JP2515639B2 - Method for producing agglomerated ore using converter slag - Google Patents

Method for producing agglomerated ore using converter slag

Info

Publication number
JP2515639B2
JP2515639B2 JP3209026A JP20902691A JP2515639B2 JP 2515639 B2 JP2515639 B2 JP 2515639B2 JP 3209026 A JP3209026 A JP 3209026A JP 20902691 A JP20902691 A JP 20902691A JP 2515639 B2 JP2515639 B2 JP 2515639B2
Authority
JP
Japan
Prior art keywords
converter slag
agglomerated ore
ore
slag
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3209026A
Other languages
Japanese (ja)
Other versions
JPH0551653A (en
Inventor
國弘 近藤
晃 熊坂
登 坂本
修 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3209026A priority Critical patent/JP2515639B2/en
Publication of JPH0551653A publication Critical patent/JPH0551653A/en
Application granted granted Critical
Publication of JP2515639B2 publication Critical patent/JP2515639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鉄高炉原料として優
れた性状を有する塊成鉱の製造に際し、転炉スラグをフ
ラックスとして使用する転炉スラグを用いた塊成鉱製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing agglomerated ore using converter slag, which uses converter slag as a flux when producing agglomerated ore having excellent properties as a raw material for ironmaking blast furnace. .

【0002】[0002]

【従来の技術】図1は通常の焼結法を用いた塊成鉱製造
方法の製造工程の説明図である。溶鉱炉の主要な原料で
ある焼結鉱などの塊成鉱は、一般に、図1に示すような
工程に従って、次のように原料調整などして製造され
る。先ず、原料として約10mm以下(−10mm)の粉鉱
石にフラックス源として、石灰石・ドロマイト・転炉ス
ラグなどの含CaO副原料粉、珪石・蛇紋岩などの含S
iO2 副原料および返鉱と燃料源としての炭材に粉コー
クスを用い、適量の水分を加えて一次及び二次のドラム
ミキサーにて混合・造粒する。このように擬似粒子化し
た原料をグレート式の焼結機上に充填し、その表層部の
炭材に点火し、下方よりブロワーにより空気を吸引しな
がらコークスを燃焼させ、その燃焼熱により原料を11
00〜1300℃にて焼結し、次いでクラッシャーにて
粉砕し、4mm篩にてスクリーニングし、+4mmは製品と
して高炉に送り、−4mmは返鉱として繰り返す。このよ
うにして製造した塊成鉱の性状としては、冷間強度、被
還元性、還元粉化性などの品質特性が優れていることを
要求されている。そして、この品質確保のため各種副原
料の配合割合やコークス粉の添加量の調整をしながら操
業が行われる。
2. Description of the Related Art FIG. 1 is an explanatory view of a manufacturing process of an agglomerated ore manufacturing method using a normal sintering method. Agglomerated ore, which is a main raw material of a blast furnace, is generally manufactured by adjusting the raw materials as follows according to the process shown in FIG. First, as a raw material, a powder ore of about 10 mm or less (-10 mm) is used as a flux source, as a flux source, CaO-containing auxiliary powder such as limestone, dolomite, converter slag, and S containing silica, serpentine, etc.
Powder coke is used as an iO 2 auxiliary raw material, return ore, and carbonaceous material as a fuel source, an appropriate amount of water is added, and the mixture is mixed and granulated by a primary and secondary drum mixer. The raw material that has been made into pseudo particles in this way is filled in a great-type sintering machine, the carbonaceous material of the surface layer is ignited, the coke is burned while sucking air from below with the blower, and the raw material is generated by the combustion heat. 11
Sintering at 00 ~ 1300 ° C, then crushing with crusher, screening with 4mm sieve, + 4mm sent to blast furnace as product, -4mm repeated as return ore. The properties of the agglomerated ore produced in this manner are required to be excellent in quality characteristics such as cold strength, reducibility, and reduction pulverization property. Then, in order to ensure this quality, the operation is performed while adjusting the blending ratio of various auxiliary raw materials and the addition amount of coke powder.

