WO1993016203A1 - Iron-making sintered ore produced from pisolitic iron ore and production thereof - Google Patents

Iron-making sintered ore produced from pisolitic iron ore and production thereof Download PDF

Info

Publication number
WO1993016203A1
WO1993016203A1 PCT/JP1993/000184 JP9300184W WO9316203A1 WO 1993016203 A1 WO1993016203 A1 WO 1993016203A1 JP 9300184 W JP9300184 W JP 9300184W WO 9316203 A1 WO9316203 A1 WO 9316203A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
ore
iron ore
less
mass
Prior art date
Application number
PCT/JP1993/000184
Other languages
French (fr)
Japanese (ja)
Inventor
Ukihiro Hida
Jun Okazaki
Yozo Hosotani
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to KR1019930703113A priority Critical patent/KR960010579B1/en
Priority to AU35743/93A priority patent/AU656060B2/en
Priority to JP5513553A priority patent/JP3006884B2/en
Publication of WO1993016203A1 publication Critical patent/WO1993016203A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Definitions

  • the present invention relates to a sintered ore for blast furnace pig iron making using pisolite iron ore as a raw material and a method for producing the same.
  • Sinter ore a major raw material of the blast furnace iron making method, which is a representative of iron making, is generally produced as follows. First, limestone about l Omm less iron ore fines, Doromai Doo, (referred to as CaO based Fukuhara fees) containing CaO auxiliary materials, such as converter slag, serpentine, silica, including S i 0 2 such as peridotite sub (referred to as S i 0 2 based auxiliary raw material) material, and coke powder, carbonaceous materials such as anthracite, further mixed with an appropriate amount of water, granulated.
  • CaO auxiliary materials such as converter slag, serpentine, silica, including S i 0 2 such as peridotite sub (referred to as S i 0 2 based auxiliary raw material) material
  • coke powder carbonaceous materials such as anthracite
  • the quasi-granulated compounding material (pseudo-particles) is charged to a height of about 500 mm on a grate-moving sintering pallet, and the carbon material on the surface of the packed bed is ignited. .
  • the carbon material is burned while sucking air downward, and the blended raw materials are sintered by the combustion heat generated at that time.
  • the resulting sintered cake is crushed and sized to form a 3 to 5 mm
  • the particles are charged into a blast furnace as a product sinter.
  • sinters of powder unsuitable as blast furnace charging raw materials are called returned ore and returned as raw materials for sinter.
  • Si 0 2 classified as Piso Lai preparative iron ore into one of iron ore is from 4.5 to 6% of the iron ore.
  • the representative is Robe R iver of Australia, Yandi Kusina
  • the basis of measures against pisolite iron ore is to suppress the rapid penetration of large amounts of melt into the cracks.
  • a protective layer having a special composition on the surface around the ore as disclosed in Japanese Patent Application Nos. 1-184047 and 2-115730.
  • these methods have the drawback that special auxiliary raw materials, as well as pre-granulation equipment or special raw material segregation charging equipment for the sintering machine are required.
  • the present inventors thought that if the momentary amount of the melt existing around the pisolite iron ore could be limited to a very small amount, the infiltration of the melt could be suppressed, and a number of basic studies were conducted on the conditions for that. As a method of the present invention applicable to existing sintering machines.
  • an object of the present invention is to provide an excellent quality sinter using iron ore, particularly pisolite iron ore, which is inexpensive and rich in resources.
  • Another object of the present invention is to produce excellent quality sinter using the above iron ores without requiring special equipment.
  • the present invention is as an iron-containing materials other than return ores.
  • Pisorai preparative iron ore and S i 0 2 content of 1.5 mass% or less (all of the following percentages indicating the mass%) High
  • an iron-containing raw material containing 40 to 70% of pisolite iron ore together with auxiliary materials, carbonaceous material, water, etc.
  • iron-containing materials other than return ores to be provided to the sintering means Si0 2 content of less 60% of 1.5 or less of high-grade iron ore Al 2 0 3 ZSi0 2 of mass ratio of 0.3 or less of iron ore in it it is also possible to substitute a was even or, the Pisorai preparative iron ore, it is also possible to blend a slip metering of high-grade iron ore and low A1 2 0 3 iron ore to be 80% or more.
  • the sintered ore obtained in this way has the same excellent yield and quality as hematite ore, which has been conventionally regarded as good quality.
  • Figure 1 is a sinter iron ore in a single brand basicity Si0 2% and sintered ore in width 10 m or less of in the iron ore in the sinter produced in by Uni pan to be 1.6-2.2 It is a figure which shows the relationship of the ratio of a fine calcium carbonate slag.
  • FIG. 4 is a graph showing the relationship between the ratio and the ratio of fine calcium carbonate and slag having a width of 10 / m or less in sinter.
  • FIG. 3 is a view showing a microstructure of the sintered ore of the present invention.
  • FIG. 4 is a view showing another microstructure of the sintered ore of the present invention.
  • FIG. 5 is a diagram showing another microstructure of the sintered ore of the present invention.
  • FIG. 6 is a diagram showing a microstructure of a conventional sintered ore.
  • Figure 7 is a Pisorai bets iron ore and Si0 2 sintering pot test results of material consisting of 1.5% or less of iron ore, proportions and finished product yield of Pisorai bets iron ore accounts for both iron ore, sinter It is a figure which shows the relationship of JIS drop strength.
  • FIG. 8 is Shoyuinabe test results, the ratio of Pisorai preparative iron ore in the raw materials Pisorai bets iron ore and Si0 2 is comprised of more than 1.5% iron ore 40 % Or to 70%, further the Si0 2 is the algebraic upgrade rate and finished products yield when a portion of 1.5% or less of iron ore Al 2 0 3 ZSi0 2 mass ratio was replaced with 0.3 or less iron ore, baked It is a figure which shows the relationship of the JIS fall strength of the condensate.
  • FIG. 9 is Shoyuinabe test results, a 40% or 70% the proportion of Pisorai preparative iron ore in the raw materials Pisorai bets iron ore and Si0 2 is comprised of 1.5% iron ore, then its Si0 2 1.5 % or less of 60% iron ore replace Al 2 0 3 / Si0 2 weight ratio of 0.3 or less of iron ore, larger iron ore than 0.3 part ⁇ 1 2 0 3 ⁇ ⁇ 0 2 mass ratio thereof starting material
  • FIG. 6 is a graph showing the relationship between the substitution rate, the product yield, and the JIS drop strength of sinter when sintering is performed.
  • the feature of the method of the present invention is that the existing melt that changes every moment is kept to a very small amount as described above.
  • the basic principle is that it promotes the generation of calcium ferrite (needle or plate with a width of 10 micron or less) that begins to be formed by the reaction between solid and liquid at approximately 1,200 ° C during the heating stage of the sintering process. It is.
