JP7205362B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP7205362B2
JP7205362B2 JP2019079181A JP2019079181A JP7205362B2 JP 7205362 B2 JP7205362 B2 JP 7205362B2 JP 2019079181 A JP2019079181 A JP 2019079181A JP 2019079181 A JP2019079181 A JP 2019079181A JP 7205362 B2 JP7205362 B2 JP 7205362B2
Authority
JP
Japan
Prior art keywords
particle size
raw material
sintering
limestone
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019079181A
Other languages
Japanese (ja)
Other versions
JP2020176299A (en
Inventor
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019079181A priority Critical patent/JP7205362B2/en
Publication of JP2020176299A publication Critical patent/JP2020176299A/en
Application granted granted Critical
Publication of JP7205362B2 publication Critical patent/JP7205362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結鉱の製造方法に関する。 The present invention relates to a method for producing sintered ore.

現在、日本の高炉用原料は、主に焼結鉱である。焼結鉱は、主原料である鉄鉱石等の含鉄原料粉、副原料、炭材および返鉱が配合されて作られる。 Currently, sintered ore is the main raw material for blast furnaces in Japan. Sintered ore is made by blending iron-containing raw material powder such as iron ore as the main raw material, auxiliary raw materials, carbonaceous material and return ore.

焼結鉱は、通常、次のように製造される。まず、主原料である鉄鉱石等の含鉄原料粉に対し、副原料、炭材および返鉱を所定の割合で混合し、さらに混合物に適当な水分を加えて造粒して配合原料(以下、焼結原料ともいう)とする。 Sintered ore is usually manufactured as follows. First, iron-containing raw material powder such as iron ore, which is the main raw material, is mixed with auxiliary raw materials, carbonaceous material and return ore in a predetermined ratio, and then an appropriate amount of water is added to the mixture and granulated to form a mixed raw material (hereinafter referred to as a mixed raw material). Also called sintering raw material).

次に、この焼結原料を、下方吸引式のドワイトロイド(DL)式焼結機(以下、焼結機ともいう)に装入する。具体的には、焼結原料は、焼結機直上のホッパより原料切出装置により定量が切出され、装入シュートを介してパレット上に装入、載置されて原料充填層を形成する。形成された原料充填層中の上層(表層)の炭材に、点火炉によって点火する。そして、パレットを連続的に移動させながらパレットの下方から空気を吸引することにより酸素を供給し、原料充填層内の炭材の燃焼を上層から下層に向けて進行させる。炭材の燃焼熱により、原料充填層を上層側から下層側に順次焼結させる。得られた焼結部(シンターケーキ)は、所定の粒度に粉砕、篩分けにより整粒され、一定の粒径以上のものが高炉用原料である焼結鉱となる。なお、一定粒径未満のもの(通常は-5mm)は、返鉱として回収され、焼結原料の一部として再使用される。 Next, this raw material for sintering is charged into a downward suction type Dwight Lloyd (DL) type sintering machine (hereinafter also referred to as a sintering machine). Specifically, a fixed amount of sintering raw material is cut out by a raw material cutting device from a hopper immediately above the sintering machine, and charged and placed on a pallet through a charging chute to form a raw material packed layer. . The upper layer (surface layer) of the carbon material in the formed raw material packed bed is ignited by an ignition furnace. Oxygen is supplied by sucking air from below the pallets while the pallets are continuously moved, and the combustion of the carbon material in the raw material packed bed proceeds from the upper layer to the lower layer. By the heat of combustion of the carbonaceous material, the raw material packed bed is sequentially sintered from the upper layer side to the lower layer side. The obtained sintered part (sinter cake) is pulverized to a predetermined particle size and sieved to obtain sintered ore having a certain particle size or more, which is a raw material for blast furnaces. Those with a particle size smaller than a certain size (usually -5 mm) are collected as return ore and reused as part of the raw material for sintering.

ここで、焼結原料は、装入シュートの傾斜面を介してパレット上に装入される。そのため、装入された焼結原料はパレット上に載置される際に斜面を形成し、この斜面において転動分級作用が起こる。この転動分級作用により、原料充填層の層厚(層高)方向に粒度偏析が起き、焼結原料は粒度が小さいものが原料充填層の上層側に、粒度が大きいものが原料充填層の下層側に装入されやすくなる。 Here, the raw material for sintering is charged onto the pallet through the inclined surface of the charging chute. Therefore, the charged sintering raw material forms a slope when it is placed on the pallet, and a rolling classification action occurs on this slope. Due to this rolling classification action, grain size segregation occurs in the layer thickness (layer height) direction of the raw material packed bed. It becomes easy to charge to the lower layer side.

また、下方吸引式の焼結機による焼結過程においては、下方から空気を吸引するため、原料充填層の層厚方向により、原料が受ける熱量が異なる。上層側では、吸引される低温の空気により熱量が不足しがちであるのに対し、下層側では、上層側での燃焼の余熱により熱量過剰となる。 In addition, in the sintering process using a downward suction type sintering machine, since air is sucked from below, the amount of heat received by the raw material varies depending on the layer thickness direction of the raw material packed layer. On the upper layer side, the amount of heat tends to be insufficient due to the sucked low-temperature air, whereas on the lower layer side, the amount of heat is excessive due to the residual heat of combustion on the upper layer side.