【0003】最近では、高炉の高生産性に対応すべく、
より高品質が要求され、製品塊成鉱中のSiO2 含有量
が約5.5%以下となっている。さらに、設備の集約化
に伴い、焼結機における生産性も高いレベルが要求され
るようになっている。一方、転炉スラグは昭和55年頃
までは生産量の約40%は埋立て・廃棄されていたが、
その後、環境規制の強化に伴い、埋立廃棄量は徐々に減
少し、最近では17〜18%となっている(永井他:資
源と素材,107(1991)No.2,P140)。このため、転炉スラ
グの有効利用は、土木用を中心に積極的に進められてい
るが、高炉スラグ程には有効利用されていない。転炉ス
ラグ中のCaO分に着目し、これを焼結鉱製造プロセス
でフラックスとして利用することは以前から行われてお
り、またその研究も数多く行われている。
Recently, in order to cope with the high productivity of blast furnaces,
Higher quality is required, and the SiO 2 content in the product agglomerated ore is about 5.5% or less. Further, with the integration of facilities, a high level of productivity in a sintering machine is required. On the other hand, about 40% of the production of converter slag was landfilled and discarded until about 1980,
Since then, with the tightening of environmental regulations, the amount of landfill waste has gradually decreased, and has recently reached 17-18% (Nagai et al .: Resources and Materials, 107 (1991) No.2, P140). For this reason, the effective use of converter slag is being actively promoted mainly for civil engineering, but not as effectively as blast furnace slag. Focusing on the CaO content in the converter slag and utilizing it as a flux in the sinter production process has been performed for a long time, and many studies have been conducted.

【0004】例えば、特開昭55−79837号公報に
は溶融状態の転炉スラグ100重量部に対して、蛇紋
岩、ドロマイトなどのMgCO3 を含有する鉱物原料1
〜30重量部を添加溶融し、滓化したものを2〜2.5
mmに粒度調整を行い、塊成鉱製造用原料の一部とする方
法が開示されている。また、特開昭55−128548
号公報には、転炉スラグの粒度を2〜10mmに破砕・整
粒し、焼結原料に対し1〜5重量%を配合し、焼結機の
下層部へ偏析させ操業する方法が開示されている。
For example, in Japanese Patent Laid-Open No. 55-79837, 100 parts by weight of molten converter slag is added to mineral raw material 1 containing MgCO 3 such as serpentine and dolomite.
Add ~ 30 parts by weight, melt and slag to 2 to 2.5
There is disclosed a method in which the particle size is adjusted to mm so that it becomes a part of the raw material for producing agglomerated ore. In addition, JP-A-55-128548
The publication discloses a method in which a converter slag is crushed and sized to a particle size of 2 to 10 mm, 1 to 5% by weight is mixed with a sintering raw material, and segregated to a lower layer of a sintering machine to operate. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ように従来技術における転炉スラグの利用に際し、その
前提となる塊成鉱製造プロセスは、製品中のSiO2
有量およびコークス比が比較的に高く、かつ操業度も現
状と比較し低いという条件のものであった。最近では高
炉を安定かつ高効率で操業するため高品質の塊成鉱を要
求され、冷間強度,被還元性,還元粉化性などの管理基
準が厳しくなっている。そのため、従来の塊成鉱と異な
り、製品中のSiO2 含有量は5.5%以下、かつ、生
産率は1.5t/m2 /Hr以上の操業が通常操業レベ
ルになりつつある。このため、原料の擬似粒子化の強化
による通気性の改善やコークス添加方法の工夫による効
率的な燃焼方法の改善が行われ、製品品質の維持確保の
ため、副原料の添加量・方法に制約が出てきている。
However, when the converter slag is used in the prior art as described above, the agglomerated ore production process, which is the premise thereof, has a relatively low SiO 2 content and a coke ratio in the product. It was on the condition that it was high and the operation rate was low compared to the current situation. Recently, high-quality agglomerated ore is required for stable and efficient operation of blast furnaces, and management standards such as cold strength, reducibility, and reduced pulverization property have become strict. Therefore, unlike the conventional agglomerated ore, the SiO 2 content in the product is 5.5% or less, and the production rate is 1.5 t / m 2 / Hr or more. For this reason, the air permeability has been improved by strengthening the pseudo particles of the raw material, and the efficient combustion method has been improved by devising the coke addition method, and the addition amount and method of the auxiliary raw material are restricted to maintain and maintain product quality. Is coming out.

