JP5011637B2 - Processing method of ore for sintering - Google Patents

Processing method of ore for sintering Download PDF

Info

Publication number
JP5011637B2
JP5011637B2 JP2004292498A JP2004292498A JP5011637B2 JP 5011637 B2 JP5011637 B2 JP 5011637B2 JP 2004292498 A JP2004292498 A JP 2004292498A JP 2004292498 A JP2004292498 A JP 2004292498A JP 5011637 B2 JP5011637 B2 JP 5011637B2
Authority
JP
Japan
Prior art keywords
ore
sintering
fine powder
less
high phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004292498A
Other languages
Japanese (ja)
Other versions
JP2006104516A (en
Inventor
伸幸 大山
秀明 佐藤
智 町田
紀文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004292498A priority Critical patent/JP5011637B2/en
Publication of JP2006104516A publication Critical patent/JP2006104516A/en
Application granted granted Critical
Publication of JP5011637B2 publication Critical patent/JP5011637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は焼結に供するための鉱石の処理方法に関し、特に高燐鉱石を焼結原料として用いる焼結に供するための鉱石の処理方法に関する。 The present invention relates to an ore processing method for use in sintering, and more particularly to an ore processing method for use in sintering using high-phosphorus ore as a sintering raw material.

近年、良質の塊状鉄鉱石が不足していることもあって、高炉に装入する鉄系原料として焼結鉱への依存が高まっている。その焼結鉱は、一般に、粉状鉄鉱石、返鉱等の鉄系原料(以下、焼結原料鉱石と呼ぶ)に、造滓剤としてSiO2や石灰石、及び、焼成のための熱源となる炭材等を添加した配合原料から製造される。すなわち、これらの配合原料に適量の水を加えて混合し、造粒した後、焼結機パレット上に装入し、空気を下向きに流通させながら炭材を燃焼させることにより、配合原料の少なくとも一部を溶融させ、さらに冷却固化させた後に、破砕することで焼結鉱を製造する。 In recent years, there is a shortage of high-quality lump iron ore, and the dependence on sintered ore as an iron-based raw material charged in a blast furnace is increasing. The sintered ore is generally used for iron-based raw materials such as powdered iron ore and return ore (hereinafter referred to as sintered raw material ore), SiO 2 and limestone as a fossilizing agent, and a heat source for firing. Manufactured from blended raw materials with added charcoal. That is, after adding and mixing an appropriate amount of water to these blended raw materials, granulating them, charging them on a sintering machine pallet, and burning the carbonaceous material while circulating air downward, at least the blended raw materials A portion is melted, further cooled and solidified, and then crushed to produce a sintered ore.

最近では、焼結鉱の原料となる鉄鉱石の枯渇化もあって、従来までは使用されなかったP成分が0.1質量%を超える高燐鉱石を使用する試みがなされている。
なお、この高燐鉱石を使用した例としては、他に特許文献1に示されるように、塊鉱石として使用した例がある。
特開2000−144219号公報
Recently, due to the depletion of iron ore used as a raw material for sintered ore, attempts have been made to use high-phosphorus ore with a P component exceeding 0.1% by mass, which has not been used so far.
In addition, as an example using this high phosphate ore, there exists an example used as a lump ore, as patent document 1 shows.
JP 2000-144219 A

しかしながら、高燐鉱石は高燐であるという難点のほかに、焼結原料として使用した場合には、焼結生産性が著しく悪化するという問題があった。このため、今まで高燐鉱石は焼結原料として多量に使用されることはなかった。
本発明は、上述の問題点に鑑みてなされたものであり、高燐鉱石を原料として用いた場合にも焼結生産性の悪化を抑制することができる焼結に供するための鉱石の処理方法を提供することを課題とする。
However, in addition to the difficulty of high phosphorus ore being high phosphorus, when used as a sintering raw material, there has been a problem that sintering productivity is remarkably deteriorated. For this reason, until now, high phosphate ore has not been used in large quantities as a raw material for sintering.
The present invention has been made in view of the above-mentioned problems, and a processing method of ore for use in sintering that can suppress deterioration in sintering productivity even when high phosphate ore is used as a raw material. It is an issue to provide.

上記問題を解決するために、本発明の請求項1による焼結に供するための鉱石の処理方法は、P成分が0.1質量%を超える高燐鉱石を焼結原料鉱石に配合して用いる焼結に供するための鉱石の処理方法であって、前記高燐鉱石の整粒時における破砕時の破砕粒径や篩分け時の篩目の大きさを調節することにより、前記高燐鉱石のトップサイズを9mm以上とし、これにより、前記高燐鉱石全体の質量に対する、その高燐鉱石中の0.25mm以下の微粉部の割合を29質量%以下としたことを特徴とする。
また、本発明の請求項2による焼結に供するための鉱石の処理方法は、P成分が0.1質量%を超える高燐鉱石を焼結原料鉱石に配合して用いる焼結に供するための鉱石の処理方法であって、前記高燐鉱石の整粒時における破砕時の破砕粒径や篩分け時の篩目の大きさを調節することにより、前記高燐鉱石のトップサイズを9mm以上とし、これにより、前記高燐鉱石全体の質量に対する、その高燐鉱石中の0.25mm以下の微粉部の割合を29質量%以下とし、さらに、SiO 系原料を添加して、前記高燐鉱石中の0.25mm以下の微粉部における、Al の含有量に対するSiO の含有量の比であるAl /SiO の値を0.6以下としたことを特徴とする。
In order to solve the above problems, the ore processing method for subjecting to sintering according to claim 1 of the present invention uses a high-phosphorus ore having a P component of more than 0.1% by mass in the sintering raw material ore. A processing method of ore for use in sintering, wherein the high phosphate ore is adjusted by adjusting a crushing particle size at the time of crushing at the time of sizing of the high phosphate ore and a size of a sieve at the time of sieving. The top size is set to 9 mm or more, whereby the ratio of the fine powder portion of 0.25 mm or less in the high phosphate ore to the mass of the entire high phosphate ore is set to 29 mass% or less .
Moreover, the processing method of the ore for using for the sintering by Claim 2 of this invention is for using for the sintering which mix | blends the high phosphorus ore in which P component exceeds 0.1 mass% and mix | blends with a sintering raw material ore. A method for treating ore, wherein the top size of the high phosphate ore is set to 9 mm or more by adjusting the particle size at the time of crushing during the sizing of the high phosphate ore and the size of the sieve mesh at the time of sieving. Thus, the ratio of the fine powder portion of 0.25 mm or less in the high phosphate ore to the mass of the entire high phosphate ore is 29 mass% or less, and further, a SiO 2 type raw material is added, and the high phosphate ore is added. The value of Al 2 O 3 / SiO 2 , which is the ratio of the content of SiO 2 to the content of Al 2 O 3 in the fine powder part of 0.25 mm or less , is 0.6 or less .

