)で一定とした。円筒型焼結鍋試験装置に設けられた圧力計と流量計を用いて、焼成前に冷間通気性を、また、焼成後に熱間通気性をそれぞれ測定した。
(3) Firing test method A sintered blending raw material was charged into a cylindrical sintering pot testing apparatus having a diameter of 300 mm and a depth of 500 mm, and a firing test was performed. During the firing test, the suction pressure in the sintering pot was constant at 9.807 × 10 3 Pa (1000 mmAq). Using a pressure gauge and a flow meter provided in the cylindrical sintering pot test apparatus, cold air permeability was measured before firing, and hot air permeability was measured after firing.

通気性(JPU)は下記(1)式により算出した。   The air permeability (JPU) was calculated by the following formula (1).

通気性=(Q/A)・(h/ΔP)0.6 ・・・・(1)
ここで、Q(m3/min)はガス流量、A(m2)は鍋の断面積、h(mm)は試験装置に装入した原料の層高、ΔP(mmAq)は鍋下の圧力である。
Breathability = (Q / A) · (h / ΔP) 0.6 · · · (1)
Here, Q (m 3 / min) is the gas flow rate, A (m 2 ) is the cross-sectional area of the pan, h (mm) is the bed height of the raw material charged in the test apparatus, and ΔP (mmAq) is the pressure under the pan It is.

また、生産性の指標として、焼結機1m2当たりについての1日当たりの焼結鉱生産量である生産率を算出し、比較した。なお、焼結鉱生産量とは成品の生産量、すなわち粒径5mm以上の焼結鉱の生産量を意味する。 In addition, as an index of productivity, a production rate, which is a sinter production amount per day for 1 m 2 of a sintering machine, was calculated and compared. The production amount of sintered ore means the production amount of a product, that is, the production amount of sintered ore having a particle diameter of 5 mm or more.

2.試験結果
図4は、本発明例ならびに比較例における焼結鉱品質および生産率を比較して示す図であり、同図(a)は冷間通気性の比較を、同図(b)は熱間通気性の比較を、そして、同図(c)は生産率の比較をそれぞれ示す。
2. Test Results FIGS. 4A and 4B are diagrams comparing the sinter quality and production rate in the present invention example and the comparative example. FIG. 4A shows a comparison of cold air permeability, and FIG. A comparison of air permeability is shown, and FIG. 10C shows a comparison of production rates.

本発明例の試験番号E1は、比較例の試験番号E2に比べて、冷間通気性および熱間通気性のいずれも大きく向上した。さらに、熱間通気性の向上によって、生産率は6%程度上昇した。これにより、焼成時水分含有率が同量であっても、水分含有率が高い状態で造粒した後に返鉱を添加して水分含有率を低下させることにより、造粒が促進されて冷間通気性が向上することが確認された。上記の結果から、冷間通気性の向上が熱間通気性の向上および生産率の改善に有効であることが明確となった。   The test number E1 of the present invention example greatly improved both the cold air permeability and the hot air permeability as compared with the test number E2 of the comparative example. Furthermore, the production rate increased by about 6% due to the improvement in hot air permeability. As a result, even if the moisture content during firing is the same amount, granulation is promoted by reducing the moisture content by adding a return mineral after granulation in a state where the moisture content is high, and cold It was confirmed that the air permeability was improved. From the above results, it was clarified that the improvement of the cold air permeability is effective for the improvement of the hot air permeability and the production rate.

本発明例の試験番号E1は、比較例の試験番号E3に比べて、冷間通気性が若干低下したが、熱間通気性は大きく向上した。さらに、熱間通気性の向上によって、生産率は6%程度上昇した。すなわち、同じ水分含有率で造粒した場合においても、造粒後に返鉱を添加して水分含有率を低下させることにより、生産率が上昇した。これにより、造粒後に水分含有率を低下させる本発明の方法は、生産率の改善に有効であることが確認された。   Test No. E1 of the present invention example had a slight decrease in cold air permeability as compared with Test No. E3 of the comparative example, but the hot air permeability was greatly improved. Furthermore, the production rate increased by about 6% due to the improvement in hot air permeability. That is, even when granulation was performed at the same moisture content, the production rate was increased by adding the return mineral after granulation to lower the moisture content. Thereby, it was confirmed that the method of the present invention for reducing the water content after granulation is effective in improving the production rate.