【0006】このような操業条件下において、転炉スラ
グを使用すると冷間強度の低下が認められるので、品質
の維持を図るべく生産性を下げた操業が強いられる等の
問題がある。また、最近10数年間での精練技術の進歩
により転炉での石灰使用量は減少し、スラグ原単位の低
下をもたらしている。これにより、転炉スラグ中のCa
O分も減少しており、転炉スラグの質的な変化も考慮す
る必要がある。以上のように、製品中のSiO2 含有量
は5.5%以下、かつ、生産率は1.5t/m2 /Hr
以上の条件下における塊成鉱製造プロセスに、転炉スラ
グを有効利用する方法の開発が望まれている。
Under such operating conditions, when the converter slag is used, the cold strength is recognized to be lowered, so that there is a problem that the operation with reduced productivity is forced in order to maintain the quality. Moreover, the amount of lime used in the converter has decreased due to the progress of the refining technology in the last 10 years, resulting in a decrease in the slag unit consumption. As a result, Ca in the converter slag
The O content has also decreased, and it is necessary to consider qualitative changes in the converter slag. As described above, the SiO 2 content in the product is 5.5% or less, and the production rate is 1.5 t / m 2 / Hr.
It is desired to develop a method for effectively using converter slag in the agglomerated ore manufacturing process under the above conditions.

【0007】本発明は、上記のような従来と比較し、転
炉スラグの投棄・再利用が困難となってきた問題点を解
決するべくなされたもので、上記のような低シリカ含有
量の製品塊成鉱を高生産率で生産する、塊成鉱製造プロ
セスに積極的に利用することを可能とする転炉スラグを
用いた塊成鉱製造方法を提供することを目的とするもの
である。
The present invention has been made in order to solve the problem that it is difficult to dump and recycle converter slag as compared with the above-mentioned conventional ones. It is an object of the present invention to provide an agglomerated ore production method using a converter slag that enables product agglomerated ore to be produced at a high production rate and that can be actively used in the agglomerated ore production process. .

【0008】[0008]

【課題を解決するための手段】本発明は、上記の問題点
を解決し、上記の目的を達成するためになされたもので
ある。本発明は、製品塊成鉱中のSiO2 含有量が5.
5%以下で生産率が1.5t/m2 ・Hr以上の塊成鉱
製造プロセスにおいて、−3mm(3mm以下)の粒度に粉
砕して平均粒子径が0.4〜0.6mmとなるように調整
した転炉スラグを塩基度(CaO/SiO2 ):1.8
0〜2.20に維持するように配合することを特徴とす
る転炉スラグを用いた塊成鉱製造方法である。
The present invention has been made to solve the above problems and achieve the above objects. The present invention has a SiO 2 content of 5.
In the agglomerated ore manufacturing process with a production rate of 5% or less and a production rate of 1.5 t / m 2 · Hr or more, the average particle size is adjusted to 0.4 to 0.6 mm by pulverizing to a particle size of -3 mm (3 mm or less). converter slag was adjusted to a basicity (CaO / SiO 2): 1.8
It is a method for producing agglomerated ore using converter slag, which is characterized in that it is blended so as to maintain 0 to 2.20.

【0009】[0009]

【作用】転炉スラグは、その主要構成鉱物が高融点の2
CaO・SiO2 、および2CaO・Fe2 3 であ
り、通常フラックスとして用いられる石灰石(または生
石灰)に比べて同化反応性は著しく悪い。次に、石灰石
と酸化鉄、転炉スラグと酸化鉄の同化性の違いを評価す
るために、石灰石ブリケット1、酸化鉄ブリケット2お
よび転炉スラグブリケット3の夫々を成型圧200kg/
cm2 にて製作し、石灰石ブリケット1と酸化鉄ブリケッ
ト2を組み合わせた拡散対A、並びに転炉スラグ3と酸
化鉄2を組み合わせた拡散対Bを製作し、焼成による同
化性の違いを調査した。拡散対A及びBの焼成による同
化性の違いは図2に示す通りである。同化性の状況を調
査する焼成条件は、拡散対A及びBの夫々について、何
れの場合も1300℃の高温雰囲気下で4分間処理し
た。
[Function] In the converter slag, the main constituent mineral is a high melting point 2
CaO.SiO 2 and 2CaO.Fe 2 O 3 , which have significantly poor assimilation reactivity as compared with limestone (or quick lime) which is usually used as a flux. Next, in order to evaluate the difference in assimilation between limestone and iron oxide and converter slag and iron oxide, each of limestone briquette 1, iron oxide briquette 2 and converter slag briquette 3 was molded at a pressure of 200 kg /
manufactured by cm 2, limestone briquettes 1 and iron oxide briquettes 2 the combined diffusion couple A, as well as to manufacture a diffusion couple B which is a combination of converter slag 3 and iron oxide 2 was investigated differences in anabolic by firing . The difference in assimilation due to firing of diffusion couples A and B is as shown in FIG. The firing conditions for investigating the state of assimilation were such that each of diffusion pairs A and B was treated in a high temperature atmosphere of 1300 ° C. for 4 minutes in each case.