本発明者らは、後述するように、高燐鉱石中に多量に含まれる微粉と、この微粉部に含まれる高濃度のAl23が、焼結時の通気性を悪化させ、焼結生産性悪化の要因となっているとの考察を基に、微粉部あるいは微粉部に含まれるAl23の量を低減することで高燐鉱石を用いた場合の焼結生産性の悪化を抑制又は解消できることを見出した。そのために、本発明者においては、前記焼結生産性悪化の要因となっている高燐鉱石中に多量に含まれる、微粉部あるいは微粉部の高濃度のAl23を、前記高燐鉱石全体の質量に対して所定の範囲に制限することにより、高燐鉱石を用いた場合の焼結生産性の悪化を抑制又は解消する。 As will be described later, the present inventors have a fine powder contained in a large amount in high phosphate ore and a high concentration of Al 2 O 3 contained in the fine powder part, which deteriorates the air permeability during the sintering. Based on the consideration that it is a factor of productivity deterioration, by reducing the amount of Al 2 O 3 contained in the fine powder part or fine powder part, the deterioration of sintering productivity when using high phosphate ore It was found that it can be suppressed or eliminated. Therefore, in the present inventor, the high phosphate ore containing a high concentration of Al 2 O 3 in the fine powder part or the fine powder part contained in a large amount in the high phosphate ore which is a factor of deterioration of the sintering productivity. By limiting to a predetermined range with respect to the entire mass, deterioration of sintering productivity when using high phosphate ore is suppressed or eliminated.

記本発明の請求項1及び2においては、前記高燐鉱石全体の質量に対して、0.25mm以下の微粉部の割合が29質量%以下であると焼結生産率が改善されるため、0.25mm以下の微粉部の含有率が29質量%以下と規定した。なお、28質量%以下であるとより好ましく、さらに25質量%以下であると高燐鉱石使用による悪影響が解消されるので好ましい。 In claims 1 and 2 before Symbol present invention, relative to prior Symbol high phosphate rock overall mass, sintering production rate it is improved with the following ratio of the fine powder portion 0.25mm is below 29 wt% Therefore , 0 . The content of the fine powder part of 25 mm or less was defined as 29% by mass or less. In addition, it is more preferable that it is 28 mass% or less, and since it is more preferable that it is 25 mass% or less, the bad influence by use of a high phosphate ore is eliminated.

求項1又は2において、高燐鉱石の整粒時における破砕時の破砕粒径や篩分け時の篩目の大きさを調節することにより、前記高燐鉱石のトップサイズを9mm以上とする
すなわち、高燐鉱石のトップサイズを上昇させ、焼結原料として粗粒部分を増加させた高燐鉱石を用いることにより、微粉部あるいは微粉部に含まれるAlの量を相対的に低減することで、高燐鉱石を用いた場合の悪化を抑制又は解消を図る。
In Motomeko 1 or 2, by adjusting the size of the sieve during crushing particle size and sieving during crushing during sizing of high phosphate ore, and more 9mm top size of the high phosphate ore .
That is, the top size of the high phosphate ore is increased and the amount of Al 2 O 3 contained in the fine powder part or the fine powder part is relatively reduced by using the high phosphate ore with the coarse part increased as a sintering raw material. By doing so, the deterioration at the time of using a high phosphate ore is suppressed or eliminated.

造粒過程で粗粒部分に付着し擬似粒子化された時、粗粒の核粒子に付着する0.25mm以下の微粉部も少ないので、0.25mm以下の微粉部および微粉部のAl23含有率も低い。従って、このような高燐鉱石を用いることで焼結生産性の低下を防止できる。
ここで、トップサイズとは、高燐鉱石の飾分けにおいて10質量%以上の粒子が残留する最大の粒度区分の大きさを意味し、例えば、トップサイズが9mmの高燐鉱石とは、粒度区分が+9mm(9mmを超える)の粒子を少なくとも10質量%含有する高燐鉱石を意味する。
There are few fine powder parts of 0.25 mm or less adhering to the coarse core particles when adhering to the coarse parts in the granulation process, so Al 2 O in the fine powder parts and fine powder parts of 0.25 mm or less 3 Low content. Therefore, it is possible to prevent a decrease in sintering productivity by using such a high phosphate ore.
Here, the top size means the size of the largest particle size classification in which particles of 10% by mass or more remain in the decoration of the high phosphate ore. For example, the high phosphate ore having a top size of 9 mm is a particle size classification. Means a high phosphate ore containing at least 10% by weight of +9 mm (greater than 9 mm) particles.

なお、鉱石採掘においては、所定粒度で破砕した後の、篩い目9mmを通過した鉱石群をトップサイズ9mmと呼称する。破砕された鉱石形状によって、9mmを超えるものでも篩い目を通過するため、上述したように9mmを超える粒子が10質量%含有される In ore mining, an ore group that has passed through a sieve mesh of 9 mm after being crushed with a predetermined particle size is referred to as a top size of 9 mm. Depending on the shape of the crushed ore, even if it exceeds 9 mm, it passes through the sieve mesh, so that 10% by mass of particles exceeding 9 mm are contained as described above .

高燐鉱石は微粉部におけるAl含有率が高いので、SiOを添加することにより、焼結生産性の低下、還元粉化性の悪化等の高Al含有による悪影響を低減できる High phosphate ore has a high Al 2 O 3 content in the fine powder part. By adding SiO 2 , the adverse effects of high Al 2 O 3 content such as reduced sintering productivity and reduced reduced powderability are reduced. I can .

焼結原料用鉱石として高燐鉱石を使用する際に、高燐鉱石中の0.25mm以下の微粉部の割合及び/又は微粉部に濃縮されているAl23含有量割合を調整することにより、焼結への使用の際の問題解決を可能とする。さらに前記含有割合の調整は、トップサイズを調整することにより、相対的に効率良く実現された焼結鉱製造用の焼結原料用鉱石となって、焼結鉱製造時の悪影響を抑止することができる。 When using high phosphate ore as sintering raw material ore, adjust the proportion of fine powder part of 0.25 mm or less in high phosphate ore and / or the content ratio of Al 2 O 3 concentrated in fine powder part This makes it possible to solve problems when used for sintering. Furthermore, the adjustment of the content ratio is to make the ore for sintering raw material for the production of sintered ore relatively efficiently realized by adjusting the top size, and to suppress the adverse effects during the production of sintered ore. Can do.

本発明の焼結に供するための鉱石の処理方法によれば、高燐鉱石を焼結鉱石原料に用いた際の焼結鉱品質の低下ならびに焼結生産率の低下を防止できる。 According to the ore processing method for use in the sintering of the present invention, it is possible to prevent a decrease in the quality of the sintered ore and a decrease in the sintering production rate when the high phosphate ore is used as the raw material for the sintered ore.

