JP2015193898A - Method for charging sintering blending raw material comprising magnetization component raw material - Google Patents

Method for charging sintering blending raw material comprising magnetization component raw material Download PDF

Info

Publication number
JP2015193898A
JP2015193898A JP2014222162A JP2014222162A JP2015193898A JP 2015193898 A JP2015193898 A JP 2015193898A JP 2014222162 A JP2014222162 A JP 2014222162A JP 2014222162 A JP2014222162 A JP 2014222162A JP 2015193898 A JP2015193898 A JP 2015193898A
Authority
JP
Japan
Prior art keywords
raw material
sintering
charging
sintered
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014222162A
Other languages
Japanese (ja)
Inventor
友司 岩見
Tomoji Iwami
友司 岩見
大山 伸幸
Nobuyuki Oyama
伸幸 大山
山本 哲也
Tetsuya Yamamoto
哲也 山本
隆英 樋口
Takahide Higuchi
隆英 樋口
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014222162A priority Critical patent/JP2015193898A/en
Publication of JP2015193898A publication Critical patent/JP2015193898A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for charging a sintering blending raw material comprising a magnetization component raw material effective for making the permeability of a sintering raw material charging layer satisfactory and achieving the improvement of sinterability.SOLUTION: In the method for forming the charging layer of a sintering raw material by charging a sintering blending raw material onto a pallet in a sintering machine through a sloping chute, in the case the sintering blending raw material includes magnetization component raw material such as magnetite based fine powder iron ore by 5 to 15 mass% in total, when this sintering blending raw material is charged onto the pallet using a sloping chute whose rear is installed with magnets, the magnetization component raw material is deposited onto the upper layer part of the sintering raw material charging layer.

Description

本発明は、マグネタイト系微粉鉄鉱石等の着磁成分原料を含有する焼結配合原料の装入方法に関し、特に、高炉の精錬に適した焼結鉱を製造するのに有効な、該焼結配合原料のDL焼結機パレット上への装入方法に関する。   The present invention relates to a method for charging a sintered blending raw material containing a magnetizing component raw material such as magnetite fine iron ore, and in particular, the sintering effective for producing a sintered ore suitable for smelting of a blast furnace. The present invention relates to a method for charging compound raw materials onto a DL sintering machine pallet.

高炉製銑法の主原料である焼結鉱は、図1に示すように、鉄鉱石粉やミルスケールや製鉄ダスト等の製鉄所内回収粉、焼結鉱篩下粉(返鉱)の他、石灰石及びドロマイトのような含CaO原料、生石灰のような造粒助剤、粉コークス、無煙炭のような炭材(固体燃料)などからなる焼結配合原料を、主としてDL焼結機を用いて製造されている。前記焼結配合原料は、複数種の焼結原料粉を、ドラムミキサー等により混合し、引き続き造粒することによって、平均径が6.0mm程度以下の擬似粒子としたものが多い。このようして得られた焼結鉱製造用の配合原料(即ち、「焼結配合原料」)は、乾燥後、焼結機のパレット上に装入され、単に装入層とも呼ばれる焼結原料装入層を形成するための原料となる。   As shown in Fig. 1, sinter ore, which is the main raw material for the blast furnace ironmaking method, includes iron ore powder, mill scale, iron mill recovered powder such as iron mill dust, sinter ore sieving powder (returning), limestone And sinter-blended raw materials composed of CaO-containing raw materials such as dolomite, granulation aids such as quick lime, powdered coke, and carbonaceous materials (solid fuel) such as anthracite, etc. ing. Many of the sintered blending raw materials are obtained by mixing a plurality of types of sintered raw material powders with a drum mixer or the like and subsequently granulating them to obtain pseudo particles having an average diameter of about 6.0 mm or less. The thus obtained blended raw material for producing sinter (namely, “sintered blended raw material”) is dried and charged on a pallet of a sintering machine, and is simply referred to as a charged layer. It becomes a raw material for forming the charging layer.

一般に、前記焼結原料装入層の厚さ(高さ)は400〜800mm前後である。その後、該焼結原料装入層は、パレットの上方に設置された点火炉によりこの焼結原料装入層中に含まれる炭材に点火される。そして、前記パレット下に配設されているウインドボックスを介して該焼結原料装入層中の空気を下方に吸引することにより、該焼結原料装入層中の炭材を順次に燃焼させると共に、その燃焼をパレットの移動に合わせて次第に下層かつ前方に進行させ、このときに発生する燃焼熱によって、当該焼結配合原料を溶融し、焼結ケーキを生成させる。その後、得られた焼結ケーキは、破砕後クーラーで冷却し、整粒して、所定粒度(例えば、5.0mm以上)の塊成物からなる成品焼結鉱となる。   In general, the thickness (height) of the sintered raw material charging layer is about 400 to 800 mm. Thereafter, the carbonized material contained in the sintered raw material charging layer is ignited by the ignition furnace installed above the pallet. And the carbon | charcoal material in this sintering raw material charge layer is burned sequentially by attracting | sucking the air in this sintering raw material charge layer downward via the window box arrange | positioned under the said pallet. At the same time, the combustion is gradually advanced to the lower layer and forward in accordance with the movement of the pallet, and the sintered blending raw material is melted by the combustion heat generated at this time to generate a sintered cake. Thereafter, the obtained sintered cake is cooled by a cooler after crushing, and sized, and becomes a product sintered ore made of agglomerates having a predetermined particle size (for example, 5.0 mm or more).

