JP2015193930A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2015193930A
JP2015193930A JP2015063219A JP2015063219A JP2015193930A JP 2015193930 A JP2015193930 A JP 2015193930A JP 2015063219 A JP2015063219 A JP 2015063219A JP 2015063219 A JP2015063219 A JP 2015063219A JP 2015193930 A JP2015193930 A JP 2015193930A
Authority
JP
Japan
Prior art keywords
ore
return
raw material
granulation
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015063219A
Other languages
Japanese (ja)
Other versions
JP6421666B2 (en
Inventor
松村 勝
Masaru Matsumura
勝 松村
泰英 山口
Yasuhide Yamaguchi
泰英 山口
応樹 原
Masaki Hara
応樹 原
上城 親司
Shinji Kamishiro
親司 上城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015063219A priority Critical patent/JP6421666B2/en
Publication of JP2015193930A publication Critical patent/JP2015193930A/en
Application granted granted Critical
Publication of JP6421666B2 publication Critical patent/JP6421666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing sintered ore capable of increasing a production rate, after the granulation of a sintering raw material including no return ore, by adding return ore in which grain size is optimized.SOLUTION: In the method for producing sintered ore where a sintered ore is produced using a Dwight Lloyd type sintering machine, the method includes: a step where moisture is added to a sintering raw material not including return ore so as to be granulated to produce a granulated matter; and a step where return ore of 1 to 80 mass% is added to the granulated matter, and they are mixed to produce a mixture, and it is characterized in that the mixture is used as blending raw material. Further, provided is a method for producing sintered ore characterized in that a carbonaceous material for sintering is charged to a granulation machine after the passage of prescribed time from the start of the granulation.

Description

本発明は、焼結鉱の製造方法に関する。特に、返鉱を含まない焼結原料の造粒後に、粒度を適正化した返鉱を添加する焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore. It is related with the manufacturing method of the sintered ore which adds the return ore which optimized particle size after granulation of the sintering raw material which does not contain a return ore especially.

焼結用原料は、複数種類の鉄鉱石、CaO源としての石灰石、SiO2およびMgO源としての副原料、さらに燃料としての粉コークス、返鉱などから構成されている。通常、これらの原料は、その銘柄毎に原料槽に貯蔵されて、配合に応じて定量切り出しされる。切り出された各原料および燃料は、原料搬送用のベルトコンベアー上で合流し、造粒機まで搬送される。造粒機では、前記の焼結用原料に水分が添加されて造粒が行われる。 The raw material for sintering is composed of a plurality of types of iron ore, limestone as a CaO source, auxiliary raw materials as a source of SiO 2 and MgO, powder coke as a fuel, and return ore. Usually, these raw materials are stored in a raw material tank for each brand, and quantitatively cut out according to the blending. The cut out raw materials and fuel are merged on a belt conveyor for transporting the raw materials and transported to a granulator. In the granulator, the moisture is added to the sintering raw material to perform granulation.

さらに、造粒後の焼結原料は、原料装入装置のサージホッパーと称されるホッパーから焼結機に供給され、パレット上に装入されて焼結原料充填層を形成する。焼結原料充填層はパレットとともに水平方向に移送され、充填層の最上部に点火される。その後、焼結原料充填層の上方から下方に向かって、大気中の空気が同層内を通して下方吸引されることによって、粉コークスが燃焼するとともに、燃焼により生成した高温ガスにより原料粒子が加熱昇温される。その結果、原料充填層の上層部から下層部に向かって焼結反応が順次進行する。焼結原料の上層部から下層部まで焼結が完了した塊状物(以下、「焼結ケーキ」とも記す)は、焼結機の排鉱部において粗破砕された後に、冷却機により冷却される。   Furthermore, the sintered raw material after granulation is supplied to a sintering machine from a hopper called a surge hopper of a raw material charging device, and is charged on a pallet to form a sintered raw material packed layer. The sintered raw material packed bed is transferred along with the pallet in the horizontal direction and ignited at the top of the packed bed. After that, air in the atmosphere is sucked downward through the same layer from the upper side to the lower side of the sintered raw material packed layer, so that the powder coke burns and the raw material particles are heated and heated by the high-temperature gas generated by the combustion. Be warmed. As a result, the sintering reaction proceeds sequentially from the upper layer portion to the lower layer portion of the raw material filled layer. A lump (hereinafter also referred to as “sintered cake”) that has been sintered from the upper layer portion to the lower layer portion of the sintering raw material is roughly crushed in the exhausting portion of the sintering machine, and then cooled by a cooler. .

前述の通り、造粒機では、焼結用原料に水分が添加されて造粒が行われる。焼結用原料に水分を添加して造粒操作を行うことにより、水がバインダーとなって原料粒子が相互に付着する。これにより、見掛けの原料粒径(以下、「造粒後原料粒径」ともいう)が増大し、焼結原料が焼結機に供給された際に、原料充填層の空隙率および空隙径が増加して、通気性が向上する。   As described above, in the granulator, moisture is added to the raw material for sintering and granulation is performed. By performing the granulation operation by adding moisture to the raw material for sintering, water becomes a binder and the raw material particles adhere to each other. As a result, the apparent raw material particle size (hereinafter also referred to as “post-granulated raw material particle size”) increases, and when the sintered raw material is supplied to the sintering machine, the porosity and void diameter of the raw material packed layer are reduced. Increases air permeability.

このように、焼結用原料への水分添加操作は、造粒機内での造粒を容易にし、原料充填層の通気性を向上させるために不可欠である。しかしながら、焼結反応が開始すると、水分が通気性阻害の原因となる。焼結反応が上層部から下層部に進行するにつれて、原料充填層では水分が蒸発し、水蒸気がより下層部へ凝集することにより、原料充填層の通気性が低下する。さらに、水分が蒸発するためには気化熱を要することから、この気化熱を補填するための熱源として高温ガスが必要になるとともに、蒸発した水は水蒸気となって排ガス量を増加させる。すなわち、水分の添加は、通気性の低下および必要ガス量(必要風量)の上昇を招く。   Thus, the operation of adding water to the raw material for sintering is indispensable for facilitating granulation in the granulator and improving the air permeability of the raw material packed layer. However, when the sintering reaction starts, moisture causes air permeability inhibition. As the sintering reaction progresses from the upper layer portion to the lower layer portion, moisture evaporates in the raw material packed layer, and water vapor aggregates to the lower layer portion, thereby reducing the air permeability of the raw material packed layer. Furthermore, since the heat of vaporization is required for the water to evaporate, a high-temperature gas is required as a heat source for supplementing the heat of vaporization, and the evaporated water becomes water vapor to increase the amount of exhaust gas. That is, the addition of moisture causes a decrease in air permeability and an increase in required gas volume (necessary air volume).

このように、水分は、通気性を上昇(向上)させるという利点と、通気性を低下(悪化)させるとともに必要ガス量を増大させるという欠点の両面を有している。このため、水分の有する機能を最大限に発揮させ、かつ、その悪影響を可能な限り低減するために、乾燥した返鉱の使用方法に関する発明の開示がある。   As described above, moisture has both the advantage of increasing (improving) the air permeability and the drawback of decreasing (deteriorating) the air permeability and increasing the required gas amount. For this reason, in order to make the function which moisture has to the maximum be exhibited, and to reduce the bad influence as much as possible, there is a disclosure of an invention relating to a method for using dried return ore.