以下、図面を参照して本発明の成立過程から詳細に説明する。
高燐鉱石は、その例を後述の表に示すように、P濃度が他の鉱石の2〜3倍を有し(後述の表2)、算術平均径が、1.86mmとマラマンバ鉱石並に細粒が特徴で(後述の表3)、0.25mm以下が33%程度である。
表2は、トップサイズ6.3mm例であり、このトップサイズ粒径が業界の通例であった。
Hereinafter, the formation process of the present invention will be described in detail with reference to the drawings.
As shown in the table below, the high phosphate ore has a P concentration that is 2 to 3 times that of other ores (table 2 below), and an arithmetic average diameter of 1.86 mm, which is comparable to that of a maramamba ore. Fine grains are characteristic (Table 3 described later), and 0.25 mm or less is about 33%.
Table 2 shows an example of a top size of 6.3 mm, and this top size particle size was customary in the industry.

高燐鉱石は前述したように、高燐であるという難点のほかに、焼結原料として使用した場合には、焼結生産性が著しく悪化するという問題があった。このため、今まで高燐鉱石は焼結原料として多量に使用されることはなかった。
そこで、本発明者らは、焼結原料として使用した場合には、焼結生産性が著しく悪化する点を解明するため、高燐鉱石の詳細な調査を行った。
そして、高燐鉱石は、後述の表にて示すように、前述した0.25mm以下の微粉部が33%程度の他(後述の表3)、0.25mm以下の微粉部においては、他の鉱石と比較して微粉部のAl23が増加し、絶対値とともにAl23/SiO2が高いことが特徴であった(後述の表4)。
As described above, the high phosphate ore has a problem that, when used as a sintering raw material, sintering productivity is remarkably deteriorated in addition to the difficulty of being high phosphorus. For this reason, until now, high phosphate ore has not been used in large quantities as a raw material for sintering.
Therefore, the present inventors have conducted a detailed investigation of high-phosphate ore in order to clarify that the sintering productivity is significantly deteriorated when used as a sintering raw material.
And, as shown in the table below, the high phosphate ore is about 33% of the fine powder part of 0.25 mm or less as described above (table 3 of the following), and in the fine powder part of 0.25 mm or less, Compared with the ore, Al 2 O 3 in the fine powder portion increased, and the characteristic feature was that Al 2 O 3 / SiO 2 was high along with the absolute value (Table 4 described later).

本発明者らは、前記、高燐鉱石中に多量に含まれる微粉と、この微粉部に含まれる高濃度のAl23が、焼結時の通気性を悪化させ、焼結生産性悪化の要因となっているとの考察を基に、微粉部あるいは微粉部に含まれるAl23の量を低減することで高燐鉱石を用いた場合の焼結生産性の悪化を抑制又は解消できることを見出したものである。
まず本発明者らは、高燐鉱石を用いた場合に焼結生産率の悪化をもたらす要因を調査した。トップサイズが6.3mmの高燐鉱石を焼結原料鉱石に30質量%,60質量%と配合して行った焼結鍋試験の結果を図1に示す。なお、この試験では以下の表1に示すような焼結配合原料を用いた。
The inventors of the present invention described above, the fine powder contained in a large amount in the high phosphate ore and the high concentration of Al 2 O 3 contained in the fine powder part deteriorates the air permeability during sintering and deteriorates the sintering productivity. Suppressing or eliminating deterioration in sintering productivity when using high phosphate ore by reducing the amount of Al 2 O 3 contained in the fine powder part or fine powder part This is what we can do.
First, the present inventors investigated factors that cause a deterioration in the sintering production rate when high phosphate ore is used. FIG. 1 shows the result of a sintering pot test in which a high-phosphorus ore having a top size of 6.3 mm was blended with 30% by mass and 60% by mass in a sintering raw material ore. In this test, sintering compound materials as shown in Table 1 below were used.

Figure 0005011637
Figure 0005011637

図1に示すように、高燐鉱石の配合量の増加に伴って、比重が軽く粗粒のリモナイト鉱石Cと振り替えたため装入嵩密度は増加し(同図(a))、擬似粒径が低下し(同図(c))、焼結中の風速(通気性)が低下し(同図(b))、焼結時間が延長した(同図(d))。さらに、歩留は向上したものの焼結時間が延長したため、比較的劣質なリモナイト鉱石と振り替えたにもかかわらず焼結生産率が低下した(同図(g))。また、高燐鉱石の配合量の増加に伴って、被還元性はそれほど変化しないものの(同図(f))、還元粉化性が悪化した(同図(h))。   As shown in FIG. 1, with the increase in the blending amount of high phosphate ore, the charge bulk density increased because the specific gravity was changed to light and coarse limonite ore C (Fig. 1 (a)), and the pseudo particle size was The wind speed (air permeability) during sintering decreased (Fig. (B)), and the sintering time was extended (Fig. (D)). Furthermore, although the yield was improved, the sintering time was extended, so that the sintering production rate was lowered despite the change to the relatively poor limonite ore (Fig. (G)). Moreover, although the reducibility did not change so much with the increase in the blending amount of high phosphate ore (figure (f)), the reduced powderability deteriorated (figure (h)).

以上が高燐鉱石の焼結操業での使用結果である。
この結果に基づき、本発明者らは、焼結中の通気性の悪化の要因について調査するため、焼結中の通気性の変化を観測した。図2には、高燐鉱石を焼結原料鉱石中に60質量%配合した場合及び高燐鉱石を配合しない場合の通気性変化を示す。この結果、高燐鉱石を配合した場合には、高燐鉱石を配合しない場合に比べて、焼結時間が延長し(同図(a))、通気性が悪化していることが確認された(同図(b)丸囲み部分)。さらに、通気性(ガス風速)の変化に着目すると、高燐鉱石を配合した場合には、焼結前半及び焼結後半のどちらにおいても通気性は悪化しているものの、主に湿潤帯での通気抵抗が支配的な焼結前半においては通気性悪化の程度は小さく、主に溶融帯での通気抵抗が支配的な焼結後半で顕著な悪化が見られた。
つまり、高燐鉱石は細粒であるため、造粒粒子径が低下し、これが焼結前半での通気性の悪化をもたらしたものと考えられる。しかしながら、焼結前半での通気性悪化による影響は小さく、主には、高燐鉱石が溶融している状態での通気性の悪化が生産性に悪影響を及ぼしていると推察される。
The above is the result of use in the sintering operation of high phosphate ore.
Based on this result, the present inventors observed changes in air permeability during sintering in order to investigate the cause of deterioration in air permeability during sintering. FIG. 2 shows the change in air permeability when 60% by mass of high phosphate ore is added to the sintered raw material ore and when high phosphate ore is not added. As a result, it was confirmed that when the high phosphate ore was blended, the sintering time was extended as compared with the case where the high phosphate ore was not blended ((a) in the figure) and the air permeability was deteriorated. ((B) circled part in the figure). Furthermore, focusing on the change in air permeability (gas wind speed), when high phosphate ore is blended, the air permeability deteriorates both in the first half and the second half of the sintering, but mainly in the wet zone. In the first half of the sintering in which the airflow resistance is dominant, the degree of airflow deterioration is small, and in the latter half of the sintering in which the airflow resistance mainly in the melting zone is dominant, there is a remarkable deterioration.
That is, since the high phosphate ore is fine, the granulated particle diameter is decreased, which is considered to have caused the deterioration of air permeability in the first half of sintering. However, the influence of the deterioration of air permeability in the first half of the sintering is small, and it is presumed that the deterioration of the air permeability in the state where the high phosphate ore is melted has an adverse effect on the productivity.