焼結鉱の生産量は、一般に、焼結生産率(t/hr・m)×焼結機面積(m)により決定される。即ち、焼結鉱の生産量は、焼結機の機幅や機長、原料堆積層の厚さ(焼結原料層の厚さ)、焼結配合原料の嵩密度、焼結(燃焼)時間、歩留などにより変化する。そして、この焼結鉱の生産量を増加させるためには、焼結原料装入層の通気性(圧損)を改善して焼結時間を短縮するか、あるいは破砕前の焼結ケーキの冷間強度を高めて歩留を向上させることなどが有効であると考えられている。 The production amount of sintered ore is generally determined by the sintering production rate (t / hr · m 2 ) × sintering machine area (m 2 ). That is, the production amount of sintered ore is the width and length of the sintering machine, the thickness of the raw material deposition layer (the thickness of the sintering raw material layer), the bulk density of the sintering compound raw material, the sintering (combustion) time, It changes depending on the yield. And in order to increase the production amount of this sintered ore, the air permeability (pressure loss) of the sintering raw material charging layer is improved to shorten the sintering time, or the coldness of the sintered cake before crushing is reduced. Increasing strength and improving yield are considered effective.

近年、前記焼結配合原料中に配合される鉄鉱石粉に限っては、A1、SiO等の脈石成分が増加する一方、Fe分は低下する傾向にある。そのため、高炉や転炉におけるスラグの発生量が増加し、このスラグの処理が大きな負担となっている。これに対し、従来、これまでは焼結用原料としては使用されてこなかったFeO成分の多いマグネタイト系微粉鉄鉱石等の着磁成分原料の使用が注目されている。 In recent years, only the iron ore powder blended in the sintered blending raw material tends to increase gangue components such as A1 2 O 3 and SiO 2 while decreasing the Fe content. For this reason, the amount of slag generated in the blast furnace and converter is increased, and this slag treatment is a heavy burden. On the other hand, the use of magnetized component raw materials such as magnetite-based fine iron ore with a large FeO component, which has not been used as a raw material for sintering so far, has attracted attention.

表1は、一般的な鉄鉱石A、Bおよびマグネタイト系微粉鉄鉱石やミルスケール、製鉄ダスト(高炉ダスト、製鋼ダスト等)等の着磁成分原料の化学成分及び平均粒径の一例を示す。マグネタイト系微粉材料の特徴は、脈石成分(SiO)の含有量が低く、多くのFe分を含有していることである。しかし、図2に示すように、このマグネタイト系微粉鉄鉱石の粒度は、ペレットフィードほどではないものの、通常の焼結用粉鉄鉱石と比較すると微細であり、焼結処理工程での通気性悪化を招き、生産性を低下させてしまうおそれがある。 Table 1 shows an example of chemical components and average particle diameters of magnetized component raw materials such as general iron ores A and B, magnetite fine iron ore, mill scale, and ironmaking dust (blast furnace dust, steelmaking dust, etc.). The feature of the magnetite fine powder material is that the content of the gangue component (SiO 2 ) is low and contains a large amount of Fe. However, as shown in FIG. 2, although the particle size of the magnetite fine iron ore is not as high as that of the pellet feed, it is finer than ordinary iron ore for sintering, and the air permeability deteriorates in the sintering process. And may reduce productivity.

Figure 2015193898
* 製鉄ダストのT.Fe中には、metallic Feが44.0mass%含まれる
Figure 2015193898
* 44.0 mass% of metallic Fe is contained in T.Fe of steelmaking dust.

微粉鉄鉱石を焼結原料とする上述した課題に鑑み、従来、一般的な微粉鉄鉱石を有効に使用するための種々の方法が提案されている。例えば、特許文献1では、配合の段階で上記のような微粉鉄鉱石と核となる粉鉄鉱石との比率を調整し、核の周りに微粉鉱石を効率よく付着させた擬似粒子とすることで、原料の造粒性を向上させて通気性の悪化を抑制する方法を提案している。   In view of the above-described problems in which fine iron ore is used as a sintering raw material, various methods for effectively using general fine iron ore have been proposed. For example, in Patent Document 1, by adjusting the ratio of the fine iron ore and the core fine iron ore as described above at the blending stage, it is possible to obtain pseudo particles in which the fine ore is efficiently attached around the core. Have proposed a method of improving the granulation properties of the raw materials and suppressing the deterioration of air permeability.

さらに、特許文献2には、微粉鉱石を使用する場合、これを別ラインで粉砕−攪拌し、バインダーを混ぜることで造粒性を向上させてなる焼結配合原料を製造するための技術が提案されている。   Furthermore, Patent Document 2 proposes a technique for producing a sintered blending raw material in which, when fine ore is used, it is pulverized and stirred in a separate line, and a granulated property is improved by mixing a binder. Has been.

特開2008−101263号公報JP 2008-101263 A 特開2007−77512号公報JP 2007-77512 A

上述したように、焼結配合原料の構成成分として微粉鉱石などを使用する場合、まず、造粒性の向上を図ることが検討されてきた。例えば、特許文献1の方法では、今後さらに粉鉱石の脈石成分の含有量や微粉鉱石等の使用量が増加すると、擬似粒子を形成するための核粒子と微粉との比率を合わせられなくなり、核となる粉鉱石の比率が生産性の律速になってしまうおそれがある。また、特許文献2では、マグネタイト系微粉鉄鉱石がペレットフィードほど小さくないため、新たにこれを粉砕工程する必要になること、及びバインダー等の使用によってコスト高になるという課題が残されている。   As described above, in the case where fine ore or the like is used as a constituent component of the sintered blending raw material, it has been studied first to improve the granulation property. For example, in the method of Patent Document 1, when the content of the gangue component of fine ore or the amount of fine ore used increases in the future, it becomes impossible to match the ratio of core particles and fine powder to form pseudo particles, There is a risk that the ratio of the core ore becomes the rate-limiting factor for productivity. Moreover, in patent document 2, since magnetite type | system | group fine iron ore is not so small as a pellet feed, the subject that it becomes necessary to pulverize this newly newly, and cost becomes high by use of a binder etc. remains.