(実施例2)
第3発明の効果を確認するため、焼結配合原料を60kg使用したバッチ式焼結試験を実施し、通気性および生産率を評価した。
(Example 2)
In order to confirm the effect of the third invention, a batch-type sintering test using 60 kg of a sintered blending raw material was performed to evaluate the air permeability and the production rate.

1.試験条件
(1)原料配合
本試験に使用した焼結用原料の化学成分組成および配合率を表3に示す。
1. Test conditions (1) Raw material blending Table 3 shows the chemical component composition and blending ratio of the raw materials for sintering used in this test.

Figure 2009097027
Figure 2009097027

同表に示すように、配合率は、鉄鉱石、副原料(蛇紋粉)および石灰石の総和を100とした新原料に対する比率により表示した。また、粉コークスの配合率は、新原料の総和に対する外数比率により表示した。上記の新原料に粉コークスおよび返鉱を加えたものを全原料とし、返鉱配合率は全原料に対して15質量%とした。返鉱は、実機焼結機の冷却機9から排出された後に、篩分処理された篩下鉱10を使用した。   As shown in the table, the blending ratio was expressed as a ratio to the new raw material where the sum of iron ore, auxiliary raw material (serpentine powder) and limestone was 100. Moreover, the compounding ratio of the powder coke was indicated by the ratio of the external number to the total of the new raw materials. The above-mentioned new raw material plus powdered coke and return ore was used as the total raw material, and the return rate was 15% by mass with respect to the total raw material. For the return ore, the sieving ore 10 subjected to sieving after being discharged from the cooler 9 of the actual sintering machine was used.

(2)造粒方法
実施例1と同様に、造粒機としてドラムミキサーを用い、4分間造粒した。本発明例の試験番号E4は、造粒前に1mmで篩分処理を行った細粒の返鉱(すなわち、篩下の返鉱)を他の焼結用原料とともに造粒を行い、造粒後に1mmで篩分処理を行った粗粒の返鉱(すなわち、篩上の返鉱)を添加し、スコップを用いた手混ぜを行った。比較例の試験番号E5は、造粒前に1mmで篩分処理を行った粗粒の返鉱を他の焼結用原料とともに造粒を行い、造粒後に1mmで篩分処理を行った細粒の返鉱を添加し、スコップを用いた手混ぜを行った。また、比較例の試験番号E6は、造粒前に篩分処理を行わない返鉱を他の焼結用原料とともに造粒を行い、造粒後にも篩分処理を行わない返鉱を添加し、スコップを用いた手混ぜを行った。
(2) Granulation method As in Example 1, granulation was performed for 4 minutes using a drum mixer as a granulator. Test No. E4 of the present invention is a granulation of a fine-grained ore (that is, an under-sieving return) that has been subjected to a sieving treatment at 1 mm before granulation together with other sintering raw materials. Coarse-grained ore that had been subjected to sieving treatment at 1 mm later (that is, return on the sieve) was added and hand-mixed with a scoop. Test No. E5 of the comparative example is a fine particle obtained by granulating a coarse-grained ore obtained by sieving at 1 mm before granulation together with other sintering raw materials, and sieving by 1 mm after granulation. Grain return was added and hand-mixed with a scoop. Moreover, test number E6 of a comparative example adds the return ore which does not perform a sieving process after granulation, granulate the return ore which does not perform a sieving process before granulation with other raw materials for sintering. , Hand-mixed with a scoop.

表4に水分含有率および返鉱添加条件を示した。   Table 4 shows the water content and the conditions for adding ore return.

Figure 2009097027
Figure 2009097027

(3)焼成試験方法
直径300mm×深さ500mmの円筒型焼結鍋試験装置に焼結配合原料を装入し、焼成試験を行った。焼成試験に際し、焼結鍋内の吸引圧力は9.807×103Pa(1000mmAq)で一定とした。鍋試験装置に設けられた圧力計と流量計を用いて、焼成前に冷間通気性を、また、焼成後に熱間通気性をそれぞれ測定した。また、生産性の指標として、焼結機1m2当たりについての1日当たりの、粒径5mm以上の焼結鉱生産量である生産率を算出し、比較した。
(3) Firing test method A sintered blending raw material was charged into a cylindrical sintering pot testing apparatus having a diameter of 300 mm and a depth of 500 mm, and a firing test was performed. During the firing test, the suction pressure in the sintering pot was constant at 9.807 × 10 3 Pa (1000 mmAq). Using a pressure gauge and a flow meter provided in the pan testing apparatus, cold air permeability was measured before firing, and hot air permeability was measured after firing. In addition, as an index of productivity, a production rate, which is a production amount of sintered ore having a particle diameter of 5 mm or more per day per 1 m 2 of the sintering machine, was calculated and compared.

2.試験結果
図5は、本発明例および比較例における焼結鉱生産率の比較を示す図である。
2. Test Results FIG. 5 is a diagram showing a comparison of sinter production rates in the present invention example and the comparative example.

本発明例の試験番号E4は、比較例の試験番号E5および試験番号E6のいずれと比較しても、生産率が上昇した。これにより、造粒時の水分含有率および焼成時の水分含有率が同量であり、かつ造粒前後に配合する返鉱比率が同量であっても、造粒後に添加する返鉱として粗粒を使用することにより、生産率が効果的に改善されることが確認された。   The production rate of the test number E4 of the inventive example increased even when compared with both the test number E5 and the test number E6 of the comparative example. As a result, even if the moisture content during granulation and the moisture content during firing are the same amount, and the return ratio to be blended before and after granulation is the same amount, it is rough as the return ore added after granulation. It was confirmed that the production rate was effectively improved by using the grains.

本発明の焼結鉱の製造方法によれば、焼結用原料を造粒した後に、返鉱を焼結配合原料の全量に対して5〜25質量%の比率で添加し、この混合物を焼成することにより、焼結鉱の生産性が大幅に改善される。また、焼結用原料を造粒した後に、返鉱を、造粒後の返鉱添加前の焼結用原料水分に比べて返鉱添加後の焼結配合原料水分が0.3〜1.5質量%の範囲で減少するように添加し、この混合物を焼成することによっても、焼結鉱の生産性が改善される。さらには、造粒後に添加する返鉱として選択的に粗粒の返鉱を用いることにより、一層生産性が向上する。したがって、本発明の方法は、優れた経済性のもとに生産性を向上させることができる焼結鉱の製造方法として、製銑原料分野において広範に適用できる。   According to the method for producing a sintered ore of the present invention, after granulating the sintering raw material, the return ore is added at a ratio of 5 to 25% by mass with respect to the total amount of the sintered blending raw material, and this mixture is fired. By doing so, the productivity of sintered ore is greatly improved. Moreover, after granulating the raw material for sintering, compared to the raw material moisture for sintering after granulation before the addition of return mineral after granulation, the sintered blended raw material moisture after the addition of return mineral is 0.3-1. The productivity of sintered ore is also improved by adding so as to decrease within the range of 5% by mass and firing this mixture. Furthermore, productivity is further improved by selectively using coarse-grained ore as a return ore added after granulation. Therefore, the method of the present invention can be widely applied in the field of raw materials for ironmaking as a method for producing sintered ore that can improve productivity with excellent economic efficiency.

第1発明および第2発明に対応するプロセスフローを示す図である。It is a figure which shows the process flow corresponding to 1st invention and 2nd invention. 第3発明に対応するプロセスフローを示す図である。It is a figure which shows the process flow corresponding to 3rd invention. 実施例1において使用した返鉱の粒度分布を示す図である。It is a figure which shows the particle size distribution of the return ore used in Example 1. FIG. 本発明例ならびに比較例における焼結鉱品質および生産率を比較して示す図であり、同図(a)は冷間通気性の比較を示す図であり、同図(b)は熱間通気性の比較を示す図であり、同図(c)は生産率の比較を示す図である。It is a figure which compares and shows the sintered ore quality and production rate in this invention example and a comparative example, the figure (a) is a figure which shows a comparison of cold air permeability, and the figure (b) is hot air ventilation. (C) is a figure which shows the comparison of a production rate. 本発明例および比較例についての焼結鉱の生産率の比較を示す図である。It is a figure which shows the comparison of the production rate of the sintered ore about this invention example and a comparative example.

符号の説明Explanation of symbols

1:焼結機、 2:サージホッパー、 3:造粒機、 4:返鉱、 5:造粒後の焼結用原料(造粒後原料)、 6:焼結用原料、 7:水分、 8:篩、 9:冷却機、
10:篩下鉱(返鉱)、11:篩下鉱(返鉱)、12:ダスト(返鉱)、 13:篩上鉱、
14:粗粒の返鉱(篩上)、 15:細粒の返鉱(篩下)
1: Sintering machine, 2: Surge hopper, 3: Granulator, 4: Returning, 5: Raw material for sintering after granulation (raw material after granulation), 6: Raw material for sintering, 7: Moisture, 8: Sieve, 9: Cooling machine,
10: sieving ore (returning), 11: sieving ore (returning), 12: dust (returning), 13: sieving ore,
14: Coarse grain return (on sieve) 15: Fine grain return (under sieve)

Claims (3)

焼結用原料を造粒した後に、全部または一部の返鉱を添加した混合物を焼結配合原料として用いる焼結鉱の製造方法において、焼結配合原料に対して造粒後に添加する返鉱の比率を5〜25質量%とすることを特徴とする焼結鉱の製造方法。   After granulating the raw material for sintering, in the method for producing sintered ore using a mixture obtained by adding all or part of the return mineral as a raw material for sintering, the return ore added after granulation to the raw material for sintering The manufacturing method of the sintered ore characterized by making the ratio of 5-25 mass%. 焼結用原料を造粒した後に、全部または一部の返鉱を添加した混合物を焼結配合原料として用いる焼結鉱の製造方法において、該返鉱の添加により、造粒後の返鉱添加前における焼結用原料の水分含有率に比べて返鉱添加後における焼結配合原料の水分含有率を0.3〜1.5質量%の範囲で減少させることを特徴とする焼結鉱の製造方法。   In the method for producing sintered ore using a mixture containing all or part of the return mineral after granulating the raw material for sintering as the sintering compounding material, the addition of the return mineral after granulation Compared to the moisture content of the sintering raw material before, the moisture content of the sintered blending raw material after the return addition is reduced in the range of 0.3 to 1.5 mass%. Production method. 前記造粒後に添加する返鉱として、粗粒部分と細粒部分とに分級された返鉱のうちの粗粒部分を選択的に用いることを特徴とする請求項1または2に記載の焼結鉱の製造方法。   The sintering according to claim 1 or 2, wherein a coarse portion of the return ore classified into a coarse portion and a fine portion is selectively used as the return ore added after the granulation. Manufacturing method of ore.
JP2007267330A 2007-10-15 2007-10-15 Method for producing sintered ore Active JP5315659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267330A JP5315659B2 (en) 2007-10-15 2007-10-15 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267330A JP5315659B2 (en) 2007-10-15 2007-10-15 Method for producing sintered ore

Publications (3)

Publication Number Publication Date
JP2009097027A true JP2009097027A (en) 2009-05-07
JP2009097027A5 JP2009097027A5 (en) 2010-04-02
JP5315659B2 JP5315659B2 (en) 2013-10-16