【0010】図2より明らかなように、フラックスとし
て石灰石を使用した焼成後の拡散対Aの場合、1300
℃,4分間保持した条件下での同化反応は顕著であり、
石灰石ブリケット1と酸化鉄ブリケット2の両ブリケッ
ト接触界面には緻密質カルシウムフェライトが生成して
いる。これに対し、転炉スラグブリケット3を使用した
焼成後の拡散対Bの場合には、酸化鉄ブリケット2に対
する同化反応性が悪く同一条件下で同化反応は殆ど起こ
っていない。これは転炉スラグの主要構成物は高融点の
2CaO・SiO2 、2CaO・Fe2 3 であり、酸
化鉄との反応が著しく抑制されている点に起因するもの
である。
As is clear from FIG. 2, in the case of the diffusion pair A after firing using limestone as the flux, 1300
The assimilation reaction under the condition of holding at 4 ° C for 4 minutes is remarkable,
Dense calcium ferrite is generated at the contact interface between the limestone briquette 1 and the iron oxide briquette 2. On the other hand, in the case of the diffusion pair B after firing using the converter slag briquette 3, the assimilation reactivity to the iron oxide briquette 2 was poor and the assimilation reaction hardly occurred under the same conditions. This main structure of the converter slag is 2CaO · SiO 2, 2CaO · Fe 2 O 3 refractory is due to that the reaction with the iron oxide is markedly suppressed.

【0011】しかしながら、従来の塊成鉱製造方法で
は、製品中のSiO2 含有量は5.5%以上のレベルで
あり、これを滓化するための石灰石(または生石灰)の
絶対量も多く、焼結のための融液生成量が確保されてい
た。さらに、生産率も1.2〜1.4t/m2 ・Hrの
レベルであるため焼成に要する熱量および1100℃以
上の保持時間は十分に余裕が有った。このため、同化反
応性の悪い転炉スラグを利用しても製品の品質管理上特
に問題にはならなかった。
However, in the conventional method for producing agglomerated ore, the SiO 2 content in the product is at a level of 5.5% or more, and the absolute amount of limestone (or quick lime) for slagging this is large, A sufficient amount of melt was generated for sintering. Furthermore, since the production rate is at a level of 1.2 to 1.4 t / m 2 · Hr, there was a sufficient margin for the amount of heat required for firing and the holding time at 1100 ° C. or higher. Therefore, even if the converter slag having poor assimilation reactivity was used, there was no particular problem in quality control of the product.

【0012】ところが、製品中のSiO2 含有量は5.
5%以下、かつ、生産率が1.5t/m2 ・Hr以上の
条件下における高炉用塊成鉱製造時においては、通常の
粒度(−8mm,算術平均径2〜3mm)で転炉スラグを使
用した場合、焼成時間内で(例えば1300℃以上,3
分間)は酸化鉄との同化反応が不十分な状態で焼結時間
が終了するため製品塊成鉱の強度低下を引き起こす。本
発明法は、図2に示すように、石灰石に比較し鉄鉱石と
の同化反応性の劣る転炉スラグの粒度を−3mm,平均粒
径0.4〜0.6mmに細かくすることにより反応面積が
大きくなり、鉄鉱石との同化反応における反応速度が改
善され、前述のような焼成条件(時間)でも所定の品質
の確保が図られることが判明し、後述する実施例1にお
いて、品質特性並びに生産率が好成績を収めることによ
るものである。その結果、製品中のSiO2 含有量が
5.5%以下、かつ、生産率は1.5t/m2 ・Hr以
上の条件下においても、塊成鉱の強度を低下させること
なく転炉スラグの使用が可能となり、後工程の高炉にお
けるスラグを増加させることなく、転炉スラグを塊成鉱
製造用のフラックス源として有効に活用することが可能
となるものである。
However, the SiO 2 content in the product is 5.
When producing agglomerated ore for blast furnace under conditions where the production rate is 5% or less and the production rate is 1.5 t / m 2 · Hr or more, the converter slag has a normal grain size (-8 mm, arithmetic mean diameter 2 to 3 mm). Is used within the firing time (eg 1300 ° C or higher, 3
(Minutes) causes a decrease in strength of the product agglomerate because the sintering time ends when the assimilation reaction with iron oxide is insufficient. According to the method of the present invention, as shown in FIG. 2, the reaction is performed by reducing the particle size of the converter slag, which is inferior in assimilation reactivity with iron ore to limestone, to -3 mm and the average particle size 0.4 to 0.6 mm. It has been found that the area is increased, the reaction rate in the assimilation reaction with iron ore is improved, and the predetermined quality can be ensured even under the above-mentioned firing conditions (time). In addition, the production rate is favorable. As a result, even if the SiO 2 content in the product is 5.5% or less and the production rate is 1.5 t / m 2 · Hr or more, the converter slag does not decrease in strength of the agglomerated ore. Therefore, the converter slag can be effectively used as a flux source for the production of agglomerated ore without increasing the slag in the blast furnace in the subsequent process.