このような層厚方向における焼結原料の粒度偏析および層厚方向における受ける熱量の違いによって、層厚方向に主原料である鉄鉱石の融液の量の偏りが生じ、層厚方向で焼成される焼結鉱の歩留や品質が異なってくる。その結果、全体としての歩留が低下してしまうことがあるが、それを防ぐために、焼結原料の層厚方向の分布や融点を左右する成分の濃度を制御する技術が開示されている。 Due to the grain size segregation of the sintering raw material in the layer thickness direction and the difference in the amount of heat received in the layer thickness direction, the amount of iron ore melt, which is the main raw material, is uneven in the layer thickness direction, and sintering occurs in the layer thickness direction. The yield and quality of sintered ore will differ. As a result, the yield as a whole may be lowered. In order to prevent this, techniques have been disclosed for controlling the distribution of the sintering raw material in the layer thickness direction and the concentration of components that affect the melting point.

例えば、造粒前の焼結原料に含まれる炭材の粒径を調整したり(特許文献1)、コークスの粒度や石灰石の粒度を調整したり(特許文献2)して、焼結鉱を製造する技術が開示されている。 For example, by adjusting the particle size of the carbonaceous material contained in the sintering raw material before granulation (Patent Document 1), or by adjusting the particle size of coke or limestone (Patent Document 2), sintered ore can be obtained. Techniques for manufacturing are disclosed.

特許文献1,2には、焼結原料に配合するコークスや石灰石の粒度分布を焼成前に調整することにより、ミクロ気孔生成増により高温還元・軟化溶融性状の優れた焼結鉱を製造する技術が開示されている。 Patent Documents 1 and 2 disclose techniques for producing sintered ore with excellent high-temperature reduction/softening and melting properties by adjusting the particle size distribution of coke and limestone mixed in the sintering raw material before firing, thereby increasing the generation of micropores. is disclosed.

特開平07-3342号公報JP-A-07-3342 特開平08-120350号公報JP-A-08-120350

上記の特許文献1および特許文献2に記載された技術では、炭材および石灰石の粒度をそれぞれ別個に調整することが示されている。しかしながら、炭材と石灰石という二つの原料を、適正な粒度の組み合わせに調整することにより、焼結鉱の歩留向上を可能とする焼結鉱の製造方法については、これまで提案されていなかった。 The techniques described in Patent Literature 1 and Patent Literature 2 above show that the particle sizes of the carbonaceous material and the limestone are adjusted separately. However, there has been no proposal for a method for producing sintered ore that enables an improvement in the yield of sintered ore by adjusting the combination of two raw materials, carbonaceous material and limestone, to an appropriate particle size combination. .

本発明の目的は、配合原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、歩留の向上を可能とする焼結鉱の製造方法を提供することである。 The object of the present invention is to produce sintered ore that enables improvement of yield in a method for producing sintered ore in which mixed raw materials are granulated, charged into a pallet of a downward suction type sintering machine, and fired. to provide a method.

本発明の要旨とするところは、以下のとおりである。
鉄鉱石、石灰石、MgO含有副原料、炭材および返鉱を配合した焼結原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、
前記炭材の平均粒径(MSC)は2.0mmを超え2.8mm以下であり、
前記石灰石の平均粒径(MSL)と前記炭材の平均粒径(MSC)の比率が、0.94≦MSL/MSC≦1.2であること
を特徴とする焼結鉱の製造方法。
The gist of the present invention is as follows.
In a method for producing sintered ore, a sintering raw material mixed with iron ore, limestone, MgO-containing auxiliary raw material, carbonaceous material and return ore is granulated, charged into a pallet of a downward suction sintering machine, and fired,
The average particle diameter (MS C ) of the carbonaceous material is more than 2.0 mm and 2.8 mm or less,
Sintered ore characterized in that the ratio of the average particle size of the limestone (MS L ) and the average particle size of the carbonaceous material (MS C ) is 0.94 ≤ MS L /MS C ≤ 1.2 Production method.

本発明によれば、炭材と石灰石をこれらの粒径比率に基づいて調整することにより、両原料の粒度偏析を制御して歩留を向上することができる。 According to the present invention, by adjusting carbonaceous material and limestone based on their particle size ratio, particle size segregation of both raw materials can be controlled and the yield can be improved.

本実験において使用した篩分け装置を模式的に示す図である。It is a figure which shows typically the sieving apparatus used in this experiment. コークスの平均粒径(MSC)と成品歩留との関係を示す図である。FIG. 3 is a diagram showing the relationship between the average coke particle size (MS C ) and product yield. コークスの平均粒径(MSC)と石灰石の平均粒径(MSL)との関係を示す図である。FIG. 3 is a diagram showing the relationship between the average particle size of coke (MS C ) and the average particle size of limestone (MS L ).

以下に課題を解決した経緯について詳細に説明する。 The details of how the problem was solved are described below.

