JP3006884B2 - Sinter for iron making using pisolite iron ore as raw material and method for producing the same - Google Patents
Sinter for iron making using pisolite iron ore as raw material and method for producing the sameInfo
- Publication number
- JP3006884B2 JP3006884B2 JP5513553A JP51355394A JP3006884B2 JP 3006884 B2 JP3006884 B2 JP 3006884B2 JP 5513553 A JP5513553 A JP 5513553A JP 51355394 A JP51355394 A JP 51355394A JP 3006884 B2 JP3006884 B2 JP 3006884B2
- Authority
- JP
- Japan
- Prior art keywords
- ore
- iron
- iron ore
- sio
- pisolite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 245
- 229910052742 iron Inorganic materials 0.000 title claims description 122
- 239000002994 raw material Substances 0.000 title claims description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 55
- 238000005245 sintering Methods 0.000 claims description 29
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 19
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 15
- 239000011019 hematite Substances 0.000 claims description 14
- 229910052595 hematite Inorganic materials 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 8
- 239000003575 carbonaceous material Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- 238000013329 compounding Methods 0.000 claims description 3
- -1 pisolite iron ore Chemical compound 0.000 claims 1
- 239000000155 melt Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 239000011148 porous material Substances 0.000 description 8
- 239000000292 calcium oxide Substances 0.000 description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 7
- 239000002893 slag Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052598 goethite Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- BGRDGMRNKXEXQD-UHFFFAOYSA-N Maleic hydrazide Chemical compound OC1=CC=C(O)N=N1 BGRDGMRNKXEXQD-UHFFFAOYSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03D—WATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
- E03D9/00—Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
- E03D9/04—Special arrangement or operation of ventilating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D1/00—Non-positive-displacement machines or engines, e.g. steam turbines
- F01D1/32—Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/04—Units comprising pumps and their driving means the pump being fluid-driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/007—Ventilation with forced flow
- F24F7/013—Ventilation with forced flow using wall or window fans, displacing air through the wall or window
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0046—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
- F24F2005/006—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from the drinking or sanitary water supply circuit
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】 〔技術分野〕 本発明は、ピソライト鉄鉱石を原料とした高炉製銑法
用の焼結鉱及びその製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a sintered ore for blast furnace iron making using pisolite iron ore as a raw material and a method for producing the same.
製鉄の代表である高炉製銑法の主要原料の焼結鉱は、
以下のようにして製造されるのが一般的である。まず、
約10mm以下の鉄鉱石粉に石灰石、ドロマイト、転炉スラ
グなどの含CaO副原料(CaO系副原料と呼ぶ)、蛇紋岩、
珪石、かんらん岩などの含SiO2副原料(SiO2系副原料と
呼ぶ)、およびコークス粉、無煙炭などの炭材、さらに
適量の水分を加えて混合、造粒する。こうして擬似粒化
した配合原料(擬似粒子)を火格子移動式の焼結機パレ
ット上に500mm前後の高さに充填し、この充填ベッド表
層部の炭材に点火する。下方に向けて空気を吸引しなが
ら炭材を燃焼させ、そのときに発生する燃焼熱によって
配合原料を焼結したのち、得られた焼結ケーキを破砕、
整粒して3ないし5mmの粒子を成品焼結鉱として高炉に
装入する。なお、高炉装入原料として不適当な粉の焼結
鉱は返鉱と呼ばれ、焼結鉱の原料として戻される。Sinter ore, the main raw material of the blast furnace iron making method, which is a representative of iron making,
It is generally manufactured as follows. First,
Iron ore powder of about 10 mm or less, limestone, dolomite, converter slag and other CaO-containing raw materials (referred to as CaO-based raw materials), serpentine,
Mix and granulate by adding SiO 2 containing raw materials such as quartzite and peridotite (referred to as SiO 2 based raw materials), carbon materials such as coke powder and anthracite, and an appropriate amount of water. The quasi-granulated blended raw material (pseudo-particles) is charged to a height of about 500 mm on a pallet of a grate-movable sintering machine, and the carbon material on the surface of the packed bed is ignited. The carbon material is burned while sucking air downward and after sintering the blended raw materials by the combustion heat generated at that time, the obtained sintered cake is crushed,
After sizing, the particles having a size of 3 to 5 mm are charged into a blast furnace as a product sintered ore. In addition, sinter of powder unsuitable as a blast furnace charging material is called returned ore, and is returned as a raw material of sinter.
高炉を安定かつ高効率で操業するには高品質の焼結鉱
が要求され、冷間強度、被還元性、耐還元粉化性などの
品質が厳しく管理されている。また、焼結鉱の製造コス
トの面から、歩留(成品焼結鉱/焼結ケーキ)の高いこ
とが要望されている。To operate a blast furnace stably and efficiently, high-quality sintered ore is required, and qualities such as cold strength, reducibility, and reduction powdering resistance are strictly controlled. Further, from the viewpoint of the production cost of the sinter, there is a demand for a high yield (sinter ore / sinter cake).
世界の鉄鉱石資源をみると、これまでの良質なヘマタ
イト鉱石は枯渇の方向にあり、現状の生産が続くと主要
鉱山は2000年早々にも掘り付くしてしまうと予測されて
いる。一方、鉄鉱石の1種にピソライト鉄鉱石と分類さ
れるSiO2が4.5〜6%の鉄鉱石がある。その代表が豪州
のローブリバー(Robe River)、ヤンディクージナ(Ya
ndicoojina)といった銘柄の鉱石である。これらの鉄鉱
石の鉱床の埋蔵量は莫大で、かつ採掘のために取り除く
低品位の部分(剥土比)が少ないので採掘費用が安く、
供給が安定しているとの特長がある。従って、本鉱石を
多量に使用できれば、コスト低減など経済的効果ばかり
でなく、資源の有効活用といった大きな意義がある。Looking at the world's iron ore resources, good quality hematite ore has been depleted, and it is predicted that major mines will be dug as early as 2000 if current production continues. On the other hand, SiO 2 classified as Pisoraito iron ore into one of iron ore is from 4.5 to 6% of the iron ore. Its representatives are Robe River in Australia and Yadi Kuzyna (Ya)
ndicoojina). The reserves of these iron ore deposits are enormous, and the low-grade parts (stripping ratio) removed for mining are low, so mining costs are low,
The feature is that the supply is stable. Therefore, if this ore can be used in a large amount, it has significant significance not only in economic effects such as cost reduction but also in effective use of resources.