【0013】[0013]

【実施例】[実施例1] 次の表1に示す化学成分の転炉スラグを、表2に示すよ
うに−3mmに粉砕し、平均粒子径が0.4〜0.6mmに
なるように粒度調整を行い、フラックス源として含Ca
O副原料粉(石灰石等)並びに含SiO2 副原料(珪石
・蛇紋岩など)とともに塩基度(CaO/SiO2 )を
2.0にするように調整・配合する。その塩基度2.0
を維持するように、石灰石と代替した転炉スラグは配合
原料全体に対して1.5%と3.0%添加の2水準で使
用した。表3は原料配合率の一覧を示すものである。ま
た塊成鉱製造に当たっては、図1に示すように、粉鉱
石,返鉱,粉コークス,フラックスの鉱石槽から、原料
を表3の配合に従って引出し、一次ドラムミキサーにて
水分を添加・混合して予擬似粒子化し、次いで二次ドラ
ムミキサーにて水分を添加・混合して擬似粒子化する。
Example 1 A converter slag having the chemical composition shown in Table 1 below was crushed to -3 mm as shown in Table 2 so that the average particle size was 0.4 to 0.6 mm. The particle size is adjusted and Ca is included as a flux source.
O basic material powder (limestone, etc.) and SiO 2 -containing auxiliary material (silica, serpentine, etc.) and basicity (CaO / SiO 2 ) are adjusted and blended to 2.0. Its basicity 2.0
In order to maintain the above, the converter slag replaced with limestone was used at two levels of 1.5% and 3.0% addition with respect to the entire blended raw material. Table 3 shows a list of raw material blending ratios. In the production of agglomerated ore, as shown in FIG. 1, raw materials are drawn out from the ore tanks of powdered ore, return ore, powdered coke, and flux according to the composition shown in Table 3, and water is added and mixed by the primary drum mixer. To form pre-pseudo particles, and then water is added and mixed in the secondary drum mixer to form pseudo particles.