焼結鉱は、主原料である鉄鉱石等の含鉄原料粉、副原料、炭材および返鉱が配合されて作られる。鉄鉱石は、焼結原料の約70質量%以上85質量%以下を占め、10mm以下の粒度範囲のものが使用されている。通常は5種類から10種類の鉄鉱石銘柄が混合され、その配合割合に応じて、鉄鉱石の平均粒径は1.3mm以上2.5mm以下の範囲とされている。副原料は、石灰石、生石灰などのCaO含有副原料、橄欖岩、ニッケルスラグなどのMgO含有副原料である。炭材は、通常使用されるコークスや無煙炭の他、石炭チャーなど、焼結の発熱源となる炭素成分(フリーカーボン)を主体とする材料である。 Sintered ore is made by blending iron-containing raw material powder such as iron ore as the main raw material, auxiliary raw materials, carbonaceous material and return ore. Iron ore accounts for about 70% by mass or more and 85% by mass or less of the raw material for sintering, and those with a particle size range of 10 mm or less are used. Normally, 5 to 10 types of iron ore brands are mixed, and the average particle size of iron ore is in the range of 1.3 mm or more and 2.5 mm or less depending on the mixing ratio. The auxiliary materials are CaO-containing auxiliary materials such as limestone and quicklime, and MgO-containing auxiliary materials such as peridotite and nickel slag. The carbon material is a material mainly composed of a carbon component (free carbon) that serves as a heat source for sintering, such as coke and anthracite, which are usually used, and coal char.

焼結過程において、炭材は、原料充填層内の鉄鉱石の周囲に融液を生成させる熱源となる。石灰石は融液の原料であり、炭材の燃焼により溶融する。石灰石中のCaOが鉄鉱石中のFeと反応して、カルシウムフェライト(CaO・Fe)系融液を生成し、この融液により配合原料(焼結原料)の塊成化が進む。そのため、焼結原料の融液生成(焼結)反応において、石灰石および炭材は、融液の発生量、すなわち、焼成される焼結鉱の強度を左右し、歩留に直結する重要な要素となっている。 In the sintering process, the carbonaceous material serves as a heat source that generates a melt around the iron ore in the raw material packed bed. Limestone is a raw material for the melt and is melted by burning the carbonaceous material. CaO in limestone reacts with Fe 2 O 3 in iron ore to form a calcium ferrite (CaO.Fe 2 O 3 )-based melt, and this melt agglomerates the compounding raw material (sintering raw material). advances. Therefore, in the melt formation (sintering) reaction of the sintering raw material, limestone and carbonaceous material are important factors that affect the amount of melt generated, that is, the strength of the fired sintered ore, and are directly linked to the yield. It has become.

石灰石は、その粒度が小さいと溶融しやすくなるが、小さすぎるとパレットに装入した際に原料充填層の通気抵抗が上がり、生産性を低下させてしまう。また、石灰石は、その粒度が大きく溶け残った場合には、融液の生成量が減少する。融液の生成量の不足により、シンターケーキ内に未焼結の部分が残り、結果として強度不足により歩留が低下する。ここで、上述した層厚方向における焼結原料の粒度偏析は、焼結原料である炭材や石灰石についても同様であり、粒度の粗いものが下層に、粒度の細かいものが上層に偏ることが知られている。 If the grain size of limestone is small, it will melt easily. In addition, if the limestone has a large particle size and remains undissolved, the amount of melt produced decreases. Due to the insufficient amount of melt produced, an unsintered portion remains in the sinter cake, resulting in a decrease in yield due to insufficient strength. Here, the grain size segregation of the sintering raw material in the layer thickness direction described above is the same for carbonaceous materials and limestone, which are sintering raw materials, and it is possible that coarse grains are concentrated in the lower layer and fine grains are concentrated in the upper layer. Are known.

本発明者は、上述のような炭材と石灰石の粒度偏析、すなわち、粒度によって層厚方向の賦存量がそれぞれ変化することに着目した。融液生成の熱源となるコークスと融液の原料となる石灰石とを、層厚方向において同様に偏析させることにより、石灰石の溶け残りを防止して焼結に必要な融液を発生させることができると考えた。つまり、炭材の粒度(平均粒径MSC)と石灰石の粒度(平均粒径MS)との両方を粒径比率に基づいて調整することにより、融液を生成させる熱源であるフリーカーボンと、融液の原料となるCaOの両成分の層厚方向における偏析状態が同様になるように制御することができる。その結果として、層厚方向における融液の発生量を制御することができ、焼結鉱の歩留を向上させることが可能であると考えた。 The present inventor paid attention to the particle size segregation of the carbonaceous material and limestone as described above, that is, the existence amount in the layer thickness direction varies depending on the particle size. By segregating the coke, which is the heat source for generating the melt, and the limestone, which is the raw material of the melt, in the layer thickness direction, it is possible to prevent undissolved limestone and generate the melt necessary for sintering. I thought I could. That is, by adjusting both the particle size of the carbonaceous material (average particle size MS C ) and the particle size of the limestone (average particle size MS L ) based on the particle size ratio, the free carbon, which is the heat source for generating the melt, and , CaO, which is the raw material of the melt, can be controlled so that the segregation states in the layer thickness direction are the same. As a result, it is possible to control the amount of melt generated in the layer thickness direction, and it is possible to improve the yield of sintered ore.