そこで、本発明の目的は、焼結原料装入層の通気性を良好にして焼結性の向上を目指す上で有効なマグネタイト系微粉鉄鉱石等の着磁成分原料を含有する焼結配合原料の好ましい装入方法を提案することにある。   Accordingly, an object of the present invention is to provide a sintered blending raw material containing a magnetizing component raw material such as magnetite fine iron ore which is effective in improving the sinterability by improving the air permeability of the sintered raw material charging layer. This is to propose a preferable charging method.

焼結原料装入層の通気性悪化の原因となるマグネタイト系微粉鉄鉱石等の着磁成分原料を含む焼結配合原料を使用するときの前述した課題を解決するために開発した本発明の構成は以下のとおりである。即ち、本発明は、焼結機のパレット上に焼結配合原料をスローピングシュートを介して装入することで装入層を形成する方法において、該焼結配合原料が、マグネタイト系微粉鉄鉱石、ミルスケールおよび製鉄ダストのうちから選ばれるいずれか1種以上の着磁成分原料を合計で5〜15mass%を含む場合に、この焼結配合原料を背面に磁石を配設したスローピングシュートを用いてパレット上に装入することにより、該焼結配合原料中の着磁成分原料を焼結原料装入層の上層部に堆積させることを特徴とする着磁成分原料を含有する焼結配合原料の装入方法である。   Composition of the present invention developed to solve the above-mentioned problems when using a sintered compounding raw material containing a magnetizing component raw material such as magnetite-based fine iron ore that causes deterioration of the air permeability of the sintered raw material charging layer Is as follows. That is, the present invention relates to a method for forming a charging layer by charging a sintering compound raw material on a pallet of a sintering machine through a sloping chute, wherein the sintering compound material is a magnetite fine iron ore, When a total of 5 to 15 mass% of any one or more magnetizing component materials selected from mill scale and ironmaking dust is used, this sintered compounding material is used with a sloping chute with a magnet disposed on the back surface. A sintered blending raw material containing a magnetizing component raw material is characterized in that the magnetizing component raw material in the sintered blending raw material is deposited on the upper part of the sintered raw material charging layer by charging on a pallet. It is a charging method.

本発明に係る上記の着磁成分原料を含有する焼結配合原料の装入方法では、
(1)前記着磁成分原料の含有量は、合計で5〜10mass%であること、
(2)前記着磁成分原料は、FeOを4.5mass%以上60mass%以下含有するものであること、
(3)前記着磁成分原料は、算術平均粒径が0.2〜2.5mmの大きさを有し、かつ250μm以下のものが60mass%以下であること、
が、より特徴的である。
In the charging method of the sintered blending raw material containing the above-mentioned magnetization component raw material according to the present invention,
(1) Content of the said magnetization component raw material is 5-10 mass% in total,
(2) The magnetization component raw material contains FeO in an amount of 4.5 mass% to 60 mass%,
(3) The magnetized component raw material has an arithmetic average particle size of 0.2 to 2.5 mm, and 250 μm or less is 60 mass% or less,
Is more characteristic.

前記の構成からなる本発明に係る装入方法によれば、背面に磁石を配置したスローピングシュートを用いてマグネタイト系微粉鉄鉱石等の着磁成分原料(ただし、ここでは着磁成分として焼結返鉱は含まない)を含む造粒した焼結配合原料を焼結機のパレット上に装入する際、一定量(5〜15mass%)の着磁成分原料を含む該焼結配合原料を焼結原料装入層(以下、単に「装入層」ともいう)中に偏析装入させること、即ち、その着磁成分を焼結原料の上層部に選択的に堆積させることができるので、該焼結原料装入層における通気性の悪化を抑制することができるようになる。その結果、焼結鉱の製造における生産率、歩留り、冷間強度等の品質を向上させることができる。   According to the charging method according to the present invention having the above-described configuration, a magnetizing component raw material such as magnetite-based fine iron ore using a sloping chute with a magnet disposed on the back surface (however, here, as a magnetized component, sintering When a granulated sintered compound material containing no ore is charged onto a pallet of a sintering machine, the sintered compound material containing a certain amount (5 to 15 mass%) of a magnetized component material is sintered. Segregation can be carried out in the raw material charging layer (hereinafter also simply referred to as “charging layer”), that is, the magnetization component can be selectively deposited on the upper layer of the sintered raw material. It becomes possible to suppress the deterioration of air permeability in the binder raw material charging layer. As a result, it is possible to improve quality such as production rate, yield, and cold strength in the production of sintered ore.

DL焼結プロセスを説明する模式図である。It is a schematic diagram explaining DL sintering process. 着磁成分原料等の粒度分布を示す図である。It is a figure which shows particle size distribution, such as a magnetization component raw material. 装入層内における温度と圧力の分布を示す図である。It is a figure which shows distribution of the temperature and pressure in a charging layer. (a)〜(c)は、焼結機内における装入層内温度分布と歩留分布の図である。(A)-(c) is a figure of the temperature distribution in a charging layer and yield distribution in a sintering machine. マグネタイト系微粉鉱石の装入層上層部への偏折状態を示す模式図である。It is a schematic diagram which shows the partial state to the charging layer upper layer part of a magnetite type fine powder ore. シュート上での粒子の動きを説明する模式図である。It is a schematic diagram explaining the movement of the particle | grains on a chute | shoot. 試験装置を使って行なった装入シミュレーターの模式図である。It is a schematic diagram of the charging simulator performed using the test apparatus. 試験装置を使って装入したときのマグネタイト系微粉鉱石の偏析結果を示す図である。It is a figure which shows the segregation result of the magnetite type fine powder ore when it inserts using a test apparatus. 着磁成分原料配合率と生産率を比較した図である。It is the figure which compared the magnetization component raw material compounding rate and the production rate.