【0014】この様に擬似粒子化した原料をドワイトロ
イド式焼結機(400m2 )上に充填し、その表層部の
炭材に点火し、下方よりブロワーにより空気を吸引しな
がらコークスを燃焼させ、その燃焼熱により原料を11
00〜1300℃にて焼結し、次いでクラッシャーにて
粉砕し、4mm篩にてスクリーニングし、+4mmは製品と
して高炉に送り、−4mmは返鉱鉱石槽に繰り返す。ま
た、転炉スラグを添加しない場合並びに−8mmに粉砕し
た転炉スラグを1.5%配合した場合を比較例として、
塊成鉱の製品品質管理上の主要な項目であるタンブラー
強度TI(%)、還元粉化指数RDI(%)、被還元性
JIS−RI(%)及び生産性(T/m2 ・H)を調
べ、本発明の効果を確認した。その結果を表4に示す。
The raw material thus quasi-particleized was filled in a Dwightroid type sintering machine (400 m 2 ), the carbonaceous material of the surface layer was ignited, and coke was burned while sucking air from a blower from below. , The raw material 11
Sinter at 00 ~ 1300 ° C, then crush with crusher, screen with 4mm sieve, send + 4mm as product to blast furnace, -4mm repeat to return ore tank. In addition, as a comparative example, the case where no converter slag was added and the case where 1.5% of converter slag crushed to -8 mm was blended,
Tumbler strength TI (%), reduction pulverization index RDI (%), reducibility JIS-RI (%) and productivity (T / m 2 · H), which are the main items in agglomerated product quality control And the effect of the present invention was confirmed. The results are shown in Table 4.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】表4に示す比較例−8mm転炉スラグで明ら
かなように、−8mmに粉砕した転炉スラグを使用した時
には、CaO源として石灰石のみを使用し、操業した比
較例の場合に比較し、明らかな強度低下が認められた。
これに対して、転炉スラグを−3mmに粉砕し粒度調整し
たものを、石灰石のみ使用時(比較例)の塩基度が2と
同じになるように配合し操業した場合と同程度の品質の
維持が図られ、生産性・歩留とも同等の結果が得られ
た。これから、転炉スラグの粒度は、平均粒径0.4〜
0.6mmに調整した場合、品質・生産率とも好成績がえ
られる。
As is clear from the comparative example -8 mm converter slag shown in Table 4, when the converter slag crushed to -8 mm was used, comparison was made with the comparative example in which only limestone was used as the CaO source. However, a clear decrease in strength was observed.
On the other hand, a converter slag crushed to -3 mm and adjusted in particle size is blended so that the basicity is the same as 2 when only limestone is used (comparative example), and the same quality as when operating It was maintained, and the same result was obtained in productivity and yield. From this, the particle size of the converter slag is 0.4 ~
When adjusted to 0.6 mm, good results can be obtained in terms of quality and production rate.

【0020】[比較例] 図1に示す塊成鉱製造工程図により、表1に示す化学成
分並びに通常の粒度(−8mm,算術平均径2〜3mm)の
転炉スラグを、無添加,0.5%,1.0%,1.5%
の割合で添加し、焼結機により焼成し、得られた塊成鉱
のタンブラー強度TI(%)、還元粉化指数RDI
(%)、被還元性JIS−RI(%)及び生産性(T/
2 ・Hr)を調べ、転炉スラグの使用量と塊成鉱の品
質及び生産性との関係を調べた。その結果を図3に示
す。図3に示すように、転炉スラグの使用量が増加する
に伴い、生産率の低下が認められた。この傾向はSiO
2 含有量がさらに低くなった場合に一層顕著となる。こ
の生産率が低下することの原因としては、図2に示すよ
うに転炉スラグは酸化鉄との反応が著しく抑制されるた
めであることが判った。
[Comparative Example] From the agglomerated ore manufacturing process diagram shown in FIG. 1, the chemical composition shown in Table 1 and the converter slag having a normal grain size (-8 mm, arithmetic mean diameter 2 to 3 mm) were added without addition. 0.5%, 1.0%, 1.5%
The tumbler strength TI (%) and the reduction pulverization index RDI of the obtained agglomerated ore
(%), Reducibility JIS-RI (%) and productivity (T /
m 2 · Hr) and the relationship between the amount of converter slag used and the quality and productivity of agglomerated ore. The result is shown in FIG. As shown in FIG. 3, the production rate decreased as the amount of converter slag used increased. This tendency is SiO
2 It becomes more remarkable when the content becomes lower. It has been found that the cause of the decrease in the production rate is that the reaction of the converter slag with iron oxide is significantly suppressed as shown in FIG.

【0021】なお、本実施例においては、塩基度を2.
0になるように調整・配合したが、その範囲は、高炉へ
の塊成鉱の特性から1.80〜2.20の範囲におい
て、転炉スラグの利用が図られる。また、本実施例にお
いては、ドワイトロイド式焼結機による塊成鉱(焼結
鉱)製造に本発明を適用したが、他の焼成炉による塊成
鉱製造方法にも適用できることは勿論である。
In this embodiment, the basicity is 2.
It was adjusted and blended so as to be 0, but the range is within the range of 1.80 to 2.20 due to the characteristics of the agglomerated ore to the blast furnace, so that the converter slag can be used. Further, in the present embodiment, the present invention is applied to the production of agglomerated ore (sintered ore) by the Dwightroid type sintering machine, but it is needless to say that the present invention is also applicable to the agglomerated ore production method using other firing furnaces. .