しかし、本鉱石はヘマタイト(Fe2O3)粒子をゲーサ
イト(Fe2O3・H2O)が取り囲んだいわゆる魚卵状構造を
しているため、いくつかの問題を抱えている。すなわ
ち、加熱過程において結合水の分解が起こり、ゲーサイ
ト部に選択的に大きな亀裂が発生する。その結果、まず
鉱石は脆弱なものとなる。次に副原料と鉄鉱石の反応に
よって融液が発生すると、その融液は亀裂の中へ急速に
侵入し、融液部には大きな気孔が生成し、焼結体の強度
を低下させる。焼結操業で言う歩留、冷間強度の低下を
引き起こすことになる。また、同化部(融液と鉱石が反
応した部分)は小さな粒状ヘマタイト粒子とガラス質シ
リケートとなり、耐低温還元粉化性が劣化する。このた
め、ピソライト鉄鉱石使用量を増せないのが現状であ
る。先に述べたように、ピソライト鉄鉱石多量使用焼結
法の開発は、資源の有効利用およびコスト低減から意義
が大きい。However, this ore has some problems because it has a so-called fish egg-like structure in which hematite (Fe 2 O 3 ) particles are surrounded by goethite (Fe 2 O 3 · H 2 O). That is, the decomposition of the bound water occurs in the heating process, and a large crack is selectively generated in the goethite portion. As a result, the ore becomes vulnerable first. Next, when a melt is generated by the reaction between the auxiliary raw material and the iron ore, the melt rapidly penetrates into the cracks, and large pores are generated in the melt, thereby reducing the strength of the sintered body. The yield and cold strength of the sintering operation decrease. Further, the assimilation part (the part where the melt and the ore have reacted) becomes small granular hematite particles and vitreous silicate, and the low-temperature reduction powdering resistance deteriorates. For this reason, at present, it is impossible to increase the usage of pisolite iron ore. As described above, the development of the sintering method using a large amount of pisolite iron ore is significant from the viewpoint of effective use of resources and cost reduction.
ピソライト鉄鉱石対策の基本は、多量融液の上記亀裂
内への急速な侵入を抑制することである。発明者らはこ
の融液の急激な浸入を抑制する方法として、特願平1−
184047号及び特願平2−115730号の発明のように鉱石周
囲の表面に特殊な組成の保護層を形成する方法、並びに
特願平3−146481号及び特願平3−303854号の発明のよ
うに粘性の高い融液を形成させる方法を明らかにしてき
た。しかし、これらの方法では、特殊な副原料、さらに
は予備造粒設備あるいは焼結機への特殊な原料の偏析装
入設備を必要とする欠点がある。The basis of the measures against pisolite iron ore is to suppress the rapid penetration of a large amount of melt into the crack. The present inventors have proposed a method for suppressing the rapid intrusion of the melt as disclosed in Japanese Patent Application No. Hei.
A method of forming a protective layer having a special composition on the surface around an ore as in the inventions of Japanese Patent Application Nos. 184047 and 2-115730, and the invention of Japanese Patent Application Nos. 3-146481 and 3-303854. Thus, a method for forming a highly viscous melt has been clarified. However, these methods have a drawback that special auxiliary raw materials, and further, a pre-granulation equipment or a special raw material segregation charging equipment for a sintering machine are required.
そこで発明者らは、ピソライト鉄鉱石周囲に存在する
時々刻々の融液量そのものをごく少量に制限できれば融
液の浸入を抑えられると考え、そのための条件について
数多くの基礎研究を行い、具体策として既存の焼結機に
適用できる本発明の方法を見いだした。Therefore, the present inventors thought that if the momentary amount of the melt existing around the pisolite iron ore could be limited to a very small amount, the infiltration of the melt could be suppressed, and a number of basic research was conducted on the conditions for that, and as a concrete measure, The method of the present invention applicable to existing sintering machines has been found.
すなわち、本発明は安価でかつ資源的にも豊富な鉄鉱
石特にピソライト鉄鉱石を用いて優れた品質の焼結鉱を
提供することを目的とする。That is, an object of the present invention is to provide a sintered ore of excellent quality using iron ore, particularly pisolite iron ore, which is inexpensive and rich in resources.
更に本発明は上記鉄鉱石を用い、特殊な設備を必要と
せずに優れた品質の焼結鉱を製造することを目的とす
る。A further object of the present invention is to produce excellent quality sinter using the above iron ore without requiring special equipment.