図3に示すように、一般に、パレット上に装入されて堆積している焼結配合原料の装入層(焼結原料装入層)内における圧力損失は、装入した湿原料が堆積している領域(湿潤帯)、および粉コークス等の炭材が燃焼して焼結配合原料の焼結反応が進行している領域(反応溶融帯)で生じており、焼結反応が完了した後の焼結鉱が存在する領域(焼結鉱帯)では圧力損失はあまり生じないことが知られている。そして、焼結性を向上させるには、圧力損失を全体的に低減させて装入物全体での通気性の向上を図ることが重要である。   As shown in FIG. 3, generally, the pressure loss in the charging layer (sintering raw material charging layer) of the sintered blending raw material charged and deposited on the pallet is caused by the wet raw material charged being deposited. After the completion of the sintering reaction, which occurs in the region (wet zone) where the carbonaceous material such as powdered coke burns and the sintering reaction of the raw material for the sintering is progressing (reaction melting zone) It is known that pressure loss does not occur much in the region where the sintered ore exists (sintered ore zone). And in order to improve sinterability, it is important to aim at the improvement of the air permeability in the whole charge by reducing pressure loss entirely.

そこで、本発明では、前記焼結配合原料が、その中に通気性を悪化させるマグネタイト系微粉鉄鉱石等の着磁成分原料を含む場合、そのマグネタイト系微粉鉄鉱石等の着磁成分原料を意図的に焼結配合原料の装入層の上層部に堆積(偏析装入)させて、焼結反応を早期に終了させ、このことにより、該焼結配合原料中に着磁成分原料をより多く配合することによる通気性悪化の影響を最小限に止めることで、上記の問題を解決するようにしたのである。   Therefore, in the present invention, when the sintered blending raw material includes a magnetizing component raw material such as magnetite-based fine iron ore that deteriorates air permeability in the sintered blending raw material, the magnetizing component raw material such as magnetite-based fine iron ore is intended. In particular, it is deposited (segregated) in the upper part of the sintering compound raw material charging layer to terminate the sintering reaction at an early stage, thereby increasing the magnetization component raw material in the sintering compound raw material. The above problem was solved by minimizing the influence of air permeability deterioration due to the blending.

本発明のこのような考え方については、図4(a)〜(c)から理解することができる。即ち、図4(a)は、焼結機パレット上の焼結配合原料の装入層の焼結過程を示しており、図4(b)は、該装入層内の焼結過程における温度分布(ヒートパターン)を示し、そして図4(c)は、焼結ケーキの歩留分布を示したものである。図4(b)から分かるように、該装入層の上層部は下層部に比べて温度が上昇し難く、高温域保持時間も相対的に短くなる傾向にある。そのため、この装入層の上層部では、燃焼溶融反応(焼結化反応)が不十分となって、焼結ケーキの強度が低くなるため、図4(c)に示すように、歩留が低く、生産性の低下を招く要因となっている。   Such an idea of the present invention can be understood from FIGS. That is, FIG. 4 (a) shows the sintering process of the charging layer of the sintering compound raw material on the sintering machine pallet, and FIG. 4 (b) shows the temperature in the sintering process in the charging layer. The distribution (heat pattern) is shown, and FIG. 4 (c) shows the yield distribution of the sintered cake. As can be seen from FIG. 4B, the temperature of the upper layer portion of the charging layer is less likely to rise than the lower layer portion, and the high temperature region holding time tends to be relatively short. Therefore, in the upper layer portion of this charging layer, the combustion and melting reaction (sintering reaction) becomes insufficient, and the strength of the sintered cake is lowered. Therefore, as shown in FIG. This is a factor causing a decrease in productivity.

発明者らの知見によると、この問題に対しは、焼結配合原料中にFeO等のマグネタイトをより多く含む微粉鉄鉱石を配合したものを、パレット上に装入する際に、これを装入層の上層部に偏析させて堆積させること(偏析装入法)で、解決を図ることができることが分った。一般に(Trans.AIME218(1960)、116)、焼結反応における成分の影響を示す状態図では、FeO成分の増加に伴い、焼結反応に必要な融液を発生させる融点が低下することが知られている。従って、焼結配合原料の装入層の上層部に、FeOを含むマグネタイト系微粉鉄鉱石などを選択的に装入して堆積させる偏析装入されていれば、その上層部は温度が上がり難い状況の中でも焼結反応が促進され、歩留や強度の改善を図ることができる。   According to the inventor's knowledge, this problem is solved by charging the pallet with a mixture of fine iron ore containing more magnetite such as FeO in the sintered compounding raw material. It was found that the solution can be achieved by segregating and depositing on the upper layer of the layer (segregation charging method). In general (Trans. AIME 218 (1960), 116), in the phase diagram showing the influence of components in the sintering reaction, it is known that as the FeO component increases, the melting point for generating a melt necessary for the sintering reaction decreases. It has been. Therefore, if the segregation charging to selectively deposit and deposit magnetite-based fine iron ore containing FeO or the like in the upper layer portion of the sintering compound raw material charging layer is difficult to increase the temperature of the upper layer portion. Even in the situation, the sintering reaction is promoted, and the yield and strength can be improved.