  • the cull shoe ⁇ beam Blow wells is generated as soon as the high CaOZSi0 2 of the melt occurs, a so-called melt generating rate-limiting, the melt amount that is actually present is very small.
  • the present invention pursues the properties of the ore and the formation of this calcium ferrite.
  • the present inventors have conducted single stocks sintering tests was adjusted to iron ore and limestone CaOZSi0 2 is usually within a range of sintered ore 1.6 to 2.2, 20 discussions section of the front and rear of the baked ore particles was polished, and the proportion of fine calcium ferrite with a width of 10 m or less on the cross section was quantified using an optical microscope equipped with a TV camera and an image analyzer. In addition, the coke 4% flour was added.
  • Figure 1 shows the relationship between the content of 2 % Si0 in iron ore and the amount of fine calcium ferrite and slag with a width of 10 m or less.
  • the amount of calcium ferrite slag can be considered to correspond to the amount of melt actually existing.
  • Si0 2 in the iron ore is 1.5% or less was guided good generation of fine Karushiyuu Muferai bets.
  • Figure 2 for Si0 2 is from 0.5 to 7.6% of the normal import ore in the iron ore, A1 2 0 3 Z Si0 2 weight ratio less the width 10 ⁇ m of fine local Shiyu um Blow wells and scan in the iron ore It shows the relationship of the amount of lag.
  • Al 2 0 3 ZSi0 2 is that of 0.3 or less, or, Al 2 0 of Ru value the ore containing the 3 ZSi0 2 Si0 2 can be substituted with more than 1.5% of the ore.
  • Fine-grained pisolite iron ore powder or intermediate particles adhering to other raw materials of about 0.5 mm or less include 3 granular hematite particles and iron oxide particles as shown in Fig. 5. (It grows up to 20-30 m in width, though it is part of the pole), and is very similar in structure to the coarse-grained pisolite iron ore in Fig. 4. Was. That is, the calcium sulfate connective tissue is a special feature.
  • Microstructure 1 Densified pisolite iron ore particles surrounded by fine particles with a width of 10 m or less
  • Microstructure 2 There are traces of pisolite iron ore particles but they are assimilated to granular particles and calcium ferrite.
  • Tissue 3 Granular hematite particles and calcium silicate 4Tissue 4
  • Granular hematite particles and glassy silicate Tissue 2 Magnetic particles, calcium carbonate and glassy silicate
  • Microstructure Reoxidized hematite particles, magnetite particles, calcium ferrite and vitreous silicate
  • the ratio of Not 2 to 5 pisolite iron ore is 40%-70% It can be seen that the area ratio of organizations 1, 2 and 3 is large in the range of ⁇ , and the total exceeds 80%.
  • the reason why the structure 1 and the structure 2 increase at a low ⁇ 1 ratio of 30% pisolite iron ore is because the added Si02-based auxiliary material increases and is easily assimilated.
  • the reason why the texture increases when the ratio of the iron ore of Noi 6 is as high as 80% is that the gas permeability of the bead is impaired and the combustion becomes uneven.
  • Fig. 6 (a) unmelted residual In iron ore, large cracks are generated concentrically or from the surface to the center, and a number of irregular pores surround it, and the thickness of the wall between the pores becomes extremely thin, resulting in an extremely brittle structure .
  • the porous part surrounding the residual pisolite iron ore is made up of granular matite particles combined with vitreous silicate as shown in Fig. 6 (b). And it has the characteristic of poor reducibility.
  • the binder phase in Figs. 3 to 5 is calcium ferrite, which is known to be excellent in low temperature reduction powdering resistance and reducibility.
  • the low-temperature reducible powder index (RDI) was significantly improved to 34 ⁇ 2 in the present invention, compared to 37 ⁇ 3 in the conventional method. Furthermore, looking at the pore structure in Figs. 3 to 5, it is not amorphous but round, and the thickness of the wall between the pores is also increased, resulting in high strength. This change in the pore structure is closely related to the fluidity of the melt, and the calcium ferrite-based melt has a high fluidity, and thus has an unambiguous relationship with the formation of the calcium ferrite bonded phase.
  • Pisorai DOO iron ore and Si0 2 raw material consisting of 1.5% or less of iron ore results in baked Yuinabe test are shown in Figure 7. It is clear that the sinter ore yield and cold strength (JIS drop strength) are significantly improved when the ratio of pisolite iron ore, which is characterized by the above calcium sulfate composite phase, is 40-70%. It is. The low Si0 2 iron ore Runowa be lowered yield large active in more than 70% formulation is was melt itself as a binder phase decreases because Si0 2 is small.
  • the mineral texture is a mixture of Figs. 3 to 5, and it has been confirmed that the total is 80% or more.
  • Table 2 shows typical blended raw materials (mainly hematite ore) and their sintering operation results in actual equipment.
  • Condition A in Table 3 is the sintering of only the iron oxide ore
  • Condition B is the case where the proportion of the iron ore in the new raw material of the blended raw material in Table 2 is 30%.
  • Conditions C and D are It is an example of the sintering operation result by the light method. The yield, production rate and cold strength of single grade of pisolite iron ore are remarkably reduced, and the yield is considerably lower than that of Table 2 when the percentage of pisolite in the new raw material is 30%.
  • Si0 2 is as indicated by the condition C and D is blended under conditions of the present invention 1.5% or lower Si 0 2 iron ore, the current average yield shown in Table 2, production rate, and cold strength Equivalent characteristics were obtained.
  • the present invention a portion of the low Si0 2 ore Pisorai preparative iron ore and Si0 2 is comprised et or 1.5% or lower Si0 2 iron ore raw materials Al 2 0 3 ZSi0 2 is 0.3 or less iron ore This is the result when the sintering is performed in the range of the above condition. In this case as well, the results as in Table 2 were obtained.
  • Table 5 shows the result when a portion of the iron ore raw material mixture in Table 4 Al 2 0 3 ZSi0 2 is sintered and replaced by larger iron ore than 0.3.
  • Yield and production rates were slightly lower than those of the normal raw materials in Table 2, but were much higher than those in Conditions A and B in Table 3, and the cold strength was almost the same as in Table 2.
  • the yield of sinter ore It is possible to obtain the same results as before by using a large amount of pisolite iron ore, which has been regarded as a problem in order to lower the cost.
  • the depletion of conventional high quality hematite ore is clear.
  • the method of the present invention which makes it possible to use abundant and inexpensive pisolite iron ore in a large amount, can solve the resource problem and greatly contribute to reducing the cost of iron.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