上記目的を達成するため、本発明は返鉱以外の鉄含有
原料として、ピソライト鉄鉱石とSiO2含有量が1.5質量
%以下(以下%は全て質量%を示す)の高品位鉄鉱石を
用い、かつピソライト鉄鉱石を40〜70%配合した鉄含有
原料を副原料、炭材、水等とともに焼結機により1200℃
以上の加熱で焼結することにより、焼結鉱の断面におい
て、ピソライト鉄鉱石以外の焼結原料の未溶融残留物を
除く固体部分の80%以上が、緻密化したピソライト鉄
鉱石を幅が10μm以下の微細なカルシュウムフェライト
を取り囲んだもの、ピソライト鉄鉱石の痕跡を有する
とともに粒状のヘマタイト粒子と該ヘマタイト粒子を結
合するカルシュウムフェライトで構成されたもの、また
は粒状のヘマタイト粒子とカルシュウムフェライトが
混合したもの或いはこれら,,の混合組織で構成
される鉄製用焼結鉱を提供するものである。In order to achieve the above object, the present invention uses a high-grade iron ore having a pisolite iron ore and a SiO 2 content of 1.5% by mass or less (hereinafter, all% s indicate mass%) as iron-containing raw materials other than returned ore, And iron-containing raw material containing 40-70% of pisolite iron ore is mixed with auxiliary raw material, carbonaceous material, water, etc. by sintering machine at 1200 ℃
By sintering with the above heating, in the cross section of the sinter, more than 80% of the solid portion excluding the unmelted residue of the sintering raw material other than the pisolite iron ore has a densified pisolite iron ore having a width of 10 μm. What surrounds the following fine calcium ferrite, one that has a trace of pisolite iron ore and is composed of granular hematite particles and calcium ferrite that binds the hematite particles, or a mixture of granular hematite particles and calcium ferrite Another object of the present invention is to provide a sintered ore for iron made of a mixed structure of these.
また上記焼結手段に提供する返鉱以外の鉄含有原料と
して、SiO2含有量が1.5%以下の高品位鉄鉱石の60%以
下をAl2O2/SiO2の質量比率が0.3以下の鉄鉱石で代替さ
せることも可能であり、更にまた、上記ピソライト鉄鉱
石、高品位鉄鉱石及び低Al2O3鉄鉱石の合計量を80%以
上になるように配合することも可能である。In addition, as an iron-containing raw material other than returned ore provided to the sintering means, 60% or less of high-grade iron ore having an SiO 2 content of 1.5% or less is used as an iron ore having a mass ratio of Al 2 O 2 / SiO 2 of 0.3 or less. It is also possible to substitute with stones, and it is also possible to mix the total amount of the above-mentioned pisolite iron ore, high-grade iron ore and low Al 2 O 3 iron ore to 80% or more.
このようにして得られた焼結鉱は従来良質とされてき
たヘマタイト鉱石と同等の優れた歩留と品質を有するも
のである。The sintered ore obtained in this way has the same excellent yield and quality as hematite ore, which has been conventionally regarded as good quality.
なお、以下の化学成分の%は全て質量%である。 The percentages of the following chemical components are all mass%.
第1図は鉄鉱石を単銘柄で焼結鉱の塩基度が1.6〜2.2
となるように鍋で製造した焼結鉱における鉄鉱石中のSi
O2%と焼結鉱中の幅10μm以下の微細カルシュウムフェ
ライトおよびスラグの割合の関係を示す図である。Fig. 1 shows a single brand of iron ore with a basicity of sinter of 1.6 to 2.2.
In iron ore in a sinter produced in a pot so that
O 2% and the width 10μm or less fine calcium ferrite and slag in the sintered ore is a diagram showing the ratio of the relationship.
第2図はSiO2が1.5%以上の鉱石を単銘柄で焼結鉱の
塩基度が1.6〜2.2となるように鍋で製造した焼結鉱にお
ける鉄鉱石中のAl2O3/SiO2比と焼結鉱中の幅10μm以下
の微細カルシュウムフェライトおよびスラグの割合の関
係を示す図である。Fig. 2 shows the ratio of Al 2 O 3 / SiO 2 in iron ore in a sintered ore produced by using a single brand of ore with SiO 2 of 1.5% or more in a pot so that the basicity of the sintered ore is 1.6 to 2.2. FIG. 4 is a diagram showing the relationship between the ratio of fine calcium ferrite having a width of 10 μm or less and slag in sintered ore.
第3図は本発明の焼結鉱の顕微鏡組織を示す図であ
る。FIG. 3 is a view showing a microstructure of the sintered ore of the present invention.
第4図は本発明の焼結鉱の他の顕微鏡組織を示す図で
ある。FIG. 4 is a view showing another microstructure of the sintered ore of the present invention.
第5図は本発明の焼結鉱の他の顕微鏡組織を示す図で
ある。FIG. 5 is a view showing another microstructure of the sintered ore of the present invention.
第6図は従来例の焼結鉱の顕微鏡組織を示す図であ
る。FIG. 6 is a view showing a microstructure of a conventional sintered ore.
第7図はピソライト鉄鉱石およびSiO2が1.5%以下の
鉄鉱石からなる原料の焼結鍋試験結果で、両鉄鉱石中に
占めるピソライト鉄鉱石の割合と成品歩留、焼結鉱のJI
S落下強度の関係を示す図である。Fig. 7 shows the results of sintering pot tests of raw materials consisting of pisolite iron ore and iron ore with SiO 2 of 1.5% or less. The ratio of pisolite iron ore in both iron ores, product yield, and JI of sinter
It is a figure which shows the relationship of S fall strength.
第8図は焼結鍋試験結果で、ピソライト鉄鉱石および
SiO2が1.5%以下の鉄鉱石から成る原料においてピソラ
イト鉄鉱石の割合を40%あるいは70%とし、さらにその
SiO2が1.5%以下の鉄鉱石の一部をAl2O3/SiO2質量比が
0.3以下の鉄鉱石と代替した場合のその代替率と成品歩
留、焼結鉱のJIS落下強度の関係を示す図である。Fig. 8 shows the results of the sintering pot test.
In raw materials composed of iron ore with SiO 2 of 1.5% or less, the proportion of pisolite iron ore is set to 40% or 70%.
Al 2 O 3 / SiO 2 mass ratio of part of iron ore with SiO 2 less than 1.5%
It is a figure which shows the relationship between the substitution rate, the product yield, and the JIS drop strength of sinter when the iron ore is substituted with 0.3 or less.