特許文献1には、2台の造粒機を直列に配置して、返鉱を含まない焼結用原料を1次ミキサー(造粒機)において所定量の水分を添加しながら混合し、次いで、2次ミキサー(造粒機)の入側で返鉱を添加し、2次ミキサーで造粒する方法が開示されている。
特許文献2には、2台の造粒機を直列に配置して、1次ミキサー(造粒機)において、造粒性の悪いピソライト鉱石と他の鉱石と副原料と燃料に所定量の水分を添加しながら混合し、次いで、2次ミキサー(造粒機)の入側で1次ミキサーの混合物に水と返鉱を添加し、2次ミキサーで造粒する方法が開示されている。
特許文献3に、焼結用原料に水分を添加して造粒を完了し、その後に最終の造粒機の出口から原料装入装置のサージホッパー入口までの間で返鉱を添加し、これにより得られた混合物を前記焼結原料の全量として用いる発明が開示されている。
特許文献4に、焼結用原料の造粒後に一部又は全部の返鉱を添加し、返鉱割合を5〜25%にする燒結鉱の製造方法に関する発明が開示されている。
非特許文献1〜5には、造粒後の焼結原料への返鉱添加による通気性改善の効果の記載がある。
In Patent Document 1, two granulators are arranged in series, and a raw material for sintering that does not include return mineral is mixed in a primary mixer (granulator) while adding a predetermined amount of water, A method is disclosed in which returning ore is added on the entry side of a secondary mixer (granulator) and granulated with a secondary mixer.
In Patent Document 2, two granulators are arranged in series, and in a primary mixer (granulator), a predetermined amount of water is contained in pisolite ore, other ores, sub-raw materials, and fuel with poor granulation properties. Is added, and then, water and return mineral are added to the mixture of the primary mixer on the inlet side of the secondary mixer (granulator), and the mixture is granulated with the secondary mixer.
In Patent Literature 3, moisture is added to the raw material for sintering to complete granulation, and after that, return ore is added from the final granulator outlet to the surge hopper inlet of the raw material charging device. An invention using the mixture obtained by the above as the total amount of the sintering raw material is disclosed.
Patent Document 4 discloses an invention relating to a method for producing a sintered ore by adding a part or all of the ore after granulation of the raw material for sintering to make the rate of return to 5 to 25%.
Non-Patent Documents 1 to 5 describe the effect of improving the air permeability by adding the return to the sintered raw material after granulation.

一方、これまで、粉コークスを造粒過程の最終段階で添加することで、通気性が改善することが知られている。具体的には、粉コークス等の固体燃料をミキサー下流側領域で添加する。
特許文献5に、固体燃料系粉原料をミキサー内へ添加して10~120秒間添加する発明が開示されている。
非特許文献6に、固体燃料および石灰石をミキサー内へ添加して、通気性改善の効果の記載がある。
On the other hand, it has been known that air permeability is improved by adding powder coke at the final stage of the granulation process. Specifically, solid fuel such as powdered coke is added in the downstream region of the mixer.
Patent Document 5 discloses an invention in which a solid fuel powder material is added to a mixer and added for 10 to 120 seconds.
Non-Patent Document 6 describes the effect of improving air permeability by adding solid fuel and limestone into a mixer.

特開昭60−052533号公報JP 60-052533 A 特開2000−256756号公報JP 2000-256756 A 特許5194378号公報Japanese Patent No. 5194378 特開2009−97027号公報JP 2009-97027 A 特開2004−204332号公報JP 2004-204332 A

山口ら:CAMP-ISIJ22(2009),832Yamaguchi et al .: CAMP-ISIJ22 (2009), 832 松村ら:CAMP-ISIJ22(2009),833Matsumura et al .: CAMP-ISIJ22 (2009), 833 中川ら:CAMP-ISIJ22(2009),834Nakagawa et al .: CAMP-ISIJ22 (2009), 834 山口ら:CAMP-ISIJ24(2011),195Yamaguchi et al .: CAMP-ISIJ24 (2011), 195 中川ら:CAMP-ISIJ24(2011),196Nakagawa et al .: CAMP-ISIJ24 (2011), 196 大山ら:TETSU-to-Hagane90(2004),546Oyama et al .: TETSU-to-Hagane90 (2004), 546

特許文献1に記載の発明は、1次ミキサーの混合物に、造粒性の良い返鉱を混合するので、全体として水分を低下させ、生産率が改善されたとされている。しかし、返鉱を2次ミキサーで混合しており、乾燥した返鉱の使用により、調湿混合された焼結原料から水分が奪われ、これが原因となって、造粒が阻害されるという問題がある。また、返鉱の適切な粒度についての言及はない。
特許文献2に記載の発明は、まず、1次ミキサーで、造粒性の悪いピソライト鉱石を造粒し、次に、2次ミキサーで、1次ミキサーの混合物と造粒性の良い返鉱を造粒するものであり、造粒性の悪いピソライト鉱石の造粒性の向上が目的である。そして、返鉱を2次ミキサーで混合しており、また、返鉱の適切な粒度についての言及はない。
特許文献3に記載の発明は、返鉱の全てを焼結用原料の造粒後に添加するものであるが、返鉱の粒度が不適切であるため、生産性の向上が少ないという問題がある。そして、返鉱の適切な粒度についての言及はない。
特許文献4に記載の発明は、焼結用原料の造粒後に添加する返鉱の使用割合を規定するものであり、返鉱の適切な粒度についての言及はない。
非特許文献1〜5には、造粒後の焼結原料への返鉱添加による通気性改善の効果の記載があるが、返鉱の適切な粒度についての言及はない。
非特許文献6には、粉コークスおよび石灰石をミキサー内への添加による通気性改善および品質改善の効果の記載があるが、造粒後原料への返鉱添加との併用についての言及はない。
In the invention described in Patent Document 1, since the return mixture having good granulation property is mixed with the mixture of the primary mixer, it is said that the water content is lowered as a whole and the production rate is improved. However, there is a problem that the return ore is mixed with the secondary mixer, and moisture is deprived from the humidity-mixed sintered raw material due to the use of the dried return ore, which causes granulation to be hindered. There is. There is no mention of the appropriate grain size for return.
The invention described in Patent Document 2 first granulates pisolite ore with poor granulation property using a primary mixer, and then uses a secondary mixer to produce a mixture of the primary mixer and return granulation with good granulation property. It is intended to improve granulation of pisolite ore with poor granulation. And the return ore is mixed with the secondary mixer, and there is no mention about the suitable particle size of the return ore.
The invention described in Patent Document 3 adds all of the return mineral after granulation of the raw material for sintering, but there is a problem that the improvement in productivity is small because the particle size of the return mineral is inappropriate. . And there is no mention of the appropriate grain size for return.
The invention described in Patent Document 4 prescribes the ratio of use of return ore added after granulation of the raw material for sintering, and there is no mention of an appropriate particle size of return ore.
Non-Patent Documents 1 to 5 have a description of the effect of improving air permeability by addition of return to the sintered raw material after granulation, but there is no mention of an appropriate particle size of return.
Non-Patent Document 6 describes the effect of improving air permeability and quality by adding powdered coke and limestone into the mixer, but does not mention the combined use with the addition of return to the raw material after granulation.

乾燥状態にある返鉱が調湿混合された焼結原料から水分を奪うことにより、造粒が阻害されるという問題がある。また、使用する返鉱の粒度により、焼結原料の造粒性が異なるという問題がある。   There is a problem in that granulation is hindered by dehydration of dehydrated ore from the sintered raw material in which moisture conditioning is mixed. In addition, there is a problem that the granulation property of the sintered raw material varies depending on the particle size of the return mineral used.

本発明は、上記の問題に鑑みてなされたものである。即ち、乾燥状態の返鉱を効果的に活用することによって、燒結鉱の生産率を増加させることが可能となるが、焼結原料と返鉱の混合・造粒の方法及び、混合する返鉱の粒度の適正値が不明確であるという問題がある。
本発明の目的は、返鉱を含まない焼結原料の造粒後に、粒度を適正化した返鉱を添加することにより、生産率を増加させることが可能な焼結鉱の製造方法を提供することである。
さらに、該造粒操作の最終段階において、粉コークス等の固体燃料を添加することにより、歩留向上により生産率をさらに増加させることおよび被還元性向上が可能な焼結鉱の製造方法を提供することである。
The present invention has been made in view of the above problems. In other words, it is possible to increase the production rate of sintered ore by effectively utilizing dry ore return, but the method of mixing and granulating the sintering raw material and return ore, There is a problem that the appropriate value of the grain size of the sphere is unclear.
The objective of this invention provides the manufacturing method of the sintered ore which can increase a production rate by adding the return ore which optimized the particle size after granulation of the sintering raw material which does not contain a return ore. That is.
Furthermore, in the final stage of the granulation operation, by adding solid fuel such as coke breeze, a method for producing sintered ore that can further increase the production rate by improving yield and improve reducibility is provided. It is to be.