An iron-making sintered ore having a cross section wherein at least 80 % of a solid part except for non fused residues of the sintering materials other than pisolitic iron ore is composed of a densified pisolitic iron ore enclosed by fine calcium ferrite with a width of 10 νm or less, or of hematite particles and calcium ferrite which bonds the hematite particles together while holding traces of the pisolitic iron ore, or of a mixture thereof. The production process comprises sintering iron-containing starting material such as iron ore, carbonaceous material, water, and the like in a sintering machine by using 40-70 mass % of pisolitic iron ore and a high-grade iron or containing 1.5 mass % or less of SiO2 as the iron-containing starting material other than returns.

Description

明 細 書 ピソライ ト鉄鉱石を原料とする製鉄用焼結鉱及びその製造方法 〔技術分野〕  Description Sinter for iron-making from pisolite iron ore and its production method [Technical field]
本発明は、 ピソライ ト鉄鉱石を原料とした高炉製銑法用の焼結鉱 及びその製造方法に関する。  TECHNICAL FIELD The present invention relates to a sintered ore for blast furnace pig iron making using pisolite iron ore as a raw material and a method for producing the same.
〔背景技術〕 (Background technology)
製鉄の代表である高炉製銑法の主要原料の焼結鉱は、 以下のよう にして製造されるのが一般的である。 まず、 約 l Omm以下の鉄鉱石粉 に石灰石、 ドロマイ ト、 転炉スラグなどの含 CaO副原料(CaO系副原 料と呼ぶ) 、 蛇紋岩、 珪石、 かんらん岩などの含 S i 02副原料 (S i 02 系副原料と呼ぶ) 、 およびコークス粉、 無煙炭などの炭材、 さらに 適量の水分を加えて混合、 造粒する。 こう して擬似粒化した配合原 料 (擬似粒子) を火格子移動式の焼結機パレツ ト上に 500mm前後の 高さに充塡し、 この充塡ベッ ド表層部の炭材に点火する。 下方に向 けて空気を吸引しながら炭材を燃焼させ、 そのときに発生する燃焼 熱によって配合原料を焼結したのち、 得られた焼結ケーキを破砕、 整粒して 3ないし 5 mmの粒子を成品焼結鉱として高炉に装入する。 なお、 高炉装入原料として不適当な粉の焼結鉱は返鉱と呼ばれ、 焼 結鉱の原料として戻される。 Sinter ore, a major raw material of the blast furnace iron making method, which is a representative of iron making, is generally produced as follows. First, limestone about l Omm less iron ore fines, Doromai Doo, (referred to as CaO based Fukuhara fees) containing CaO auxiliary materials, such as converter slag, serpentine, silica, including S i 0 2 such as peridotite sub (referred to as S i 0 2 based auxiliary raw material) material, and coke powder, carbonaceous materials such as anthracite, further mixed with an appropriate amount of water, granulated. The quasi-granulated compounding material (pseudo-particles) is charged to a height of about 500 mm on a grate-moving sintering pallet, and the carbon material on the surface of the packed bed is ignited. . The carbon material is burned while sucking air downward, and the blended raw materials are sintered by the combustion heat generated at that time.The resulting sintered cake is crushed and sized to form a 3 to 5 mm The particles are charged into a blast furnace as a product sinter. In addition, sinters of powder unsuitable as blast furnace charging raw materials are called returned ore and returned as raw materials for sinter.
高炉を安定かつ高効率で操業するには高品質の焼結鉱が要求され. 冷間強度、 被還元性、 耐還元粉化性などの品質が厳しく管理されて いる。 また、 焼結鉱の製造コス トの面から、 歩留 (成品焼結鉱/焼 結ケーキ) の高いことが要望されている。  To operate a blast furnace stably and efficiently, high-quality sinter is required. Quality such as cold strength, reducibility, and powdering resistance is strictly controlled. Also, from the aspect of sinter production cost, high yield (sinter ore / sinter cake) is required.
世界の鉄鉱石資源をみると、 これまでの良質なへマ夕イ ト鉱石は 枯渴の方向にあり、 現状の生産が続く と主要鉱山は 2000年早々 にも 掘り尽く してしまう と予測されている。 一方、 鉄鉱石の 1 種にピソ ライ ト鉄鉱石と分類される Si 02が 4. 5〜 6 %の鉄鉱石がある。 その 代表が豪州のローブリバ一 (Robe R i ver) 、 ヤンディ クージナLooking at the world's iron ore resources, high-quality hematite ore has been With the current production continuing, major mines are expected to be exhausted as early as 2000. On the other hand, Si 0 2 classified as Piso Lai preparative iron ore into one of iron ore is from 4.5 to 6% of the iron ore. The representative is Robe R iver of Australia, Yandi Kusina
( Yand i coo j i na) といった銘柄の鉱石である。 これらの鉄鉱石の鉱 床の埋蔵量は莫大で、 かつ採掘のために取り除く低品位の部分 (剝 土比) が少ないので採掘費用が安く、 供給が安定しているとの特長 がある。 従って、 本鉱石を多量に使用できれば、 コス ト低減など経 済的効果ばかりでなく、 資源の有効活用といった大きな意義がある, しかし、 本鉱石はへマタイ ト(Fe203 ) 粒子をゲ一サイ ト(Fe 203 · H20)が取り囲んだいわゆる魚卵状構造をしているため、 いくつかの 問題を抱えている。 すなわち、 加熱過程において結合水の分解が起 こ り、 ゲ一サイ ト部に選択的に大きな亀裂が発生する。 その結果、 まず鉱石は脆弱なものとなる。 次に副原料と鉄鉱石の反応によって 融液が発生すると、 その融液は亀裂の中へ急速に侵入し、 融液部に は大きな気孔が生成し、 焼結体の強度を低下させる。 焼結操業で言 う歩留、 冷間強度の低下を引き起こすことになる。 また、 同化部(Yand i coo ji na). The reserves of these iron ore deposits are enormous, and the low-grade parts (ratio to earth) to be removed for mining are small, so mining costs are low and the supply is stable. Therefore, if a large amount of use of this ore, as well as economic effects such as costs reduction, there is a great significance, such as effective utilization of resources, but to the ore Matthew Doo (Fe 2 0 3) gate the particles one since the site (Fe 2 0 3 · H 2 0) is the so-called fish-egg-like structure that surrounds, are having some problems. That is, the decomposition of the bound water occurs during the heating process, and a large crack is selectively generated at the gate site. As a result, the ore becomes vulnerable first. Next, when a melt is generated by the reaction between the auxiliary material and the iron ore, the melt rapidly penetrates into the cracks, and large pores are formed in the melt, reducing the strength of the sintered body. This will reduce the yield and cold strength of the sintering operation. Also, assimilation department
(融液と鉱石が反応した部分) は小さな粒状へマタイ ト粒子とガラ ス質シリケ一 トとなり、 耐低温還元粉化性が劣化する。 このため、 ピソライ ト鉄鉱石使用量を増せないのが現状である。 先に述べたよ うに、 ピソライ ト鉄鉱石多量使用焼結法の開発は、 資源の有効利用 およびコス ト低減から意義が大きい。 (The part where the melt and the ore have reacted) becomes small granular matite particles and glassy silicate, and the low-temperature reduction powdering resistance deteriorates. For this reason, it is currently impossible to increase the amount of iron ore used. As mentioned earlier, the development of a sintering method using large amounts of pisolite iron ore is significant from the viewpoint of effective use of resources and cost reduction.
ピソライ ト鉄鉱石対策の基本は、 多量融液の上記亀裂内への急速 な侵入を抑制することである。 発明者らはこの融液の急激な浸入を 抑制する方法として、 特願平 1 -184047号及び特願平 2- 1 15730号の発 明のように鉱石周囲の表面に特殊な組成の保護層を形成する方法、 並びに特願平 3-146481号及び特願平 3-303854号の発明のように粘性 の高い融液を形成させる方法を明らかにしてきた。 しかし、 これら の方法では、 特殊な副原料、 さらには予備造粒設備あるいは焼結機 への特殊な原料の偏析装入設備を必要とする欠点がある。 The basis of measures against pisolite iron ore is to suppress the rapid penetration of large amounts of melt into the cracks. As a method of suppressing the rapid infiltration of the melt, the inventors have proposed a protective layer having a special composition on the surface around the ore as disclosed in Japanese Patent Application Nos. 1-184047 and 2-115730. A viscous material as disclosed in Japanese Patent Application Nos. 3-146481 and 3-303854. We have clarified a method for forming a melt having a high melting point. However, these methods have the drawback that special auxiliary raw materials, as well as pre-granulation equipment or special raw material segregation charging equipment for the sintering machine are required.
そこで発明者らは、 ピソライ ト鉄鉱石周囲に存在する時々刻々の 融液量そのものをごく少量に制限できれば融液の浸入を抑えられる と考え、 そのための条件について数多くの基礎研究を行い、 具体策 として既存の焼結機に適用できる本発明の方法を見いだした。  Therefore, the present inventors thought that if the momentary amount of the melt existing around the pisolite iron ore could be limited to a very small amount, the infiltration of the melt could be suppressed, and a number of basic studies were conducted on the conditions for that. As a method of the present invention applicable to existing sintering machines.
すなわち、 本発明は安価でかつ資源的にも豊富な鉄鉱石特にピソ ライ ト鉄鉱石を用いて優れた品質の焼結鉱を提供することを目的と する。  That is, an object of the present invention is to provide an excellent quality sinter using iron ore, particularly pisolite iron ore, which is inexpensive and rich in resources.
更に本発明は上記鉄鉱石を用い、 特殊な設備を必要とせずに優れ た品質の焼結鉱を製造することを目的とする。  Another object of the present invention is to produce excellent quality sinter using the above iron ores without requiring special equipment.
〔発明の構成〕 [Configuration of the invention]
上記目的を達成するため、 本発明は返鉱以外の鉄含有原料として. ピソライ ト鉄鉱石と S i 02含有量が 1. 5質量%以下 (以下%は全て質 量%を示す) の高品位鉄鉱石を用い、 かつピソライ ト鉄鉱石を 40〜 70 %配合した鉄含有原料を副原料、 炭材、 水等とともに焼結機によ り 1200°C以上の加熱で焼結することにより、 焼結鉱の断面において, ピソライ ト鉄鉱石以外の焼結原料の未溶融残留物を除く固体部分の 80 %以上が、 ①緻密化したピソライ ト鉄鉱石を幅が 10 z m以下の微 細なカルシュゥムフェライ トを取り囲んだもの、 ②ピソライ ト鉄鉱 石の痕跡を有するとともに粒状のへマタイ ト粒子と該へマタイ ト粒 子を結合するカルシュゥムフェライ トで構成されたもの、 または ③粒状のへマ夕ィ ト粒子とカルシユウムフヱライ トが混合したもの 或いはこれら①, ②, ③の混合組織で構成される製鉄用焼結鉱を提 供するものである。 また上記焼結手段に提供する返鉱以外の鉄含有原料として、 Si02 含有量が 1.5 以下の高品位鉄鉱石の 60%以下を Al 203 ZSi02の質 量比率が 0.3以下の鉄鉱石で代替させることも可能であり、 更にま た、 上記ピソライ ト鉄鉱石、 高品位鉄鉱石及び低 A1203鉄鉱石の合 計量を 80%以上になるように配合することも可能である。 To achieve the above object, the present invention is as an iron-containing materials other than return ores. Pisorai preparative iron ore and S i 0 2 content of 1.5 mass% or less (all of the following percentages indicating the mass%) High By using high-grade iron ore and sintering an iron-containing raw material containing 40 to 70% of pisolite iron ore together with auxiliary materials, carbonaceous material, water, etc. by a sintering machine at a temperature of 1200 ° C or more, In the cross section of the sinter, 80% or more of the solid portion excluding the unmelted residue of the sintering raw material other than the piezolite iron ore: 1) A fine calcite with a width of 10 zm or less (1) Surrounding ferrite, (2) Consisting of hematite particles and traces of pisolite iron ore and composed of calcium ferrite that binds the hematite particles, or (3) Granularite Hematite particles mixed with calcium carbonate Ones or they ①, ②, it is intended to provide Hisage the steel for sintered ore composed of a mixed structure of ③. As the iron-containing materials other than return ores to be provided to the sintering means, Si0 2 content of less 60% of 1.5 or less of high-grade iron ore Al 2 0 3 ZSi0 2 of mass ratio of 0.3 or less of iron ore in it it is also possible to substitute a was even or, the Pisorai preparative iron ore, it is also possible to blend a slip metering of high-grade iron ore and low A1 2 0 3 iron ore to be 80% or more.
このようにして得られた焼結鉱は従来良質とされてきたへマタイ ト鉱石と同等の優れた歩留と品質を有するものである。  The sintered ore obtained in this way has the same excellent yield and quality as hematite ore, which has been conventionally regarded as good quality.
なお、 以下の化学成分の%は全て質量%である。  The percentages of the following chemical components are all mass%.
〔図面の簡単な説明〕 [Brief description of drawings]
第 1図は鉄鉱石を単銘柄で焼結鉱の塩基度が 1.6〜2.2 となるよ うに鍋で製造した焼結鉱における鉄鉱石中の Si02%と焼結鉱中の幅 10 m以下の微細カルシユウムフヱライ トおょぴスラグの割合の関 係を示す図である。 Figure 1 is a sinter iron ore in a single brand basicity Si0 2% and sintered ore in width 10 m or less of in the iron ore in the sinter produced in by Uni pan to be 1.6-2.2 It is a figure which shows the relationship of the ratio of a fine calcium carbonate slag.
第 2図は Si02が 1.5%以上の鉱石を単銘柄で焼結鉱の塩基度が 1,6 〜2.2 となるように鍋で製造した焼結鉱における鉄鉱石中の A1203 ZSi02比と焼結鉱中の幅 10 / m以下の微細カルシユウムフ ヱライ ト およびスラグの割合の関係を示す図である。 Figure 2 is Si0 2 is A1 2 0 3 ZSi0 2 iron ore in the sintering ore basicity of sintered ore is produced in the pot so that the 1,6 to 2.2 to 1.5% or more ores single stocks FIG. 4 is a graph showing the relationship between the ratio and the ratio of fine calcium carbonate and slag having a width of 10 / m or less in sinter.
第 3図は本発明の焼結鉱の顕微鏡組織を示す図である。  FIG. 3 is a view showing a microstructure of the sintered ore of the present invention.
第 4図は本発明の焼結鉱の他の顕微鏡組織を示す図である。  FIG. 4 is a view showing another microstructure of the sintered ore of the present invention.
第 5図は本発明の焼結鉱の他の顕微鏡組織を示す図である。  FIG. 5 is a diagram showing another microstructure of the sintered ore of the present invention.
第 6図は従来例の焼結鉱の頭微鏡組織を示す図である。  FIG. 6 is a diagram showing a microstructure of a conventional sintered ore.
第 7図はピソライ ト鉄鉱石および Si02が 1.5%以下の鉄鉱石から なる原料の焼結鍋試験結果で、 両鉄鉱石中に占めるピソライ ト鉄鉱 石の割合と成品歩留、 焼結鉱の JIS落下強度の関係を示す図である。 Figure 7 is a Pisorai bets iron ore and Si0 2 sintering pot test results of material consisting of 1.5% or less of iron ore, proportions and finished product yield of Pisorai bets iron ore accounts for both iron ore, sinter It is a figure which shows the relationship of JIS drop strength.
第 8図は焼結鍋試験結果で、 ピソライ ト鉄鉱石および Si02が 1.5 %以下の鉄鉱石から成る原料においてピソライ ト鉄鉱石の割合を 40 %あるいは 70%とし、 さらにその Si02が 1.5%以下の鉄鉱石の一部 を Al 203 ZSi02質量比が 0.3以下の鉄鉱石と代替した場合のその代 替率と成品歩留、 焼結鉱の JIS落下強度の関係を示す図である。 第 9図は焼結鍋試験結果で、 ピソライ ト鉄鉱石および Si02が 1.5 %以下の鉄鉱石から成る原料においてピソライ ト鉄鉱石の割合を 40 %あるいは 70%とし、 次にその Si02が 1.5%以下の鉄鉱石の 60%を Al 203/Si02質量比が 0.3以下の鉄鉱石と置き換え、 さらにそれら 原料の一部を Α 1203 ^ί02質量比が 0.3より大きな鉄鉱石と代替し た場合のその代替率と成品歩留、 焼結鉱の JIS落下強度の関係を示 す図である。 In FIG. 8 is Shoyuinabe test results, the ratio of Pisorai preparative iron ore in the raw materials Pisorai bets iron ore and Si0 2 is comprised of more than 1.5% iron ore 40 % Or to 70%, further the Si0 2 is the algebraic upgrade rate and finished products yield when a portion of 1.5% or less of iron ore Al 2 0 3 ZSi0 2 mass ratio was replaced with 0.3 or less iron ore, baked It is a figure which shows the relationship of the JIS fall strength of the condensate. In Figure 9 is Shoyuinabe test results, a 40% or 70% the proportion of Pisorai preparative iron ore in the raw materials Pisorai bets iron ore and Si0 2 is comprised of 1.5% iron ore, then its Si0 2 1.5 % or less of 60% iron ore replace Al 2 0 3 / Si0 2 weight ratio of 0.3 or less of iron ore, larger iron ore than 0.3 part Α 1 2 0 3 ^ ί0 2 mass ratio thereof starting material FIG. 6 is a graph showing the relationship between the substitution rate, the product yield, and the JIS drop strength of sinter when sintering is performed.
〔発明の実施をするための最良の形態〕 [Best mode for carrying out the invention]
以下、 本発明を実施するための最良の形態について詳述する。 先ず、 本発明の基本原理について説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail. First, the basic principle of the present invention will be described.
本発明法の特徴は、 前述のように時々刻々変化する実存の融液を ごく少量に抑えることである。 その基本原理は、 焼結過程の昇温段 階のほぼ 1,200°Cから固体と液体の反応で生成し始めるカルシュゥ ムフェライ ト (形態が幅 10ミ クロン以下の針状あるいは板状) の発 生促進である。 このカルシュゥムフェライ トは高 CaOZSi02の融液 が発生するとすぐに生成され、 いわゆる融液生成律速となり、 実際 に存在する融液量は極めて少なくなる。 本発明は鉱石の特性とこの カルシュゥムフェライ トの生成について追求したものである。 The feature of the method of the present invention is that the existing melt that changes every moment is kept to a very small amount as described above. The basic principle is that it promotes the generation of calcium ferrite (needle or plate with a width of 10 micron or less) that begins to be formed by the reaction between solid and liquid at approximately 1,200 ° C during the heating stage of the sintering process. It is. The cull shoe © beam Blow wells is generated as soon as the high CaOZSi0 2 of the melt occurs, a so-called melt generating rate-limiting, the melt amount that is actually present is very small. The present invention pursues the properties of the ore and the formation of this calcium ferrite.
まず、 本発明者らは鉄鉱石と石灰石で CaOZSi02が通常焼結鉱の 範囲である 1.6〜2.2 になるように調整した単銘柄焼結試験を行い、 20議前後の焼結鉱粒子の断面を研磨してその断面上の幅 10 m以下 の微細カルシュゥムフェライ トの割合をテレビカメラ付光学顕微鏡 と画像解析装置を使って定量した。 なお、 配合原料中にはコークス 粉を 4 %添加した。 First, the present inventors have conducted single stocks sintering tests was adjusted to iron ore and limestone CaOZSi0 2 is usually within a range of sintered ore 1.6 to 2.2, 20 discussions section of the front and rear of the baked ore particles Was polished, and the proportion of fine calcium ferrite with a width of 10 m or less on the cross section was quantified using an optical microscope equipped with a TV camera and an image analyzer. In addition, the coke 4% flour was added.
この結果、 上記微細カルシユウムフヱライ トの生成には高 CaOノ Si 02の融液が必要であるが、 このために鉄鉱石中の Si02%を低くす るか、 あるいは鉄鉱石中の石英 (Si02) や粘土 (Si02— A1203 )の Si02分を融液中に容易に溶解せしめないことが重要であることが分 かった。 さらに、 この溶解し易さについて Si02が 0.5〜7.6 %を含 む鉱石について種々調査した結果、 鉱石中の成分である A1203と Si 02の比で整理できることを確認した。 As a result, the formation of the above-mentioned fine calcium fluoride requires a melt of high CaO 2 Si 0 2. For this reason, it is necessary to lower the Si 2 % in the iron ore or to reduce the content of the iron ore. quartz (Si0 2) and clay - the Si0 2 minutes (Si0 2 A1 2 0 3) may not allowed readily soluble in the melt that was bought amount is important. Further, this dissolution ease Si0 2 is result of various investigation including ore from 0.5 to 7.6%, it was confirmed that organize in is the component A1 2 0 3 and Si 0 2 ratio in the ore.
第 1図に鉄鉱石中の Si02%と幅 10 m以下の微細カルシユウムフ ェライ トおよぴスラグの量の関係を示す。 このカルシュゥムフェラ イ トスラグ量は実際に存在していた融液量と対応しているとみなせ る。 この結果から、 鉄鉱石中の Si02は 1.5%以下が微細カルシユウ ムフェライ トの生成に良いと導かれた。 第 2図は、 鉄鉱石中の Si02 が 0.5〜7.6 %の通常の輸入鉱石について、 鉄鉱石中の A1203 Z Si02質量比と幅 10〃 m以下の微細カルシユウムフェライ トおよびス ラグの量の関係を示したものである。 Si02が 1.5%以下の鉱石とほ ぼ同等の微細カルシュゥムフェライ ト量およびスラグ量となるのは. Al 203 ZSi02が 0.3以下のものであり、 か、る値の Al 203ZSi02を 含む鉱石を Si02が 1.5%以下の鉱石と代替することができる。 Figure 1 shows the relationship between the content of 2 % Si0 in iron ore and the amount of fine calcium ferrite and slag with a width of 10 m or less. The amount of calcium ferrite slag can be considered to correspond to the amount of melt actually existing. This result, Si0 2 in the iron ore is 1.5% or less was guided good generation of fine Karushiyuu Muferai bets. Figure 2, for Si0 2 is from 0.5 to 7.6% of the normal import ore in the iron ore, A1 2 0 3 Z Si0 2 weight ratio less the width 10〃 m of fine local Shiyu um Blow wells and scan in the iron ore It shows the relationship of the amount of lag. Si0 2 from becoming 1.5% or less of the ore almost equivalent fine local shoe © beam Blow wells amount and slag weight. Al 2 0 3 ZSi0 2 is that of 0.3 or less, or, Al 2 0 of Ru value the ore containing the 3 ZSi0 2 Si0 2 can be substituted with more than 1.5% of the ore.
以上の知見に基づいて、 焼結鉱の CaOZSi02 (塩基度) が通常の 範囲である 1.6〜2.2 となるように調整したピソライ ト鉄鉱石と、 Si02が 1.5%以下の低 Si02鉄鉱石の複数銘柄混合原料による焼結試 験を行った。 なお、 配合原料中には固体燃料としてコークス粉を 4 %添加した。 Based on the above findings, CaOZSi0 2 (basicity) of sintered ore and Pisorai preparative iron ore was adjusted to the normal range 1.6 to 2.2 are, Si0 2 1.5% or lower Si0 2 iron ore A sintering test was carried out using a mixed brand of raw materials. In addition, 4% of coke powder was added as a solid fuel to the blended raw materials.
試験の結果、 得られた焼結鉱においてピソライ ト鉄鉱石の比率が 40〜70%の場合に従来と違った特徵的な鉱物組織が得られた。 その 組織を第 3図〜第 5図に示す。 なお、 従来法焼結鉱中のピソライ ト 鉄鉱石部の鉱物組織を比較として第 6図に示した。 As a result of the test, a special mineral structure different from the conventional one was obtained when the ratio of pisolite iron ore in the obtained sintered ore was 40 to 70%. Figures 3 to 5 show the organization. In addition, pisolite in conventional sinter Fig. 6 shows the mineral structure of the iron ore part for comparison.
約 2 i i以上の粗粒のピソライ ト鉄鉱石は、 ①第 3図 ( a ) のよう に未溶融のピソライ ト鉄鉱石が緻密化され、 その周囲が第 3図 (b ) のように 1 0〃 m以下の微細なカルシュゥムフェライ トで取り囲まれ ているか、 ②第 4図 ( a ) のようにピソライ ト鉄鉱石の元の形状の 痕跡はあるが、 溶融によって全体に同化してしまい、 粒状へマタイ ト粒子と該粒子を結合するカルシュゥムフェライ 卜が析出していた (第 4図 (b ):)。 なお、 一部の焼結鉱粒子中では組織①及ぴ②が混 在しているものもあった。 また、 約 0. 5mm以下の他の原料に付着し た細粒ピソライ ト鉄鉱石粉あるいは中間粒子のものは、 ③第 5図に 示すように粒状のへマタィ ト粒子と力ルシユウムフヱライ ト (極一 部であるが幅が 20— 30〃 mまで成長している) で構成されたものと なっており、 先の粗粒ピソライ ト鉄鉱石部の第 4図の組織とほ 類 似していた。 すなわちカルシユウ厶フヱライ ト結合組織がその特徵 である。  Coarse-grained pisolite iron ore of about 2 ii or more: ① Unmelted pisolite iron ore is densified as shown in Fig. 3 (a), and its surroundings are 10 as shown in Fig. 3 (b). Is it surrounded by fine calcium ferrite of less than 〃 m, or ② As shown in Fig. 4 (a), there is a trace of the original shape of the piezolite iron ore, but it is assimilated as a whole by melting. The matite particles and calcium ferrite that binds the particles were precipitated in a granular form (FIG. 4 (b) :). Note that some of the sintered ore particles were mixed in texture and structure. Fine-grained pisolite iron ore powder or intermediate particles adhering to other raw materials of about 0.5 mm or less include ③ granular hematite particles and iron oxide particles as shown in Fig. 5. (It grows up to 20-30 m in width, though it is part of the pole), and is very similar in structure to the coarse-grained pisolite iron ore in Fig. 4. Was. That is, the calcium sulfate connective tissue is a special feature.
製鉄用焼結鉱製造では、 焼結べッ ドの通気性維持、 すなわちコー クス燃焼確保のために全原料を完全に溶融しないで空隙を閉塞させ ない。 従って一部の原料は未溶融のまま残留する。 第 5図では敢ぇ て未溶融鉱石を外して撮影した。 また、 鉄含有原料に粒度分布の比 較的広いコ一クス粉および跎紋岩のような含 MgO副原料を配合する ため、 これら粗粒粒子の周りでは理論的にカルシュゥムフェライ ト は形成しない。 そこで 1焼結実験から大きさ約 20匪の試料を無作為 で 20ケ選び、 各粒子断面中でピソライ ト鉄鉱石以外の未溶融原料を 除く固体部 Να 1 〜 6について各組織の割合を求め平均した。 その結 果を表 1 に示す。 表 1 ピソライ ト鉄鉱石と低 Si02 (≤ 1.5%) 鉄鉱石 In the production of sintered ore for iron making, the pores are not closed without completely melting all the raw materials in order to maintain the permeability of the sintering bed, that is, to ensure coke combustion. Therefore, some raw materials remain unmelted. In Figure 5, the unmelted ore was removed and photographed. Since iron-containing raw materials are blended with coke powder and MgO-containing raw materials such as serpentine, which have a relatively wide particle size distribution, calcium ferrite is theoretically formed around these coarse particles. do not do. Therefore, 20 samples of about 20 marauders were randomly selected from one sintering experiment, and the ratio of each structure in the solid part Να 1 to 6 excluding unmelted raw material other than pisolite iron ore in each particle cross section was calculated. Averaged. The results are shown in Table 1. Table 1 Pisorai door iron ore and low-Si0 2 (≤ 1.5%) iron ore
配合焼結実験結果 (CaOZSi02 = 1.6) Blending sintered experimental results (CaOZSi0 2 = 1.6)
ピソライ ト  Pisolite
Να &¾: ^f- 7 H' 5^ HS. TO iz ¾fi ¾¾¾ ^! 組織④ 組織⑤ 組織⑥ Να & ¾ : ^ f- 7 H '5 ^ HS. TO iz ¾fi ¾¾¾ ^!
1 on Q 1 n Q 1 on Q 1 n Q
0 7V 丄 U 10% 7 % 19% 0 7V 丄 U 10% 7% 19%
2 AC) 1丄 fi ϋ 4 2 122 AC) 1 丄 fi ϋ 4 2 12
3 50 16 19 46 5 3 113 50 16 19 46 5 3 11
4 60 18 20 45 4 2 114 60 18 20 45 4 2 11
5 70 19 22 41 5 3 105 70 19 22 41 5 3 10
6 80 17 12 33 6 9 23 備考 ; 組織①…緻密化ピソライ ト鉄鉱石粒子を幅 10 m以下の微 細で取り囲んだもの 6 80 17 12 33 6 9 23 Remarks; Microstructure ①: Densified pisolite iron ore particles surrounded by fine particles with a width of 10 m or less
組織②…ピソライ ト鉄鉱石粒子の痕跡はあるが粒状へマ夕 ィ ト粒子とカルシュゥムフェライ 卜に同化  Microstructure ②: There are traces of pisolite iron ore particles but they are assimilated to granular particles and calcium ferrite.
組織③…粒状へマタイ ト粒子とカルシユウムフヱライ ト 組織④…粒状へマタイ ト粒子とガラス質シリケ一 ト 組織⑤…マグネタイ ド粒子、 カルシユウムフヱライ ト及び ガラス質シリケ一 ト  Tissue ③… Granular hematite particles and calcium silicate ④Tissue ④… Granular hematite particles and glassy silicate Tissue ②… Magnetic particles, calcium carbonate and glassy silicate
組織⑥…再酸化へマタイ ト粒子、 マグネタイ ト粒子、 カル シユウ厶フェライ ト及ぴガラス質シリ ケ一ト 表 1 から明かなように Not 2〜 5のピソライ ト鉄鉱石比率が 40% - 70%の範囲では組織①, ②及び③の面積率は大きく、 合計すると 80 %を越えるのが分かる。 なお、 Να 1 のピソライ ト鉄鉱石比率が小さ い 30%で組織④及び組織⑥が増加するのは、 添加 Si02系副原料が増 加し、 それが容易に同化するためである。 また、 Noi 6のピソライ ト 鉄鉱石比率が 80%と高い場合に組織⑥が増加するのは、 べッ ドの通 気性が阻害されて燃焼の不均一が発生するためと考えられた。 Microstructure: Reoxidized hematite particles, magnetite particles, calcium ferrite and vitreous silicate As can be seen from Table 1, the ratio of Not 2 to 5 pisolite iron ore is 40%-70% It can be seen that the area ratio of organizations ①, ② and ③ is large in the range of 、, and the total exceeds 80%. The reason why the structure 1 and the structure 2 increase at a low α1 ratio of 30% pisolite iron ore is because the added Si02-based auxiliary material increases and is easily assimilated. In addition, it is considered that the reason why the texture increases when the ratio of the iron ore of Noi 6 is as high as 80% is that the gas permeability of the bead is impaired and the combustion becomes uneven.
従来焼結鉱では、 第 6図 ( a ) のように、 未溶融の残留ピソライ ト鉄鉱石では同心円状あるいは表面から中心部に大きな亀裂が発生 し、 かつその周囲には多数の各種不定形の気孔が取り巻き、 気孔間 の壁の厚みが極めて薄いものとなり、 極めて脆い構造となる。 また、 残留ピソライ ト鉄鉱石を取り巻いている多孔質の部分は第 6図 (b) のように粒状へマタイ ト粒子をガラス質シリケ一卜が結合したもの となっており、 低温還元粉化性及び 還元性の劣る特徴がある。 先 の第 3図〜第 5図の結合相はカルシュゥムフェライ トであり、 耐低 温還元粉化性及び被還元性に優れたものであることが知られている。 事実、 耐低温還元粉化指数(RDI) は従来法では 37± 3であるのに対 して本発明では 34± 2と大き く改善された。 さらに、 第 3図〜第 5 図の気孔構造をみると、 不定形ではなく丸いものであり、 かつ気孔 間の壁の厚みも増大しており、 強度の高いものとなっている。 この 気孔構造の変化は融液の流動性と密接な関係があり、 カルシュゥム フェライ ト系融液は高流動性であることから、 カルシュゥムフェラ ィ ト結合相形成と一義的な関係がある。 In the conventional sintered ore, as shown in Fig. 6 (a), unmelted residual In iron ore, large cracks are generated concentrically or from the surface to the center, and a number of irregular pores surround it, and the thickness of the wall between the pores becomes extremely thin, resulting in an extremely brittle structure . In addition, the porous part surrounding the residual pisolite iron ore is made up of granular matite particles combined with vitreous silicate as shown in Fig. 6 (b). And it has the characteristic of poor reducibility. The binder phase in Figs. 3 to 5 is calcium ferrite, which is known to be excellent in low temperature reduction powdering resistance and reducibility. In fact, the low-temperature reducible powder index (RDI) was significantly improved to 34 ± 2 in the present invention, compared to 37 ± 3 in the conventional method. Furthermore, looking at the pore structure in Figs. 3 to 5, it is not amorphous but round, and the thickness of the wall between the pores is also increased, resulting in high strength. This change in the pore structure is closely related to the fluidity of the melt, and the calcium ferrite-based melt has a high fluidity, and thus has an unambiguous relationship with the formation of the calcium ferrite bonded phase.
ピソライ ト鉄鉱石及び Si02: 1.5%以下の鉄鉱石からなる原料の焼 結鍋試験の結果を第 7図に示す。 上記のカルシユウムフヱライ ト結 合相を特徴とするピソライ ト鉄鉱石比率 40— 70%の場合に、 焼結鉱 の歩留、 冷間強度(JIS落下強度) の著しい向上することが明瞭であ る。 なお、 低 Si02鉄鉱石が 70%より多い配合で歩留が大き く低下す るのは、 Si02が少ないので結合相となる融液そのものが減少するた のである。 Pisorai DOO iron ore and Si0 2: raw material consisting of 1.5% or less of iron ore results in baked Yuinabe test are shown in Figure 7. It is clear that the sinter ore yield and cold strength (JIS drop strength) are significantly improved when the ratio of pisolite iron ore, which is characterized by the above calcium sulfate composite phase, is 40-70%. It is. The low Si0 2 iron ore Runowa be lowered yield large active in more than 70% formulation is was melt itself as a binder phase decreases because Si0 2 is small.
つぎに上記配合中の低 Si02鉄鉱石を Al 203ZSi02が 0.3%以下の 低 A1203鉱石に置き換えた焼結試験を行った。 焼結鉱の塩基度が 1.6 〜2.2 では傾向が変わらなかったので、 1,6の場合の結果を第 8図 に示した。 低 A1203鉱石に置換しても置換率を 60%以下に抑えれば 歩留、 冷間強度を維持できることが明らかである。 また、 この置換 率 60%以下の場合の焼結鉱組織は第 3図〜第 5図と本質的に同じで あり、 数 /m以下の微細なカルシュゥムフェライ トの比率が増加し ていた。 Then it was sintered test by replacing the low Si0 2 iron ore in the formulation to Al 2 0 3 ZSi0 2 or less 0.3% low A1 2 0 3 ore. Since the tendency did not change when the basicity of the sinter was 1.6 to 2.2, the results for cases 1 and 6 are shown in Fig. 8. Low A1 2 0 3 yield if be replaced with ore Osaere the substitution rate of 60% or less, that the cold strength can be maintained is clear. Also, this replacement At a rate of 60% or less, the structure of the sintered ore is essentially the same as in Figs. 3 to 5, and the proportion of fine calcium ferrite of several m / m or less has increased.
実際の焼結操業では、 山元でのス トライキなどで量が不足するこ とが起こ り得る。  In actual sintering operations, strikes at Yamamoto may cause shortages.
そこで、 上記の 「ピソライ ト鉄鉱石と低 Si02鉄鉱石の配合原料」 並びに 「ピソライ ト鉄鉱石、 低 Si02鉄鉱石および低 A 1203鉱石の配 合原料」 のどの程度が 「 Al 203 ZSi02が 0.3より大きい鉄鉱石」 と 代替できるか、 焼結試験を行った結果が第 9図である。 なお、 塩基 度によってその結果 (傾向) に大きな違いが無かったので、 塩基度 1.9について示した。 本試験においてもコークス粉添加量は 4 %と した。 第 9図より、 代替率 20%までは歩留は若干低下する程度で、 冷間強度は維持できることが判明した。 Therefore, the above "Pisorai bets iron ore and low Si0 2 iron ore mixed material" and the degree of throat "Pisorai preparative iron ore, low Si0 Blend raw material 2 iron ore and low A 1 2 0 3 ore" is "Al 2 0 3 ZSi0 or 2 can be substituted with greater than 0.3 iron ore ", as a result of the sintering tests is Figure 9. Since there was no significant difference in the results (trends) depending on the basicity, a basicity of 1.9 is shown. Also in this test, the amount of coke powder added was 4%. From Fig. 9, it was found that up to the substitution rate of 20%, the yield slightly decreased and the cold strength could be maintained.
すなわち、 返鉱以外の鉄含有原料として、 Si02含有量が 1.5%以 下の高品位鉄鉱石及び Al 203 /Si02の質量比率が 0.3以下の鉄鉱石 の合計量が 80%以上になるように配合しても上記組織①, ②, ③を 得ることができた。 That is, as iron-containing materials other than return ores, to 80% or more the total amount of high-grade iron ore and Al 2 0 3 / Si0 2 mass ratio of 0.3 or less of iron ore below the 1.5% or Si0 2 content The above structures (1), (2), and (3) could be obtained even if they were blended in such a manner.
〔実施例〕 〔Example〕
以下に実施例を示して本発明の効果を説明する。 なお、 鉱物組織 は第 3図〜第 5図の混合であり、 その合計が 80%以上あることを確 認している。  Hereinafter, the effects of the present invention will be described with reference to examples. The mineral texture is a mixture of Figs. 3 to 5, and it has been confirmed that the total is 80% or more.
実施例 1 Example 1
表 2は現在の実機での代表的配合原料 (へマタイ ト鉱石が主体) とその焼結操業結果である。 表 3中の条件 Aはピソライ ト鉄鉱石の みの焼結であり、 条件 Bは表 2の配合原料で新原料中のピソライ ト 鉄鉱石の比率を 30%とした場合である。 また、 条件 C及び Dは本発 明法による焼結操業結果の例である。 ピソライ ト鉄鉱石単銘柄の場 合は歩留、 生産率および冷間強度が著しく低下し、 また新原料中の ピソライ トの割合が 30%では歩留は表 2に比べてかなり劣る。 一方. Si02が 1.5%以下の低 Si 02鉄鉱石を本発明の条件で配合すると条件 C及び Dで示すように、 表 2で示す現在の平均的歩留、 生産率、 冷 間強度と同等の特性が得られた。 Table 2 shows typical blended raw materials (mainly hematite ore) and their sintering operation results in actual equipment. Condition A in Table 3 is the sintering of only the iron oxide ore, and Condition B is the case where the proportion of the iron ore in the new raw material of the blended raw material in Table 2 is 30%. Conditions C and D are It is an example of the sintering operation result by the light method. The yield, production rate and cold strength of single grade of pisolite iron ore are remarkably reduced, and the yield is considerably lower than that of Table 2 when the percentage of pisolite in the new raw material is 30%. On the other hand. Si0 2 is as indicated by the condition C and D is blended under conditions of the present invention 1.5% or lower Si 0 2 iron ore, the current average yield shown in Table 2, production rate, and cold strength Equivalent characteristics were obtained.
表 2 における^ «S合^ と^^^果  ^ «S combination ^ and ^^^ result in Table 2
Figure imgf000013_0001
Figure imgf000013_0001
*新腿に財る爐の {%) 表 3 ピソライト 石 量 果 * {%) Table 3 Pisolite stone quantity
Figure imgf000014_0001
Figure imgf000014_0001
*纖とコ一クス {渐願に财る夕傲の害哈 (%  * Fiber and cox
化 学 組 成 Chemical organization
原 料  material
T.Fe CaO Si02 A1203 高ロロ 石 -F 67,1% 0.1 % 1.5 % 0.8% 醒 203/Si02鉱石 - G 65.3 0.0 3.1 0.9 実施例 2 T.Fe CaO Si0 2 A1 2 0 3 High Rollo stone -F 67,1% 0.1% 1.5% 0.8 % Awakening: 2 0 3 / Si0 2 ore - G 65.3 0.0 3.1 0.9 Example 2
表 4は、 ピソライ ト鉄鉱石と Si02が 1.5%以下の低 Si02鉄鉱石か ら成る原料中の低 Si02鉱石の一部を Al 203ZSi02が 0.3以下の鉄鉱 石で本発明の条件の範囲内で代替して焼結した場合の結果である。 この場合も表 2の通常並の成績が得られた。 Table 4, the present invention a portion of the low Si0 2 ore Pisorai preparative iron ore and Si0 2 is comprised et or 1.5% or lower Si0 2 iron ore raw materials Al 2 0 3 ZSi0 2 is 0.3 or less iron ore This is the result when the sintering is performed in the range of the above condition. In this case as well, the results as in Table 2 were obtained.
表 4 本発明法による操業結果例 原 料 条件 E 条件 F 条件 G 鉱ね A 70.0 % 50.0 % 40.0 % 返鉱以外  Table 4 Example of operation results by the present invention method Raw material condition E condition F condition G ore A 70.0% 50.0% 40.0% Other than returned ore
鉄鉱石 B 12.0 12.5 0 の鉄含有  Iron ore B 12.0 12.5 0 Iron content
鉄鉱石 F 0 12.5 24.0 原料中の  Iron ore F 0 12.5 24.0
鉄鉱石 D 0 12.5 36.0 配合比率  Iron ore D 0 12.5 36.0 Mixing ratio
鉄鉱石 G 18.0 12.5 0 新 鉄含有原料 84.6 82.3 82.7 配  Iron ore G 18.0 12.5 0 New Iron-containing raw material 84.6 82.3 82.7
石灰石 13.3 15.3 14.8 合  Limestone 13.3 15.3 14.8
料 蛇紋岩 2.1 2.4 2.5  Serpentine 2.1 2.4 2.5
返鉱¾ 19.2 18.1 19.2 料  Returned ore 19.2 18.1 19.2 fee
コークス 3.9 3.9 3.8 歩留 (%) 82.2 83.0 82.3 生産率 ( t Zd/m2) 32.3 33.9 32.5Coke 3.9 3.9 3.8 Yield (%) 82.2 83.0 82.3 Production rate (t Zd / m 2 ) 32.3 33.9 32.5
JIS-SI (%) 89.0 88.3 89.2 成 JIS-SI (%) 89.0 88.3 89.2 Composition
JIS-RI {%) 67.0 66.3 66.5 JIS-RI (%) 67.0 66.3 66.5
RDI {%) 35.1 35.5 36.0 RDI (%) 35.1 35.5 36.0
*返鉱とコ一クスは新原料に対する外数の割合 ( ) 実施例 3 * Returning and coking are the ratio of outsourcing to new raw materials. ()
表 5は、 表 4の鉄鉱石混合原料の一部を Al 203ZSi02が 0.3より 大きい鉄鉱石で代替して焼結した場合の結果である。 この場合には 歩留および生産率は表 2の通常の原料の場合より もわずかに低下し たが、 表 3中の条件 Aおよび Bより もはるかに高く、 また冷間強度 は表 2 とほとんど変わらなかつた。 Table 5 shows the result when a portion of the iron ore raw material mixture in Table 4 Al 2 0 3 ZSi0 2 is sintered and replaced by larger iron ore than 0.3. In this case Yield and production rates were slightly lower than those of the normal raw materials in Table 2, but were much higher than those in Conditions A and B in Table 3, and the cold strength was almost the same as in Table 2.
表 5 本発明法による焼結操業結果例  Table 5 Example of sintering operation results by the method of the present invention
Figure imgf000016_0001
Figure imgf000016_0001
*返鉱とコ一クスは新原料に対する外数の割合 (%)  * Returning and coking are the ratio of outsourcing to new raw materials (%)
〔産業の利用可能性〕 [Industrial applicability]
以上の通り、 本発明によれば、 これまで焼結鉱の歩留、 □ D質が低 下するために問題とされてきたピソライ ト鉄鉱石を多量に使用して 従来と同様の成績を得ることが可能になる。 従来の良質なへマタイ ト鉱石の枯渴は 明である。 豊富でかつ安価なピソライ ト鉄鉱石の 多量使用を可能とする本発明法はその資源的問題を解決でき、 かつ 鉄のコス ト低減に大きく寄与できる。 As described above, according to the present invention, the yield of sinter ore, It is possible to obtain the same results as before by using a large amount of pisolite iron ore, which has been regarded as a problem in order to lower the cost. The depletion of conventional high quality hematite ore is clear. The method of the present invention, which makes it possible to use abundant and inexpensive pisolite iron ore in a large amount, can solve the resource problem and greatly contribute to reducing the cost of iron.