そこで、本発明者は、炭材の粒度と石灰石の粒度について、適正な粒径比率の範囲を調べた。具体的には、粒度の異なる炭材、粒度の異なる石灰石を複数用意し、これらをそれぞれ組み合わせて配合した焼結原料について焼結鍋試験を実施し、焼結工程の各歩留を調べた。その結果、従来の粒度(平均粒径1.5mm以上1.8mm以下)よりも粒度の大きい平均粒径が2.0mmを超え2.8mm以下の炭材を用いた場合でも、石灰石の粒度(以下、「石灰石の平均粒径」「MS」ともいう)と炭材の粒度(以下、「炭材の平均粒径」または「MSC」ともいう)との比率とが、「0.94≦MS/MSC≦1.2」となるように調整することにより、焼結鉱の歩留の向上効果が得られることを見出した。ここで、炭材の平均粒径が2.0mm以下であるとパレットの下層部の炭材量が少なくなり、下層部の熱量不足で歩留が低下し、2.8mmよりも大きいとパレットの下層部の炭材量が多くなりすぎ、パレットのグレート面の焼き付きが発生して安定した操業が困難となる可能性がある。また、「MS/MSC」の値が0.94未満であると、石灰石の粒度が小さく原料粒子間の隙間を埋めてしまうため、融液の生成量が多すぎてしまい原料充填層の通気性が悪化して歩留が低下する。「MS/MSC」の値が1.2よりも大きいと、石灰石の粒度が大きくなるため、石灰石の溶けにくくなり、融液の生成量が少なくなり未焼結部分が発生し歩留が低下する。本願は、かかる知見に基づいて発明されたものである。 Therefore, the present inventor investigated the appropriate particle size ratio range for the particle size of the carbonaceous material and the particle size of the limestone. Specifically, a plurality of carbonaceous materials with different grain sizes and limestone with different grain sizes were prepared, and a sintering pot test was performed on the sintering raw materials prepared by combining these, respectively, and each yield in the sintering process was investigated. As a result, even when using a carbonaceous material with an average particle size of more than 2.0 mm and 2.8 mm or less, which is larger than the conventional particle size (average particle size of 1.5 mm or more and 1.8 mm or less), the grain size of limestone ( Hereinafter, the ratio between the “mean particle size of limestone” and “MS L ”) and the particle size of carbonaceous material (hereinafter also referred to as “mean particle size of carbonaceous material” or “MS C ”) is “0.94 ≤ MS L /MS C ≤ 1.2”, it was found that the effect of improving the yield of sintered ore can be obtained. Here, if the average particle size of the carbonaceous material is 2.0 mm or less, the amount of carbonaceous material in the lower layer of the pallet decreases, and the yield decreases due to the lack of heat in the lower layer. There is a possibility that the amount of carbonaceous material in the lower layer will become too large, causing seizure on the grate surface of the pallet and making stable operation difficult. Further, if the value of "MS L /MS C " is less than 0.94, the grain size of the limestone is small and fills the gaps between the raw material particles, so the amount of melt generated is too large, resulting in the formation of the raw material packed bed. Breathability deteriorates and the yield decreases. If the value of “MS L /MS C ” is greater than 1.2, the grain size of limestone becomes large, so limestone becomes difficult to dissolve, the amount of melt produced decreases, unsintered portions occur, and the yield decreases. descend. The present application has been invented based on such findings.

本発明では、発明者は、歩留の向上の指標として、炭材の平均粒径に対する石灰石の平均粒径の比(MS/MSC)を採用している。粒度を表す代表指標は種々考えられるが、原料装入時の粒度偏析が支配する現象を扱う上では、特許文献1,2で採用されている粒度構成を用いる表現よりも、後述する平均粒径(MS)の方が適当な粒度指標であると考えたからである。ここで、それぞれの原料充填層における粒度偏析挙動は、主原料である鉄鉱石の粒度(以下、「鉄鉱石の平均粒径」または「MSo」ともいう)に対する粒度の違い、たとえば粒径比率であるMS/MSo、MSC/MSoに支配されると考えるのが妥当である。従って、炭材と石灰石との相対的な偏析挙動は、詳しくは、(MS/MSo)/(MSC/MSo)に支配されることになる。このとき、MSoは分母分子で相殺されるので、結局、本願で採用した指標:MS/MSCとなる。すなわち、本発明における指標である炭材の平均粒径に対する石灰石の平均粒径の比(MS/MSC)は、鉄鉱石の粒度に拠らない普遍性を有している。 In the present invention, the inventor adopts the ratio of the average grain size of limestone to the average grain size of carbonaceous material (MS L /MS C ) as an index for improving the yield. Although various representative indices representing particle size are conceivable, in terms of dealing with the phenomenon governed by particle size segregation at the time of raw material charging, the average particle size described later is preferable to the expression using the particle size configuration adopted in Patent Documents 1 and 2. This is because (MS) was thought to be a more suitable particle size index. Here, the grain size segregation behavior in each raw material packed bed is the difference in grain size with respect to the grain size of iron ore, which is the main raw material (hereinafter also referred to as “average grain size of iron ore” or “MSo”), for example, the grain size ratio. It is reasonable to think that they are governed by certain MS L /MSo and MS C /MSo. Therefore, the relative segregation behavior between carbonaceous material and limestone is, in detail, governed by (MS L /MSo)/(MS C /MSo). At this time, MSo is canceled out by the denominator and numerator, so the index used in the present application is MSL/ MSC . That is, the ratio of the average particle size of limestone to the average particle size of carbonaceous material (MS L /MS C ), which is an index in the present invention, has universality regardless of the particle size of iron ore.