また、焼結配合原料をパレット上に装入して形成される焼結配合原料の堆積層である焼結原料装入層は、一般的に、スローピングシュートの上を滑り落ちるときのパーコレーションによる粒度偏析作用を伴い、該装入層の上層部、中層部には粒度の小さい細粒の焼結配合原料が多く分布し、一方、下層部には粒度の大きい粗粒の焼結配合原料が堆積して、装入層内に偏析が生じる。しかしながら、微粉が多く含まれる場合には偏析状態が不十分であり、本発明では正に、こうした微粉、細粉が多く含まれる焼結配合原料を装入するときの問題を解決する。   In addition, the sintered raw material charging layer, which is a deposited layer of the sintered mixed raw material formed by charging the sintered mixed raw material on the pallet, is generally segregated by particle size segregation due to percolation when sliding down on the sloping chute. With the action, a large amount of fine sintered compounding material with small particle size is distributed in the upper layer part and middle layer part of the charging layer, while a coarse sintered compounding material with large particle size is deposited in the lower layer part. As a result, segregation occurs in the charging layer. However, when a large amount of fine powder is contained, the segregation state is insufficient, and the present invention exactly solves the problem when charging a sintered blending raw material containing a large amount of such fine powder and fine powder.

即ち、本発明では、FeO分が多く(4.5〜60mass%)、かつ粒径が比較的小さい(平均粒径:0.2〜2.5mm、250μm以下が60mass%以下)マグネタイト系微粉鉄鉱石などを含む焼結配合原料を、図5の模式図に示すように、スローピングシュートを使ってパレット上に装入するときに、該スローピングシュートの背面に永久磁石または電磁石を配設して、該焼結配合原料の流れに磁力を作用させる。このことにより、焼結配合原料中に含まれる強磁性のマグネタイト系微粉鉄鉱石やミルスケール、製鉄ダスト(高炉ダスト、製鋼ダスト等)のような着磁成分原料およびこれを多く含む焼結配合原料(粒度の小さいもの)は、こうした磁力の作用を受けて落下速度が低下(制御)するために、該スローピングシュートの表面上を滑り降りる該着磁成分原料については、焼結配合原料の装入層の上層部側に導かれて堆積する。   That is, in the present invention, the magnetite type fine iron ore is high in FeO content (4.5 to 60 mass%) and relatively small in particle size (average particle size: 0.2 to 2.5 mm, 250 μm or less is 60 mass% or less). As shown in the schematic diagram of FIG. 5, when a sintered compounding material including stones is loaded on a pallet using a sloping chute, a permanent magnet or an electromagnet is disposed on the back of the sloping chute, Magnetic force is applied to the flow of the sintering compound raw material. As a result, magnetized component raw materials such as ferromagnetic magnetite fine iron ore, mill scale, ironmaking dust (blast furnace dust, steelmaking dust, etc.) contained in the sintered blended raw material, and sintered blended raw materials containing a large amount thereof. (Small particle size) is subjected to the action of such a magnetic force, so that the falling speed is reduced (controlled). It is led to the upper layer side and deposited.

即ち、着磁成分原料をより多く含有する焼結配合原料を、該スローピングシュートによってパレット上に装入する際、これらの原料はスローピングシュートの背面側に配設された永久磁石または電磁石により、磁力の作用を受けることになる。この磁力の作用によって、粒径の小さい着磁成分原料については、スローピングシュート上で落下速度が弱められる。その結果、非着磁性(しかも相対的に粗粒である)の焼結配合原料の方が先に落下して下層部を形成する一方、マグネタイト系微粉鉄鉱石等の着磁成分原料をより多く含有する焼結配合原料の方は磁力によって落下速度が低下するので後に落下して、焼結原料装入層の上層部に落下して堆積されることとなる。   That is, when a sintered compounding raw material containing a larger amount of magnetized component raw material is charged onto the pallet by the sloping chute, these raw materials are magnetized by a permanent magnet or an electromagnet disposed on the back side of the sloping chute. Will be affected. By the action of this magnetic force, the falling speed of the magnetized component raw material having a small particle diameter is reduced on the sloping chute. As a result, the non-magnetized (and relatively coarse-grained) sintered compound material falls first to form the lower layer portion, while more magnetized component materials such as magnetite fine iron ore are used. In the case of the sintered compounding raw material to be contained, the falling speed is reduced by the magnetic force, so that it falls later and falls and deposits on the upper layer part of the sintering raw material charging layer.

この場合において、着磁成分原料中のFeO分が4.5mass%より少ない場合には、磁力の影響を受けにくく、落下速度の低減効果が得られない。一方、FeO分が60mass%以上と高い場合には、着磁成分原料がシュート上に滞留して、円滑な原料の装入ができなくなる。
また、着磁成分原料の算術平均粒径が2.5mm以上の場合、非着磁性の原料との粒径差が小さく、着成分を上層部にうまく偏析させることが難しくなる。さらに、着磁成分原料の算術平均粒径が0.2mm以下の場合、または、250μm以下の粒度を60mass%以上含む場合、焼結ベッドでの通気性への影響が著しく大きく、着磁成分原料を焼結原料装入層の上層部に堆積させても、焼結機の生産性を低下させてしまう可能性がある。
In this case, when the content of FeO in the magnetized component raw material is less than 4.5 mass%, it is difficult to be affected by the magnetic force, and the effect of reducing the drop speed cannot be obtained. On the other hand, when the FeO content is as high as 60 mass% or more, the magnetized component raw material stays on the chute, and the raw material cannot be charged smoothly.
In addition, when the arithmetic average particle size of the magnetized component material is 2.5 mm or more, the particle size difference from the non-magnetized material is small, and it is difficult to segregate the magnetized component well in the upper layer portion. Furthermore, when the arithmetic average particle size of the magnetization component raw material is 0.2 mm or less, or when the particle size of 250 μm or less is 60 mass% or more, the influence on the air permeability in the sintered bed is remarkably large. Even if it is deposited on the upper layer part of the sintering raw material charging layer, the productivity of the sintering machine may be reduced.