次に、焼結中の排ガス組成変化の観測結果を図3に示す。同図に示すように、高燐鉱石を焼結配合原料に60質量%配合した場合は、配合しない場合に比べて、排ガス中のCO濃度が上昇し、CO2濃度が低下した。これより、高燐鉱石を配合した場合には、コークスの燃焼が阻害されたものと考えられる。稲角らによれば、流動する融液はコークス燃焼により発生する気体により迂回することが確認されており、融液の流動性が悪化するとコークスが融液に包まれて燃焼する比率が高まると報告されている(鉄と鋼、V Ol.78(1992)、P.1053)。このことから、高燐鉱石を焼結原料鉱石に配合すると、融液の流動性が悪化するものと推察される。
さらに、この融液の流動性悪化をもたらす要因について、本発明者らは高燐鉱石がAl23を多く含有し、またAl23含有量/SiO2含有量の値が高い点に着目した。以下、表2〜表5に高燐鉱石と他の鉱石の組成の相違を示す。
Next, the observation result of the exhaust gas composition change during sintering is shown in FIG. As shown in the figure, the CO concentration in the exhaust gas increased and the CO 2 concentration decreased in the case where 60% by mass of the high phosphate ore was blended in the sintered blending raw material, compared with the case where it was not blended. From this, it is considered that when high phosphate ore is blended, the combustion of coke is inhibited. According to Inakaku et al., It is confirmed that the flowing melt is bypassed by the gas generated by the coke combustion, and when the fluidity of the melt deteriorates, the rate at which the coke is burned by the melt increases. It has been reported (Iron and steel, V Ol. 78 (1992), P. 1053). From this, it is presumed that when the high phosphate ore is blended with the sintered raw material ore, the fluidity of the melt deteriorates.
Furthermore, regarding the factors that cause the deterioration of the fluidity of the melt, the present inventors pointed out that the high phosphate ore contains a large amount of Al 2 O 3 and that the value of Al 2 O 3 content / SiO 2 content is high. Pay attention. Hereinafter, Tables 2 to 5 show the difference in composition between the high phosphate ore and other ores.

Figure 0005011637
Figure 0005011637

Figure 0005011637
Figure 0005011637

Figure 0005011637
Figure 0005011637

Figure 0005011637
Figure 0005011637

なお、表2〜表5中、A鉱石は南米へマタイと鉱石、B鉱石は豪州へマタイト鉱石、D鉱石はインド鉱石、E鉱石はマラマンバ鉱石を示す。
上述したように高燐鉱石は、リンを他の鉱石の約2〜3倍含有し(表2)、0.25mm以下の微粉部が高燐鉱石全体の33質量%と他の鉱石に比べて多く、算術平均が1.86mmとマラマンバ鉱石並に細粒であることが特徴である(表3)。
In Tables 2 to 5, O ore indicates Matai and ore to South America, B ore indicates Australian hematite ore, D ore indicates Indian ore, and E ore indicates Maramamba ore.
As described above, the high phosphate ore contains about 2 to 3 times as much phosphorus as other ores (Table 2), and the fine powder portion of 0.25 mm or less is 33% by mass of the entire high phosphate ore, compared to other ores. Many are characterized by an arithmetic average of 1.86 mm, which is as fine as Mara Mamba ore (Table 3).

さらに、表4に示すように、高燐鉱石は、他の鉱石と比較して、高燐鉱石全体と0.25mm以下の微粉部とでAl23の含有率が大きくで異なっており、微粉部では、Al23含有率の絶対値とともにAl23/siO2(Al23の含有量/siO2の含有量)の値も高いことが特徴である。表5には、湿潤熱、見掛け比重、0.5mm以下の気孔量及び比表面積の各値を示すが、高燐鉱石は比較的濡れ性が良いものの、気孔構造の観点からはそれほど特異な性質は認められなかった。 Furthermore, as shown in Table 4, the high phosphate ore has a large and different content of Al 2 O 3 in the whole high phosphate ore and the fine powder part of 0.25 mm or less, compared to other ores. the fines portion, is characterized greater the absolute value of the Al 2 O 3 content with Al 2 O 3 / siO 2 (content of the content / SiO 2 of Al 2 O 3). Table 5 shows each value of heat of wetting, apparent specific gravity, amount of pores of 0.5 mm or less, and specific surface area. Although high phosphate ore is relatively good in wettability, it has very unique properties from the viewpoint of pore structure. Was not recognized.

上述の結果から本発明者らは、微粉部が多く、その微粉部でのAl23含有率及びAl23/siO2が高いという高燐鉱石の特徴的な性質が融液の流動性の悪化の要因となっていると推察し、Al23が融液の流動性に与える影響を調査した。
まず、融液の粘度を図4に示す粘度測定装置を用いて測定した。この測定では、球引き上げ法を採用し、融液中の球Bを引き上げる際の天秤指示針Nの移動速度をもとに、粘度を算出した。測定は、CaOを20質量%、Fe2O3を80質量%含有する融液に、Al23試薬をそれぞれ1,2,6,8,10質量%添加して行った。その結果、図5に示すようにAl23含有量の増加に従って、融液粘度が上昇することが確認された。
From the above results, the present inventors have found that the characteristic properties of the high phosphate ore that there are many fine powder parts, and the Al 2 O 3 content in the fine powder parts and Al 2 O 3 / siO 2 are high are the flow of the melt. Therefore, the influence of Al 2 O 3 on the fluidity of the melt was investigated.
First, the viscosity of the melt was measured using a viscosity measuring apparatus shown in FIG. In this measurement, the ball pulling method was adopted, and the viscosity was calculated based on the moving speed of the balance indicating needle N when the ball B in the melt was pulled up. Measurements, the CaO 20 wt%, the melt containing Fe2O 3 80 wt%, was performed Al 2 O 3 reagent was added, respectively 1,2,6,8,10 wt%. As a result, as shown in FIG. 5, it was confirmed that the melt viscosity increased as the Al 2 O 3 content increased.