実施例として、石灰石の平均粒径(MS)と炭材の平均粒径(MSC)との比率の好適な範囲を決定した根拠を示す。本実施例は、配合原料の装入状況を再現できる装入実験装置で配合原料充填層を形成し、形成した配合原料充填層を一般的な焼結実験装置(焼結鍋試験)で焼成することで、実際の焼結機を再現する手法を採用した。 As an example, the grounds for determining a suitable range of the ratio between the average particle size of limestone (MS L ) and the average particle size of carbonaceous material (MS C ) will be shown. In this example, a mixed raw material packed layer is formed with a charging experimental apparatus that can reproduce the charging state of mixed raw materials, and the formed mixed raw material packed layer is fired with a general sintering experimental apparatus (sintering pot test). By doing so, we adopted a method to reproduce an actual sintering machine.

(原料の準備)
本発明者が行った試験の内容は以下のようである。
まず、本試験では、配合原料のうち、炭材としてコークスを、CaO含有副原料として石灰石を用いた。コークスおよび石灰石は、表1に示すように、粒度の異なるものを3種類ずつ用意した。
表1は、本試験に用いた石灰石およびコークスの粒度分布と平均粒径を示す。
(Preparation of raw materials)
The contents of the test conducted by the inventor are as follows.
First, in this test, coke was used as the carbonaceous material and limestone was used as the CaO-containing auxiliary material among the raw materials to be mixed. As shown in Table 1, three types of coke and limestone with different particle sizes were prepared.
Table 1 shows the particle size distribution and average particle size of limestone and coke used in this test.

Figure 0007205362000001
Figure 0007205362000001

表1に示すように、3種類の石灰石(細粒(L1)、中粒(L2)、粗粒(L3))の試料と、3種類のコークス(細粒(C1)、中粒(C2)、粗粒(C3))の試料を用意した。表1に、石灰石(L1、L2、L3)とコークス(C1、C2、C3)試料、それぞれを、篩目(目開き寸法)の異なる6種類の篩を使用して篩分けた際の粒度分布を示す。粒度区分の境界値となる粒径は、表1に示すように、0.25mm、0.5mm、1mm、3mm、5mm、7mmであり、これらの値は分級に使用した篩の篩目である。例えば、粒度区分「1mm-0.5mm」とは、0.5mmの篩目の篩で篩分けた際に篩上であり、1mmの篩目の篩で篩分けた際に篩下である。なお、0.25mm、0.5mm、1mmの篩については、JIS Z 8801で規定されているものを使用している。平均粒度(MS)は、粒度区分の中央値を、粒度区分毎の質量分率で加重して算出した平均値である。なお、算出の際には、粒度毎の比重差はないと仮定している。 As shown in Table 1, three types of limestone (fine grain (L1), medium grain (L2), coarse grain (L3)) samples and three types of coke (fine grain (C1), medium grain (C2) , coarse grains (C3)) were prepared. Table 1 shows the particle size distribution when limestone (L1, L2, L3) and coke (C1, C2, C3) samples are sieved using six different sieves with different meshes (mesh opening dimensions). indicates As shown in Table 1, the particle sizes that are the boundary values of the particle size division are 0.25 mm, 0.5 mm, 1 mm, 3 mm, 5 mm, and 7 mm, and these values are the meshes of the sieve used for classification. . For example, the particle size division "1 mm-0.5 mm" means above the sieve when sieved with a sieve with a sieve of 0.5 mm, and under sieve when sieving with a sieve with a sieve of 1 mm. The sieves of 0.25 mm, 0.5 mm, and 1 mm specified in JIS Z 8801 are used. The average particle size (MS) is the average value calculated by weighting the median value of each particle size category by the mass fraction of each particle size category. The calculation assumes that there is no specific gravity difference for each particle size.

表1に示すように、石灰石の細粒(L1)、中粒(L2)、粗粒(L3)の試料の平均粒径(MS)は、それぞれ、1.61mm、2.08mm、2.41mmである。また、コークスの細粒(C1)、中粒(C2)、粗粒(C3)の試料の平均粒径(MS)は、それぞれ、1.63mm、2.01mm、2.55mmである。 As shown in Table 1, the average particle size (MS) of the limestone fine grain (L1), medium grain (L2), and coarse grain (L3) samples is 1.61 mm, 2.08 mm, and 2.41 mm, respectively. is. The average particle diameters (MS) of fine (C1), medium (C2) and coarse (C3) coke samples are 1.63 mm, 2.01 mm and 2.55 mm, respectively.