第9図は焼結鍋試験結果で、ピソライト鉄鉱石および
SiO2が1.5%以下の鉄鉱石から成る原料においてピソラ
イト鉄鉱石の割合を40%あるいは70%とし、次にそのSi
O2が1.5%以下の鉄鉱石の60%をAl2O3/SiO2重量比が0.3
以下の鉄鉱石と置き換え、さらにそれら原料の一部をAl
2O3/SiO2質量比が0.3より大きな鉄鉱石と代替した場合
のその代替率と成品歩留、焼結鉱のJIS落下強度の関係
を示す図である。Fig. 9 shows the results of the sintering pot test.
In the raw material consisting of iron ore with 1.5% or less of SiO 2, the ratio of pisolite iron ore is set to 40% or 70%,
60% of iron ore with less than 1.5% of O 2 has Al 2 O 3 / SiO 2 weight ratio of 0.3
Replaced with the following iron ores, and partially replaced them with Al
FIG. 3 is a graph showing the relationship between the substitution rate, the product yield, and the JIS drop strength of sintered ore when the iron ore having a mass ratio of 2 O 3 / SiO 2 larger than 0.3 is substituted.
以下、本発明を実施するための最良の形態について詳
述する。Hereinafter, the best mode for carrying out the present invention will be described in detail.
先ず、本発明の基本原理について説明する。 First, the basic principle of the present invention will be described.
本発明法の特徴は、前述のように時々刻々変化する実
存の融液をごく少量に抑えることである。その基本原理
は、焼結過程の昇温段階のほぼ1,200℃から固体と液体
の反応で生成し始めるカルシュウムフェライト(形態が
幅10ミクロン以下の針状あるいは板状)の発生促進であ
る。このカルシュウムフェライトは高CaO/SiO2の融液が
発生するとすぐに生成され、いわゆる融液生成律速とな
り、実際に存在する融液量は極めて少なくなる。本発明
は鉱石の特性とこのカルシュウムフェライトの生成につ
いて追求したものである。A feature of the method of the present invention is that an existing melt that changes from moment to moment is suppressed to a very small amount as described above. The basic principle is to promote the generation of calcium ferrite (needle or plate with a width of 10 microns or less) which starts to be formed by the reaction between solid and liquid at about 1,200 ° C during the temperature rise stage of the sintering process. This calcium ferrite is generated as soon as a high CaO / SiO 2 melt is generated, so-called melt generation rate-determining, and the amount of the melt actually present is extremely small. The present invention seeks the properties of the ore and the formation of this calcium ferrite.
まず、本発明者らは鉄鉱石と石灰石でCaO/SiO2が通常
焼結鉱の範囲である1.6〜2.2になるように調整した単銘
柄焼結試験を行い、20mm前後の焼結鉱粒子の断面を研磨
してその断面上の幅10μm以下の微細カルシュウムフェ
ライトの割合をテレビカメラ付光学顕微鏡と画像解析装
置を使って定量した。なお、配合原料中にはコークス粉
を4%添加した。First, the present inventors have conducted single stocks sintering tests was adjusted as CaO / SiO 2 iron ore and limestone is usually within a range of sintered ore 1.6 to 2.2, the front and rear 20mm baked ore particles The cross section was polished, and the proportion of fine calcium ferrite having a width of 10 μm or less on the cross section was quantified using an optical microscope equipped with a television camera and an image analyzer. In addition, 4% of coke powder was added to the compounding raw materials.
この結果、上記微細カルシュウムフェライトの生成に
は高CaO/SiO2の融液が必要であるが、このために鉄鉱石
中のSiO2%を低くするか、あるいは鉄鉱石中の石英(Si
O2)や粘土(SiO2−Al2O3)のSiO2分を融液中に容易に
溶解せしめないことが重要であることが分かった。さら
に、その溶解し易さについてSiO2が0.5〜7.6%を含む鉱
石について種々調査した結果、鉱石中の成分であるAl2O
3とSiO2の比で整理できることを確認した。As a result, the formation of the fine calcium ferrite requires a high CaO / SiO 2 melt. For this reason, the SiO 2 % in the iron ore is reduced, or the quartz (Si
O 2) and a SiO 2 minutes of clay (SiO 2 -Al 2 O 3) was found to be important not allowed readily soluble in the melt. Furthermore, as a result of various investigations on ores containing 0.5 to 7.6% of SiO 2 with respect to the ease of dissolution, Al 2 O, a component in the ore, was examined.
It was confirmed that the ratio could be adjusted by the ratio of 3 to SiO 2 .
第1図に鉄鉱石中のSiO2%と幅10μm以下の微細カル
シュウムフェライトおよびスラグの量の関係を示す。こ
のカルシュウムフェライトスラグ量は実際に存在してい
た融液量と対応しているとみなせる。この結果から、鉄
鉱石中のSiO2は1.5%以下が微細カルシュウムフェライ
トの生成に良いと導かれた。第2図は、鉄鉱石中のSiO2
が0.5〜7.6%の通常の輸入鉱石について、鉄鉱石中のAl
2O3/SiO2重量比と幅10μm以下の微細カルシュウムフェ
ライトおよびスラグの量の関係を示したものである。Si
O2が1.5%以下の鉱石とほぼ同等の微細カルシュウムフ
ェライト量およびスラグ量となるのは、Al2O3/SiO2が0.
3以下のものであり、かゝる値のAl2O3/SiO2を含む鉱石
をSiO2が1.5%以下の鉱石と代替することができる。FIG. 1 shows the relationship between the SiO 2 % in iron ore and the amounts of fine calcium ferrite having a width of 10 μm or less and slag. The amount of calcium ferrite slag can be considered to correspond to the amount of melt actually present. From this result, it was suggested that 1.5% or less of SiO 2 in the iron ore was good for forming fine calcium ferrite. Fig. 2 shows SiO 2 in iron ore.
About 0.5-7.6% of normal imported ore, Al in iron ore
2 shows the relationship between the 2 O 3 / SiO 2 weight ratio and the amounts of fine calcium ferrite and slag having a width of 10 μm or less. Si
The amount of fine calcium ferrite and the amount of slag that are almost the same as those of ores with O 2 of 1.5% or less are obtained when Al 2 O 3 / SiO 2 is 0.1%.