Claims

請 求 の 範 囲 The scope of the claims
1. 焼結鉱の断面において、 ピソライ ト鉄鉱石以外の焼結原料の 未溶融残留物を除く固体部分の 80質量%以上が、 緻密化したピソラ ィ ト鉄鉱石をカルシユウ厶フェライ トで取り囲んだもの、 またはピ ソライ ト鉄鉱石の痕跡を有するとともに粒状のへマタイ ト粒子と該 へマタイ ト粒子を結合するカルシュゥムフェライ トで構成されたも の或いはこれらの混合物で構成されることを特徵とする製鉄用焼結 鉱。 ' 1. In the cross section of the sinter, more than 80% by mass of the solid portion excluding the unmelted residue of the sintering raw material other than the iron oxide iron ore surrounded the dense iron iron ore with calcium ferrite. Or a mixture of granular hematite particles having traces of iron ore iron ore and calcium ferrite that binds the hematite particles, or a mixture thereof. Sinter for iron making. '
2. 前記焼結鉱組織と粒状のへマタィ ト粒子と力ルシユウ厶フエ ライ トからなる組織が混合して構成された請求の範囲 1 項記載の製 鉄用焼結鉱。  2. The sintered ore for steelmaking according to claim 1, wherein the sintered ore structure is mixed with a structure composed of granular hematite particles and a calcium sulfate.
3. 鉄鉱石等の鉄含有原料と副原料、 炭材及び水分等を焼結機に て焼結する製鉄用焼結鉱の製造方法において、 返鉱以外の鉄含有原 料として、 ピソライ ト鉄鉱石と、 Si02含有量が 1.5質量%以下の高 品位鉄鉱石を用い、 かつピソライ ト鉄鉱石を 40〜70質量%配合する 事を特徵とする製鉄用焼結鉱の製造方法。 3. In a method for producing a sintered ore for iron making, in which iron-containing raw materials such as iron ore and auxiliary raw materials, carbonaceous material, and moisture are sintered by a sintering machine, iron-containing raw materials other than returned ore are stone and, Si0 2 is with 1.5 mass% of high-grade iron ore weight content, and Pisorai preparative method for producing iron for sinter iron ore and Toku徵that blending 40 to 70 wt%.
4. 返鉱以外の鉄含有原料として、 Si02含有量が 1.5質量%以下 の高品位鉄鉱石の 60質量%以下を Al 203 /Si02の質量比率が 0.3以 下の鉄鉱石で代替させる事を特徵とする請求の範囲 3項記載の製鉄 用焼結鉱の製造方法。 4. As the iron-containing materials other than return ores, superseded by iron ore and 60 mass% or less Al 2 0 3 / Si0 2 mass ratio of 0.3 or less of a high-grade iron ore 1.5 mass% or less Si0 2 content 4. The method for producing a sintered ore for iron making according to claim 3, wherein the method is performed.
5. 返鉱以外の鉄含有原料として、 ピソライ ト鉄鉱石、 Si02含有 量が 1.5質量 以下の高品位鉄鉱石及び A OsZSiOsの質量比率が5. As the iron-containing materials other than return ores, Pisorai preparative iron ore, Si0 2 content of the mass ratio of high-grade iron ore and A OsZSiOs 1.5 mass or less
0.3以下の鉄鉱石の合計量が 80質量%以上となる様に配合する事を 特徴とする請求の範囲 4項記載の製鉄用焼結鉱の製造方法。 5. The method for producing a sintered ore for iron making according to claim 4, wherein the iron ore having a total content of 0.3 or less is blended so as to be 80% by mass or more.
PCT/JP1993/000184 1992-02-13 1993-02-12 Iron-making sintered ore produced from pisolitic iron ore and production thereof WO1993016203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019930703113A KR960010579B1 (en) 1992-02-13 1993-02-12 Iron-making sintered ore produced from pisolitic iron ore and the production thereof
AU35743/93A AU656060B2 (en) 1992-02-13 1993-02-12 Iron-making sintered ore produced from pisolitic iron ore and production thereof
JP5513553A JP3006884B2 (en) 1992-02-13 1993-02-12 Sinter for iron making using pisolite iron ore as raw material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/58813 1992-02-13
JP5881392 1992-02-13

Publications (1)

Publication Number Publication Date
WO1993016203A1 true WO1993016203A1 (en) 1993-08-19

Family

ID=13095056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000184 WO1993016203A1 (en) 1992-02-13 1993-02-12 Iron-making sintered ore produced from pisolitic iron ore and production thereof

Country Status (5)

Country Link
KR (1) KR960010579B1 (en)
CN (1) CN1036210C (en)
AU (1) AU656060B2 (en)
TW (1) TW232031B (en)
WO (1) WO1993016203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049227A (en) * 2001-08-06 2003-02-21 Nippon Steel Corp Method for producing sintered ore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM665494A0 (en) * 1994-07-06 1994-07-28 Bhp Iron Ore Pty Ltd Mineral processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254380B2 (en) * 1983-04-20 1987-11-14 Nippon Kokan Kk
JPH01316427A (en) * 1988-06-15 1989-12-21 Nippon Steel Corp Manufacture of low sio2 sintered ores of high quality for iron manufacturing by blast furnace
JPH0347927A (en) * 1989-07-17 1991-02-28 Nippon Steel Corp Method for pre-treating sintering raw material for blast furnace
JPH0413818A (en) * 1990-05-07 1992-01-17 Nippon Steel Corp Pretreatment of sintered ore raw material for blast furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217550A (en) * 1982-06-11 1983-12-17 Japan Synthetic Rubber Co Ltd Aqueous protective coating composition
CN1011591B (en) * 1985-08-06 1991-02-13 兵器工业部第五三研究所 Rubber modified pitch emulsion and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254380B2 (en) * 1983-04-20 1987-11-14 Nippon Kokan Kk
JPH01316427A (en) * 1988-06-15 1989-12-21 Nippon Steel Corp Manufacture of low sio2 sintered ores of high quality for iron manufacturing by blast furnace
JPH0347927A (en) * 1989-07-17 1991-02-28 Nippon Steel Corp Method for pre-treating sintering raw material for blast furnace
JPH0413818A (en) * 1990-05-07 1992-01-17 Nippon Steel Corp Pretreatment of sintered ore raw material for blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049227A (en) * 2001-08-06 2003-02-21 Nippon Steel Corp Method for producing sintered ore

Also Published As

Publication number Publication date
CN1036210C (en) 1997-10-22
AU656060B2 (en) 1995-01-19
CN1077752A (en) 1993-10-27
AU3574393A (en) 1993-09-03
TW232031B (en) 1994-10-11
KR960010579B1 (en) 1996-08-06

Similar Documents

Publication Publication Date Title
CN104480299B (en) Method for preparing sintered ores by adding waste slag to chromium-containing-type vanadium-titanium magnetite concentrates
CN102061359A (en) A slag conditioner composition, process for manufacture and method of use in steel production
CN105331805B (en) The method for preparing ferric manganese ore composite sinter
CN103045854B (en) The pretreatment process of the chromium powder ore produced is smelted for ferrochrome
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
WO1993016203A1 (en) Iron-making sintered ore produced from pisolitic iron ore and production thereof
JP3006884B2 (en) Sinter for iron making using pisolite iron ore as raw material and method for producing the same
JPH0816249B2 (en) Pretreatment method in agglomerated ore production
JP4725230B2 (en) Method for producing sintered ore
JP7135770B2 (en) Method for producing sintered ore
JP4392302B2 (en) Method for producing sintered ore
JP2589627B2 (en) Production method of sinter for pig iron making from pisolite iron ore
CN105238990B (en) A kind of borosilicate ferroalloy and its production method
JPH0819486B2 (en) Manufacturing method of sinter for blast furnace using high goethite ore as raw material
JP4661077B2 (en) Method for producing sintered ore
JP5581875B2 (en) Method for producing sintered ore containing MgO lump
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JP2009167466A (en) Method for producing sintered ore
KR20030048319A (en) Manufacturing method of iron ore sinter
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
JP4016912B2 (en) Manufacturing method of high strength sintered ore.
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
JP2000178659A (en) PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE
JP4227283B2 (en) Method for producing sintered ore for iron making using pisolite iron ore as raw material
JP2004076075A (en) High-strength sintered ore with extremely low silica and alumina, and manufacturing method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR

WWE Wipo information: entry into national phase

Ref document number: 1019930703113

Country of ref document: KR