(原料の配合と造粒)
表2は、原料の構成を示す。コークスと橄欖岩については、上述の粒度の異なる3種類を組み合わせて配合した9種類の配合原料を用意して、それぞれについて試験を行った。なお、鉄鉱石は平均粒径が1.5mmのものを使用した。
(Raw material blending and granulation)
Table 2 shows the composition of the raw materials. As for coke and peridotite, 9 types of blended raw materials were prepared by combining the above 3 types of different particle sizes, and tests were conducted on each of them. Iron ore having an average particle size of 1.5 mm was used.

Figure 0007205362000002
Figure 0007205362000002

表2に示すように、返鉱およびコークスを除いた原料を100質量%として、返鉱とコークスの配合割合を、それぞれ外数で、15.0質量%、3.6質量%とした。これらの配合原料を万能混練機で混合した後、直径1m径のドラム型造粒機を用いて水分7.5質量%を目標にして、所定時間(3分)造粒して、鍋焼成試験用の配合原料(焼結原料)を作製した。 As shown in Table 2, the ratio of return ore and coke was 15.0% by mass and 3.6% by mass, respectively, with the raw material excluding return ore and coke being 100% by mass. After mixing these blended raw materials with a universal kneader, they were granulated for a predetermined time (3 minutes) using a drum type granulator with a diameter of 1 m with a target moisture content of 7.5% by mass, followed by a pot firing test. A compounding raw material (sintering raw material) for

(造粒した焼結原料の分級)
パレットへの装入時に起こる配合原料充填層の層厚方向における粒度偏析を再現するために、スリットバー式配合原料篩分け装置(以下、篩分け装置ともいう)を使用して、造粒した焼結原料を分級した。
(Classification of granulated raw material for sintering)
In order to reproduce the grain size segregation in the layer thickness direction of the mixed raw material packed bed that occurs when charging to the pallet, a slit bar type mixed raw material sieving device (hereinafter also referred to as a sieving device) is used to granulate and sinter. The binder material was classified.

図1は、本実験において使用した篩分け装置1を模式的に示す図である。図1に示すように、この篩分け装置1は、焼結原料2を供給するための供給部3と、供給された焼結原料2を分級するためのスリット5とを備えている。スリット5の下方には、スリット5により分級された焼結原料2を回収する複数の回収ボックス7(本実施例では6個)が並んで配置される。スリット5は、供給部3から下方に傾斜して配置され、焼結原料の移動方向に対して直交して延出し、この移動方向に等間隔に配置されるスリットバー5aを有する。供給された焼結原料2は、図1に示すように、スリットバー5a上を上流側(図の左上)から下流側(図の右下)に向かって移動する。この移動の間に、焼結原料2は粒度(粒径)の小さいものから、順次スリット5を抜けて回収ボックス7へと落下する。このように、焼結原料2は粒径に応じて回収ボックス7に分けられる。具体的には、スリット5の上流側の回収ボックス7には粒度の小さい細粒のものが、下流側の回収ボックス7には粒度の大きい粗粒のものが回収される。回収された回収ボックス7内の焼結原料を、粗粒側から順に後述する焼結鍋に装入して、実機焼結機の原料充填層と同様な粒度偏析、原料成分偏析を再現した(層厚435mm)。なお、スリット5の傾斜角度は事前検討の結果、連続的な偏析が得られた40°とした。 FIG. 1 is a diagram schematically showing a sieving device 1 used in this experiment. As shown in FIG. 1, this sieving device 1 includes a supply section 3 for supplying the sintering raw material 2 and slits 5 for classifying the supplied sintering raw material 2 . Below the slits 5, a plurality of collection boxes 7 (six in this embodiment) for collecting the sintering raw material 2 classified by the slits 5 are arranged side by side. The slit 5 is inclined downward from the supply section 3, extends perpendicularly to the moving direction of the raw material for sintering, and has slit bars 5a arranged at equal intervals in this moving direction. As shown in FIG. 1, the supplied sintering raw material 2 moves on the slit bar 5a from the upstream side (upper left in the figure) toward the downstream side (lower right in the figure). During this movement, the sintering raw material 2 passes through the slit 5 and falls into the recovery box 7 in order from the smallest particle size. Thus, the sintering raw material 2 is sorted into the collection box 7 according to the particle size. Specifically, fine grains with a small grain size are collected in the collection box 7 on the upstream side of the slit 5, and coarse grains with a large grain size are collected in the collection box 7 on the downstream side. The recovered sintering raw material in the recovery box 7 was charged into a sintering pot described later in order from the coarse grain side to reproduce the same grain size segregation and raw material component segregation as the raw material packed bed of the actual sintering machine ( layer thickness 435 mm). Incidentally, the inclination angle of the slit 5 was set to 40° at which continuous segregation was obtained as a result of preliminary examination.