次に、図6に示す装置を用いて融液の浸透速度を測定し、融液粘度の上昇と浸透速度との関係を調べた。この測定では、ガラスビーズ(直径5mm)の充填したシリンダー(内径45mm、高さ320mm)に、シリンダー上方に設置したストッパー付きの漏斗(筒上端部の内径3mm)から融液を滴下し、この充填層に浸透する融液を観測することで、浸透速度を算出した。図7に示す結果より、融液粘度の上昇に従って、融液の浸透速度は低下することが確認された。   Next, the penetration rate of the melt was measured using the apparatus shown in FIG. 6, and the relationship between the increase in melt viscosity and the penetration rate was examined. In this measurement, the melt was dropped from a funnel with a stopper (inner diameter 3 mm at the upper end of the cylinder) placed above the cylinder into a cylinder (inner diameter 45 mm, height 320 mm) filled with glass beads (diameter 5 mm). The penetration rate was calculated by observing the melt penetrating the layer. From the results shown in FIG. 7, it was confirmed that the permeation rate of the melt decreased as the melt viscosity increased.

したがって、この融液の浸透速度の低下が、焼結ケーキ中の気孔の成長を阻害し、ひいては、熱間での通気性やコークスの燃焼の悪化につながるものと考えられる。以上の結果から、次のことが解明した。すなわち、高燐鉱石の配合率を増加させた場合には、微粉部全体のAl23含有量が増加し、焼結過程においては、表面積が大きい微粉部から優先的に溶融するものと考えられるため、融液はAl23が高濃度となって、融液粘度が増加するとともに融液の浸透速度が低下する。これにより、焼結過程における空気の流路である気孔の成長が阻害され、焼結擬似粒子間の間隙が融液によって埋められることで、焼結中の通気性が低下して焼結時間が延長し、焼結鉱の生産性が低下することになる。
また、さらに詳細に分析を行うと、微粉部に含まれているAl23により、下記障害を発生していることが判明した。
Therefore, it is considered that this decrease in the permeation rate of the melt inhibits the growth of pores in the sintered cake, which leads to deterioration in hot air permeability and coke combustion. From the above results, the following was clarified. That is, when the blending ratio of high phosphate ore is increased, the Al 2 O 3 content of the entire fine powder part increases, and in the sintering process, it is considered that the fine powder part having a large surface area is preferentially melted. Therefore, the melt has a high concentration of Al 2 O 3 , and the melt viscosity increases and the melt penetration rate decreases. This inhibits the growth of pores, which are air flow paths in the sintering process, and fills the gaps between the sintered pseudo particles with the melt, thereby reducing the air permeability during sintering and reducing the sintering time. This will extend the productivity of sintered ore.
Further, when the analysis was performed in more detail, it was found that the following obstacles were generated by Al 2 O 3 contained in the fine powder part.

図8は、各微粉領域で含有されるAl23量による示差熱分析結果を示したものである。示差熱は、粒度区分が異なるためAl23含有量が種々の値である各高燐鉱石について、CaOを10質量%及びSiO2を5.0質量%配合し、サンプル粒度を44μm、基準物質をAl23、昇温速度を50℃/minとして行った。この結果、Al23の高濃度領域となる、高燐鉱石の微粉部では、カルシウムフェライトの分解溶融に起因すると思われる1200℃以上での大きな吸熱反応を有し、融液が生じた後吸熱反応が生じ、焼結過程における融液の流動性の悪化や空気の流路となる気孔の成長阻害を引き起こしているものと考えられ、焼結中の通気性が低下して焼結時間が延長し、焼結鉱の生産性が低下することになったと推察された。 FIG. 8 shows the results of differential thermal analysis based on the amount of Al 2 O 3 contained in each fine powder region. The differential heat is different in particle size classification, so each high-phosphorus ore having various values of Al 2 O 3 content is compounded with 10 mass% CaO and 5.0 mass% SiO 2 , sample particle size is 44 μm, standard The material was Al 2 O 3 , and the heating rate was 50 ° C./min. As a result, in the fine portion of high phosphate ore, which is a high concentration region of Al 2 O 3 , it has a large endothermic reaction at 1200 ° C. or more, which seems to be caused by decomposition and melting of calcium ferrite, and after the melt is generated An endothermic reaction occurs, which is thought to cause deterioration of the melt fluidity during the sintering process and impede the growth of pores that serve as air flow paths. It was assumed that the productivity of sinter decreased due to the extension.

そのために、本発明においては、前記焼結生産性悪化の要因となっている高燐鉱石中に多量に含まれる、微粉部あるいは微粉部の高濃度のAl23を、前記高燐鉱石全体の質量に対して所定の2.2質量%以下の範囲に制限することにより、高燐鉱石を用いた場合の焼結生産性の悪化を抑制又は解消する。 Therefore, in the present invention, the fine phosphate portion or the high concentration Al 2 O 3 in the fine phosphate portion, which is contained in a large amount in the high phosphate ore that is the cause of the deterioration of the sintering productivity, By restricting to a predetermined range of 2.2% by mass or less with respect to the mass, the deterioration of the sintering productivity when using high phosphate ore is suppressed or eliminated.

図9は、整粒時の調節により、高燐鉱石全体に対する0.25mm以下の微粉部の含有率が種々の高燐鉱石を得て、本発明にかかる高燐鉱石の0.25mm以下の微粉割合、微粉中Al23含有量ならびにAl23/SiO2を変化させた時のシャッター強度、焼結生産性との関係を示すグラフである。高燐鉱石の0.25mm以下の微粉部の含有率と、その微粉部のAl23の含有率の関係を図9に示す。同図に示すように、0.25mm以下の微粉部の含有率が低下するのに従い、0.25mm以下の微粉部のAl23の含有率も低下している。 FIG. 9 shows that high phosphorus ore having various contents of fine powder parts of 0.25 mm or less with respect to the whole high phosphate ore was obtained by adjusting at the time of sizing, and the fine powder of 0.25 mm or less of the high phosphate ore according to the present invention was obtained. It is a graph which shows the relationship between the ratio, the Al 2 O 3 content in the fine powder, the shutter strength when the Al 2 O 3 / SiO 2 is changed, and the sintering productivity. FIG. 9 shows the relationship between the content of the fine powder portion of 0.25 mm or less of the high phosphate ore and the content of Al 2 O 3 in the fine powder portion. As shown in the figure, as the content of the fine powder part of 0.25 mm or less decreases, the content of Al 2 O 3 in the fine powder part of 0.25 mm or less also decreases.