図6は、焼結配合原料中にマグネタイト系微粉鉄鉱石等の着磁成分原料をより多く含有する焼結配合原料についての、背面に磁石を備えるスローピングシュート上における粒子の動きを説明する図である。この図に示すように、着磁成分原料を含有する焼結配合原料が該スローピングシュート上を落下するときに、この原料粒子に作用する力は、重力の粒子運動方向成分を(1)とし、重力と磁力による摩擦抵抗を(2)とし、粒子の運動に伴う空気抵抗を(3)とするとき、粒子運動方向(シュート水平面方向)における運動方程式は下記のように表わされる。   FIG. 6 is a diagram for explaining the movement of particles on a sloping chute having a magnet on the back surface for a sintered blended raw material that contains a larger amount of magnetized component raw materials such as magnetite-based fine iron ore in the sintered blended raw material. is there. As shown in this figure, when the sintered blending raw material containing the magnetizing component raw material falls on the sloping chute, the force acting on the raw material particles has the particle motion direction component of gravity as (1), When the frictional resistance due to gravity and magnetic force is (2) and the air resistance accompanying the movement of particles is (3), the equation of motion in the particle movement direction (chute horizontal plane direction) is expressed as follows.

Figure 2015193898
Figure 2015193898

本発明では、前述した特性の焼結配合原料の装入に当たって、粒度や着磁成分原料の量が変化した場合、例えば、上記式に基づき磁石とシュートとの距離を制御することにより、該シュート表面上での粒子に生じる上記式のFを調整したり、シュートの角度(θ)を変更したりして、加速度(a)が常に正になるようにすることで、落下する着磁成分原料含有焼結配合原料の落下速度を低減させて、着磁成分原料の上層部への偏析装入を実現することが好ましい。 In the present invention, when the particle size and the amount of the magnetization component raw material are changed in charging the sintering compound raw material having the above-described characteristics, for example, the chute is controlled by controlling the distance between the magnet and the chute based on the above formula. or adjust the F M of the above formula occurring particles on the surface, or by changing the angle (theta) of the chute, by such acceleration (a) is always positive, wearing磁成fraction falling It is preferable to reduce the falling speed of the raw material-containing sintered blend raw material to realize segregation charging into the upper layer portion of the magnetized component raw material.

上記のような要請に応えうる着磁成分原料とは、FeOを4.5mass%以上60mass%以下含有するものであって、基本的には算術平均粒径が0.2〜2.5mmの大きさであり、そして、250μm以下のものを60mass%以下含有するものが用いられる。さらに好ましくは、この原料の粒径については、125μm以下のものの粒度比率が10mass%以上のものを用いる。   The magnetized component raw material that can meet the above-mentioned requirements contains FeO in a range of 4.5 mass% to 60 mass%, and basically has an arithmetic average particle size of 0.2 to 2.5 mm. And what contains 60 mass% or less of the thing of 250 micrometers or less is used. More preferably, the material has a particle size ratio of 125% or less and a particle size ratio of 10% by mass or more.

この実施例は、図7に示す実機装入装置を模擬したシュミュレータ(実験装置)を用い、焼結配合原料の装入実験を行なった。この実験では、表2に示す配合(ただし、表示のもの以外に等量(20mass%)の焼結返鉱を含む)で、マグネタイト系微粉鉱石等の着磁成分原料を含む焼結配合原料を調整した。そして、上記シミュレータ上方に設置したホッパー内に上記焼結配合原料を充填し、表3に示す条件にてスローピングシュートを使って模擬パレット上に装入した。模擬パレット上に装入して得られた装入層の上層部、中層部、下層部からそれぞれ焼結配合原料を採取し、化学分析によるマグネタイト成分(Fe)の偏析状況を調査した。さらにその後、装入後の焼結配合原料を焼結鍋試験装置に移して焼結実験を行ない、生産性への影響等を調査した。 In this example, an experiment for charging a sintered blending material was performed using a simulator (experimental apparatus) simulating an actual apparatus charging apparatus shown in FIG. In this experiment, a sintered blending raw material containing a magnetizing component raw material such as magnetite fine powder ore in the composition shown in Table 2 (including an equivalent amount (20 mass%) of sintered reversion other than the indicated ones) is used. It was adjusted. Then, the sintered blending raw material was filled in a hopper installed above the simulator, and charged on a simulated pallet using a sloping chute under the conditions shown in Table 3. Sintered raw materials were collected from the upper layer, middle layer, and lower layer of the charge layer obtained by charging on the simulated pallet, and the segregation status of the magnetite component (Fe 3 O 4 ) was investigated by chemical analysis. . Furthermore, after that, the sintered blending material after charging was transferred to a sintering pot test apparatus, and a sintering experiment was conducted to investigate the influence on productivity and the like.