(焼結鍋試験)
表3は、焼結鍋試験に用いた試験装置の仕様と試験条件を示す。焼結鍋試験により実機での原料充填層の焼成過程をシミュレートした。焼結原料の充填後の焼結層の表面に点火し、焼結鍋の下部に設置した風箱からブロワーで空気を吸引して、原料充填層を焼成した。
(Sintering pot test)
Table 3 shows the specifications and test conditions of the test equipment used for the sintering pot test. A sintering pot test simulated the sintering process of the raw material packed bed in an actual machine. The surface of the sintered layer after filling the sintering raw material was ignited, and the raw material packed layer was sintered by sucking air with a blower from an air box installed at the bottom of the sintering pot.

Figure 0007205362000003
Figure 0007205362000003

(焼結鉱の成品歩留の測定)
成品歩留は、以下のように測定した。焼成後のシンターケ-キを高さ方向(層厚方向)に3等分に分割し、試料(上層部、中層部、下層部)とした。各試料について、落錘試験(3kgの錘を2mの高さから4回繰り返し試料上に落下させた)後に目開き5mmの篩にかけ、篩に残った焼結鉱の粒子(+5mm粒子)の、シンターケ-キの総質量に対する質量%を、ここでの成品歩留(+5mm%)と定義した。
(Measurement of product yield of sintered ore)
Product yield was measured as follows. The baked sinter cake was divided into three equal parts in the height direction (layer thickness direction) to obtain samples (upper layer, middle layer and lower layer). For each sample, after the dropping weight test (a weight of 3 kg was repeatedly dropped on the sample from a height of 2 m four times), it was sieved with an opening of 5 mm, and the sintered ore particles (+5 mm particles) remaining on the sieve were The % by mass of the total mass of the sinter cake was defined as the product yield (+5 mm %) here.

(成品歩留の評価)
表4は、上述した9種類の焼結原料から焼成した焼結鉱の成品歩留試験の結果を示す。
実験1~3、実験4~6、実験7~9では、それぞれ、コークスの粒度が、細粒(C1)、中粒(C2)、粗粒(C3)の試料を使用している。また、実験1,4,7、実験2,5,8、実験3,6,9では、それぞれ、石灰石の粒度が、細粒(L1)、中粒(L2)、粗粒(L3)の試料を使用している。なお、石灰石の粒度が粗粒(L3)よりも少し粗く、コークスの粒度が粗粒(C3)のものよりもさらに粗粒(平均粒径3.0mm超え)のコークスを使用した実験も行い、実験10として表4に記載している。なお、この平均粒径は、上述と同様の粒度区分の中央値を質量分率で加重平均したものである。
(Evaluation of product yield)
Table 4 shows the results of the product yield test of sintered ore fired from the nine types of sintering raw materials described above.
Experiments 1 to 3, Experiments 4 to 6, and Experiments 7 to 9 use fine (C1), medium (C2), and coarse (C3) coke samples, respectively. In Experiments 1, 4, 7, Experiments 2, 5, 8, and Experiments 3, 6, 9, the limestone grain sizes were fine grains (L1), medium grains (L2), and coarse grains (L3), respectively. are using. In addition, an experiment using coke with a limestone grain size slightly coarser than coarse grains (L3) and coke grains coarser than coarse grains (C3) (average particle size exceeding 3.0 mm) was also conducted. It is listed in Table 4 as Experiment 10. This average particle size is the weighted average of the medians of the particle size categories similar to those described above, using mass fractions.

Figure 0007205362000004
Figure 0007205362000004

表4においては、以下の要件1および要件2を満たすものを実施例とし、それ以外を比較例としている。また、表4の成品歩留は、上層部、中層部、下層部の各試料の歩留(+5mm%)を平均した値である。
要件1:炭材の平均粒径(MSC)が2.0mmを超え2.8mm以下
要件2:石灰石の平均粒径(MS)が炭材の平均粒径(MSC)の0.94倍以上1.2倍以下
In Table 4, those satisfying the following requirements 1 and 2 are taken as examples, and the others are taken as comparative examples. The product yield in Table 4 is an average value of the yields (+5 mm%) of the upper layer, middle layer, and lower layer samples.
Requirement 1: The average particle size of carbonaceous material (MS C ) is more than 2.0 mm and 2.8 mm or less Requirement 2: The average particle size of limestone (MS L ) is 0.94 of the average particle size of carbon material (MS C ) 1.2 times or less

図2は、コークスの平均粒径(MSC)と成品歩留との関係を示す図である。図2に示すように、コークスの平均粒径(MSC)を、2.0mmを超え2.8mm以下として、コークスの平均粒径(MSC)と石灰石の平均粒径(MS)との比率を調整することにより、成品歩留が70質量%以上の高歩留となることがわかった。特に、本発明の実施例である実験5、6,9においては、成品歩留が70質量%以上確保できることがわかった。また、平均粒径(MSC)が2.8mmを超えたコークスを使用した実験10においては、下層部のグレート面に焼き付きが発生して、焼結鍋内の通気が低下して、歩留の低下が著しかった。 FIG. 2 is a diagram showing the relationship between the average coke particle size (MS C ) and product yield. As shown in FIG. 2, the average particle size of coke (MS C ) is more than 2.0 mm and 2.8 mm or less, and the average particle size of coke (MS C ) and the average particle size of limestone (MS L ) It was found that by adjusting the ratio, the yield of finished products was as high as 70% by mass or more. In particular, in Experiments 5, 6, and 9, which are examples of the present invention, it was found that a product yield of 70% by mass or more could be ensured. In addition, in Experiment 10 using coke with an average particle size (MS C ) exceeding 2.8 mm, seizure occurred on the grate surface of the lower layer, and the ventilation in the sintering pot decreased, and the yield decreased significantly.