The ore containing Al 2 O 3 / SiO 2 having such a value of not more than 3 can be replaced with an ore containing 1.5% or less of SiO 2 .
以上の知見に基づいて、焼結鉱のCaO/SiO2(塩基度)
が通常の範囲である1.6〜2.2となるように調整したピソ
ライト鉄鉱石と、SiO2が1.5%以下の低SiO2鉄鉱石の複
数銘柄混合原料による焼結試験を行った。なお、配合原
料中には固体燃料としてコークス粉を4%添加した。Based on the above findings, CaO / SiO 2 (basicity) of sinter
There was conducted a Pisoraito iron ore was adjusted to the normal range 1.6 to 2.2, a sintered test with multiple brands mixed raw material of SiO 2 is 1.5% or lower SiO 2 iron ore. In addition, 4% of coke powder was added as a solid fuel to the blended raw materials.
試験の結果、得られた焼結鉱においてピソライト鉄鉱
石の比率が40〜70%の場合に従来と違った特徴的な鉱物
組織が得られた。その組織を第3図〜第5図に示す。な
お、従来法焼結鉱中のピソライト鉄鉱石部の鉱物組織を
比較として第6図に示した。As a result of the test, a characteristic mineral structure different from the conventional one was obtained when the ratio of pisolite iron ore in the obtained sintered ore was 40 to 70%. The structure is shown in FIG. 3 to FIG. FIG. 6 shows a comparison of the mineral structure of the pisolite iron ore in the conventional sintered ore.
約2mm以上の粗粒のピソライト鉄鉱石は、第3図
(a)のように未溶融のピソライト鉄鉱石が緻密化さ
れ、その周囲が第3図(b)のように10μm以下の微細
なカルシュウムフェライトで取り囲まれているか、第
4図(a)のようにピソライト鉄鉱石の元の形状の痕跡
はあるが、溶融によって全体に同化してしまい、粒状ヘ
マタイト粒子と該粒子を結合するカルシュウムフェライ
トが析出していた(第4図(b))。なお、一部の焼結
鉱粒子中では組織及びが混在しているものもあっ
た。また、約0.5mm以下の他の原料に付着した細粒ピソ
ライト鉄鉱石粉あるいは中間粒子のものは、第5図に
示すように粒状のヘマタイト粒子とカルシュウムフェラ
イト(極一部であるが幅が20−30μmまで成長してい
る)で構成されたものとなっており、先の粗粒ピソライ
ト鉄鉱石部の第4図の組織とほゞ類似していた。すなわ
ちカルシュウムフェライト結合組織がその特徴である。As for the coarse-grained pisolite iron ore of about 2 mm or more, unmelted pisolite iron ore is densified as shown in FIG. 3 (a), and its surroundings are fine calcium oxide of 10 μm or less as shown in FIG. 3 (b). Although it is surrounded by ferrite or has traces of the original shape of pisolite iron ore as shown in FIG. 4 (a), it is assimilated to the whole by melting, and granular hematite particles and calcium ferrite that binds the particles are formed. It was deposited (FIG. 4 (b)). In some of the sintered ore particles, the structure and the mixture were also present. As shown in Fig. 5, fine pisolite iron ore powder or intermediate particles adhering to other raw materials of about 0.5 mm or less are composed of granular hematite particles and calcium ferrite (a part of which is 20- (Growing up to 30 μm), which is almost similar to the structure of the coarse-grained pisolite iron ore shown in FIG. That is, the calcium ferrite bonding structure is the feature.
製鉄用焼結鉱製造では、焼結ベッドの通気性維持、す
なわちコークス燃焼確保のために全原料を完全に溶融し
ないで空隙を閉塞させない。従って一部の原料は未溶融
のまま残留する。第5図では敢えて未溶融鉱石を外して
撮影した。また、鉄含有原料に粒度分布の比較的広いコ
ークス粉および蛇紋岩のような含MgO副原料を配合する
ため、これら粗粒粒子の周りでは理論的にカルシュウム
フェライトは形成しない。そこで1焼結実験から大きさ
約20mmの試料を無作為で20ケ選び、各粒子断面中でピソ
ライト鉄鉱石以外の未溶融原料を除く固体部No.1〜6に
ついて各組織の割合を求め平均した。その結果を表1に
示す。In the production of sintered ore for iron making, the pores are not closed without completely melting all the raw materials in order to maintain the permeability of the sintering bed, that is, to ensure coke combustion. Therefore, some raw materials remain unmelted. In Fig. 5, the unmelted ore was intentionally removed and photographed. In addition, since iron-containing raw materials are mixed with coke powder and MgO-containing raw materials such as serpentine having a relatively wide particle size distribution, calcium ferrite is not theoretically formed around these coarse particles. Therefore, 20 samples with a size of about 20 mm were randomly selected from one sintering experiment, and the ratio of each structure was determined for the solid parts No. 1 to 6 excluding unmelted raw materials other than pisolite iron ore in the cross section of each particle. did. Table 1 shows the results.
表1から明かなようにNo.2〜5のピソライト鉄鉱石比
率が40%−70%の範囲では組織,及びの面積率は
大きく、合計すると80%を越えるのが分かる。なお、N
o.1のピソライト鉄鉱石比率が小さい30%で組織及び
組織が増加するのは、添加SiO2系副原料が増加し、そ
れが容易に同化するためである。また、No.6のピソライ
ト鉄鉱石比率が80%と高い場合に組織が増加するの
は、ベッドの通気性が阻害されて燃焼の不均一が発生す
るためと考えられた。 As is clear from Table 1, when the ratio of pisolite iron ore of Nos. 2 to 5 is in the range of 40% to 70%, the structure and the area ratio are large, and the total exceeds 80%. Note that N
The reason why the structure and the structure are increased at 30% in which the ratio of the iron ore in o.1 is small is that the added SiO 2 -based auxiliary material increases and is easily assimilated. The reason why the structure increased when the ratio of the pisolite iron ore of No. 6 was as high as 80% was considered to be that the air permeability of the bed was hindered and the combustion was uneven.