本発明者らは、造粒を阻害せず、生産性を向上させる焼結鉱の製造方法について検討を行い、返鉱を除く焼結原料に、水を添加し、造粒機により混合・造粒した後、所定の粒度の返鉱を全量添加することにより、焼結原料充填層の通気性が向上することを見出した。
さらに、該造粒操作の最終段階において、粉コークス等の固体燃料を添加することにより、さらに通気性向上するとともに歩留をも改善すること、さらには焼結鉱FeO低減によって被還元性が向上することを見出した。
The inventors of the present invention have studied a method for producing sintered ore that does not hinder granulation and improves productivity, add water to the sintered raw material excluding return to be mixed, and mix and granulate with a granulator. After the granulation, it was found that the air permeability of the sintered raw material packed layer is improved by adding the entire amount of the ore having a predetermined particle size.
Furthermore, in the final stage of the granulation operation, by adding a solid fuel such as coke breeze, the air permeability is further improved and the yield is improved, and the reducibility is improved by reducing the sintered ore FeO. I found out.

本発明は、上記の知見に基づいて完成されたものであり、下記の(1)〜(5)に示される焼結鉱の製造方法を要旨としている。   This invention is completed based on said knowledge, and makes the summary the manufacturing method of the sintered ore shown by following (1)-(5).

(1)ドワイトロイド式焼結機を使用し、焼結鉱を製造する焼結鉱の製造方法において、
返鉱を含まない焼結原料に水分を添加して造粒し、造粒物を製造する工程と、
前記造粒物に1mm以上が80質量%以上の返鉱を添加し、混合して混合物を製造する工程と、
前記混合物を配合原料として用いることを特徴とする焼結鉱の製造方法。
(2)(1)において、
前記1mm以上が80質量%以上の返鉱を、最終の造粒機の出口から配合原料装入装置のサージホッパー入口までの間で添加して混合物を製造することを特徴とする焼結鉱の製造方法。
(3)(1)において、
前記造粒物に1mm以上が80質量%以上の返鉱を添加し、混合機を用いて混合物を製造することを特徴とする焼結鉱の製造方法。
(4)焼結用炭材を、造粒開始から所定時間経過後に、造粒機に投入することを特徴とする請求項1乃至3のいずれかに記載の焼結鉱の製造方法。
(5)前記所定時間経過後は、造粒開始から全造粒時間の87%以上経過後であることを特徴とする(4)に記載の焼結鉱の製造方法。
(1) In the manufacturing method of the sintered ore which uses a dwelloid type sintering machine and manufactures a sintered ore,
Adding a moisture to a sintered raw material that does not contain return ore, granulating it, and producing a granulated product;
A step of adding a return mineral of 80% by mass or more to 1 mm or more to the granulated product, and mixing to produce a mixture;
A method for producing a sintered ore, wherein the mixture is used as a raw material for blending.
(2) In (1),
A sintered ore characterized in that a mixture is produced by adding a return ore of 1% or more of 80% by mass or more from the final granulator outlet to the surge hopper inlet of the compound raw material charging device. Production method.
(3) In (1),
A method for producing a sintered ore, comprising adding a return ore having a mass of 1 mm or more to 80% by mass or more to the granulated product, and producing a mixture using a mixer.
(4) The method for producing a sintered ore according to any one of claims 1 to 3, wherein the carbonaceous material for sintering is put into a granulator after a predetermined time has elapsed since the start of granulation.
(5) The method for producing a sintered ore according to (4), wherein after the predetermined time has elapsed, 87% or more of the total granulation time has elapsed since the start of granulation.

返鉱を含まない焼結原料の造粒後に、粒度を適正化した返鉱を添加することにより、生産率を増加させることが可能な焼結鉱の製造方法を提供することができる。
さらに、造粒段階における焼結用炭材をミキサー内の後半部分に添加することによって、カーボンと酸素との接触が良好となって、燃焼が促進されてさらに歩留・強度が向上する。さらに、焼結鉱FeO比率低下(ヘマタイト増マグネタイト減)によって、被還元性が向上する。
A method for producing a sintered ore that can increase the production rate can be provided by adding a return ore having an optimized particle size after granulation of a sintered raw material that does not contain a return ore.
Furthermore, by adding the carbon material for sintering in the granulation stage to the latter half of the mixer, the contact between carbon and oxygen is improved, combustion is promoted, and the yield and strength are further improved. Furthermore, the reducibility is improved by reducing the ratio of sintered ore FeO (decreasing hematite and increasing magnetite).

返鉱の篩下を造粒機前に添加し、篩上を造粒機後に添加する焼結鉱の製造方法(従来技術)。A method for producing sintered ore, in which the sieving of the return ore is added before the granulator and the sieving is added after the granulator (prior art). 返鉱の一部を造粒機前、残りを造粒機後に添加する焼結鉱の製造方法(従来技術)。A method for producing sintered ore (conventional technology) in which part of the returned ore is added before the granulator and the rest is added after the granulator. 返鉱(+1mm80%以上)の全部を造粒機後に添加する焼結鉱の製造方法(本発明)。A method for producing sintered ore (invention) in which all of the return mineral (+1 mm 80% or more) is added after the granulator. 返鉱(A,B,C,D)の粒径分布を示す図。The figure which shows the particle size distribution of a return mineral (A, B, C, D). 装入時原料の(−0.25mm)%の減量が燃焼前線降下に及ぼす返鉱(A,B,C,D)の粒径の影響。Effect of particle size of return ore (A, B, C, D) on reduction of combustion front by weight loss of raw material (-0.25mm)%. 焼結用炭材(粉コークス等)を造粒の最終段階で添加し、さらに返鉱(+1mm80%以上)の全部を造粒機後に添加する焼結鉱の製造方法。A method for producing a sintered ore in which a carbonaceous material for sintering (powder coke, etc.) is added at the final stage of granulation, and further all of the return mineral (+1 mm 80% or more) is added after the granulator.

(返鉱の全量バイパスについて)
焼結鉱の生産性向上を目的とした焼結原料充填層の通気性向上技術として、乾燥状態の返鉱を造粒せずに造粒後の湿潤原料へ添加する技術が開示されている(前記特許文献及び前記非特許文献)。以下、乾燥状態の返鉱を造粒せずに造粒後の湿潤原料へ添加することを「返鉱のバイパス添加」、バイパス添加される返鉱を「バイパス返鉱」と記載することがある。
ここで、返鉱を造粒後の湿潤原料へバイパス添加することにより焼結原料充填層の通気性が向上する理由は、(1)未造粒粉(−0.25mm)の比率が低下すること、および(2)焼結機装入後の焼結原料充填層の充填密度が低下すること(=高空隙率)の2点である。
前者(1)は、乾燥状態の返鉱を除いて造粒するので、返鉱が湿潤原料の水分を奪うことがなく、湿潤原料の造粒時水分が維持され、造粒性が向上し、未造粒粉(−0.25mm)の比率が低下する効果である。後者(2)は、造粒された原料である湿潤粒子とバイパス返鉱である乾燥粒子の間の摩擦力が上昇し、充填が滞り、焼結原料充填層の空隙率が向上する効果である。
(About the total amount of return ore bypass)
As a technique for improving the air permeability of the sintered raw material packed layer for the purpose of improving the productivity of the sintered ore, a technique is disclosed in which the dried ore is added to the wet raw material after granulation without granulation ( The patent literature and the non-patent literature). In the following, adding dry return ore to the wet raw material after granulation without granulation may be referred to as “bypass addition of return ore”, and return added by bypass may be referred to as “bypass return ore”. .
Here, the reason why the air permeability of the sintered raw material packed layer is improved by bypass-adding the return mineral to the wet raw material after granulation is that the ratio of (1) ungranulated powder (-0.25 mm) decreases. And (2) the packing density of the sintered raw material packed layer after charging the sintering machine is lowered (= high porosity).
In the former (1), granulation is performed except for dry ore return, so the return ore does not take away the moisture of the wet raw material, the moisture during granulation of the wet raw material is maintained, and the granulation property is improved. This is the effect of reducing the ratio of ungranulated powder (-0.25 mm). The latter (2) is an effect of increasing the frictional force between the wet particles that are the granulated raw material and the dry particles that are the bypass return, and the filling is delayed and the porosity of the sintered raw material packed layer is improved. .