図3は、コークスの平均粒径(MSC)と石灰石の平均粒径(MS)との関係を示す図である。図の直線L1は傾きが1.2の直線を示し、直線L2は傾きが0.94の直線を示す。本発明の実施例である実験5、6,9は、直線L1と直線L2の間に位置する。成品の高歩留を確保するためには、コークスの平均粒径(MSC)を2.0mm超え2.8mm以下として、コークスの平均粒径(MSC)に対する石灰石の平均粒径(MS)の比を、0.94≦MS/MSC≦1.2の範囲とする必要があることが確認された。 FIG. 3 is a diagram showing the relationship between the average particle size of coke (MS C ) and the average particle size of limestone (MS L ). A straight line L1 in the figure indicates a straight line with a slope of 1.2, and a straight line L2 indicates a straight line with a slope of 0.94. Experiments 5, 6, and 9, which are examples of the present invention, are located between straight lines L1 and L2. In order to ensure a high yield of products, the average particle size of coke (MS C ) is set to more than 2.0 mm and 2.8 mm or less, and the average particle size of limestone ( MS L ) should be in the range of 0.94≦MS L /MS C ≦1.2.

1…スリットバー式配合原料篩分け装置(篩分け装置)、2…焼結原料、3…供給部、5…スリット、5a…スリットバー、7…回収ボックス DESCRIPTION OF SYMBOLS 1... Slit bar-type mixing raw material sieving apparatus (sieving apparatus), 2... Sintering raw material, 3... Supply part, 5... Slit, 5a... Slit bar, 7... Collection box

Claims (1)

鉄鉱石、石灰石、MgO含有副原料、炭材および返鉱を配合した焼結原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、
前記炭材の平均粒径(MSC)は2.0mmを超え2.8mm以下であり、
前記石灰石の平均粒径(MS)と前記炭材の平均粒径(MSC)の比率が、0.94≦MS/MSC≦1.2であること
を特徴とする焼結鉱の製造方法。
In a method for producing sintered ore, a sintering raw material mixed with iron ore, limestone, MgO-containing auxiliary raw material, carbonaceous material and return ore is granulated, charged into a pallet of a downward suction sintering machine, and fired,
The average particle diameter (MS C ) of the carbonaceous material is more than 2.0 mm and 2.8 mm or less,
A sintered ore characterized in that the ratio of the average particle size of the limestone (MS L ) and the average particle size of the carbon material (MS C ) is 0.94 ≤ MS L /MS C ≤ 1.2 Production method.
JP2019079181A 2019-04-18 2019-04-18 Method for producing sintered ore Active JP7205362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079181A JP7205362B2 (en) 2019-04-18 2019-04-18 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079181A JP7205362B2 (en) 2019-04-18 2019-04-18 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2020176299A JP2020176299A (en) 2020-10-29
JP7205362B2 true JP7205362B2 (en) 2023-01-17

Family

ID=72936203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079181A Active JP7205362B2 (en) 2019-04-18 2019-04-18 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP7205362B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204332A (en) 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2009185356A (en) 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore
JP2016125125A (en) 2015-01-08 2016-07-11 Jfeスチール株式会社 Granulated particle for carbonaceous material inner package for sinter ore production and method for production thereof, and method for production of sinter ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204332A (en) 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2009185356A (en) 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore
JP2016125125A (en) 2015-01-08 2016-07-11 Jfeスチール株式会社 Granulated particle for carbonaceous material inner package for sinter ore production and method for production thereof, and method for production of sinter ore

Also Published As

Publication number Publication date
JP2020176299A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
CN107614710B (en) The manufacturing method of reduced iron
JP6102484B2 (en) Method for producing sintered ore
JP2009185356A (en) Method for producing sintered ore
JP6421666B2 (en) Method for producing sintered ore
JP2015014015A (en) Production method of sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
JP2007177214A (en) Method for producing ferrocoke
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP7205362B2 (en) Method for producing sintered ore
JP7180406B2 (en) Method for producing sintered ore
JP4830728B2 (en) Method for producing sintered ore
JP2020521050A (en) Sinter plant operation method
JP7339516B2 (en) Method for producing sintered ore
JP2015193898A (en) Method for charging sintering blending raw material comprising magnetization component raw material
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JP7273305B2 (en) Method for producing sintered ore
JP7087939B2 (en) Manufacturing method of sintered raw material
JP7047616B2 (en) How to make coke
JP2024078406A (en) Method for producing sinter
JP2009242829A (en) Method for producing sintered ore
KR20170095579A (en) Fabricating method for sintered ore and the sintered ore using the same
JP6477312B2 (en) Method for charging sintered raw material grains
JP2014167164A (en) Method for manufacturing reduced iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151