従来焼結鉱では、第6図(a)のように、未溶融の残
留ピソライト鉄鉱石では同心円状あるいは表面から中心
部に大きな亀裂が発生し、かつその周囲には多数の各種
不定形の気孔が取り巻き、気孔間の壁の厚みが極めて薄
いものとなり、極めて脆い構造となる。また、残留ピソ
ライト鉄鉱石を取り巻いている多孔質の部分は第6図
(b)のように粒状ヘマタイト粒子をガラス質シリケー
トが結合したものとなっており、低温還元粉化性及び被
還元性の劣る特徴がある。先の第3図〜第5図の結合相
はカルシュウムフェライトであり、耐低温還元粉化性及
び被還元性に優れたものであることが知られている。事
実、耐低温還元粉化指数(RDI)は従来法では37±3で
あるのに対して本発明では34±2と大きく改善された。
さらに、第3図〜第5図の気孔構造をみると、不定形で
はなく丸いものであり、かつ気孔間の壁の厚みも増大し
ており、強度の高いのとなっている。この気孔構造の変
化は融液の流動性と密接な関係があり、カルシュウムフ
ェライト系融液は高流動性であることから、カルシュウ
ムフェライト結合相形成と一義的な関係がある。In conventional sinter, as shown in FIG. 6 (a), large cracks are generated concentrically or from the surface to the center in the unmelted residual pisolite iron ore, and a large number of various irregular pores are formed around the center. And the thickness of the wall between the pores becomes extremely thin, resulting in an extremely brittle structure. In addition, the porous portion surrounding the residual pisolite iron ore is composed of granular hematite particles combined with glassy silicate as shown in FIG. 6 (b), and has low-temperature reduction powderability and reducibility. There are inferior features. The binder phase shown in FIGS. 3 to 5 is calcium ferrite, which is known to be excellent in low-temperature reduction powdering resistance and reducibility. In fact, the low-temperature reductive powdering index (RDI) was significantly improved to 34 ± 2 in the present invention, while it was 37 ± 3 in the conventional method.
Further, looking at the pore structure shown in FIGS. 3 to 5, the pore structure is not irregular but round, and the thickness of the wall between the pores is increased, so that the strength is high. This change in the pore structure has a close relationship with the fluidity of the melt, and the calcium ferrite-based melt has a high fluidity, and thus has a unique relationship with the formation of the calcium ferrite bonding phase.
ピソライト鉄鉱石及びSiO2:1.5%以下の鉄鉱石からな
る原料の焼結鍋試験の結果を第7図に示す。上記のカル
シュウムフェライト結合相を特徴とするピソライト鉄鉱
石比率40−70%の場合に、焼結鉱の歩留、冷間強度(JI
S落下強度)の著しい向上することが明瞭である。な
お、低SiO2鉄鉱石が70%より多い配合で歩留が大きく低
下するのは、SiO2が少ないので結合相となる融液そのも
のが減少するためである。FIG. 7 shows the results of a sintering pot test of raw materials composed of pisolite iron ore and iron ore with SiO 2 : 1.5% or less. When the ratio of pisolite iron ore characterized by the above-mentioned calcium ferrite binder phase is 40-70%, the yield of sinter ore and the cold strength (JI
It is clear that the S drop strength) is significantly improved. The reason why the yield greatly decreases when the content of the low SiO 2 iron ore is more than 70% is that the amount of SiO 2 is small, so that the melt itself serving as the binder phase is reduced.
つぎに上記配合中の低SiO2鉄鉱石をAl2O3/SiO2が0.3
%以下の低Al2O3鉱石に置き換えた焼結試験を行った。
焼結鉱の塩基度が1.6〜2.2では傾向が換わらなかったの
で、1.6の場合の結果を第8図に示した。低Al2O3鉱石に
置換しても置換率を60%以下に抑えれば歩留、冷間強度
を維持できることが明らかである。また、この置換率60
%以下の場合の焼結鉱組織は第3図〜第5図と本質的に
同じであり、数μm以下の微細なカルシュウムフェライ
トの比率が増加していた。Next, the low SiO 2 iron ore in the above-mentioned composition was changed to Al 2 O 3 / SiO 2 of 0.3.
% Was carried out following the sintering tests is replaced with low Al 2 O 3 ore.
Since the tendency did not change when the basicity of the sinter was 1.6 to 2.2, the results in the case of 1.6 were shown in FIG. It is clear that the yield and cold strength can be maintained even if the substitution is made with low Al 2 O 3 ore if the substitution rate is suppressed to 60% or less. In addition, this replacement rate 60
%, The sintered ore structure was essentially the same as in FIGS. 3 to 5, and the proportion of fine calcium ferrite of several μm or less was increased.
実際の焼結操業では、山元でのストライキなどで量が
不足することが起こり得る。In an actual sintering operation, a shortage may occur due to a strike at Yamamoto or the like.
そこで、上記の「ピソライト鉄鉱石と低SiO2鉄鉱石の
配合原料」並びに「ピソライト鉄鉱石、低SiO2鉄鉱石お
よび低Al2O3鉱石の配合原料」のどの程度が「Al2O3/SiO
2が0.3より大きい鉄鉱石」と代替できるか、焼結試験を
行った結果が第9図である。なお、塩基度によってその
結果(傾向)に大きな違いが無かったので、塩基度1.9
について示した。本試験においてもコークス粉添加量は
4%とした。第9図より、代替率20%までは歩留は若干
低下する程度で、冷間強度は維持できることが判明し
た。Therefore, how much of the above “mixed raw material of pisolite iron ore and low SiO 2 iron ore” and “mixed raw material of pisolite iron ore, low SiO 2 iron ore and low Al 2 O 3 ore” is “Al 2 O 3 / SiO
FIG. 9 shows the results of a sintering test conducted to determine whether iron ore 2 can be replaced with iron ore larger than 0.3. Since there was no significant difference in the result (trend) depending on the basicity, the basicity was 1.9.