図1に返鉱の篩下を造粒機前に添加し、篩上を造粒機後に添加する焼結鉱の製造方法(従来技術)を示す。焼結機4から排出された燒結鉱は、製品工程最終篩5により、篩上は、高炉へ搬送される。
篩下は、更に、返鉱篩6で篩われ、その篩下は、篩下返鉱槽7に貯留された後、原料層1から排出された焼結原料と共に、造粒機2により、造粒される。返鉱篩6で篩われた篩上は、バイパス返鉱として、バイパス返鉱槽8に貯留された後、造粒機2から排出される造粒物に添加、混合された後、サージホッパー3に貯留され、その後、焼結機4に充填させ焼結される。
この従来技術の場合、前記(1)で述べた如く、乾燥状態の篩下の返鉱が造粒機内の湿潤原料の水分を奪うので、造粒機2での造粒が不十分となり、未造粒粉(−0.25mm)の比率が増加するという問題がある。
FIG. 1 shows a method for producing a sintered ore (prior art) in which the bottom of the ore is added before the granulator and the top of the sieve is added after the granulator. The sintered ore discharged from the sintering machine 4 is conveyed to the blast furnace by the final sieve 5 in the product process.
The sieve is further sieved with a return sieving sieve 6, and the sieve is stored in the sieving return ore tank 7, and is then formed by the granulator 2 together with the sintered raw material discharged from the raw material layer 1. Be grained. The sieve top sieved with the return sieving sieve 6 is stored in the bypass return ore tank 8 as bypass return ore, and then added to and mixed with the granulated product discharged from the granulator 2, and then the surge hopper 3 And then filled in the sintering machine 4 and sintered.
In the case of this prior art, as described in the above (1), the dried ore-returned ore deprives the moisture of the wet raw material in the granulator, so that the granulation in the granulator 2 becomes insufficient. There exists a problem that the ratio of granulated powder (-0.25 mm) increases.

図2に返鉱の一部を造粒機前、残りを造粒機後に添加する焼結鉱の製造方法を示す(従来技術)。ダンパー9の切り替えにより、造粒機前後の返鉱量を調整する。この技術も、篩下の返鉱が造粒機内の湿潤原料の水分を奪うので、造粒が不十分となり、未造粒粉(−0.25mm)の比率が増加するという問題がある。
次に、本発明は、返鉱の全部を、バイパス返鉱とするものである。湿潤原料の造粒において、乾燥状態の返鉱が含まれないので、返鉱が造粒機内の湿潤原料の水分を奪うことがなく、造粒性が向上する。造粒物へのバイパス返鉱の混合方法として、(1)造粒機と焼結機の間でバイパス返鉱を添加し、ベルトコンベアーの乗り継ぎ等で混合する方法、(2)造粒の後、混合機を用いて混合する方法、がある。
図3に本発明に係る返鉱の全量バイパスのフローを示す。上記(1)の方法である。返鉱を含まない焼結原料に水分を添加して造粒機2で造粒し、バイパス返鉱は、造粒機2の出口から原料装入装置のサージホッパー3の入口までの間で添加する。返鉱は、造粒機内の焼結原料に添加されることはなく、返鉱が湿潤原料の水分を奪うことがないので、湿潤原料の造粒時水分が維持され、造粒性が向上する。造粒機2から出た造粒物とバイパス返鉱の混合は、ベルトコンベアーの乗り継ぎの際や原料装入装置のサージホッパー3への装入の際に行われる。この混合の際に前記造粒物の表面に存在する表面水分が返鉱へ移動するが、表面水分の移動に止まり、造粒物の崩壊とはならない。
FIG. 2 shows a method for producing a sintered ore in which a part of the returned ore is added before the granulator and the rest is added after the granulator (prior art). By changing the damper 9, the amount of ore returned before and after the granulator is adjusted. This technique also has a problem that since the return ore under the sieve takes away the moisture of the wet raw material in the granulator, the granulation becomes insufficient and the ratio of the ungranulated powder (-0.25 mm) increases.
Next, according to the present invention, the entire return ore is a bypass return. In the granulation of the wet raw material, since the return ore in the dry state is not included, the return ore does not take away the moisture of the wet raw material in the granulator and the granulation property is improved. As a method of mixing the bypass return to the granulated product, (1) a method of adding the bypass return between the granulator and the sintering machine and mixing by a belt conveyor transfer, etc. (2) after the granulation There is a method of mixing using a mixer.
FIG. 3 shows a flow of the total amount bypassing of the return ore according to the present invention. This is the method (1). Moisture is added to the sintering raw material that does not contain remineralization, and granulated by the granulator 2. Bypass reversal is added between the outlet of the granulator 2 and the inlet of the surge hopper 3 of the raw material charging device. To do. Returning ore is not added to the sintering raw material in the granulator, and returning ore does not take away the moisture of the wet raw material, so the moisture during granulation of the wet raw material is maintained and the granulation property is improved. . Mixing of the granulated product from the granulator 2 and the bypass return is performed when connecting the belt conveyor or when charging the surge hopper 3 of the raw material charging device. During the mixing, the surface moisture present on the surface of the granulated product moves to the return to the ore, but the surface moisture stops moving, and the granulated product does not collapse.

本発明に係る別のフローとしては、返鉱を含まない焼結原料に水分を添加して造粒し、その後、更に、混合機により造粒物と返鉱を混合する。上記(2)の方法である。造粒物にバイパス返鉱を添加した後に、更に、混合機により混合することにより返鉱を含まない焼結原料の造粒物とバイパス返鉱の混合を十分なものとする。バイパス返鉱を添加した後に実施する混合機による混合で、前記造粒物の表面に存在する表面水分が返鉱へ移動するが、表面水分の移動に止まる程度の混合とすることにより、造粒物の形状を維持し、粉(−0.25mm)の発生を抑制する。   As another flow according to the present invention, moisture is added to a sintered raw material that does not contain return ore and granulated, and then the granulated product and return ore are further mixed by a mixer. This is the method (2). After the bypass return is added to the granulated material, the mixture of the sintered raw material not containing the return is sufficiently mixed with the bypass return by further mixing with a mixer. By mixing with a mixer carried out after adding the bypass return, the surface moisture present on the surface of the granulated product moves to the return mineral, but by mixing to such an extent that the surface moisture stops moving, granulation Maintain the shape of the object and suppress the generation of powder (-0.25 mm).

(バイパス返鉱粒度の適正化)
バイパス返鉱粒度が、焼結原料充填層の燃焼前線降下速度(以下、「FFS」と記す。)に及ぼし影響を調査した。
図4に実機の焼結機において、変更した返鉱の粒度分布を示す。A,D,C,Bの順で、返鉱の粒度は大きくなり、それぞれ1mm以上の割合が44,52,67,80質量%である。A,D,Cは、通常の焼結工程での粒度構成である。粒度Bは、試験的に、1mm以上の割合を80質量%とした場合である。FFSの変化比率(ΔFFS)は、これらの返鉱の粒度の増加に従ってA,D,C,Bの順で増加し、それぞれ、2.5%、3.2%、5.1%、11.2%であった。特に、Bの1mm以上の割合が80質量%では、それ未満のA,D,Cの場合に比較して顕著なFFS改善効果が得られた。
(Optimization of bypass return ore size)
The effect of the bypass ore return particle size on the combustion front descent rate (hereinafter referred to as “FFS”) of the sintered raw material packed bed was investigated.
FIG. 4 shows the changed particle size distribution of the returned ore in the actual sintering machine. In the order of A, D, C, and B, the particle size of the return ore becomes larger, and the ratio of 1 mm or more is 44, 52, 67, and 80% by mass, respectively. A, D, and C are particle size structures in a normal sintering process. The particle size B is a case where the ratio of 1 mm or more is set to 80% by mass as a test. The change rate of FFS (ΔFFS) increases in the order of A, D, C, and B in accordance with the increase in the particle size of these return minerals, 2.5%, 3.2%, 5.1%, and 11. 2%. In particular, when the proportion of B of 1 mm or more was 80% by mass, a remarkable FFS improvement effect was obtained as compared with the cases of A, D, and C less than B.