【0022】[0022]

【発明の効果】本発明の塊成鉱製造方法により、製品中
のSiO2 含有量は、5.5%以下、かつ、生産率は
1.5t/m2 ・Hr以上の条件下においても、塊成鉱
の強度を低下させることなく転炉スラグの使用が可能と
なり、後工程の高炉におけるスラグを増加させることな
く、転炉スラグを塊成鉱製造用のフラックス源として有
効に活用することが可能となり、産業上多大の貢献がで
きるようになった。
According to the method for producing agglomerated ore according to the present invention, the SiO 2 content in the product is 5.5% or less, and the production rate is 1.5 t / m 2 · Hr or more, The converter slag can be used without lowering the strength of the agglomerated ore, and the converter slag can be effectively used as a flux source for agglomerated ore production without increasing the slag in the blast furnace in the subsequent process. It became possible and made a great contribution to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にて用いられた塊成鉱製造方法
の工程説明図である。
FIG. 1 is a process explanatory view of an agglomerated ore manufacturing method used in an example of the present invention.

【図2】酸化鉄に対する石灰石と転炉スラグの同化性の
違いを示す説明図である。
FIG. 2 is an explanatory diagram showing a difference in assimilation between limestone and converter slag with respect to iron oxide.

【図3】従来法における転炉スラグの使用量と塊成鉱の
品質及び生産性との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of converter slag used and the quality and productivity of agglomerated ore in the conventional method.

【符号の説明】[Explanation of symbols]

1 石灰石 2 酸化鉄 3 転炉スラグ 1 Limestone 2 Iron oxide 3 Converter slag

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 製品塊成鉱中のSiO2 含有量が5.5
%以下で生産率が1.5t/m2 ・Hr以上の塊成鉱製
造プロセスにおいて、−3mmの粒度に粉砕して平均粒子
径が0.4〜0.6mmとなるように調整した転炉スラグ
を塩基度:1.80〜2.20に維持するように配合す
ることを特徴とする転炉スラグを用いた塊成鉱製造方
法。
1. The product agglomerated ore has a SiO 2 content of 5.5.
% Or less and a production rate of 1.5 t / m 2 · Hr or more, in agglomerated ore manufacturing process, a converter crushed to a particle size of -3 mm and adjusted to have an average particle size of 0.4 to 0.6 mm A method for producing an agglomerated ore using converter slag, characterized in that slag is blended so as to maintain a basicity of 1.80 to 2.20.
JP3209026A 1991-08-21 1991-08-21 Method for producing agglomerated ore using converter slag Expired - Fee Related JP2515639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209026A JP2515639B2 (en) 1991-08-21 1991-08-21 Method for producing agglomerated ore using converter slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209026A JP2515639B2 (en) 1991-08-21 1991-08-21 Method for producing agglomerated ore using converter slag

Publications (2)

Publication Number Publication Date
JPH0551653A JPH0551653A (en) 1993-03-02
JP2515639B2 true JP2515639B2 (en) 1996-07-10

Family

ID=16566042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209026A Expired - Fee Related JP2515639B2 (en) 1991-08-21 1991-08-21 Method for producing agglomerated ore using converter slag

Country Status (1)

Country Link
JP (1) JP2515639B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477170B2 (en) * 2010-05-28 2014-04-23 新日鐵住金株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JPH0551653A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
TW200948980A (en) Producing method of reduced iron
JP2007327096A (en) Method for manufacturing sintered ore using brucite
JP2009019224A (en) Method for manufacturing sintered ore
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JP3736500B2 (en) Method for producing sintered ore
JPH0816249B2 (en) Pretreatment method in agglomerated ore production
JP3166536B2 (en) Method for producing sintered ore of high crystal water ore
KR100504365B1 (en) Manufacturing method of sinter ore in high combined water ore mixing
JP3050493B2 (en) Method for producing sintered ore using limonite ore as raw material
JP4415690B2 (en) Method for producing sintered ore
RU2768432C2 (en) Method for production of fluxed iron ore agglomerate
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4661077B2 (en) Method for producing sintered ore
KR101486869B1 (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it
JPH06220549A (en) Pretreatment of raw material to be sintered
JP4412313B2 (en) Manufacturing method of high quality low SiO2 sintered ore
AU656060B2 (en) Iron-making sintered ore produced from pisolitic iron ore and production thereof
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JPH08176686A (en) