JP7147505B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP7147505B2
JP7147505B2 JP2018218581A JP2018218581A JP7147505B2 JP 7147505 B2 JP7147505 B2 JP 7147505B2 JP 2018218581 A JP2018218581 A JP 2018218581A JP 2018218581 A JP2018218581 A JP 2018218581A JP 7147505 B2 JP7147505 B2 JP 7147505B2
Authority
JP
Japan
Prior art keywords
anthracite
raw material
sintering
mass
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018218581A
Other languages
Japanese (ja)
Other versions
JP2020084252A (en
Inventor
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018218581A priority Critical patent/JP7147505B2/en
Publication of JP2020084252A publication Critical patent/JP2020084252A/en
Application granted granted Critical
Publication of JP7147505B2 publication Critical patent/JP7147505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結鉱を歩留よく製造することができる焼結鉱の製造方法に関する。 TECHNICAL FIELD The present invention relates to a sintered ore production method capable of producing sintered ore with a high yield.

一般に、焼結鉱は、焼結原料(主原料の鉄鉱石[粉]、副原料の石灰石、生石灰、橄欖岩等、燃料[炭材]のコークス、無煙炭等、雑原料のスケール等、及び、返鉱、)を混合、造粒し、造粒した擬似粒子を焼結機に装入し、表層の燃料に点火後、下向きに通風して焼成し製造されている。 In general, sintered ore consists of sintering raw materials (main raw material iron ore [powder], secondary raw materials limestone, quicklime, peridotite, etc., fuel [carbon material] coke, anthracite, etc., miscellaneous raw material scales, etc., and Return ore, ) is mixed and granulated, the granulated pseudo-particles are charged into a sintering machine, and after igniting the fuel on the surface layer, it is sintered by downward ventilation.

焼結原料(擬似粒子)の焼成過程で、焼結原料は、燃料(粉コークス、無煙炭等)の燃焼熱で、1300℃前後まで加熱されるが、1200℃前後を超えるところで、擬似粒子中に融液が生成し、温度の上昇に伴い融液量が増加して、最終的に、粗粒鉄鉱石間に結合相が形成される。 In the firing process of the sintering raw material (pseudo-particles), the sintering raw material is heated to around 1300°C by the combustion heat of the fuel (coke fine, anthracite, etc.). A melt is formed, and the amount of melt increases as the temperature rises, finally forming a binder phase between the coarse-grained iron ores.

焼結鉱の品質と歩留は、基本的には、鉄鉱石(粉)の品質にも依るが、実際には、焼結過程で発生する結合相の量、拡がり程度、及び/又は、結合態様に大きく影響される。焼結鉱の強度を高めるためには、焼結原料の焼成過程において、擬似粒子相互の接触が密な堆積状態にて、焼結原料中の燃料(炭材)を効率よく燃焼させ、強固な結合相を形成する必要がある。 The quality and yield of sintered ore basically depend on the quality of iron ore (powder), but in fact, the amount of binder phase generated in the sintering process, the degree of spreading, and / or bonding heavily influenced by mode. In order to increase the strength of the sintered ore, in the firing process of the sintered raw material, the fuel (carbonaceous material) in the sintered raw material is efficiently burned in a piled state in which the pseudo-particles are in close contact with each other. A bonded phase must be formed.

焼結鉱の品質と歩留を高める上記燃焼を実現するには、焼結原料の、配合、混合、及び、造粒からなる事前処理の態様が重要であり、これまで、事前処理を工夫・改良した焼結鉱の製造方法が数多く開示されている。 In order to realize the above-mentioned combustion that enhances the quality and yield of sintered ore, the aspect of pretreatment consisting of blending, mixing, and granulation of sintering raw materials is important. A number of methods for producing improved sintered ore have been disclosed.

例えば、非特許文献1には、焼結原料を混合するミキサーを二段とし、第一段目では、コークスの一部として微粉主体のコークスを添加し、第二段目では、造粒時間40%の時点(中間)で、残りのコークスとして、粗粒主体のコークス(全コークスの5~20%)を添加する事前処理技術(コークス分割添加法)が開示されている。この技術によれば、歩留が向上し、生産性が2倍に増加する。 For example, in Non-Patent Document 1, a mixer for mixing sintering raw materials has two stages, in the first stage, coke mainly composed of fine powder is added as part of the coke, and in the second stage, the granulation time is 40. A pretreatment technique (coke split addition method) is disclosed in which coarse-grained coke (5 to 20% of total coke) is added as the remaining coke at 10% (intermediate). This technique improves yield and doubles productivity.

特許文献1には、焼結用燃料の一部として無煙炭を使用する焼結鉱の製造において、前記無煙炭と他の焼結原料を混合するに先立って、該無煙炭と5mm以下の焼結鉱を混合することを特徴とする焼結用燃料としての無煙炭使用方法が開示されている。特許文献1の無煙炭使用方法によれば、付着性と発塵性をもつ無煙炭を容易に取り扱うことができる。 In Patent Document 1, in the production of sintered ore using anthracite as part of the fuel for sintering, prior to mixing the anthracite with other sintering raw materials, the anthracite and sintered ore of 5 mm or less are mixed. A method of using anthracite coal as a fuel for sintering is disclosed, characterized by mixing. According to the method for using anthracite coal of Patent Document 1, it is possible to easily handle the anthracite coal, which is sticky and dust-generating.

特許文献2には、焼結原料に、粉コークス及び無煙炭を配合した後、混合・造粒し、焼結機に装入して焼成する焼結鉱の製造方法において、粉コークスを粗粉砕して、0超~5.0mmが80wt%以上の粒度とし、無煙炭を微粉砕して、0超~2.0mmが80wt%以上の粒度に調整して焼結原料中に配合することを特徴とする焼結鉱の製造方法が開示されている。 Patent Document 2 describes a method for producing sintered ore in which coke fines and anthracite are blended with sintering raw materials, mixed and granulated, charged into a sintering machine and fired, in which coke fines are coarsely ground. The particle size is adjusted to 80 wt% or more from 0 to 5.0 mm, and the anthracite is finely pulverized to have a particle size of 80 wt% or more from 0 to 2.0 mm and blended in the sintering raw material. A method for producing sintered ore is disclosed.

特許文献2の製造方法によれば、焼結鉱の成品歩留が向上するとともに、NOxの排出量を抑制することができる。 According to the production method of Patent Document 2, the product yield of sintered ore can be improved, and the NOx emission can be suppressed.

特許文献3には、粉状鉄源、粉状炭材及び粉石灰石をドラムミキサーで混合造粒する焼結原料の造粒方法であって、前記ドラムミキサーの給鉱部から前記粉状鉄源を装入して造粒し、さらに、下記の(1)式で算出される擬似粒子の粒度変化率が0.6~0.9の範囲内を満足する前記ドラムミキサー内の位置に前記粉状炭材と前記粉石灰石とを装入して造粒した後、前記ドラムミキサーの排鉱部から3層擬似粒子を排出することを特徴とする焼結原料の造粒方法(粒度変化率=(d-DI )/(DO -DI )・・・(1) d:ドラムミキサー内の任意の位置における擬似粒子の平均粒度(mm) DI :給鉱部における粉状鉄源の平均粒度(mm) DO :排鉱部における3層擬似粒子の平均粒度(mm))が開示されている。 Patent Document 3 discloses a method for granulating a raw material for sintering by mixing and granulating a powdered iron source, a powdered carbonaceous material, and fine limestone in a drum mixer, wherein the powdered iron source is fed from a feed section of the drum mixer. is charged and granulated, and the powdery carbonaceous material and A method of granulating a sintering raw material (particle size change rate = (d - D I )/(D O −D I ) (1) d: Average particle size of pseudo-particles at any position in the drum mixer (mm) D I : Average particle size of powdered iron source in feed section (mm ) D O : Average grain size (mm) of three-layer pseudo-grains in the ore discharge zone.

特許文献3の造粒方法によれば、焼結原料の擬似粒子を簡便な手段で安価に造粒することができ、また、焼結鉱のRI値(%)と生産性が向上する。 According to the granulation method of Patent Document 3, the pseudo-particles of the sintering raw material can be granulated by simple means at low cost, and the RI value (%) and productivity of the sintered ore are improved.

特許文献4には、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2含有粉原料、石灰石系粉原料及び固体燃料系粉原料からなる焼結原料を、ドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から前記固体燃料系粉原料を除く焼結原料を装入して造粒すると共に、前記固体燃料系粉原料を除く焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10~120秒を満足する範囲となる下流側途中に設定した領域で前記固体燃料系粉原料を添加し、前記排出口に至る間に前記固体燃料系粉原料を前記焼結原料の外装部に付着、形成することを特徴とする焼結用原料の製造方法が開示されている。 In Patent Document 4, iron ore, SiO 2 -containing powder raw material, limestone-based powder raw material and solid fuel-based powder are used as pretreatment for the process of producing sintered ore for blast furnace using a downward suction Dwight Lloyd sintering machine. When granulating the sintered raw material made of raw materials using a drum mixer, the sintered raw material excluding the solid fuel system powder raw material is charged from the charging port of the drum mixer and granulated, and the solid fuel system Adding the solid fuel-based powdered raw material in a region set in the middle of the downstream side where the residence time until the sintered raw material excluding the powdered raw material reaches the discharge port of the drum mixer satisfies 10 to 120 seconds, A method for producing a raw material for sintering is disclosed, which is characterized in that the powdery solid fuel-based raw material is adhered to and formed on an exterior portion of the raw material for sintering before reaching the discharge port.

特許文献4の製造方法によれば、焼結鉱の生産性が向上する。 According to the production method of Patent Document 4, the productivity of sintered ore is improved.

特許文献5には、製鉄用焼結原料を粉コークス及び/又は無煙炭の存在下で造粒処理する方法であって、該製鉄用焼結原料の造粒処理方法は、粉コークス及び/又は無煙炭を含む燃料を疎水性物質の水系エマルションで疎水処理した後、該疎水処理後の燃料を、残りの製鉄用焼結原料の一部又は全部と共に造粒処理する工程を含むことを特徴とする製鉄用焼結原料の造粒処理方法が開示されている。 Patent Document 5 discloses a method for granulating a sintering raw material for iron making in the presence of coke fine and/or anthracite coal, wherein the granulation treatment method for the sintering raw material for iron making includes coke fine and/or anthracite coal. is subjected to hydrophobic treatment with an aqueous emulsion of a hydrophobic substance, and then the fuel after the hydrophobic treatment is granulated with part or all of the remaining sintering raw material for ironmaking. Disclosed is a method of granulating sintering raw materials for sintering.

特許文献5の造粒処理方法によれば、焼結原料の造粒性が向上するとともに、着火性と燃焼性が向上し、焼結鉱の生産性が向上する。 According to the granulation treatment method of Patent Document 5, the granulation properties of the raw material for sintering are improved, the ignitability and combustibility are improved, and the productivity of sintered ore is improved.

特開平10-176228号公報JP-A-10-176228 特開平10-298670号公報JP-A-10-298670 特開2002-285250号公報JP-A-2002-285250 特開2003-160815号公報Japanese Patent Application Laid-Open No. 2003-160815 特開2009-275270号公報JP 2009-275270 A

製鉄研究 第288号(1976)、11797~11806頁Steel Research, No. 288 (1976), pp. 11797-11806

無煙炭は、N含有量が少なく、NOxの発生抑制の点で有効な燃料(炭材)であるが、コークスに比べ、着火性及び燃焼性が低いので、これまで、無煙炭を燃料(炭材)として活用する焼結原料の事前処理技術は少なく(特許文献1及び2、参照)、燃料(炭材)としてコークスと無煙炭を併用する場合において、焼結鉱の歩留を高めることが可能な無煙炭の配合・添加に関する有用な知見は見いだせない。 Anthracite has a low N content and is an effective fuel (charcoal material) in terms of suppressing the generation of NOx. There are few pretreatment technologies for sintering raw materials that are used as (see Patent Documents 1 and 2), and when coke and anthracite are used together as fuel (carbon material), anthracite that can increase the yield of sintered ore No useful knowledge regarding the blending / addition of is found.

そこで、本発明は、従来技術の現状に鑑み、燃料(炭材)としてコークスと無煙炭を併用して造粒する焼結原料を焼成して焼結鉱を製造する場合において、コークスと無煙炭の適正な添加手法を見いだし、焼結鉱の歩留を高めることを課題とし、該課題を解決する焼結鉱の製造方法を提供することを目的とする。 Therefore, in view of the current state of the prior art, the present invention provides a method for producing sintered ore by firing sintering raw materials that are granulated using both coke and anthracite coal as fuel (carbon material). It is an object of the present invention to find a suitable addition technique to increase the yield of sintered ore, and to provide a method for producing sintered ore that solves the problem.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、焼結原料に添加する炭材として、コークスと併用する無煙炭の一部又は全部を、造粒途中の焼結原料に添加し、さらに、造粒して焼成すれば、粗粒鉄鉱石間に強固な結合相を形成することができ、焼結鉱の歩留が向上することを見いだした。 The present inventors diligently studied methods for solving the above problems. As a result, as a carbonaceous material to be added to the sintering raw material, a part or all of anthracite used in combination with coke is added to the sintering raw material during granulation, and then granulated and fired to obtain coarse iron ore. It was found that a strong binding phase could be formed between them, and the yield of sintered ore was improved.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。 The present invention was made based on the above findings, and the gist thereof is as follows.

(1)主な炭材としてコークスと無煙炭を併用して造粒した焼結原料を焼成する焼結鉱の製造方法において、
(i)上記造粒した焼結原料中、コークスと無煙炭の合計量が、全炭材に対して90質量%以上で、かつ、無煙炭の量が、全炭材に対して20~40質量%であり、
(ii)焼結原料を造粒する過程で、前記全炭材に対して20~40質量%で添加する無煙炭の量の1/2~全量の無煙炭を、造粒開始後、下記式(1)を満たす時間Txの時点で、造粒途中の焼結原料に添加し、さらに造粒する
ことを特徴とする焼結鉱の製造方法。
0.45≦Tx/Tf≦0.60 ・・・(1)
Tx:造粒開始から無煙炭添加までの時間(分)
Tf:造粒開始から造粒終了までの時間(分)
(1) In a method for producing sintered ore in which a sintering raw material granulated using both coke and anthracite as main carbon materials is fired,
(i) In the granulated sintering raw material, the total amount of coke and anthracite is 90% by mass or more based on the total carbon material, and the amount of anthracite is 20 to 40% by mass based on the total carbon material. and
(ii) In the process of granulating the raw material for sintering, 1/2 to the total amount of anthracite coal to be added in an amount of 20 to 40 % by mass based on the total carbon material is added by the following formula ( A method for producing a sintered ore, characterized by adding to a sintering raw material during granulation at a time Tx that satisfies 1), and further granulating.
0.45≤Tx/Tf≤0.60 (1)
Tx: Time from start of granulation to addition of anthracite (minutes)
Tf: Time from start of granulation to end of granulation (minutes)

(2)前記無煙炭の平均粒度が、1.5~1.8mmであることを特徴とする前記(1)に記載の焼結鉱の製造方法。 (2) The method for producing sintered ore according to (1) above, wherein the anthracite has an average particle size of 1.5 to 1.8 mm.

本発明によれば、粗粒鉄鉱石間に強固な結合相を形成することができるので、焼結鉱の歩留が向上する。 According to the present invention, since a firm binding phase can be formed between coarse-grained iron ores, the yield of sintered ore is improved.

焼結原料の造粒時、無煙炭を、造粒途中の焼結原料に添加して混合・造粒し、焼成する態様を模式的に示す図である。FIG. 4 is a diagram schematically showing a mode of adding anthracite to the sintering raw material during granulation, mixing and granulating the sintering raw material, and firing the sintering raw material. 焼結原料の造粒時、無煙炭を、造粒途中の焼結原料に添加して混合・造粒し、焼成する別の態様を模式的に示す図である。FIG. 4 is a diagram schematically showing another embodiment in which anthracite coal is added to the sintering raw material during granulation, mixed, granulated, and fired when the sintering raw material is granulated.

本発明の焼結鉱の製造方法(以下「本発明製造方法」ということがある。)は、焼結原料に添加する炭材として、コークスと併用する無煙炭の一部又は全部を、造粒途中の焼結原料に添加することを基本思想とし、具体的には、主な炭材としてコークスと無煙炭を併用して造粒した焼結原料を焼成する焼結鉱の製造方法において、
(i)上記造粒した焼結原料中、コークスと無煙炭の合計量が、全炭材に対して90質量%以上で、かつ、無煙炭の量が、全炭材に対して20~40質量%であり、
(ii)焼結原料を造粒する過程で、前記全炭材に対して20~40質量%で添加する無煙炭の量の1/2~全量の無煙炭を、造粒開始後、下記式(1)を満たす時間Txの時点で、造粒途中の焼結原料に添加し、さらに造粒する
ことを特徴とする。
0.45≦Tx/Tf≦0.60 ・・・(1)
Tx:造粒開始から無煙炭添加までの時間(分)
Tf:造粒開始から造粒終了までの時間(分)
In the method for producing sintered ore of the present invention (hereinafter sometimes referred to as "the production method of the present invention"), part or all of anthracite used in combination with coke is added as a carbonaceous material to the sintering raw material during granulation. The basic idea is to add it to the sintering raw material, and specifically, in the method for producing sintered ore in which the sintering raw material is granulated using both coke and anthracite as the main carbon material,
(i) In the granulated sintering raw material, the total amount of coke and anthracite is 90% by mass or more based on the total carbon material, and the amount of anthracite is 20 to 40% by mass based on the total carbon material. and
(ii) In the process of granulating the raw material for sintering, 1/2 to the total amount of anthracite coal to be added in an amount of 20 to 40 % by mass based on the total carbon material is added by the following formula ( It is characterized in that it is added to the sintering raw material during granulation at the time Tx that satisfies 1), and is further granulated.
0.45≤Tx/Tf≤0.60 (1)
Tx: Time from start of granulation to addition of anthracite (minutes)
Tf: Time from start of granulation to end of granulation (minutes)

また、本発明製造方法は、前記無煙炭の平均粒度が、1.5~1.8mmであることを特徴とする。 Further, the production method of the present invention is characterized in that the anthracite has an average particle size of 1.5 to 1.8 mm.

以下、本発明製造方法について説明する。 The production method of the present invention will be described below.

焼結原料(擬似粒子)は、主原料の鉄鉱石[粉]、副原料の石灰石、生石灰、橄欖岩等、燃料[炭材]のコークス、無煙炭等、雑原料のスケール等、及び、返鉱を、所定の割合で配合し、造粒したものである。なお、焼結原料(擬似粒子)は、通常の焼成条件で焼成する。 Raw materials for sintering (pseudo-particles) include iron ore [powder] as the main raw material, limestone, quicklime, peridotite, etc. as secondary raw materials, coke, anthracite, etc. as fuel [carbon material], scales as miscellaneous raw materials, and return ore. are blended at a predetermined ratio and granulated. The raw material for sintering (pseudo-particles) is fired under normal firing conditions.

表1に、焼結原料(擬似粒子)の配合例を示す。 Table 1 shows a blending example of the sintering raw material (pseudo-particles).

Figure 0007147505000001
Figure 0007147505000001

返鉱は、焼結鉱を粉砕・整粒した後の篩下で、高炉用原料として適さない粉状焼結鉱である。炭材は、主として、コークスと無煙炭である。コークス、無煙炭以外の雑熱源は、例えば、CDQ粉、炭素含有ダスト類である。 The return ore is a powdery sintered ore that is unsuitable as a raw material for blast furnaces and is obtained under a sieve after pulverizing and sizing the sintered ore. Carbonaceous materials are mainly coke and anthracite. Miscellaneous heat sources other than coke and anthracite are, for example, CDQ powder and carbon-containing dust.

返鉱と炭材の配合割合は、通常、(主原料+副原料)の外数で表示する。返鉱と炭材の配合割合は、(主原料+副原料)の量及び組成、さらに、焼成条件に応じて、適宜、設定されるが、通常、返鉱は、10~25質量%で、炭材は、2.5~5.0質量%である。 The mixing ratio of return ore and carbonaceous material is usually indicated by the outside number of (main raw material + auxiliary raw material). The mixing ratio of the return ore and the carbon material is appropriately set according to the amount and composition of (main raw material + auxiliary raw material) and the firing conditions. The carbonaceous material is 2.5-5.0% by mass.

コークスの粒度は、特に特定の範囲に限定されないが、焼結原料(擬似粒子)内にて十分な燃焼熱を確保すること、及び、鉄鉱石等(原料)の造粒性を阻害せずに維持することを考慮すると、平均粒度で1.5~2.0mmが好ましい。無煙炭の粒度は、特に特定の範囲に限定されないが、造粒途中の焼結原料に添加して、無煙炭を、焼結原料(擬似粒子)の表層に均一に付着させることを考慮すると、平均粒度で1.5~1.8mmが好ましい。 The particle size of coke is not particularly limited to a specific range, but it is necessary to ensure sufficient combustion heat in the sintering raw material (pseudo-particles), and without hindering the granulation of iron ore (raw material). Considering maintenance, an average particle size of 1.5 to 2.0 mm is preferable. The particle size of the anthracite coal is not particularly limited to a specific range, but considering that it is added to the sintering raw material during granulation to uniformly adhere the anthracite coal to the surface layer of the sintering raw material (pseudo-particles), the average particle size is is preferably 1.5 to 1.8 mm.

造粒した焼結原料(擬似粒子)の粒径は、特に特定の範囲に限定されないが、焼結機で、堆積した焼結原料層の通気性を確保し、燃焼熱の伝熱を確保することを考慮すると、平均粒度で2~5mmが好ましい。 The particle size of the granulated sintering raw material (pseudo-particles) is not particularly limited to a specific range, but the sintering machine ensures the air permeability of the deposited sintering raw material layer and ensures heat transfer of combustion heat. Considering this, the average particle size is preferably 2 to 5 mm.

なお、平均粒度は、粒度区分の中央値を、粒度区分毎の質量分率で加重して算出した平均値である。
本発明製造方法では、コークスと無煙炭の合計量が、全炭材に対して90質量%以上であり、無煙炭の量が、全炭材に対して20~40質量%である。好ましくは、コークスと無煙炭の合計量は95質量%以上であり、無煙炭の量は23~37質量%である。コークスと無煙炭の合計量の限定理由、及び、無煙炭の量の限定理由については後述する。
The average particle size is an average value calculated by weighting the median value of each particle size category by the mass fraction of each particle size category.
In the production method of the present invention, the total amount of coke and anthracite coal is 90 mass % or more based on the total carbon material, and the amount of anthracite coal is 20 to 40 mass % based on the total carbon material. Preferably, the total amount of coke and anthracite is at least 95% by weight and the amount of anthracite is between 23 and 37% by weight. The reason for limiting the total amount of coke and anthracite and the reason for limiting the amount of anthracite will be described later.

次に、本発明製造方法の特徴(無煙炭の造粒途中添加)について、図面に基づいて説明する。 Next, the feature of the production method of the present invention (addition of anthracite during granulation) will be described with reference to the drawings.

図1に、焼結原料の造粒時、無煙炭を、造粒途中の焼結原料に添加して混合・造粒し、焼成する態様を模式的に示す。 FIG. 1 schematically shows a mode in which anthracite coal is added to the sintering raw material during granulation, mixed, granulated, and fired during granulation of the sintering raw material.

図1において、コークス槽1には、コークスが貯留され、無煙炭槽2には、無煙炭が貯留され、原料槽4には、鉄鉱石、石灰石、生石灰、橄欖岩、その他原料が個別に貯留され、炭材槽3には、コークス、無煙炭以外の炭材(雑熱源:例えば、CDQ粉、炭素含有ダスト類)が貯留されている。 In FIG. 1, coke is stored in the coke tank 1, anthracite is stored in the anthracite tank 2, and iron ore, limestone, quicklime, peridotite, and other raw materials are individually stored in the raw material tank 4, The carbon material tank 3 stores carbon materials other than coke and anthracite (miscellaneous heat sources: CDQ powder, carbon-containing dust, for example).

コークス槽1、原料槽4、適宜、炭材槽3及び/又は無煙炭槽2から、所定量切り出して配合した焼結原料Xを、造粒機5に搬送し、所要量の水、結合材等を添加して造粒し、最終的に、焼結機6で焼成する焼結原料(擬似粒子)として、(a)コークスと無煙炭の合計量が、全炭材に対して90質量%以上で、かつ、(b)無煙炭の量が、全炭材に対して20~40質量%の焼結原料(擬似粒子)Yを製造する。 A predetermined amount of sintering raw material X cut out and blended from the coke tank 1, the raw material tank 4, and optionally from the carbon material tank 3 and/or the anthracite tank 2 is conveyed to the granulator 5, and the required amount of water, binder, etc. is added and granulated, and finally, as a sintering raw material (pseudo-particles) to be fired in the sintering machine 6, (a) the total amount of coke and anthracite is 90% by mass or more of the total carbon material and (b) a sintering raw material (pseudo-particles) Y containing 20 to 40% by mass of anthracite with respect to the total carbonaceous material.

なお、造粒機5は、焼結原料を造粒し得る機能を有する造粒機であればよく、ドラム型造粒機に限らず、他の造粒機、例えば、皿型造粒機でもよい。 The granulator 5 may be any granulator having a function of granulating the raw material for sintering, and is not limited to the drum-type granulator. good.

そして、焼結原料Xを造粒機5で造粒する際、焼結原料に、全炭材に対して20~40質量%の割合で添加する無煙炭の量の1/2~全量を、造粒開始後、下記式(1)を満たす時間Txの時点で添加し、さらに造粒する。この点が、本発明製造方法の特徴であり、この無煙炭の造粒途中添加で焼結鉱の歩留が向上する。
0.45≦Tx/Tf≦0.60 ・・・(1)
Tx:造粒開始から無煙炭添加までの時間(分)
Tf:造粒開始から造粒終了までの時間(分)
Then, when granulating the sintering raw material X with the granulator 5, 1/2 to the entire amount of anthracite added to the sintering raw material at a rate of 20 to 40% by mass with respect to the total carbon material. After the start of granulation, it is added at time Tx satisfying the following formula (1), and granulated. This point is a feature of the production method of the present invention, and the addition of this anthracite during granulation improves the yield of sintered ore.
0.45≤Tx/Tf≤0.60 (1)
Tx: Time from start of granulation to addition of anthracite (minutes)
Tf: Time from start of granulation to end of granulation (minutes)

ここで、造粒開始の時点は、所要の原料を配合した焼結原料Xを造粒機5に搬送した後、水を添加して、造粒機5を稼働し、焼結原料Xの造粒を開始する時点であり、造粒終了の時点は、焼結原料Xの造粒が終了し、焼結原料(擬似粒子)Yを造粒機5から排出する時点である。 Here, at the time of starting granulation, the sintering raw material X mixed with the required raw materials is conveyed to the granulator 5, water is added, the granulator 5 is operated, and the sintering raw material X is produced. It is the time to start granulation, and the time to end granulation is the time to discharge the sintering raw material (pseudo-particles) Y from the granulator 5 after the granulation of the sintering raw material X is completed.

1台の焼結機5を用いる焼結原料の造粒において、造粒開始の時点から造粒終了の時点までが造粒時間であり、通常、3~6分である。 In the granulation of the raw material for sintering using one sintering machine 5, the granulation time is from the start of granulation to the end of granulation, which is usually 3 to 6 minutes.

なお、焼結原料中のコークスと無煙炭の合計量と無煙炭の量、及び、造粒途中の焼結原料に添加する無煙炭の量と時点については、後述する。 The total amount of coke and anthracite coal in the raw material for sintering, the amount of anthracite coal, and the amount and timing of adding anthracite to the raw material for sintering during granulation will be described later.

図2に、焼結原料の造粒時、無煙炭を、造粒途中の焼結原料に添加して混合・造粒し、焼成する別の態様を模式的に示す。図2に示す造粒態様は、焼結原料を、直列に配置した2台の造粒機で造粒する場合の態様である。 FIG. 2 schematically shows another embodiment in which anthracite coal is added to the sintering raw material during granulation, mixed, granulated, and fired when the sintering raw material is granulated. The granulation mode shown in FIG. 2 is a mode in which the raw material for sintering is granulated by two granulators arranged in series.

図2において、コークス槽1には、コークスが貯留され、無煙炭槽2には、無煙炭が貯留され、原料槽4には、鉄鉱石、石灰石、生石灰、橄欖岩、その他原料が個別に貯留され、炭材槽3には、コークス、無煙炭以外の炭材(雑熱源:例えば、CDQ粉、炭素含有ダスト類)が貯留されている。 In FIG. 2, coke is stored in the coke tank 1, anthracite is stored in the anthracite tank 2, and iron ore, limestone, quicklime, peridotite, and other raw materials are individually stored in the raw material tank 4, The carbon material tank 3 stores carbon materials other than coke and anthracite (miscellaneous heat sources: CDQ powder, carbon-containing dust, for example).

コークス槽1、原料槽4、適宜、炭材槽3及び/又は無煙炭槽2から、所定量切り出して配合した焼結原料Xを、造粒機5aに搬送し、所要量の水、結合材等を添加して造粒する。そして、造粒機5aをでた焼結原料Yaに、無煙炭槽2から、全無煙炭量(全炭材に対して20~40質量%)の(1/2~全量)の無煙炭を造粒機5aと造粒機5bの間で添加する。 A predetermined amount of sintering raw material X cut out and blended from the coke tank 1, the raw material tank 4, and optionally from the carbon material tank 3 and/or the anthracite tank 2 is conveyed to the granulator 5a, and the required amount of water, binder, etc. is added to granulate. Then, to the sintering raw material Ya discharged from the granulator 5a, from the anthracite tank 2, (1/2 to the whole amount) of the total amount of anthracite (20 to 40% by mass of the total carbon material) is added to the granulator. Add between 5a and granulator 5b.

所要量の無煙炭を添加した焼結原料Yaを、造粒機5bに搬送し、必要に応じ、所要量の水、結合材等を添加して、さらに造粒し、最終的に、焼結機6で焼成する焼結原料(擬似粒子)として、(a)コークスと無煙炭の合計量が、全炭材に対して90質量%以上で、かつ、(b)無煙炭の量が、全炭材に対して20~40質量%の焼結原料(擬似粒子)Ybを製造する。 The sintering raw material Ya to which the required amount of anthracite is added is conveyed to the granulator 5b, and if necessary, the required amount of water, binder, etc. are added and further granulated, and finally the sintering machine As the sintering raw material (pseudo-particles) to be fired in 6, (a) the total amount of coke and anthracite coal is 90% by mass or more of the total carbon material, and (b) the amount of anthracite coal is 20 to 40% by mass of sintering raw material (pseudo-particles) Yb is produced.

なお、造粒機5a及び造粒機5bは、焼結原料を造粒し得る機能を有する造粒機であればよく、ドラム型造粒機に限らず、他の造粒機、例えば、皿型造粒機でもよいし、また、造粒機5aと造粒機5bが、異なる型の造粒機でもよい。 The granulator 5a and the granulator 5b may be any granulator having a function of granulating the raw material for sintering. A type granulator may be used, or the granulator 5a and the granulator 5b may be different types of granulators.

そして、焼結原料Xを造粒機5aと造粒機5bで造粒する際、最終的に、焼結原料に、全炭材に対して20~40質量の割合で添加する無煙炭の量の1/2~全量を、造粒開始後、下記式(1)を満たす時間Txの時点で添加し、さらに造粒する。前述したように、この点が、本発明製造方法の特徴であり、この無煙炭の造粒途中添加で焼結鉱の歩留が向上する。
0.45≦Tx/Tf≦0.60 ・・・(1)
Tx:造粒開始から無煙炭添加までの時間(分)
Tf:造粒開始から造粒終了までの時間(分)
Then, when the sintering raw material X is granulated by the granulator 5a and the granulator 5b, the amount of anthracite finally added to the sintering raw material at a rate of 20 to 40 mass with respect to the total carbon material is 1/2 to the entire amount is added at the time Tx satisfying the following formula (1) after the start of granulation, and granulation is further performed. As described above, this point is a feature of the production method of the present invention, and the addition of this anthracite during granulation improves the yield of sintered ore.
0.45≤Tx/Tf≤0.60 (1)
Tx: Time from start of granulation to addition of anthracite (minutes)
Tf: Time from start of granulation to end of granulation (minutes)

ここで、造粒開始の時点は、所要の原料を配合した焼結原料Xを造粒機5aに搬送した後、水を添加して、造粒機5aを稼働し、焼結原料Xの造粒を開始する時点であり、造粒終了の時点は、造粒機5aで造粒した焼結原料Yaを造粒機5bに搬送した後、適宜、水を添加して、造粒機5bを稼働して、焼結原料Yaを、さらに造粒し、焼結原料Yaの造粒が終了し、焼結原料(擬似粒子)Ybとして、造粒機5から排出する時点である。 Here, at the start of granulation, the sintering raw material X mixed with the required raw materials is conveyed to the granulator 5a, water is added, the granulator 5a is operated, and the sintering raw material X is produced. This is the time to start granulation, and the time to finish granulation is when the sintering raw material Ya granulated by the granulator 5a is conveyed to the granulator 5b, water is added as appropriate, and the granulator 5b is turned off. This is the time when the sintering raw material Ya is further granulated, and the sintering raw material Ya is discharged from the granulator 5 as the sintering raw material (pseudo-particles) Yb.

2台の焼結機5aと焼結機5bを用いる焼結原料の造粒においては、1台目の焼結機5aにおける造粒時間と、2台目の焼結機5bにおける造粒時間との和が、実質的な全造粒時間であり、通常、3~6分である。 In the granulation of the sintering raw material using the two sintering machines 5a and 5b, the granulation time in the first sintering machine 5a and the granulation time in the second sintering machine 5b is the substantial total granulation time, which is usually 3 to 6 minutes.

焼結原料を、図2に示す造粒態様で造粒する場合、Tx及びTfは、具体的には、次のようになる。
Tx:(造粒機5aでの造粒時間)
Tf:(造粒機5aでの造粒時間)+(造粒機5bでの造粒時間)
When the raw material for sintering is granulated in the granulation mode shown in FIG. 2, Tx and Tf are specifically as follows.
Tx: (granulation time in granulator 5a)
Tf: (granulation time in granulator 5a) + (granulation time in granulator 5b)

焼結原料の造粒において、図1には、1台の造粒機を用いて造粒する場合を示し、図2には、2台の造粒機を用いて造粒する場合を示すが、造粒機の台数は1台又は2台に限定されない。焼結原料の造粒に、3台以上の焼結機を用いてもよい。この場合においても、全造粒機の造粒時間の総和をTfとし、1台目を起算点とし、無煙炭を途中で添加するまでの造粒機の造粒時間の総和をTxとして、上記式(1)を適用することができる。 In the granulation of the sintering raw material, FIG. 1 shows the case of granulating using one granulator, and FIG. 2 shows the case of granulating using two granulators. , The number of granulators is not limited to one or two. Three or more sintering machines may be used for granulating the raw material for sintering. Even in this case, the sum of the granulation times of all the granulators is Tf, the first granulator is the starting point, and the sum of the granulation times of the granulators until anthracite is added in the middle is Tx. (1) can be applied.

本発明製造方法において、焼結原料に添加する炭材として、コークスと併用する無煙炭の一部又は全部を、造粒途中の焼結原料に添加し、さらに造粒して焼成すると、焼結鉱の品質と歩留が向上する理由は、次のように推測される。 In the production method of the present invention, as a carbon material to be added to the sintering raw material, part or all of anthracite used in combination with coke is added to the sintering raw material during granulation, and then granulated and fired to obtain sintered ore The reason why the quality and yield are improved is presumed as follows.

無煙炭を焼結原料(擬似粒子)の周囲に付着させると、焼結原料(擬似粒子)全体に無煙炭が均一分散した状態に比べて、焼結原料(擬似粒度)の造粒性が改善され、強固な焼結原料(擬似粒子)が形成される。この焼結原料(擬似粒子)が装入された焼結原料層において、微粉量が少なくなり、通気性が適切に確保される。 When the anthracite coal is attached around the sintering raw material (pseudo-particles), the granulation of the sintering raw material (pseudo-particle size) is improved compared to the state in which the anthracite is uniformly dispersed throughout the sintering raw material (pseudo-particles). A strong sintered raw material (pseudo-particles) is formed. In the sintering raw material layer charged with this sintering raw material (pseudo-particles), the amount of fine powder is reduced, and air permeability is appropriately ensured.

さらに、無煙炭が焼結原料(擬似粒子)の周囲に存在するので、酸素との接触が良好となり、焼成時、焼結原料(擬似粒子)の表層及び内部において、高い燃焼熱が発生し、粗粒鉄鉱石間に強固な結合相が形成される。 Furthermore, since the anthracite exists around the sintering raw material (pseudo-particles), it has good contact with oxygen. A strong bonding phase is formed between the granular iron ores.

次に、焼結原料中のコークスと無煙炭の合計量と無煙炭の量、及び、焼結原料の造粒途中に添加する無煙炭の量と時点について説明する。 Next, the total amount of coke and anthracite coal in the raw material for sintering, the amount of anthracite coal, and the amount and time of addition of anthracite during granulation of the raw material for sintering will be described.

最初に、焼結原料中のコークスと無煙炭の合計量と無煙炭の量について説明する。 First, the total amount of coke and anthracite in the sintering raw material and the amount of anthracite will be explained.

コークスと無煙炭の合計量:全炭材に対して90質量%以上
所要量の鉄鉱石、石灰石、生石灰、橄欖岩、その他原料、及び、所要量の炭材(コークス、無煙炭、その他炭材)からなる焼結原料において、コークスと無煙炭の合計量は、全炭材に対して90質量%以上とする。
Total amount of coke and anthracite coal: 90 mass% or more of all carbon materials From the required amount of iron ore, limestone, quicklime, peridotite, other raw materials, and the required amount of carbon materials (coke, anthracite, other carbon materials) In the raw material for sintering, the total amount of coke and anthracite is set to 90% by mass or more with respect to the total carbonaceous material.

炭材は、焼結原料(擬似粒子)の焼成時、燃焼して、焼結原料(擬似粒子)を加熱し、焼結鉱の強度確保に必要な結合相の形成に寄与するが、コークスと無煙炭の合計量が、全炭材に対して90質量%未満であると、充分な燃焼熱が得られず、焼結鉱の強度確保に必要な量の結合相の形成がなされないので、コークスと無煙炭の合計量は、全炭材に対して90質量%以上とする。好ましくは95質量%以上であり、上限は100質量%である。 When the sintering raw material (pseudo-particles) is fired, the carbonaceous material burns to heat the sintering raw material (pseudo-particles) and contributes to the formation of the binder phase necessary to secure the strength of the sintered ore. If the total amount of anthracite is less than 90% by mass with respect to the total carbonaceous material, sufficient combustion heat cannot be obtained, and the amount of binder phase required to secure the strength of the sintered ore cannot be formed. and anthracite should be 90% by mass or more of the total carbonaceous material. It is preferably 95% by mass or more, and the upper limit is 100% by mass.

無煙炭の量:全炭材に対し20~40質量%
無煙炭は、N含有量が少なく、その点で、好ましい炭材であるが、燃焼性がコークスに比べ低いので、使用量には上限が存在する。無煙炭の量が、全炭材に対して20質量%未満であると、排ガスのNOx量が増加するので、無煙炭の量は、全炭材に対して20質量%以上とする。好ましくは23質量%以上である。
Amount of anthracite: 20 to 40% by mass of the total carbon material
Anthracite has a low N content and is therefore a preferable carbonaceous material, but its combustibility is lower than that of coke, so there is an upper limit to the amount used. If the amount of anthracite is less than 20% by mass relative to the total carbonaceous material, the amount of NOx in the exhaust gas increases. Preferably, it is 23% by mass or more.

一方、無煙炭の量が、全炭材に対し40質量%を超えると、焼結原料(擬似粒子)の焼成速度が遅延し、擬似粒子の表層において、充分な燃焼熱を確保できず、焼結鉱の強度確保に必要な結合相が形成され難いので、無煙炭の量は、全炭材に対して40質量%以下とする。好ましくは37質量%以下である。 On the other hand, if the amount of anthracite exceeds 40% by mass based on the total carbonaceous material, the firing rate of the sintering raw material (pseudo-particles) is delayed, and sufficient combustion heat cannot be secured in the surface layer of the pseudo-particles, resulting in sintering. The amount of anthracite coal is set to 40% by mass or less with respect to the total carbonaceous material because it is difficult to form the binder phase necessary to ensure the strength of the ore. Preferably, it is 37% by mass or less.

次に、造粒途中の焼結原料(擬似粒子)に添加する無煙炭の量と時点の限定理由について説明する。 Next, the reasons for limiting the amount and time of addition of anthracite to the sintering raw material (pseudo-particles) during granulation will be explained.

造粒途中添加の無煙炭の量:全炭材に対する無煙炭20~40質量の1/2~全量
焼結機に搬送する焼結原料(擬似粒子)が含有する全炭材において、最終的な無煙炭の量は、全炭材に対して20~40質量%であるが、その量(20~40質量%)の1/2~全量を、造粒途中の焼結原料(擬似粒子)に、所定の時点で添加する(図1及び図2、参照)。
Amount of anthracite added during granulation: 1/2 to whole amount of 20 to 40 mass of anthracite in total carbon material The amount is 20 to 40% by mass with respect to the total carbonaceous material, and 1/2 to the whole amount of the amount (20 to 40% by mass) is added to the sintering raw material (pseudo-particles) during granulation. are added at time points (see Figures 1 and 2).

全炭材に対して20~40質量%の無煙炭の全量を、造粒途中の焼結原料に添加しない場合には、全炭材に対して20~40質量%の(1/2~全量)未満の無煙炭(造粒途中に添加しない分の無煙炭)を、予め、造粒機に供する前の焼結原料に添加しておく。 If the total amount of anthracite is not added to the sintering raw material during granulation, 20 to 40% by mass of the total carbon material (1/2 to the total amount) Less than anthracite coal (the amount of anthracite not added during granulation) is added in advance to the sintering raw material before being supplied to the granulator.

造粒途中の焼結原料(擬似粒子)に添加する無煙炭の量が、10質量%(=20質量%/2)未満であると、焼結原料(擬似粒子)の周囲に付着する無煙炭の量が少なく、焼結原料(擬似粒子)が装入された焼結原料層において、通気性を適切に確保できず、焼成時、焼結原料(擬似粒子)の表層及び内部において高い燃焼熱が得られない。 If the amount of anthracite added to the sintering raw material (pseudo-particles) during granulation is less than 10% by mass (=20% by mass/2), the amount of anthracite attached around the sintering raw material (pseudo-particles) In the sintering raw material layer where the sintering raw material (pseudo-particles) is charged, air permeability cannot be properly secured, and high combustion heat is obtained in the surface layer and inside of the sintering raw material (pseudo-particles) during firing. can't

その結果、粗粒鉄鉱石間に強固な結合相が充分に形成されず、焼結鉱の歩留が向上しないので、造粒途中の焼結原料(擬似粒子)に添加する無煙炭の量は、10質量%(=20質量%/2)以上とする。好ましくは15質量%以下である。 As a result, a strong bonding phase is not sufficiently formed between coarse-grained iron ores, and the yield of sintered ore is not improved. 10% by mass (=20% by mass/2) or more. Preferably, it is 15% by mass or less.

無煙炭の造粒途中添加の時点:下記式(1)を満たすTx時点
0.45≦Tx/Tf≦0.60 ・・・(1)
Tx:造粒開始から無煙炭添加までの時間(分)
Tf:造粒開始から造粒終了までの時間(分)
Time point at which anthracite coal is added during granulation: Tx time point satisfying the following formula (1): 0.45 ≤ Tx/Tf ≤ 0.60 (1)
Tx: Time from start of granulation to addition of anthracite (minutes)
Tf: Time from start of granulation to end of granulation (minutes)

全炭材に対して20~40質量%の(1/2~全量)の無煙炭の、造粒途中の焼結原料への添加(図1及び図2、参照)は、上記式(1)を満たすTx時点で行う。 The addition of 20 to 40% by mass (1/2 to the total amount) of anthracite to the total carbonaceous material to the sintering raw material during granulation (see FIGS. 1 and 2) is based on the above formula (1). It is done at the Tx time point that satisfies.

無煙炭の添加時点が、Tx/Tf:0.45未満の時点であると、擬似粒子の形状が安定していない状態の時に、無煙炭を添加することになり、さらに造粒した焼結原料(擬似粒子)の形状が安定し難いので、無煙炭の添加時点は、Tx/Tfが0.45以上の時点とする。好ましくは、Tx/Tfが0.48以上の時点である。 If the anthracite coal is added when Tx/Tf is less than 0.45, the anthracite coal is added when the shape of the pseudo-particles is not stable. Since the shape of the particles is difficult to stabilize, anthracite should be added at a time when Tx/Tf is 0.45 or more. Preferably, it is the time when Tx/Tf is 0.48 or more.

一方、無煙炭の添加時点が、Tx/Tf:0.60を超える時点であると、擬似粒子の形状が安定している状態の時に、無煙炭を添加することになるが、擬似粒子の周囲に無煙炭が均等に付着し難いので、無煙炭の添加時点は、Tx/Tfが0.60以下の時点とする。好ましくは、Tx/Tfが0.57以下の時点である。 On the other hand, when the anthracite coal is added when Tx/Tf exceeds 0.60, the anthracite coal is added when the shape of the pseudo-particles is stable. is difficult to adhere evenly, the anthracite should be added when Tx/Tf is 0.60 or less. Preferably, it is the time when Tx/Tf is 0.57 or less.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.

(実施例1)
造粒した焼結原料(擬似粒子)、及び、造粒途中の焼結原料に、無煙炭を、添加時点と添加量を変更して添加して、さらに、造粒した焼結原料(擬似粒子)について焼結鍋試験を実施し、焼結鉱の歩留を測定した。
(Example 1)
Anthracite is added to the granulated sintering raw material (pseudo-particles) and the sintering raw material in the middle of granulation by changing the addition time and amount, and further granulated sintering raw material (pseudo-particles) A sintering pot test was carried out for and the yield of sintered ore was measured.

焼結鍋試験は、円筒状の焼結鍋に焼結原料を充填し、焼結鍋内の原料充填層の表面に点火した後、焼結鍋の下部に設置した風箱からブロワーで空気を吸引して、原料充填層を焼成し、実機での焼結原料層の焼成過程をシミュレートする試験である。 In the sintering pot test, a cylindrical sintering pot is filled with sintering raw materials, the surface of the raw material packed layer in the sintering pot is ignited, and then air is blown by a blower from a wind box installed at the bottom of the sintering pot. This test simulates the firing process of the sintered raw material layer in an actual machine by sucking and firing the raw material packed layer.

(焼結原料の造粒)
表1に、使用した焼結原料の配合を示す。ここに、コークス、無煙炭、CDQ粉の総和は、配合原料に対して外数で3.6質量%(一定)とし、それぞれの配合割合を、表3に示すように変更した。
(Granulation of sintering raw material)
Table 1 shows the composition of the sintering raw materials used. Here, the sum of coke, anthracite, and CDQ powder was set to 3.6% by mass (fixed) as an external number based on the blended raw materials, and the respective blending ratios were changed as shown in Table 3.

所要の配合割合で配合した焼結原料を、直径1mのドラム型造粒機に装入し、水分7.5%を目標にし、所定時間造粒した後、無煙炭を、表3に示す添加時点と添加量で添加し、さらに、造粒した。全造粒時間は4分である。なお、雑熱源としてCDQ粉を用いた。 The sintering raw material blended at the required blending ratio is charged into a drum-type granulator with a diameter of 1 m, and after granulating for a predetermined time with a target moisture content of 7.5%, anthracite is added at the addition time shown in Table 3. and added amount, and further granulated. Total granulation time is 4 minutes. CDQ powder was used as a miscellaneous heat source.

(焼結鍋試験装置)
表2に、焼結鍋試験に用いた試験装置の仕様と試験条件を示す。
(Sintering pot test device)
Table 2 shows the specifications and test conditions of the test equipment used in the sintering pot test.

Figure 0007147505000002
Figure 0007147505000002

(歩留の測定)
焼結鍋で焼成した焼成体を、2m×4回、落下させて破砕し、回収した焼結体(焼結鉱)を篩目5mmで分級し、篩上(焼結鉱)と篩下(返鉱)の質量を、それぞれ計測し、焼結鉱(篩上)の歩留を次式で計算した。
(Yield measurement)
The sintered body fired in the sintering pot is dropped 2 m × 4 times and crushed, and the collected sintered body (sintered ore) is classified with a sieve mesh of 5 mm, and the sieved (sintered ore) and the sieved ( The mass of return ore) was measured, and the yield of sintered ore (over sieve) was calculated by the following formula.

歩留(%)=100×(5mmの篩上)/〔(5mmの篩上)+(5mmの篩下)〕
結果を、表3に併せて示す。
Yield (%) = 100 x (5 mm above sieve) / [(5 mm above sieve) + (5 mm below sieve)]
The results are also shown in Table 3.

Figure 0007147505000003
Figure 0007147505000003

従来例は、表1に示す焼結原料(炭材:外数で3.6質量%)を造粒して焼成した例である。焼結鉱の歩留は86.4%に留まっている。 The conventional example is an example in which the raw material for sintering shown in Table 1 (charcoal material: 3.6% by mass as an external number) was granulated and fired. The yield of sintered ore remains at 86.4%.

発明例1は、炭材として、コークスだけを、外数で2.70(=3.6・0.75)質量%配合した造粒途中の焼結原料に、外数で0.72質量%(=3.6・0.20、全炭材に対して20質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす添加時点に全量添加し、さらに造粒して焼成した“全量途中添加例”である。無煙炭の造粒途中添加の効果が十分に発現して、焼結鉱の歩留は87.4%である。 In Invention Example 1, as a carbonaceous material, 0.72% by mass of external number was added to the sintering raw material in the middle of granulation, which was blended with 2.70 (= 3.6 0.75)% by mass of external number. (= 3.6 0.20, 20% by mass with respect to the total carbon material) of anthracite was added at the time when Tx/Tf satisfies the above formula (1), and was further granulated and fired. This is an example of adding the entire amount in the middle. The effect of adding anthracite coal during granulation is fully manifested, and the yield of sintered ore is 87.4%.

発明例8は、炭材として、コークスだけを、外数で1.98(=3.6・0.55)質量%配合した造粒途中の焼結原料に、外数で1.44質量%(=3.6・0.40、全炭材に対して40質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす添加時点に全量添加し、さらに造粒して焼成した“全量途中添加例”である。無煙炭の造粒途中添加の効果が十分に発現して、焼結鉱の歩留は87.1%である。 In Invention Example 8, as a carbonaceous material, 1.98 (= 3.6 0.55) mass% of coke alone was blended in the sintering raw material during granulation, and 1.44 mass% of the external number was added. (= 3.6 0.40, 40% by mass with respect to the total carbonaceous material) of anthracite was added in its entirety at the point where Tx/Tf satisfies the above formula (1), and then granulated and fired. This is an example of adding the entire amount in the middle. The effect of adding anthracite coal during granulation is fully manifested, and the yield of sintered ore is 87.1%.

比較例3は、炭材としてコークスだけを、外数で1.58(=3.6・0.44)質量%を配合した造粒途中の焼結原料に、外数で1.80質量%(=3.6・0.50、全炭材に対して50質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす添加時点に全量添加し、さらに造粒して焼成した“全量途中添加例”である。炭材に対する無煙炭の量が50質量%で、40質量%を超えているので、無煙炭の造粒途中添加の効果が十分に発現せず、焼結鉱の歩留は86.0%に留まっている。 In Comparative Example 3, only coke as a carbonaceous material was blended with 1.58 (= 3.6 0.44) mass% of the external number in the sintering raw material during granulation, and 1.80 mass% of the external number was added. (= 3.6 0.50, 50% by mass of the total carbonaceous material) of anthracite was added in its entirety at the time of addition where Tx/Tf satisfies the above formula (1), then granulated and fired. This is an example of adding the entire amount in the middle. Since the amount of anthracite coal is 50% by mass with respect to the carbonaceous material, and it exceeds 40% by mass, the effect of adding anthracite coal during granulation is not sufficiently exhibited, and the yield of sintered ore remains at 86.0%. there is

発明例2~7、及び、9、及び、比較例1、2、及び、4は、焼結原料に炭材として添加する無煙炭の一部を、造粒途中の焼結原料に添加し、さらに造粒して焼成した“一部途中添加例”である。 In invention examples 2 to 7 and 9 and comparative examples 1, 2 and 4, a part of anthracite added as a carbonaceous material to the sintering raw material was added to the sintering raw material during granulation, and further This is a “partially added example” of granulating and baking.

発明例2は、炭材として、コークスを、外数で2.70(=3.6・0.75)質量%、無煙炭を、外数で0.36(=3.6・0.10)質量%を配合した造粒途中の焼結原料に、全炭材に対して10質量%(炭材に対して20質量%の1/2、焼結原料に対して、外数で、0.36質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす0.45の添加時点に添加して、さらに造粒して焼成した“一部途中添加例”である。 In Invention Example 2, as the carbonaceous material, coke is 2.70 (= 3.6 0.75) mass% in external number, and anthracite is 0.36 (= 3.6 0.10) in external number. 10% by mass of the total carbonaceous material (1/2 of 20% by mass of the carbonaceous material, 0.0% by mass of the sintering raw material) 36% by mass) of anthracite was added at the point of addition of 0.45 at which Tx/Tf satisfies the above formula (1), and then granulated and fired.

発明例3は、炭材として、コークスを、外数で2.34(=3.6・0.65)質量%、無煙炭を、外数で0.36(=3.6・0.10)質量%を配合した造粒途中の焼結原料に、全炭材に対して20質量%(炭材に対して30質量%の2/3、焼結原料に対して、外数で、0.72質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす0.50の添加時点に添加して、さらに造粒して焼成した“一部途中添加例”である。 In Invention Example 3, as the carbonaceous material, coke is 2.34 (= 3.6 0.65) mass% in external number, and anthracite is 0.36 (= 3.6 0.10) in external number. 20% by mass of the total carbonaceous material (2/3 of 30% by mass of the carbonaceous material, 0.0% by mass of the sintering material) 72% by mass) of anthracite was added at the point of addition of 0.50 where Tx/Tf satisfies the above formula (1), and then granulated and fired.

発明例4は、炭材として、コークスを、外数で2.34(=3.6・0.65)質量%、無煙炭を、外数で0.54(=3.6・0.15)質量%を配合した造粒途中の焼結原料に、全炭材に対して15質量%(炭材に対して30質量%の1/2、焼結原料に対して、外数で、0.54質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす0.50の添加時点に添加して、さらに造粒して焼成した“一部途中添加例”である。 In Invention Example 4, as the carbonaceous material, coke is 2.34 (= 3.6 0.65) mass% in external number, and anthracite is 0.54 (= 3.6 0.15) in external number. 15% by mass of the total carbonaceous material (1/2 of 30% by mass of the carbonaceous material, 0.0% by mass of the sintering raw material) 54% by mass) of anthracite was added at the point of addition of 0.50 where Tx/Tf satisfies the above formula (1), and then granulated and fired.

発明例2、発明例3、及び、発明例4のいずれも、無煙炭の途中添加量、及び、途中添加時点が、本発明の範囲内にあるので、無煙炭の造粒途中添加の効果が十分に発現して、焼結鉱の歩留が、いずれも、87.0%を超えている。 In all of Invention Example 2, Invention Example 3, and Invention Example 4, the amount of anthracite coal added midway and the point of time of midway addition are within the scope of the present invention, so the effect of adding anthracite coal midway through granulation is sufficient. Expressed, the yield of sintered ore exceeds 87.0%.

発明例5、発明例6、及び、発明例7は、炭材として、コークスを、外数で1.98(=3.6・0.55)質量%、無煙炭を、外数で0.72(=3.62・0.2)質量%を配合した造粒途中の焼結原料に、全炭材に対して20質量%(炭材に対して40質量%の1/2、焼結原料に対して、外数で、0.72質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす添加時点(発明例1:0.45.発明例2:0.50、及び、発明例3:0.60で、いずれも0.45~0.60の範囲内)に添加して、さらに造粒して焼成した“一部途中添加例”である。 In Invention Examples 5, 6, and 7, as carbonaceous materials, coke is 1.98 (= 3.6 0.55) mass% in terms of the outside number, and anthracite is 0.72 in the outside number. (= 3.62 0.2) 20% by mass of the total carbonaceous material (1/2 of 40% by mass of the carbonaceous material, sintering raw material 0.72% by mass as an external number) of anthracite at the time when Tx / Tf satisfies the above formula (1) (Invention Example 1: 0.45, Invention Example 2: 0.50, and Invention Example 3: 0.60, all within the range of 0.45 to 0.60), granulated, and fired.

発明例5、発明例6、及び、発明例7のいずれも、無煙炭の途中添加量、及び、途中添加時点が、本発明の範囲内にあるので、無煙炭の造粒途中添加の効果が十分に発現して、焼結鉱の歩留が、いずれも、87.0%を超えている。特に、添加時点Tx/Tfが0、50の発明例2では、焼結鉱の歩留が87.2%に達している。 In all of Invention Example 5, Invention Example 6, and Invention Example 7, the amount of anthracite coal added during granulation and the timing of addition during the process are within the scope of the present invention, so the effect of adding anthracite coal during granulation is sufficient. Expressed, the yield of sintered ore exceeds 87.0%. In particular, in invention example 2 where the addition time points Tx/Tf are 0 and 50, the yield of sintered ore reaches 87.2%.

発明例9は、炭材配分と添加時点が発明例2と同じの“一部途中添加例”であるが、無煙炭の平均粒度を1.7μmに細粒化した例である。無煙炭の平均粒度を細粒化したので、無煙炭の造粒途中添加の効果がより発現して、焼結鉱の歩留は87.5%に達している。 Inventive Example 9 is a "partially added example" in which the distribution of carbonaceous materials and the point of addition are the same as in Inventive Example 2, but the average grain size of anthracite coal is refined to 1.7 μm. Since the average particle size of the anthracite coal was refined, the effect of adding the anthracite coal during the granulation process was more pronounced, and the yield of the sintered ore reached 87.5%.