上記の結果に基づき、本願発明では、バイパス返鉱の粒度を前記の返鉱Bより粗粒とした。即ち、本願発明は、返鉱を含まない焼結原料に水分を添加して造粒し、その後に1mm以上が80質量%以上の返鉱を添加し、これにより得られた混合物を焼結原料とすることを特徴とする。前記図4の返鉱A,D,Cでは不適切であり、返鉱Bに含まれる1mm以上の割合(80%以上)が要件である。   Based on the above results, in the present invention, the particle size of the bypass ore is made coarser than that of the above ore B. That is, the invention of the present application is to granulate by adding moisture to a sintering raw material not containing return mineral, and then add 1 min or more of returning mineral of 80% by mass or more, and the resulting mixture is used as a sintering raw material. It is characterized by. In the above-described return ores A, D, and C in FIG. 4, the ratio is 1 mm or more (80% or more) included in the return ore B.

(作用)
返鉱粒度が1mm以上80質量%以上で顕著なFFS増加が得られる理由を以下に説明する。
一般にFFS(mm/min)は、下記の式(1)で表される。
FFS=a・(1−b・(d−0.25)/100)・(1−c・w/100) ・(ε3/(1−ε))0.6+h・・・・・・・・(1)
ここで、
−0.25:装入時原料の(−0.25mm)%
w:装入時原料水分%
ε(-):空隙率である。
(1)式において、第1項は固気強制対流伝熱項で、装入時原料の(−0.25mm)%、装入時原料水分、および空隙率に依存する。第2項は、固体間の伝導伝熱項で定数項とした。
ここで、(d−0.25)を0.4〜5.6%、wを5.3〜8.3%、εを0.32〜0.42の範囲に変更し、実施した鍋試験結果に基づいて、式(1)中のパラメータ(a,b,c,h)のフィッティングを実施した結果、式(2)が得られた。
FFS=86.67(1−0.247(d−0.25)/100)・(1−3.20×w/100)×(ε3/(1−ε))0.6+2.33・・・・・・・(2)
(Function)
The reason why a significant increase in FFS is obtained when the particle size of the returned mineral is 1 mm or more and 80% by mass or more will be described below.
Generally, FFS (mm / min) is represented by the following formula (1).
FFS = a * (1-b * (d- 0.25 ) / 100) * (1-c * w / 100) * ([epsilon] 3 / (1- [epsilon])) 0.6 + h (1)
here,
d −0.25 : ( −0.25 mm)% of raw material at the time of charging
w: Raw material moisture% at the time of charging
ε (−): porosity.
In the equation (1), the first term is a solid-gas forced convection heat transfer term, which depends on (−0.25 mm)% of the raw material at the time of charging, the raw material moisture at the time of charging, and the porosity. The second term is a constant term in terms of heat conduction between solids.
Here, (d −0.25 ) was changed to 0.4 to 5.6%, w was changed to 5.3 to 8.3%, and ε was changed to the range of 0.32 to 0.42, and the pot test was performed. Based on the results, the parameters (a, b, c, h) in the equation (1) were fitted, and as a result, the equation (2) was obtained.
FFS = 86.67 (1−0.247 (d −0.25 ) / 100) · (1−3.20 × w / 100) × (ε 3 / (1−ε)) 0.6 +2.33・ ・ ・ ・ ・ ・ ・ (2)

式(2)において、空隙率の変化△εを、+0.04及び+0.07とした場合の、装入時原料の(−0.25mm)%の低減と、燃焼前線降下速度の変化(△FFS)の関係を計算する。図5に装入時原料の(−0.25mm)%の減量が△FFSに及ぼす影響を示す。破線が、空隙率の変化が+0.04及び+0.07の場合の△FFSの計算値である。装入時原料の(−0.25mm)%が減少するとFFSは向上するが、空隙率εが大きくなると、更に、FFSは向上する。△   In equation (2), when the change in porosity Δε is set to +0.04 and +0.07, the reduction of (−0.25 mm)% of the raw material at the time of charging and the change in the combustion front descending speed (Δ FFS) relationship is calculated. FIG. 5 shows the effect of (−0.25 mm)% reduction of the raw material on charging on ΔFFS. The broken line is the calculated value of ΔFFS when the change in porosity is +0.04 and +0.07. The FFS is improved when (−0.25 mm)% of the raw material at the time of charging is reduced, but the FFS is further improved when the porosity ε is increased. △

前記図4で示した返鉱A,D,C,Bを夫々、全部バイパス返鉱した場合の実機における△FFSの実績を図5の黒四角印で示す。粗粒比率が小さい返鉱A,D,Cでは、空隙率の変化△εは、+0.04程度であるが、粗粒比率が大きい返鉱Bでは、空隙率の変化△εは、+0.07と大きくなっている。即ち、粗粒比率が大きい返鉱Bでは、装入時原料の(−0.255%)の減量の他に、焼結原料充填層の空隙率が増加することによる寄与が大きく、通気性が改善され、FFSが大幅に向上した。バイパス返鉱の1mm以上の割合を80%とすることにより、微粒の減少と粗粒の増加により、空隙率が上昇したものと考えられる。   A black square mark in FIG. 5 shows the results of ΔFFS in the actual machine when the return ores A, D, C, and B shown in FIG. 4 are all bypass returned. In return minerals A, D, and C with a small coarse particle ratio, the change in porosity Δε is about +0.04, but in return mineral B with a large coarse particle ratio, the change in porosity Δε is +0. It is as large as 07. That is, in the case of return ore B having a large coarse particle ratio, in addition to the reduction of (−0.255%) of the raw material at the time of charging, the contribution due to the increase in the porosity of the sintered raw material packed layer is large, and the air permeability is high. Improved and greatly improved FFS. By setting the ratio of 1 mm or more of the bypass return ore to 80%, it is considered that the porosity increased due to the decrease in fine particles and the increase in coarse particles.

(返鉱粒度の変更方法)
通常の焼結工程では、図3の製品工程最終篩5の篩下である返鉱の粒度は、前記返鉱A,D,Cの粒度である。本願発明では、1mm以上が80質量%以上の返鉱を得るために、製品工程最終篩5の分級点を調整する。即ち、製品工程最終篩5の分級点を少し大きくして、従来の高炉向けの燒結鉱の一部を返鉱とし、バイパス返鉱の粒度を大きくする。篩上の高炉への焼結鉱と篩下の返鉱の粒度を総合的に考慮して篩分けを実施するところに本発明の特徴がある。即ち、最終篩5の分級点が大きくなると返鉱比率が上昇して焼結における製品歩留が低下する。しかし、前述の通り、粗粒返鉱を造粒後に添加することにより、焼結層通気性向上による焼結速度向上が見込まれ、歩留低下による減産影響を凌駕できる。併せて、付随的効果として、高炉へ搬送される焼結鉱粒度が上昇するので、高炉内通気性も向上し、その結果、出銑増効果や吹抜抑制等の高炉安定操業が達成される。
(How to change the return ore grain size)
In a normal sintering process, the particle size of the return mineral, which is under the product process final sieve 5 in FIG. 3, is the particle size of the return minerals A, D, and C. In the present invention, the classification point of the final sieve 5 in the product process is adjusted in order to obtain a return ore with 1 mm or more of 80 mass% or more. That is, the classification point of the final sieve 5 in the product process is slightly increased, and a portion of the conventional sintered ore for the blast furnace is returned to increase the granularity of the bypass return. The present invention is characterized in that the sieving is carried out in consideration of the particle size of the sintered ore to the blast furnace on the sieve and the return of the ore under the sieve. That is, when the classification point of the final sieve 5 is increased, the return ratio increases and the product yield in sintering decreases. However, as described above, by adding the coarse-grained ore after granulation, it is expected that the sintering speed will be improved by improving the air permeability of the sintered layer, and it is possible to surpass the effect of reduced production due to yield reduction. In addition, as an incidental effect, since the grain size of the sintered ore conveyed to the blast furnace is increased, the air permeability in the blast furnace is also improved, and as a result, stable operation of the blast furnace such as an increase in output and suppression of blowout is achieved.