そして、高燐鉱石全体の質量に対する、その0.25mm以下の微粉部に含まれるAl23の量を2.2質量%以下とした時(図9(a))、あるいは、前記高燐鉱石全体の質量に対する、その0.25mm以下の微粉部の割合を29質量%以下とした時(図9(d))、シャッター強度、焼結生産率ともに上昇する。このため、本発明では、0.25mm以下の微粉部におけるAl23の含有率を高燐鉱石全体の質量に対し、2.2質量%以下とした。あるいは0.25mm以下の微粉部の割合を高燐鉱石全体の質量に対し、29質量%以下とした。 And when the amount of Al 2 O 3 contained in the fine powder part of 0.25 mm or less with respect to the mass of the entire high phosphate ore is 2.2 mass% or less (FIG. 9A), or the high phosphorus When the ratio of the fine powder part of 0.25 mm or less to the mass of the whole ore is set to 29% by mass or less (FIG. 9D), both the shutter strength and the sintered production rate are increased. Therefore, in the present invention, with respect to the total mass of Korin ore content of Al 2 O 3 in the following fines portion 0.25 mm, it was 2.2 mass% or less. Or the ratio of the fine powder part of 0.25 mm or less was made into 29 mass% or less with respect to the mass of the whole high phosphate ore.

なお、高燐鉱石全体の質量に対する、その0.25mm以下の微粉部に含まれるAl23の量の割合がさらに1.5質量%以下であれば、高燐鉱石の使用による焼結生産率悪化が解消されるので好ましい。
同様に高燐鉱石全体の質量に対する、その0.25mm以下の微粉部の割合が25%質量%以下であれば、高燐鉱石の使用による焼結生産率悪化が解消されるので好ましい。
In addition, if the ratio of the amount of Al 2 O 3 contained in the fine powder part of 0.25 mm or less to the mass of the entire high phosphate ore is 1.5% by mass or less, sintering production by using the high phosphate ore This is preferable because rate deterioration is eliminated.
Similarly, if the ratio of the fine powder part of 0.25 mm or less to the mass of the entire high phosphate ore is 25% by mass or less, the deterioration of the sintered production rate due to the use of the high phosphate ore is eliminated, which is preferable.

また、高Al23による融液の流動性悪化の障害は、SiO2を添加して、Al23/SiO2を制御することで改良を図ることができる。本発明においては、Al23/SiO2を0.6以下とすることによって融液の流動性を改善することができ、シャッター強度、焼結生産率ともに上昇する(図9(b))。このために本発明では、SiO2系原料を添加して0.25mm以下の微粉部に含まれるAl23/SiO2を0.6以下とすることにした。 Further, failure of the fluidity deterioration of the melt due to the high Al 2 O 3 is added SiO 2, it is possible to achieve an improvement by controlling the Al 2 O 3 / SiO 2. In the present invention, the flowability of the melt can be improved by setting Al 2 O 3 / SiO 2 to 0.6 or less, and both the shutter strength and the sintering production rate are increased (FIG. 9B). . For this reason, in the present invention, the SiO 2 raw material is added and the Al 2 O 3 / SiO 2 contained in the fine powder part of 0.25 mm or less is determined to be 0.6 or less.

さらに本発明では、0.25mm以下の微粉部におけるAl23の含有率を高燐鉱石全体の質量に対し、2.2質量%以下とする、あるいは0.25mm以下の微粉部の割合を高燐鉱石全体の質量に対し、29質量%以下とすることに加え、SiO2系原料を添加して0.25mm以下の微粉部に含まれるAl2O3/SiO2を0.6以下とすることを併用してより焼結操業の悪影響を改善してもよい。 Furthermore, in the present invention, the content of Al 2 O 3 in the fine powder part of 0.25 mm or less is 2.2% by mass or less relative to the total mass of the high phosphate ore, or the ratio of the fine powder part of 0.25 mm or less is used. to high phosphate rock total mass, in addition to the 29 wt% or less, the Al 2 O3 / SiO 2 contained in the following fines portion 0.25mm by adding SiO 2 based precursor is 0.6 or less This may be used in combination to improve the adverse effect of the sintering operation.

また、添加するSiO2系原料としては、珪石、Niスラグ、蛇紋岩等の粉が使用できる。なお、融液の流動性確保のため、Al23/SiO2は0.3以上、好ましくは0.4以上とする。この範囲であれば二次ヘマタイトの生成が抑止され、得られる焼結鉱の還元粉化率の悪化もない。
前記、0.25mm以下の微粉部、微粉部に含まれるAl23は、微粉部を篩などで除去することで高燐鉱石全体の質量に対する含有割合を調整することが可能である。しかるに微粉部までを造粒により擬似粒子として取り込み活用する焼結操業では、篩による微粉部の除去は、コスト上昇ならびに資源の有効利用にならないことになる。
As the SiO 2 based precursor to be added, silica, Ni slag, the powder such as serpentinite can be used. In order to secure the fluidity of the melt, Al 2 O 3 / SiO 2 is 0.3 or more, preferably 0.4 or more. If it is this range, the production | generation of secondary hematite will be suppressed and there will be no deterioration of the reduction | restoration powdering rate of the obtained sintered ore.
The fine powder part of 0.25 mm or less and Al 2 O 3 contained in the fine powder part can adjust the content ratio with respect to the mass of the entire high phosphate ore by removing the fine powder part with a sieve or the like. However, in the sintering operation in which the fine powder part is incorporated and used as pseudo-particles by granulation, the removal of the fine powder part with a sieve does not increase the cost and effectively use resources.

そこで、本発明においては、0.25mm以下の微粉部に含まれるAlの量を2.2質量%以下、あるいは、前記高燐鉱石全体の質量に対する、その0.25mm以下の微粉部の割合を29質量%以下にするに際して、焼結鉱の製造に供する高燐鉱石のトップサイズ粒径を上昇させ、粒径の粗い部分を増加させることにより、前記微粉部及び/又は微粉部に含まれるAlの量の相対的な量を低下させて調整を行う。高燐鉱石を造粒するとき、トップサイズ粒径上昇に伴う粗粒部分の増加により、粗い核粒子部分に小さな粒子および微粉が付着形成される疑似粒子化過程では、相対的に粗い粒子に対する微粉の割合が低下することになり、これが高燐鉱石を焼結に使用する際の障害が解消できる所以であり、かつ、焼結に供する高燐鉱石を微粉部を含め無駄なく全て利用することができることにつながる。
以下実施例を示す。
Therefore, in the present invention, the amount of Al 2 O 3 contained in the fine powder part of 0.25 mm or less is 2.2% by mass or less, or the fine powder part of 0.25 mm or less relative to the total mass of the high phosphate ore. When the ratio is made 29 mass% or less, by increasing the top size particle size of the high phosphate ore used for the production of sintered ore and increasing the coarser portion, the fine powder portion and / or fine powder portion It intends line adjusted by lowering the relative amount of the amount of Al 2 O 3 contained. When granulating high phosphate ore, in the quasi-particulation process where small particles and fine particles are deposited on the coarse core particles due to the increase in coarse particles accompanying the increase in the top size particle size, fine particles with respect to relatively coarse particles are formed. This is the reason why obstacles when using high phosphate ore for sintering can be eliminated, and the high phosphate ore used for sintering can be used without waste, including fine powder. It leads to what can be done.
Examples are shown below.

本実施例では、採掘後の高燐鉱石の整粒過程で、破砕時の破砕粒径や飾分け時の節目の大きさ等を調整することで、下記表6に示すような粒度分布の各高燐鉱石を得た。   In this example, each particle size distribution as shown in Table 6 below is adjusted by adjusting the crushing particle size at the time of crushing, the size of the joints at the time of decorating, etc. in the sizing process of the high phosphate ore after mining. A high phosphate ore was obtained.

Figure 0005011637
Figure 0005011637

この結果表6に示すように、トップサイズ9.0mmの高燐鉱石は、0.25mm以下の微粉部が27質量%、トップサイズ6.3mmの高燐鉱石は、0.25mm以下の微粉部が34質量%であり、トップサイズが大きいと、すなわち破砕粒径等を大きくすることで、微粉部の量を低減できることが確認された。   As a result, as shown in Table 6, the high-phosphorus ore with a top size of 9.0 mm has 27% by mass of a fine powder portion of 0.25 mm or less, and the high-phosphorus ore with a top size of 6.3 mm has a fine powder portion of 0.25 mm or less. It was confirmed that when the top size is large, that is, the crushed particle size is increased, the amount of the fine powder part can be reduced.

次に、表6に示す粒度分布の各高燐鉱石を用いて焼結鉱の製造を行った。発明例1では、トップサイズ9.0mmの高燐鉱石を焼結原料鉱石中に60質量%配合した。また、発明例2では、トップサイズ9.0mmの高燐鉱石を焼結原料鉱石中に60質量%配合するとともに、焼結原料にSiO2系原料(珪石)を配合することで0.3質量%のSiO2を添加した。一方、比較例では、トップサイズ6.3mmの高燐鉱石を焼結原料鉱石中に60質量%配合した。 Next, the sintered ore was manufactured using each high phosphate ore having the particle size distribution shown in Table 6. In Invention Example 1, 60% by mass of high-phosphorus ore having a top size of 9.0 mm was mixed in the sintering raw material ore. In Invention Example 2, 60 mass% of high phosphate ore having a top size of 9.0 mm is blended in the sintering raw material ore and 0.3 mass by blending the SiO 2 raw material (silica) in the sintering raw material. % SiO 2 was added. On the other hand, in the comparative example, 60% by mass of high-phosphorus ore having a top size of 6.3 mm was mixed in the sintering raw material ore.

この結果、図10に示すように、発明例1及び発明例2では、比較例と比べ、焼結中の通気性が改善し(同図(b))、焼結時間も短縮し(同図(d))、焼結生産率が向上した(同図(g))。また、被還元性が向上し(同図(f))、還元粉化性が改善した。このことから、高燐鉱石のトップサイズを大きくし、又は、微粉部の含まれる割合を相対的に低減することで、焼結生産性や還元粉化性等を改善できることが確認された。また、還元粉化性は、発明例1よりもSiO2を添加した発明例2の方が改善の効果が大きく、Al23/SiO2の値を低減した効果が確認された(同図(h))。 As a result, as shown in FIG. 10, the inventive example 1 and the inventive example 2 have improved air permeability during sintering (FIG. 10 (b)) and shortened the sintering time as compared with the comparative example (FIG. 10). (D)), the sintering production rate was improved ((g) in the figure). Further, the reducibility was improved ((f) in the figure), and the reduction powdering property was improved. From this, it was confirmed that sintering productivity, reduced powdering property, etc. can be improved by enlarging the top size of the high phosphate ore or relatively reducing the proportion of the fine powder part. Further, the reduction powdering property was confirmed to be greater in the effect of the invention example 2 to which SiO 2 was added than in the invention example 1 and the effect of reducing the value of Al 2 O 3 / SiO 2 (the same figure). (H)).

次に、高燐鉱石のみ使用した焼結鍋試験結果を示す。表6に示した、トップサイズ6.3mmの従来の高燐鉱石を比較例、トップサイズが8.0mmの高燐鉱石を他の比較例、トップサイズを9mmとした本発明になる高燐鉱石を発明例として各2回の試験結果で示した。
この結果、図11に示すように、発明例では、2種の比較例と比べ、鍋中平均風速は向上し(同図(a)、歩留りも向上した(同図(b))。擬似粒子径も増加し(同図(c))、さらに焼結時間、生産率ともに向上しており((同図(d)(e))還元粉化性も向上した(同図(f))。なお、高出銑比高炉操業を行う時焼結鉱の還元粉化率は約30%以下が要求されるがトップサイズ9.0mmでは、いずれも良好な結果となり、本発明の有効性が確認された。なお、P成分が0.1質量%を超える高燐鉱石であって、その高燐鉱石中の0.25mm以下の微粉部に含まれるAl23含有量の割合を2.2質量%以下としたことを特徴とする焼結原料用鉱石、P成分が0.1質量%を超える高燐鉱石であって、その高燐鉱石中の0.25mm以下の微粉部の割合を29質量%以下としたことを特徴とする焼結原料用鉱石、P成分が0.1質量%を超える高燐鉱石であって、その高燐鉱石中の0.25mm以下の微粉部における、Al23の含有量に対するSiO2の含有量の比であるAl23/SiO2を0.6以下としたことを特徴とする焼結原料用鉱石のみを使用した焼結鍋試験結果も同様な結果となった。
Next, the result of a sintering pot test using only high phosphate ore is shown. Table 6 shows a conventional high phosphate ore with a top size of 6.3 mm as a comparative example, a high phosphate ore with a top size of 8.0 mm as another comparative example, and a high phosphate ore according to the present invention with a top size of 9 mm. Was shown as an example of the invention in two test results.
As a result, as shown in Fig. 11, in the inventive example, the average wind speed in the pan was improved (Fig. 11 (a) and the yield was improved (Fig. 11 (b)) as compared with the two comparative examples. The diameter increased (Fig. (C)), and the sintering time and production rate were improved ((Figs. (D) and (e)), and the reduction powdering property was also improved (Fig. (F)). Note that the reduced powdering rate of sintered ore is required to be about 30% or less when high slag ratio blast furnace operation is performed, but the top size of 9.0 mm gives good results, confirming the effectiveness of the present invention. It should be noted that the ratio of the Al 2 O 3 content in the high-phosphorus ore in which the P component exceeds 0.1% by mass and contained in the fine powder portion of 0.25 mm or less in the high-phosphorus ore is 2.2. Ore for sintering raw material characterized by being less than or equal to mass%, high phosphorus ore with P component exceeding 0.1 mass%, 0.2% in the high phosphorus ore An ore for a sintering raw material, characterized in that the proportion of fine powder parts of mm or less is 29% by mass or less, a high phosphate ore having a P component of more than 0.1% by mass, Only the ore for sintering raw material characterized in that Al 2 O 3 / SiO 2 , which is the ratio of the content of SiO 2 to the content of Al 2 O 3 in the fine powder part of 25 mm or less, is 0.6 or less. The same results were obtained for the used sintering pot test results.