Figure 2015193898
*外数で粉コークスを5mass%配合
*マグネタイト系微粉鉄鉱石のFeO:4.7mass%、
算術平均粒径:0.29mm、
250μm以下:60mass%
*上記の配合には、さらに焼結返鉱が20mass%づつ含まれる
*焼結返鉱のFeO:5.69mass%、
算術平均粒径:3.15mm、
250μm以下:8mass%
Figure 2015193898
* Combination of 5 mass% of coke breeze with outside number * FeO of magnetite fine iron ore: 4.7 mass%,
Arithmetic mean particle size: 0.29 mm,
250 μm or less: 60 mass%
* The above composition further includes 20% by mass of sintered ore * FeO of sintered ore: 5.69% by mass,
Arithmetic mean particle size: 3.15 mm,
250 μm or less: 8 mass%

Figure 2015193898
T:テスラ
*1:ドラムへの切出速度
*2:シュート上端での速度
Figure 2015193898
T: Tesla * 1: Cutting speed to drum * 2: Speed at top of chute

前記焼結鍋試験装置による装入実験の結果によると、図8に示すように、背面に磁石を配置したスローピングシュートによって、マグネタイト系微粉鉄鉱石を10mass%配合した条件に係る本発明に適合する装入例(T3)と、磁石を配置していないスローピングシュートによる装入例である比較例(T6)とにおける、マグネタイト系着磁成分(Fe)の偏析状況を比較したところ、磁石を設置したスローピングシュートを使って装入した発明例(T3)では、マグネタイト系の着磁成分を10mass%含有する焼結配合原料は、装入層の上層部に偏析していることが確認できた。 According to the result of the charging experiment by the sintering pot test apparatus, as shown in FIG. 8, the present invention according to the present invention according to the condition in which 10 mass% of magnetite fine iron ore is blended by the sloping chute with the magnet arranged on the back surface. When the segregation situation of the magnetite-based magnetization component (Fe 3 O 4 ) in the charging example (T3) and the comparative example (T6) which is a charging example using a sloping chute without a magnet is compared, In the invention example (T3) charged using the sloping chute installed with the sinter, it can be confirmed that the sintered blending raw material containing 10 mass% of the magnetite-based magnetization component is segregated in the upper layer of the charged layer. It was.

さらに、この実験における本発明例および比較例について、マグネタイト系微粉鉄鉱石の配合比率による生産率の変化を図9に示した。この図に示す結果から明らかなように、比較例(T1)では、マグネタイト系微粉鉄鉱石の配合率の増加に伴い、生産率が直線的に低下していた。一方、本発明に適合する発明例では、配合率が5〜15mass%近くまでの生産率の低下は少なく、15mass%超の配合率の場合に生産率が低下していることが判った。特に、配合率が5〜10mass%近くまでの生産率は低下せず好ましいことが判った。従って、本発明においては、焼結配合原料中の着磁成分原料の配合量は、5〜10mass%のときに効果が顕著に現れることがわかった。   Furthermore, about the example of this invention and the comparative example in this experiment, the change of the production rate by the mixture ratio of a magnetite type fine iron ore is shown in FIG. As is clear from the results shown in this figure, in the comparative example (T1), the production rate decreased linearly as the blending rate of the magnetite fine iron ore increased. On the other hand, it was found that in the invention examples suitable for the present invention, the production rate decreased little to 5 to 15 mass%, and the production rate decreased when the blending rate exceeded 15 mass%. In particular, it was found that the production rate up to about 5 to 10 mass% is preferable without decreasing. Therefore, in this invention, it turned out that an effect appears notably when the compounding quantity of the magnetization component raw material in a sintering mixing | blending raw material is 5-10 mass%.

本発明に係る技術は、本発明で指定したものよりも粒径が大きく、また、着磁成分の量が少ないか多い焼結配合原料を装入する場合においても、効果の差はるものの適用は可能である。   The technique according to the present invention has a larger particle size than that specified in the present invention, and even when a sintered blending raw material with a small amount or a large amount of magnetized component is charged, although there is a difference in effect, Is possible.

Claims (4)

焼結機のパレット上に焼結配合原料をスローピングシュートを介して装入することで装入層を形成する方法において、該焼結配合原料が、マグネタイト系微粉鉄鉱石、ミルスケールおよび製鉄ダストのうちから選ばれるいずれか1種以上の着磁成分原料を合計で5〜15mass%を含む場合に、この焼結配合原料を背面に磁石を配設したスローピングシュートを用いてパレット上に装入することにより、該焼結配合原料中の着磁成分原料を焼結原料装入層の上層部に堆積させることを特徴とする着磁成分原料を含有する焼結配合原料の装入方法。   In a method of forming a charging layer by charging a sintered blending raw material onto a pallet of a sintering machine via a sloping chute, the sintering blended raw material is composed of magnetite fine iron ore, mill scale, and iron dust. When any one or more kinds of magnetization component raw materials selected from among them are contained in a total of 5 to 15 mass%, this sintered mixed raw material is charged onto a pallet using a sloping chute having a magnet on the back surface. Thus, a method for charging a sintering compound material containing a magnetizing component material, wherein the magnetization component material in the sintering compound material is deposited on an upper layer portion of the sintering material charging layer. 前記着磁成分原料の含有量は、合計で5〜10mass%であることを特徴とする請求項1に記載の着磁成分原料を含有する焼結配合原料の装入方法。   2. The method for charging a sintered blending raw material containing a magnetic component raw material according to claim 1, wherein the content of the magnetic component raw material is 5 to 10 mass% in total. 前記着磁成分原料は、FeOを4.5mass%以上60mass%以下含有するものであることを特徴とする請求項1または2に記載の着磁成分原料を含有する焼結配合原料の装入方法。   The method for charging a sintered compounding material containing a magnetizing component material according to claim 1 or 2, wherein the magnetizing component material contains FeO in an amount of 4.5 mass% to 60 mass%. . 前記着磁成分原料は、算術平均粒径が0.2〜2.5mmの大きさを有し、かつ250μm以下のものが60mass%以下であることを特徴とする請求項1〜3のいずれか1に記載の着磁成分原料を含有する焼結配合原料の装入方法。   The magnetized component raw material has an arithmetic average particle size of 0.2 to 2.5 mm, and a material having a thickness of 250 µm or less is 60 mass% or less. A method for charging a sintered blending raw material containing the magnetization component raw material according to 1.
JP2014222162A 2014-03-26 2014-10-31 Method for charging sintering blending raw material comprising magnetization component raw material Pending JP2015193898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222162A JP2015193898A (en) 2014-03-26 2014-10-31 Method for charging sintering blending raw material comprising magnetization component raw material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014062993 2014-03-26
JP2014062993 2014-03-26
JP2014222162A JP2015193898A (en) 2014-03-26 2014-10-31 Method for charging sintering blending raw material comprising magnetization component raw material