Was shown. Also in this test, the amount of coke powder added was 4%. From FIG. 9, it was found that up to the substitution rate of 20%, the yield slightly decreased and the cold strength could be maintained.
すなわち、返鉱以外の鉄含有原料として、SiO2含有量
が1.5%以下の高品位鉄鉱石及びAl2O3/SiO2の質量比率
が0.3以下の鉄鉱石の合計量が80%以上になるように配
合しても上記組織,,を得ることができた。That is, as the iron-containing raw material other than returned ore, the total amount of high-grade iron ore having a SiO 2 content of 1.5% or less and iron ore having a mass ratio of Al 2 O 3 / SiO 2 of 0.3 or less becomes 80% or more. The above composition could be obtained even if it was mixed as described above.
以下に実施例を示して本発明の効果を説明する。な
お、鉱物組織は第3図〜第5図の混合であり、その合計
が80%以上あることを確認している。Hereinafter, the effects of the present invention will be described with reference to examples. The mineral structure is a mixture of FIGS. 3 to 5, and it has been confirmed that the total is 80% or more.
実施例1 表2は現在の実機での代表的配合原料(ヘマタイト鉱
石が主体)とその焼結操業結果である。表3中の条件A
はピソライト鉄鉱石のみの焼結であり、条件Bは表2の
配合原料で新原料中のピソライト鉄鉱石の比率を30%と
した場合である。また、条件C及びDは本発明法による
焼結操業結果の例である。ピソライト鉄鉱石単銘柄の場
合は歩留、生産率および冷間強度が著しく低下し、また
新原料中のピソライトの割合が30%では歩留は表2に比
べてかなり劣る。一方、SiO2が1.5%以下の低SiO2鉄鉱
石を本発明の条件で配合すると条件C及びDで示すよう
に、表2で示す現在の平均的歩留、生産率、冷間強度と
同等の特性が得られた。Example 1 Table 2 shows a typical compounding raw material (mainly hematite ore) and its sintering operation result in a current actual machine. Condition A in Table 3
Is the sintering of only the pisolite iron ore, and the condition B is the case where the ratio of the pisolite iron ore in the new raw material is 30% in the blended raw materials shown in Table 2. Conditions C and D are examples of the results of the sintering operation according to the method of the present invention. In the case of a single brand of pisolite iron ore, the yield, production rate and cold strength are significantly reduced, and the yield is considerably inferior to that of Table 2 when the proportion of pisolite in the new raw material is 30%. On the other hand, as shown in the condition C and D when the SiO 2 is blended under conditions of the present invention 1.5% or lower SiO 2 iron ore, the current average yield shown in Table 2, production rate, equal to the cold strength Was obtained.
実施例2 表4は、ピソライト鉄鉱石とSiO2が1.5%以下の低SiO
2鉄鉱石から成る原料中の低SiO2鉱石の一部をAl2O3/SiO
2が0.3以下の鉄鉱石で本発明の条件の範囲内で代替して
焼結した場合の結果である。この場合も表2の通常並の
成績が得られた。 Example 2 Table 4 shows that the pisolite iron ore and the low SiO 2 containing less than 1.5% SiO 2
Some of the low SiO 2 ore in the raw material consisting of 2 ore Al 2 O 3 / SiO
2 is a result of sintering instead of iron ore of 0.3 or less within the range of the conditions of the present invention. In this case as well, the results similar to those shown in Table 2 were obtained.
実施例3 表5は、表4の鉄鉱石混合原料の一部をAl2O3/SiO2が
0.3より大きい鉄鉱石で代替して焼結した場合の結果で
ある。この場合には、歩留および生産率は表2の通常の
原料の場合よりもわずかに低下したが、表3中の条件A
およびBよりもはるかに高く、また冷間強度は表2とほ
とんど変わらなかった。 Example 3 Table 5 shows that a part of the iron ore mixed raw material of Table 4 was made of Al 2 O 3 / SiO 2.
The result is obtained when sintering is performed instead of iron ore larger than 0.3. In this case, the yield and production rate were slightly lower than in the case of the ordinary raw material in Table 2, but the condition A in Table 3 was not satisfied.
And the cold strength was almost the same as in Table 2.
〔産業の利用可能性〕 以上の通り、本発明によれば、これまで焼結鉱の歩
留、品質が低下するために問題とされてきたピソライト
鉄鉱石を多量に使用して、従来と同様の成績を得ること
が可能になる。従来の良質なヘマタイト鉱石の枯渇は自
明である。豊富でかつ安価なピソライト鉄鉱石の多量使
用を可能とする本発明法はその資源的問題を解決でき、
かつ鉄のコスト低減に大きく寄与できる。 [Industrial applicability] As described above, according to the present invention, the yield of sinter ore, the use of a large amount of pisolite iron ore, which has been a problem because the quality is reduced, as in the past, Grades can be obtained. The depletion of conventional high quality hematite ore is self-evident. The method of the present invention, which enables the use of abundant and inexpensive pisolite iron ore, can solve the resource problem,
And it can greatly contribute to cost reduction of iron.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22B 1/16 - 1/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C22B 1/16-1/20
Claims (5)
以外の焼結原料の未溶融残留物を除く固体部分の80質量
%以上が、緻密化したピソライト鉄鉱石をカルシュウム
フェライトで取り囲んだもの、またはピソライト鉄鉱石
の痕跡を有するとともに粒状のヘマタイト粒子と該ヘマ
タイト粒子を結合するカルシュウムフェライトで構成さ
れたもの或いはこれらの混合物で構成されることを特徴
とする製鉄用焼結鉱。(1) In a cross section of a sintered ore, at least 80% by mass of a solid portion excluding an unmelted residue of a sintering raw material other than pisolite iron ore is a dense pisolite iron ore surrounded by calcium ferrite. A sintered ore for iron making, characterized by being composed of granular hematite particles having traces of pisolite iron ore and of calcium ferrite that binds the hematite particles, or a mixture thereof.