比較例1、及び、比較例2は、炭材として、コークスを、外数で1.98(=3.6・0.55)質量%、無煙炭を、外数で0.72(=3.6・0.2)質量%を配合した造粒途中の焼結原料に、全炭材に対して20質量%(炭材に対して40質量%の1/2、焼結原料に対して、外数で、0.72質量%)の無煙炭を、Tx/Tfが上記式(1)を満たす添加時点(発明例1:0.45.発明例2:0.50、及び、発明例3:0.60で、いずれも0.45~0.60の範囲内)に添加して、さらに造粒して焼成した“一部途中添加例”である。 In Comparative Examples 1 and 2, as the carbon material, coke was 1.98 (=3.6 0.55) mass% in terms of the external number, and anthracite was 0.72 (=3. 6.0.2) 20% by mass of the total carbonaceous material (1/2 of 40% by mass of the carbonaceous material, 1/2 of 40% by mass of the carbonaceous material, 0.72% by mass in terms of external number) of anthracite at the time when Tx / Tf satisfies the above formula (1) (Invention Example 1: 0.45, Invention Example 2: 0.50, and Invention Example 3: 0.60, all within the range of 0.45 to 0.60), and then granulated and fired.

比較例1は、Tx/Tfが、上記式(1)を満たさない0.30(0.45未満)であるので、無煙炭の造粒途中添加の効果が十分に発現せず、焼結鉱の歩留は86.5%に留まっている。比較例2は、Tx/Tfが、上記式(1)を満たさない0.70(0.60超)であるので、無煙炭の造粒途中添加の効果が十分に発現せず、焼結鉱の歩留は86.5%に留まっている。 In Comparative Example 1, Tx/Tf is 0.30 (less than 0.45), which does not satisfy the above formula (1), so the effect of adding anthracite coal during granulation is not sufficiently exhibited, and sintered ore The yield remains at 86.5%. In Comparative Example 2, Tx/Tf is 0.70 (exceeding 0.60), which does not satisfy the above formula (1). The yield remains at 86.5%.

比較例4は、炭材として、コークスを、外数で1.98(=3.6・0.55)質量%、無煙炭を、外数で1.12(=3.6・0.31)質量%を配合した造粒途中の焼結原料に、全炭材に対して20質量%(炭材に対する31質量%の3/5、焼結原料に対して、外数で、0.72(=3.6・0.20)質量%の無煙炭を、Tx/Tfが上記式(1)を満たす0.50の添加時点(本発明の0.45~0.60の範囲内)に添加して、さらに造粒して焼成した“一部途中添加例”である。 In Comparative Example 4, as the carbon material, coke was 1.98 (= 3.6 0.55) mass% in terms of the external number, and anthracite was 1.12 (= 3.6 0.31) in the external number. 20 mass% of the total carbonaceous material (3/5 of 31 mass% of the carbonaceous material, 0.72 ( = 3.6 0.20) mass% of anthracite was added at the addition point of 0.50 (within the range of 0.45 to 0.60 of the present invention) at which Tx/Tf satisfies the above formula (1). This is a “partially added example” in which the powder is further granulated and baked.

比較例4は、雑熱源の量が、全炭材に対して14質量%、コークスと無煙炭の合計量が、炭材に対して86質量%で、コークスと無煙炭の合計量が90質量%未満であるので、無煙炭の造粒途中添加の効果が十分に発現せず、焼結鉱の歩留は85.9%に留まっている。 In Comparative Example 4, the amount of miscellaneous heat sources is 14% by mass, the total amount of coke and anthracite is 86% by mass, and the total amount of coke and anthracite is less than 90% by mass. Therefore, the effect of adding anthracite coal during granulation is not sufficiently exhibited, and the yield of sintered ore remains at 85.9%.

前述したように、本発明によれば、焼結鉱全体に、強固な結合相を形成することができるので、焼結鉱の品質と歩留が向上する。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, a strong binding phase can be formed in the entire sintered ore, so the quality and yield of the sintered ore are improved. Therefore, the present invention has high applicability in the steel industry.

1 コークス槽
2 無煙炭槽
3 炭材槽
4 原料槽
5、5a、5b 造粒機
6 焼結機
X 焼結原料
Y 焼結原料(擬似粒子)
Ya 焼結原料(擬似粒子)
Yb 焼結原料(擬似粒子)
REFERENCE SIGNS LIST 1 coke tank 2 anthracite coal tank 3 carbon material tank 4 raw material tank 5, 5a, 5b granulator 6 sintering machine X sintering raw material Y sintering raw material (pseudo-particles)
Ya sintering raw material (pseudo-particles)
Yb sintering raw material (pseudo-particles)

Claims (1)

主な炭材としてコークスと無煙炭を併用して造粒した焼結原料を焼成する焼結鉱の製造方法において、
(i)上記造粒した焼結原料中、コークスと無煙炭の合計量が、全炭材に対して90質量%以上で、かつ、無煙炭の量が、全炭材に対して20~40質量%であり、
(ii)焼結原料を造粒する過程で、前記全炭材に対して20~40質量%で添加する無煙炭の量の1/2~全量の無煙炭を、造粒開始後、下記式(1)を満たす時間Txの時点で、造粒途中の焼結原料に添加し、さらに造粒するものであり、
(iii)前記無煙炭の平均粒度が、1.5~1.8mmである
ことを特徴とする焼結鉱の製造方法。
0.45≦Tx/Tf≦0.60 ・・・(1)
Tx:造粒開始から無煙炭添加までの時間(分)
Tf:造粒開始から造粒終了までの時間(分)
In a method for producing sintered ore in which a sintering raw material granulated using both coke and anthracite as main carbon materials is fired,
(i) In the granulated sintering raw material, the total amount of coke and anthracite is 90% by mass or more based on the total carbon material, and the amount of anthracite is 20 to 40% by mass based on the total carbon material. and
(ii) In the process of granulating the raw material for sintering, 1/2 to the total amount of anthracite added to the total carbon material in an amount of 20 to 40% by mass is added by the following formula (1 ) is added to the sintering raw material during granulation at the time Tx to satisfy ), and is further granulated ,
(iii) the anthracite has an average particle size of 1.5 to 1.8 mm;
A method for producing sintered ore, characterized by:
0.45≤Tx/Tf≤0.60 (1)
Tx: Time from start of granulation to addition of anthracite (minutes)
Tf: Time from start of granulation to end of granulation (minutes)
JP2018218581A 2018-11-21 2018-11-21 Method for producing sintered ore Active JP7147505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018218581A JP7147505B2 (en) 2018-11-21 2018-11-21 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018218581A JP7147505B2 (en) 2018-11-21 2018-11-21 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2020084252A JP2020084252A (en) 2020-06-04
JP7147505B2 true JP7147505B2 (en) 2022-10-05

Family

ID=70909699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018218581A Active JP7147505B2 (en) 2018-11-21 2018-11-21 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP7147505B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194114A (en) 2015-03-31 2016-11-17 新日鐵住金株式会社 Manufacturing method of sintered ore

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156271A (en) * 1991-12-04 1993-06-22 Nippon Steel Corp Method for granulating mixture of powder coke and anthracite and production of sintered ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194114A (en) 2015-03-31 2016-11-17 新日鐵住金株式会社 Manufacturing method of sintered ore

Also Published As

Publication number Publication date
JP2020084252A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
JP5705726B2 (en) Process for producing manganese pellets from uncalcined manganese ore and agglomerates obtained by this process
US10683562B2 (en) Reduced iron manufacturing method
JP6102484B2 (en) Method for producing sintered ore
JP2009185356A (en) Method for producing sintered ore
JP6421666B2 (en) Method for producing sintered ore
JP2018003153A (en) Production method of sinter
TWI550100B (en) Process for the manufacture of ferrochrome
JP7147505B2 (en) Method for producing sintered ore
US11549159B2 (en) Method of operating a sinter plant
JP2018178148A (en) Method of producing sintered ore
TWI477611B (en) Metallurgical composition for the manufacture of ferrochrome
JP4830728B2 (en) Method for producing sintered ore
JP2014214339A (en) Method for producing sintered ore
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JPH08199250A (en) Production of sintered ore
JP7180406B2 (en) Method for producing sintered ore
JP7205362B2 (en) Method for producing sintered ore
JP3945323B2 (en) Granulation method of sintering raw material
JP4438477B2 (en) Method for producing sintered ore for blast furnace
KR20140145629A (en) Method for manufacturing sintered ore
JPH01201427A (en) Method for charging sintering raw material
JP2003306723A (en) Method for manufacturing sintered ore for blast furnace
JP2019112704A (en) Manufacturing method of carbonaceous material interior particle, and manufacturing method of carbonaceous material interior sintered ore
JPH0692620B2 (en) Sintered ore manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151