Publications (1)

Publication Number Publication Date
JP2015193898A true JP2015193898A (en) 2015-11-05

Family

ID=54433187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222162A Pending JP2015193898A (en) 2014-03-26 2014-10-31 Method for charging sintering blending raw material comprising magnetization component raw material

Country Status (1)

Country Link
JP (1) JP2015193898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132183A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Sintered ore manufacturing method and sintered ore manufacturing apparatus
US20190241826A1 (en) * 2018-02-07 2019-08-08 Nok Klueber Co., Ltd. Lubricating grease composition, clutch and power window motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853719A (en) * 1994-08-10 1996-02-27 Kawasaki Steel Corp Charging of sintering raw material and its device
JPH09302422A (en) * 1995-12-22 1997-11-25 Kawasaki Steel Corp Method for charging sintering raw material by using magnetic force
JP2000160262A (en) * 1998-11-30 2000-06-13 Kawasaki Steel Corp Method for supplying sintering raw material and supplying device therefor
JP2000328148A (en) * 1999-05-20 2000-11-28 Kawasaki Steel Corp Method for charging raw material for sintering using magnetic force
US20020104783A1 (en) * 1995-12-22 2002-08-08 Nobuyuki Oyama Method of the magnetic loading of a sintering material
JP2003105449A (en) * 2001-09-26 2003-04-09 Kawasaki Steel Corp Method and apparatus for charging raw material for sintering
JP2003277839A (en) * 2002-03-22 2003-10-02 Jfe Steel Kk Method for producing calcium-ferrite for refining molten iron
JP2010185104A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Method for producing sintered ore for blast furnace
WO2016068078A1 (en) * 2014-10-31 2016-05-06 Jfeスチール株式会社 Method for operating sintering machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853719A (en) * 1994-08-10 1996-02-27 Kawasaki Steel Corp Charging of sintering raw material and its device
JPH09302422A (en) * 1995-12-22 1997-11-25 Kawasaki Steel Corp Method for charging sintering raw material by using magnetic force
US20020104783A1 (en) * 1995-12-22 2002-08-08 Nobuyuki Oyama Method of the magnetic loading of a sintering material
JP2000160262A (en) * 1998-11-30 2000-06-13 Kawasaki Steel Corp Method for supplying sintering raw material and supplying device therefor
JP2000328148A (en) * 1999-05-20 2000-11-28 Kawasaki Steel Corp Method for charging raw material for sintering using magnetic force
JP2003105449A (en) * 2001-09-26 2003-04-09 Kawasaki Steel Corp Method and apparatus for charging raw material for sintering
JP2003277839A (en) * 2002-03-22 2003-10-02 Jfe Steel Kk Method for producing calcium-ferrite for refining molten iron
JP2010185104A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Method for producing sintered ore for blast furnace
WO2016068078A1 (en) * 2014-10-31 2016-05-06 Jfeスチール株式会社 Method for operating sintering machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132183A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Sintered ore manufacturing method and sintered ore manufacturing apparatus
US20190241826A1 (en) * 2018-02-07 2019-08-08 Nok Klueber Co., Ltd. Lubricating grease composition, clutch and power window motor

Similar Documents

Publication Publication Date Title
JP6228519B2 (en) Manufacturing method of metallic iron
JP2009185356A (en) Method for producing sintered ore
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
JP5168802B2 (en) Method for producing sintered ore
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP2015193898A (en) Method for charging sintering blending raw material comprising magnetization component raw material
JP2013127112A (en) Method for producing reduced iron and slag mixture
WO2016068078A1 (en) Method for operating sintering machine
JP6314924B2 (en) Operation method of sintering machine
JP2012046828A (en) Method for producing sintered ore
JP2006291255A (en) Method for operating blast furnace
JP2014214331A (en) Method of charging raw material into blast furnace
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP7205362B2 (en) Method for producing sintered ore
JP3006884B2 (en) Sinter for iron making using pisolite iron ore as raw material and method for producing the same
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JPH0853719A (en) Charging of sintering raw material and its device
JP2001234257A (en) Method for charging sintered raw material using magnetic force
JP5292845B2 (en) Raw material charging method to sintering machine
JP5505579B2 (en) Method for adjusting raw material powder for sintered ore and raw material powder for sintered ore
JP2000018837A (en) Sintering material charge method and device
JP5011637B2 (en) Processing method of ore for sintering
JP2000002488A (en) Loading method of sintering material
JP2021025112A (en) Method for manufacturing sintered ore
JP2020117767A (en) Method for manufacturing sinter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170621