カルシュウムフェライトからなる組織が混合して構成さ
れた請求の範囲1項記載の製鉄用焼結鉱。2. The sintered ore for iron making according to claim 1, wherein said sintered ore structure is mixed with a structure comprising granular hematite particles and calcium ferrite.
水分等を焼結機にて焼結する製鉄用焼結鉱の製造方法に
おいて、返鉱以外の鉄含有原料として、ピソライト鉄鉱
石と、SiO2含有量が1.5質量%以下の高品位鉄鉱石を用
い、かつピソライト鉄鉱石を40〜70質量%配合する事を
特徴とする製鉄用焼結鉱の製造方法。3. A method for producing a sintered ore for iron making, comprising sintering an iron-containing raw material such as iron ore and an auxiliary raw material, a carbonaceous material and moisture by a sintering machine, wherein pisolite is used as the iron-containing raw material other than the returned ore. A method for producing a sintered ore for iron making, characterized by using iron ore, high-grade iron ore having a SiO 2 content of 1.5% by mass or less, and mixing 40 to 70% by mass of pisolite iron ore.
が1.5質量%以下の高品位鉄鉱石の60質量%以下をAl2O3
/SiO2の質量比率が0.3以下の鉄鉱石で代替させる事を特
徴とする請求の範囲3項記載の製鉄用焼結鉱の製造方
法。4. As an iron-containing raw material other than returned iron, 60% by mass or less of high-grade iron ore having a SiO 2 content of 1.5% by mass or less is Al 2 O 3
4. The method according to claim 3, wherein iron ore having a mass ratio of / SiO 2 of 0.3 or less is substituted.
鉄鉱石、SiO2含有量が1.5質量%以下の高品位鉄鉱石及
びAl2O3/SiO2の質量比率が0.3以下の鉄鉱石の合計量が8
0質量%以上となる様に配合する事を特徴とする請求の
範囲4項記載の製鉄用焼結鉱の製造方法。5. Iron-containing raw materials other than returned iron, such as pisolite iron ore, high-grade iron ore having a SiO 2 content of 1.5% by mass or less, and iron ore having a mass ratio of Al 2 O 3 / SiO 2 of 0.3 or less. 8 total
5. The method for producing a sintered ore for iron making according to claim 4, wherein the compounding is performed so as to be 0% by mass or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5513553A JP3006884B2 (en) | 1992-02-13 | 1993-02-12 | Sinter for iron making using pisolite iron ore as raw material and method for producing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-58813 | 1992-02-13 | ||
JP5881392 | 1992-02-13 | ||
AU6329 | 1992-12-15 | ||
PCT/JP1993/000184 WO1993016203A1 (en) | 1992-02-13 | 1993-02-12 | Iron-making sintered ore produced from pisolitic iron ore and production thereof |
JP5513553A JP3006884B2 (en) | 1992-02-13 | 1993-02-12 | Sinter for iron making using pisolite iron ore as raw material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08507338A JPH08507338A (en) | 1996-08-06 |
JP3006884B2 true JP3006884B2 (en) | 2000-02-07 |
Family
ID=26399819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5513553A Expired - Lifetime JP3006884B2 (en) | 1992-02-13 | 1993-02-12 | Sinter for iron making using pisolite iron ore as raw material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3006884B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005334126A (en) * | 2004-05-25 | 2005-12-08 | Matsushita Electric Works Ltd | Bathroom unit |
CN113739309A (en) * | 2021-09-02 | 2021-12-03 | 深圳市怡正发物业管理有限公司 | A ventilation structure for basement parking area |
-
1993
- 1993-02-12 JP JP5513553A patent/JP3006884B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08507338A (en) | 1996-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5168802B2 (en) | Method for producing sintered ore | |
JP3006884B2 (en) | Sinter for iron making using pisolite iron ore as raw material and method for producing the same | |
KR100787359B1 (en) | Method for producing sintered steel | |
JP4786022B2 (en) | Method for producing sintered ore | |
JP4725230B2 (en) | Method for producing sintered ore | |
JP2012046828A (en) | Method for producing sintered ore | |
JPH0816249B2 (en) | Pretreatment method in agglomerated ore production | |
JP2005171388A (en) | Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering | |
JP4392302B2 (en) | Method for producing sintered ore | |
JP4982986B2 (en) | Method for producing sintered ore | |
KR960010579B1 (en) | Iron-making sintered ore produced from pisolitic iron ore and the production thereof | |
JP2589627B2 (en) | Production method of sinter for pig iron making from pisolite iron ore | |
JP3951825B2 (en) | Granulation method of sintering raw material | |
JPH0819486B2 (en) | Manufacturing method of sinter for blast furnace using high goethite ore as raw material | |
JPH0583620B2 (en) | ||
JP3952906B2 (en) | Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same | |
JP4227283B2 (en) | Method for producing sintered ore for iron making using pisolite iron ore as raw material | |
JP4661077B2 (en) | Method for producing sintered ore | |
JPH06220549A (en) | Pretreatment of raw material to be sintered | |
JP2002332526A (en) | Method for pretreating sintering raw material | |
JPH0867919A (en) | Production of sintered ore made of limonite based ore | |
JP4016912B2 (en) | Manufacturing method of high strength sintered ore. | |
JP3952871B2 (en) | Manufacturing method of high-strength sintered ore | |
JP5011637B2 (en) | Processing method of ore for sintering | |
JP2548647B2 (en) | Manufacturing method of sintered ore for iron making from high goethite iron ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 14 |