Family

ID=40700308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267330A Active JP5315659B2 (en) 2007-10-15 2007-10-15 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5315659B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145332A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Method for manufacturing pseudo-particles for sintered ore manufacture, and method for manufacturing sintered ore
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore
JP2018178166A (en) * 2017-04-06 2018-11-15 新日鐵住金株式会社 Manufacturing method of blending raw material for sinter
JP2020007615A (en) * 2018-07-10 2020-01-16 日本製鉄株式会社 Pretreatment method of raw material for sintering
JP2020033582A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 Granulation method of blending raw material
JP2020084207A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Manufacturing method of sintered ore
CN113718101A (en) * 2021-09-26 2021-11-30 北京首钢国际工程技术有限公司 Sintering mixing granulation process and system
CN115261615A (en) * 2022-07-30 2022-11-01 山东泰山钢铁集团有限公司 Sintering and batching method for return fines graded layered distribution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137433A (en) * 1981-02-19 1982-08-25 Sumitomo Metal Ind Ltd Sintering method for iron ore
JPS62297421A (en) * 1986-06-18 1987-12-24 Nippon Steel Corp Multi-stage ignition type sintering method
JPH0762456A (en) * 1993-08-26 1995-03-07 Nkk Corp Production of sintered ore
JP2003129139A (en) * 2001-10-26 2003-05-08 Nippon Steel Corp Method for treating raw material prior to sintering
JP2007138243A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Method for drying raw granulated material to be sintered and method for producing sintered ore
JP2007284744A (en) * 2006-04-17 2007-11-01 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137433A (en) * 1981-02-19 1982-08-25 Sumitomo Metal Ind Ltd Sintering method for iron ore
JPS62297421A (en) * 1986-06-18 1987-12-24 Nippon Steel Corp Multi-stage ignition type sintering method
JPH0762456A (en) * 1993-08-26 1995-03-07 Nkk Corp Production of sintered ore
JP2003129139A (en) * 2001-10-26 2003-05-08 Nippon Steel Corp Method for treating raw material prior to sintering
JP2007138243A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Method for drying raw granulated material to be sintered and method for producing sintered ore
JP2007284744A (en) * 2006-04-17 2007-11-01 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145332A1 (en) * 2012-03-27 2013-10-03 Jfeスチール株式会社 Method for manufacturing pseudo-particles for sintered ore manufacture, and method for manufacturing sintered ore
JP2013204058A (en) * 2012-03-27 2013-10-07 Jfe Steel Corp Method for manufacturing pseudo particle for sintered ore, and method for manufacturing the sintered ore
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore
JP2018178166A (en) * 2017-04-06 2018-11-15 新日鐵住金株式会社 Manufacturing method of blending raw material for sinter
JP2020007615A (en) * 2018-07-10 2020-01-16 日本製鉄株式会社 Pretreatment method of raw material for sintering
JP2020033582A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 Granulation method of blending raw material
JP7067372B2 (en) 2018-08-28 2022-05-16 日本製鉄株式会社 Granulation method for compounded raw materials
JP2020084207A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Manufacturing method of sintered ore
CN113718101A (en) * 2021-09-26 2021-11-30 北京首钢国际工程技术有限公司 Sintering mixing granulation process and system
CN115261615A (en) * 2022-07-30 2022-11-01 山东泰山钢铁集团有限公司 Sintering and batching method for return fines graded layered distribution

Also Published As

Publication number Publication date
JP5315659B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5315659B2 (en) Method for producing sintered ore
JP5194378B2 (en) Method for producing sintered ore
JP6421666B2 (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
JP2014214334A (en) Method for manufacturing sintered ore
JP4604849B2 (en) Granulation method of sintering raw material
TWI480380B (en) Production method of pseudo-particles for sintering production and method for manufacturing sintered ore
JP7151055B2 (en) How to use steelmaking slag in sintering
EP3892744A1 (en) Sintered ore manufacturing method
JP6369113B2 (en) Method for producing sintered ore
JP4830728B2 (en) Method for producing sintered ore
JP2014214339A (en) Method for producing sintered ore
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP2002371322A (en) Method for manufacturing sintered ore
JP5206030B2 (en) Method for producing sintered ore
JP5126580B2 (en) Method for producing sintered ore
JP2007031818A (en) Method for manufacturing sintered ore
JP6155602B2 (en) Method for producing sintered ore
JPH10219361A (en) Treatment of sintering raw material
JP2009185315A (en) Method for granulating raw material to be sintered
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP6885164B2 (en) Sintered ore manufacturing method
JP7087939B2 (en) Manufacturing method of sintered raw material
JP2009114485A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R151 Written notification of patent or utility model registration

Ref document number: 5315659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350