(造粒最終段階における焼結用炭材の添加)
図6は、焼結用炭材(粉コークス、無煙炭等)を造粒の最終段階で添加し、さらに返鉱(+1mm80%以上)の全部を造粒機後に添加する設備フローである。固体燃料槽10から切り出した焼結用炭材を造粒機2の造粒最終段階で添加する。
ここで、粉コークス等の焼結用炭材を造粒最終段階で添加すると、固体炭材粒子の造粒物中への埋没が回避され、造粒物表層部や未造粒状態で存在できる。この手法を、返鉱バイパス添加と組み合わせることで、空隙率の高い充填層中において炭材の燃焼が活発となり、焼結鉱の歩留を高めることができる。さらに、炭材の燃焼活発化は、燃焼後ガスのCO/CO比が高められ、マグネタイトからヘマタイトへの酸化反応が促進される。その結果、焼結鉱中のFeOが低下し、被還元性が改善される。併せて、付随的効果として、被還元性向上は、高炉還元材比低減に結び付く。
ここに、造粒最終段階とは、造粒開始から全造粒時間の87%経過した時以降がよい。
(Addition of carbon material for sintering in the final stage of granulation)
FIG. 6 is an equipment flow in which a sintering carbonaceous material (powder coke, anthracite, etc.) is added at the final stage of granulation, and further all of the return mineral (+1 mm 80% or more) is added after the granulator. The sintering carbon material cut out from the solid fuel tank 10 is added at the final granulation stage of the granulator 2.
Here, when a carbonaceous material for sintering such as powder coke is added at the final stage of granulation, embedding of the solid carbonaceous material particles in the granulated product is avoided, and it can exist in the granulated product surface layer part or in an ungranulated state. . Combining this technique with the addition of return ore bypass, the combustion of the carbonaceous material becomes active in the packed bed with a high porosity, and the yield of sintered ore can be increased. Furthermore, the activated combustion of the carbonaceous material increases the CO 2 / CO ratio of the gas after combustion, and promotes the oxidation reaction from magnetite to hematite. As a result, FeO in the sintered ore is reduced and reducibility is improved. In addition, as an incidental effect, improvement in reducibility leads to a reduction in the blast furnace reductant ratio.
Here, the final stage of granulation is good after 87% of the total granulation time has elapsed since the start of granulation.

(実験1)
粗粒返鉱の造粒後原料への添加効果を焼結鍋試験で検討した。
(原料配合)
図4に示す返鉱Bを用いて焼結鍋試験を実施した。
原料配合を表1に示す。
比較例1は、返鉱B(+1mm:80%)の全量15%を、焼結原料と共に1次ミキサ-で混合造粒した。
比較例2は、1mm以下の返鉱3%を焼結原料と共に1次ミキサ-で混合造粒し、1mm以上のバイパス返鉱12%を、1次ミキサー後の混合造粒物に添加した。ここで、1mm以下の返鉱とは、返鉱Bを1mmで篩分けした篩下であり、1mm以上の返鉱とは、返鉱Bを1mmで篩分けした篩上である。
発明例1は、1mm以上が80質量%以上のバイパス返鉱Bを添加した。
(Experiment 1)
The effect of adding coarse-grained ore to the raw material after granulation was examined by a sintering pot test.
(Raw material combination)
The sintering pot test was implemented using the return B shown in FIG.
Table 1 shows the raw material composition.
In Comparative Example 1, 15% of the total amount of returned ore B (+1 mm: 80%) was mixed and granulated with a sintering raw material by a primary mixer.
In Comparative Example 2, 3% return ore of 1 mm or less was mixed and granulated with a sintered raw material in a primary mixer, and 12% or more bypass return ore was added to the mixed granulated product after the primary mixer. Here, the return ore of 1 mm or less is under the sieve obtained by sieving the return ore B with 1 mm, and the return ore of 1 mm or more is the sieve obtained by sieving the returned ore B with 1 mm.
Inventive Example 1 added bypass return mineral B in which 1 mm or more was 80 mass% or more.

Figure 2015193930
*1:返鉱(+1mm:80%)を、1mmで篩い、篩下(-1mm)産物
*2:返鉱(+1mm:80%)を、1mmで篩い、篩上(+1mm)産物
Figure 2015193930
* 1: Sieve the return ore (+ 1mm: 80%) at 1mm, product under sieve (-1mm) * 2: Sift the return ore (+ 1mm: 80%) at 1mm, product on sieve (+ 1mm)

(造粒方法)
造粒機としてドラム造粒機を用い、4分間造粒した。比較例1は、造粒前に他の焼結原料とともに返鉱を配合して造粒を行った。比較例2および本発明例は、造粒後にバイパス添加の返鉱を添加し、スコップを用いた手混ぜにより返鉱を配合した。水分を表2に示す。返鉱の添加前における水分含有率を造粒時水分含有率と規定し、返鉱の添加後における水分含有率を焼成時水分含有率と規定した。すなわち、「造粒時水分含有率」とは、造粒直後の焼結原料の水分含有率(質量%)を意味し、「焼成時水分含有率」とは、造粒後に返鉱を添加した焼結原料の焼成段階における水分含有率(質量%)を意味する。したがって、返鉱を添加した後に造粒する比較例1では、造粒時水分含有率と焼成時水分含有率とは同じ値となる。
各ケースの「焼成時水分含有率」を7.0%一定とした。それ故、バイパス返鉱比率に応じて、「造粒時水分含有率」が一義的に決定される。
(Granulation method)
Using a drum granulator as a granulator, granulation was performed for 4 minutes. In Comparative Example 1, granulation was performed by blending the return ore with other sintered raw materials before granulation. In Comparative Example 2 and Example of the present invention, the return added by bypass was added after granulation, and the returned ore was blended by hand mixing with a scoop. The moisture is shown in Table 2. The moisture content before the addition of the return mineral was defined as the moisture content during granulation, and the moisture content after the addition of the return mineral was defined as the moisture content during firing. That is, the “moisture content during granulation” means the moisture content (mass%) of the sintered raw material immediately after granulation, and the “moisture content during firing” is the addition of return mineral after granulation. It means the moisture content (% by mass) in the firing stage of the sintering raw material. Therefore, in Comparative Example 1 in which granulation is performed after the return ore is added, the moisture content during granulation and the moisture content during firing are the same value.
The “moisture content during firing” of each case was fixed at 7.0%. Therefore, the “moisture content during granulation” is uniquely determined according to the bypass return rate.

Figure 2015193930
Figure 2015193930

(焼成試験方法)
直径300mm×深さ500mmの円筒型焼結鍋試験装置に焼結原料を装入し、焼成試験を行った。焼成試験に際し、焼結鍋内の吸引圧力は9.807×103Pa(1000mmAq)で一定とした。円筒型焼結鍋試験装置に設けられた圧力計と流量計を用いて、焼成前に冷間通気性を、また、焼成後に熱間通気性をそれぞれ測定した。また、生産性の指標として、焼結機1m当たりについての1日当たりの生産量である生産率を算出し、比較した。
(Baking test method)
A sintering raw material was charged into a cylindrical sintering pot testing apparatus having a diameter of 300 mm and a depth of 500 mm, and a firing test was performed. During the firing test, the suction pressure in the sintering pot was constant at 9.807 × 10 3 Pa (1000 mmAq). Using a pressure gauge and a flow meter provided in the cylindrical sintering pot test apparatus, cold air permeability was measured before firing, and hot air permeability was measured after firing. Further, as a productivity index, a production rate, which is a daily production amount per 1 m 2 of a sintering machine, was calculated and compared.

(試験結果)
表3に試験結果を示す。
返鉱をパイパス添加しない比較例1に対して、返鉱(1mm以下)を造粒、返鉱(1mm以上)をパイパス添加する比較例2はFFSおよび生産率がそれぞれ16.3%、13.1%上昇した。一方、返鉱(+1mm:80%)を全量、バイパス添加する本発明例においては、比較例1に対して、FFSおよび生産率がそれぞれ21.5%、17.2%上昇した。これにより、焼成時水分含有率が同量であっても、水分含有率が高い状態で造粒した後に返鉱を添加して水分含有率を低下させることにより、造粒が促進されてFFSが向上し、その結果、生産率が向上することが確認された。
そして、返鉱全量を全量バイパスする発明例の方が、返鉱(1mm以下)を造粒する比較例2よりも改善度が大きかった。
(Test results)
Table 3 shows the test results.
Compared to Comparative Example 1 in which return ore is not added with a bypass, Comparative Example 2 in which return ore (1 mm or less) is granulated and return ore (1 mm or more) is added with bypass is FFS and the production rate is 16.3%, Increased 1%. On the other hand, in the example of the present invention in which the total amount of return ore (+1 mm: 80%) was added by bypass, the FFS and the production rate increased by 21.5% and 17.2%, respectively, relative to Comparative Example 1. Thereby, even if the moisture content at the time of firing is the same amount, granulation is promoted by reducing the moisture content by adding a return mineral after granulating in a state where the moisture content is high, and FFS is promoted. As a result, it was confirmed that the production rate was improved.
And the direction of the invention example which bypasses the total amount of return ore was larger than the comparative example 2 which granulates a return ore (1 mm or less).

Figure 2015193930
Figure 2015193930

(実験2)
焼結造粒において、前述の粗粒返鉱の造粒後原料へ添加する方法に加えて、更に粉コークスを、造粒開始から所定時間経過後に、造粒機に投入する方法に関して、その効果を焼結鍋試験で検討した。
(原料配合)
原料配合を表4に示す。発明例1(再掲)は、返鉱を造粒後原料へバイパス添加したケースであるが、発明例2は返鉱バイパス添加に加えて粉コークスをミキサー内に後添加し30秒間のみ混合処理したケースである。また、比較例3は、返鉱バイパス添加は行わずに、粉コークスをミキサー内に後添加し30秒間のみ混合処理したケースである。
(Experiment 2)
In sintering granulation, in addition to the above-described method of adding coarse coke to the raw material after granulation, the effect of the powder coke is introduced into the granulator after a predetermined time from the start of granulation. Were examined in a sintering pot test.
(Raw material combination)
Table 4 shows the raw material composition. Invention Example 1 (reprinted) is a case where return ore is bypassed to the raw material after granulation, while Invention Example 2 is added to the return ore bypass addition and post-added powder coke into the mixer and mixed for 30 seconds only. It is a case. Moreover, the comparative example 3 is a case where the powder coke was added after the addition in the mixer, and the mixing process was performed only for 30 seconds, without adding the return ore bypass.

Figure 2015193930
*1:返鉱(+1mm:80%)を、1mmで篩い、篩下(-1mm)産物
*2:返鉱(+1mm:80%)を、1mmで篩い、篩上(+1mm)産物
Figure 2015193930
* 1: Sieve the return ore (+ 1mm: 80%) at 1mm, product under sieve (-1mm) * 2: Sift the return ore (+ 1mm: 80%) at 1mm, product on sieve (+ 1mm)

(造粒方法)
造粒機としてドラムミキサーを用い、4分間造粒した。
参考例1については、造粒前に粉コークスを除く焼結原料とともに返鉱を配合して造粒を行い、造粒時間3分30秒の段階で、粉コークスを添加して30秒間処理した。したがって、造粒開始から全造粒時間の87%経過後に粉コークスを添加し処理した。
発明例1(再掲)は、粉コークスを含む焼結原料を造粒後、バイパス添加の返鉱を添加し、スコップを用いた手混ぜにより返鉱を配合した。
発明例2は、造粒前に粉コークスを除く焼結原料を造粒し、造粒時間3分30秒の段階で、粉コークスを添加して30秒間処理した。さらに、バイパス添加の返鉱を添加し、スコップを用いた手混ぜにより返鉱を配合した。
(Granulation method)
Using a drum mixer as a granulator, granulation was performed for 4 minutes.
For Reference Example 1, granulation was performed by blending the return mineral together with the sintered raw material excluding the powder coke before granulation, and at the stage of granulation time 3 minutes 30 seconds, the powder coke was added and treated for 30 seconds. . Therefore, coke was added and processed after 87% of the total granulation time from the start of granulation.
Inventive Example 1 (reprinted) was obtained by granulating a sintered raw material containing coke breeze, adding a return added by bypass, and mixing the returned ore by hand mixing with a scoop.
Invention Example 2 granulated the sintered raw material excluding the powder coke before granulation, and added the powder coke at the stage of the granulation time of 3 minutes and 30 seconds and processed for 30 seconds. Furthermore, the return ore added by bypass was added, and the return ore was blended by hand mixing with a scoop.

水分を表6に示す。返鉱の添加前における水分含有率を造粒時水分含有率と規定し、返鉱の添加後における水分含有率を焼成時水分含有率と規定した。すなわち、「造粒時水分含有率」とは、造粒直後の焼結原料の水分含有率(質量%)を意味し、「焼成時水分含有率」とは、造粒後に返鉱を添加した焼結原料の焼成段階における水分含有率(質量%)を意味する。したがって、返鉱を添加した後に造粒する比較例1では、造粒時水分含有率と焼成時水分含有率とは同じ値となる。
各ケースの「焼成時水分含有率」を7.0%一定とした。それ故、バイパス返鉱比率に応じて、「造粒時水分含有率」が一義的に決定される。
The moisture is shown in Table 6. The moisture content before the addition of the return mineral was defined as the moisture content during granulation, and the moisture content after the addition of the return mineral was defined as the moisture content during firing. That is, the “moisture content during granulation” means the moisture content (mass%) of the sintered raw material immediately after granulation, and the “moisture content during firing” is the addition of return mineral after granulation. It means the moisture content (% by mass) in the firing stage of the sintering raw material. Therefore, in Comparative Example 1 in which granulation is performed after the return ore is added, the moisture content during granulation and the moisture content during firing are the same value.
The “moisture content during firing” of each case was fixed at 7.0%. Therefore, the “moisture content during granulation” is uniquely determined according to the bypass return rate.

Figure 2015193930
Figure 2015193930

(焼成試験方法)
直径300mm×深さ500mmの円筒型焼結鍋試験装置に焼結原料を装入し、焼成試験を行った。焼成試験に際し、焼結鍋内の吸引圧力は9.807×103Pa(1000mmAq)で一定とした。円筒型焼結鍋試験装置に設けられた圧力計と流量計を用いて、焼成前に冷間通気性を、また、焼成後に熱間通気性をそれぞれ測定した。また、生産性の指標として、焼結機1m当たりについての1日当たりの生産量である生産率を算出し、比較した。
(Baking test method)
A sintering raw material was charged into a cylindrical sintering pot testing apparatus having a diameter of 300 mm and a depth of 500 mm, and a firing test was performed. During the firing test, the suction pressure in the sintering pot was constant at 9.807 × 10 3 Pa (1000 mmAq). Using a pressure gauge and a flow meter provided in the cylindrical sintering pot test apparatus, cold air permeability was measured before firing, and hot air permeability was measured after firing. Further, as a productivity index, a production rate, which is a daily production amount per 1 m 2 of a sintering machine, was calculated and compared.

(試験結果)
表6に試験結果を示す。
発明例2は発明例1よりもさらにFFSおよび生産率が上昇した。ちなみに比較例3に対しても向上している。特に歩留が改善している点が特徴である。粉コークスのみを後添加する比較例3は、発明例1よりもFeOが低下してRIが向上した。これより、返鉱バイパス添加は、粉コークス後添加と比較してRIは悪化する。しかしながら、返鉱バイパス添加と粉コークス後添加を併用すると、比較例3よりもFeOが低下してRIが改善した。これは、返鉱バイパス添加によって、原料層の通気性向上効果が、さらに後添加粉コークスの燃焼性を改善する効果を有するものと考えられる。
(Test results)
Table 6 shows the test results.
Inventive Example 2 further increased FFS and production rate than Inventive Example 1. Incidentally, it is also improved with respect to Comparative Example 3. In particular, the yield is improved. In Comparative Example 3 in which only the powder coke was added afterwards, FeO was lower than that of Invention Example 1 and RI was improved. As a result, the return ore bypass addition worsens the RI compared to the addition after the powder coke. However, when combined use of the return ore bypass addition and the addition after the coke breeze was used, FeO was lower than that of Comparative Example 3 and RI was improved. This is considered to be due to the effect of improving the air permeability of the raw material layer by adding the return ore bypass, and further improving the combustibility of the post-added powder coke.

Figure 2015193930
Figure 2015193930

返鉱を含まない焼結原料の造粒後に、粒度を適正化した返鉱を添加することにより、生産率を増加させることが可能な焼結鉱の製造方法に利用することができる。   After granulation of the sintered raw material not containing the return mineral, it can be used in a method for producing a sintered ore that can increase the production rate by adding the return mineral having an appropriate particle size.

1…原料槽、2…造粒機、3…サージホッパー、4…焼結機、5…製品工程最終篩、6…返鉱篩、7…篩下返鉱槽、8…バイパス返鉱槽、9…ダンパー 10…固体燃料槽   DESCRIPTION OF SYMBOLS 1 ... Raw material tank, 2 ... Granulator, 3 ... Surge hopper, 4 ... Sintering machine, 5 ... Product process final sieve, 6 ... Returning sieving tank, 7 ... Under-sieving slag tank, 8 ... Bypass slag tank, 9 ... Damper 10 ... Solid fuel tank

Claims (5)

ドワイトロイド式焼結機を使用し、焼結鉱を製造する焼結鉱の製造方法において、
返鉱を含まない焼結原料に水分を添加して造粒し、造粒物を製造する工程と、
前記造粒物に1mm以上が80質量%以上の返鉱を添加し、混合して混合物を製造する工程と、
前記混合物を配合原料として用いることを特徴とする焼結鉱の製造方法。
In the manufacturing method of the sintered ore which uses a droidoid type sintering machine and manufactures a sintered ore,
Adding a moisture to a sintered raw material that does not contain return ore, granulating it, and producing a granulated product;
A step of adding a return mineral of 80% by mass or more to 1 mm or more to the granulated product, and mixing to produce a mixture;
A method for producing a sintered ore, wherein the mixture is used as a raw material for blending.
請求項1に記載の焼結鉱の製造方法おいて、
前記1mm以上が80質量%以上の返鉱を、最終の造粒機の出口から配合原料装入装置のサージホッパー入口までの間で添加して混合物を製造することを特徴とする焼結鉱の製造方法。
In the manufacturing method of the sintered ore of Claim 1,
A sintered ore characterized in that a mixture is produced by adding a return ore of 1% or more of 80% by mass or more from the final granulator outlet to the surge hopper inlet of the compound raw material charging device. Production method.
請求項1に記載の焼結鉱の製造方法おいて、
前記造粒物に1mm以上が80質量%以上の返鉱を添加し、混合機を用いて混合物を製造することを特徴とする焼結鉱の製造方法。
In the manufacturing method of the sintered ore of Claim 1,
A method for producing a sintered ore, comprising adding a return ore having a mass of 1 mm or more to 80% by mass or more to the granulated product, and producing a mixture using a mixer.
焼結用炭材を、造粒開始から所定時間経過後に、造粒機に投入することを特徴とする請求項1乃至3のいずれかに記載の焼結鉱の製造方法。   The method for producing a sintered ore according to any one of claims 1 to 3, wherein the carbon material for sintering is put into a granulator after a predetermined time has elapsed since the start of granulation. 前記所定時間経過後は、造粒開始から全造粒時間の87%以上経過後であることを特徴とする請求項4に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 4, wherein after the predetermined time has elapsed, 87% or more of the total granulation time has elapsed since the start of granulation.
JP2015063219A 2014-03-27 2015-03-25 Method for producing sintered ore Active JP6421666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063219A JP6421666B2 (en) 2014-03-27 2015-03-25 Method for producing sintered ore

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014066063 2014-03-27
JP2014066063 2014-03-27
JP2015063219A JP6421666B2 (en) 2014-03-27 2015-03-25 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2015193930A true JP2015193930A (en) 2015-11-05
JP6421666B2 JP6421666B2 (en) 2018-11-14

Family

ID=54433206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063219A Active JP6421666B2 (en) 2014-03-27 2015-03-25 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP6421666B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003648A1 (en) * 2016-06-30 2018-01-04 Jfeスチール株式会社 Method for producing sintering feedstock for producing sintered ore
JP2018048379A (en) * 2016-09-23 2018-03-29 新日鐵住金株式会社 Granulation method of mixture raw material containing return ore
JP2020007615A (en) * 2018-07-10 2020-01-16 日本製鉄株式会社 Pretreatment method of raw material for sintering
JP2020084207A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Manufacturing method of sintered ore
JP2021091942A (en) * 2019-12-12 2021-06-17 日本製鉄株式会社 Method for manufacturing sintered ore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256756A (en) * 1999-03-09 2000-09-19 Nisshin Steel Co Ltd Method for granulating sintering raw material
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2007284744A (en) * 2006-04-17 2007-11-01 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2009097027A (en) * 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256756A (en) * 1999-03-09 2000-09-19 Nisshin Steel Co Ltd Method for granulating sintering raw material
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2007284744A (en) * 2006-04-17 2007-11-01 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2009097027A (en) * 2007-10-15 2009-05-07 Sumitomo Metal Ind Ltd Method for producing sintered ore

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003648A1 (en) * 2016-06-30 2018-01-04 Jfeスチール株式会社 Method for producing sintering feedstock for producing sintered ore
JP2018003081A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Manufacturing method of sinter raw material for manufacturing sintered ore
JP2018048379A (en) * 2016-09-23 2018-03-29 新日鐵住金株式会社 Granulation method of mixture raw material containing return ore
JP2020007615A (en) * 2018-07-10 2020-01-16 日本製鉄株式会社 Pretreatment method of raw material for sintering
JP7127395B2 (en) 2018-07-10 2022-08-30 日本製鉄株式会社 Pretreatment method for raw material for sintering
JP2020084207A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Manufacturing method of sintered ore
JP7095562B2 (en) 2018-11-15 2022-07-05 日本製鉄株式会社 Sintered ore manufacturing method
JP2021091942A (en) * 2019-12-12 2021-06-17 日本製鉄株式会社 Method for manufacturing sintered ore
JP7311783B2 (en) 2019-12-12 2023-07-20 日本製鉄株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JP6421666B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP6421666B2 (en) Method for producing sintered ore
JP5699567B2 (en) Method for producing sintered ore
JP6075231B2 (en) Method for producing sintered ore
JP5315659B2 (en) Method for producing sintered ore
JP5194378B2 (en) Method for producing sintered ore
JP6540359B2 (en) Modified carbon material for producing sintered ore and method for producing sintered ore using the same
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
WO2016190023A1 (en) Reduced iron manufacturing method
JP6102463B2 (en) Method for producing sintered ore
JP6102484B2 (en) Method for producing sintered ore
CN107164631B (en) A kind of method and system improving iron ore sintering mixture ventilation
TWI480380B (en) Production method of pseudo-particles for sintering production and method for manufacturing sintered ore
JP6369113B2 (en) Method for producing sintered ore
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP4048734B2 (en) Method for producing sintered ore
JP2014214339A (en) Method for producing sintered ore
JP5126580B2 (en) Method for producing sintered ore
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP2007031818A (en) Method for manufacturing sintered ore
JP7205362B2 (en) Method for producing sintered ore
JP7087939B2 (en) Manufacturing method of sintered raw material
JP5803340B2 (en) Sintering raw material manufacturing method
JP2009185315A (en) Method for granulating raw material to be sintered
JP7147505B2 (en) Method for producing sintered ore
JP5831397B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R151 Written notification of patent or utility model registration

Ref document number: 6421666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350