トップサイズが6.3mmの高燐鉱石を焼結原料に用いた場合の焼結鍋試験の結果を示すグラフである。It is a graph which shows the result of the sintering pot test at the time of using the high phosphate ore whose top size is 6.3 mm for a sintering raw material. 高燐鉱石を60質量%配合した場合及び高燐鉱石を配合しない場合の通気性変化を示すグラフである。It is a graph which shows the air permeability change at the time of mix | blending 60 mass% of high phosphate rocks, and when not blending high phosphate rocks. 焼結中の排ガス組成の変化の観測結果を示すグラフである。It is a graph which shows the observation result of the change of the exhaust gas composition during sintering. 粘度測定の様子を示す図である。It is a figure which shows the mode of a viscosity measurement. Al23含有量と融液粘度の関係を示すグラフである。Al 2 O 3 is a graph showing the relationship between the content and the melt viscosity. 融液の浸透速度測定の様子を説明する図である。It is a figure explaining the mode of the penetration rate measurement of a melt. 融液粘度と浸透速度の関係を示すグラフである。It is a graph which shows the relationship between melt viscosity and osmosis | permeation rate. 微粉部に含有されるAl23濃度ごとの示差熱析の結果を示すグラフである。Is a graph showing the results of differential thermal analysis for each concentration of Al 2 O 3 contained in the fine powder portion. 本発明にかかる高燐鉱石の0.25mm以下の微粉部の含有率と、Al23含有率、Al23/SiO2、焼結鉱のシャッター強度、焼結生産率との関係を示すグラフである。The relationship between the content of the fine powder portion of 0.25 mm or less of the high phosphate ore according to the present invention, the Al 2 O 3 content, Al 2 O 3 / SiO 2 , the shutter strength of the sintered ore, and the sintering production rate It is a graph to show. 実施例の焼結鍋試験の結果を示すグラフである。It is a graph which shows the result of the sintering pot test of an Example. 高燐鉱石単味を用いた焼結鍋試験結果を示すグラフである。It is a graph which shows the sintering pot test result using the high phosphate ore simple substance.

符号の説明Explanation of symbols

B 球
N 天秤指示針
B Sphere N Balance indicator needle

Claims (2)

P成分が0.1質量%を超える高燐鉱石を焼結原料鉱石に配合して用いる焼結に供するための鉱石の処理方法であって、前記高燐鉱石の整粒時における破砕時の破砕粒径や篩分け時の篩目の大きさを調節することにより、前記高燐鉱石のトップサイズを9mm以上とし、これにより、前記高燐鉱石全体の質量に対する、その高燐鉱石中の0.25mm以下の微粉部の割合を29質量%以下としたことを特徴とする焼結に供するための鉱石の処理方法。 An ore processing method for use in sintering by using a high phosphorus ore containing P component of more than 0.1% by mass in a sintering raw material ore, and crushing at the time of smashing the high phosphorus ore The top size of the high phosphate ore is adjusted to 9 mm or more by adjusting the particle size and the size of the sieve when sieving. An ore processing method for use in sintering, characterized in that the proportion of fine powder portions of 25 mm or less is 29 mass% or less . P成分が0.1質量%を超える高燐鉱石を焼結原料鉱石に配合して用いる焼結に供するための鉱石の処理方法であって、前記高燐鉱石の整粒時における破砕時の破砕粒径や篩分け時の篩目の大きさを調節することにより、前記高燐鉱石のトップサイズを9mm以上とし、これにより、前記高燐鉱石全体の質量に対する、その高燐鉱石中の0.25mm以下の微粉部の割合を29質量%以下とし、さらに、SiO 系原料を添加して、前記高燐鉱石中の0.25mm以下の微粉部における、Al の含有量に対するSiO の含有量の比であるAl /SiO の値を0.6以下としたことを特徴とする焼結に供するための鉱石の処理方法。 An ore processing method for use in sintering by using a high phosphorus ore containing P component of more than 0.1% by mass in a sintering raw material ore, and crushing at the time of smashing the high phosphorus ore The top size of the high phosphate ore is adjusted to 9 mm or more by adjusting the particle size and the size of the sieve when sieving. The ratio of the fine powder part of 25 mm or less is 29 mass% or less, and further, an SiO 2 raw material is added, and SiO 2 with respect to the content of Al 2 O 3 in the fine powder part of 0.25 mm or less in the high phosphate ore. A method for treating ore for use in sintering, characterized in that the value of Al 2 O 3 / SiO 2 , which is the ratio of the content of Al, is 0.6 or less .
JP2004292498A 2004-10-05 2004-10-05 Processing method of ore for sintering Active JP5011637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292498A JP5011637B2 (en) 2004-10-05 2004-10-05 Processing method of ore for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292498A JP5011637B2 (en) 2004-10-05 2004-10-05 Processing method of ore for sintering

Publications (2)

Publication Number Publication Date
JP2006104516A JP2006104516A (en) 2006-04-20
JP5011637B2 true JP5011637B2 (en) 2012-08-29

Family

ID=36374588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292498A Active JP5011637B2 (en) 2004-10-05 2004-10-05 Processing method of ore for sintering

Country Status (1)

Country Link
JP (1) JP5011637B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105542A (en) * 2000-10-03 2002-04-10 Nkk Corp Method for producing sintered ore for blast furnace
JP3952906B2 (en) * 2002-08-14 2007-08-01 Jfeスチール株式会社 Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same

Also Published As

Publication number Publication date
JP2006104516A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
KR20180110034A (en) Method for producing sintered ores
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
JP6421666B2 (en) Method for producing sintered ore
JP4852871B2 (en) Method for producing sintered ore and granulation equipment for producing sintered ore
JP4996100B2 (en) Method for producing sintered ore
JP5168802B2 (en) Method for producing sintered ore
JP4528362B2 (en) Method for producing sintered ore
KR100792133B1 (en) Method for producing sintered ore
JP5011637B2 (en) Processing method of ore for sintering
JP4786022B2 (en) Method for producing sintered ore
JP2012046828A (en) Method for producing sintered ore
JP4725230B2 (en) Method for producing sintered ore
JP4982993B2 (en) Method for producing sintered ore
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP3888981B2 (en) Method for producing sintered ore
JP3944340B2 (en) Method for producing sintered ore and sintered ore
JP2020084241A (en) Manufacturing method of sintered ore
JP3952988B2 (en) Method for producing low SiO2 sintered ore
JP3006884B2 (en) Sinter for iron making using pisolite iron ore as raw material and method for producing the same
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JP4661077B2 (en) Method for producing sintered ore
CN107949646A (en) It is used to prepare the method and apparatus of the chromite concentrate of granulation and sintering and is granulated charging
JPH0819486B2 (en) Manufacturing method of sinter for blast furnace using high goethite ore as raw material
JP4016912B2 (en) Manufacturing method of high strength sintered ore.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5011637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250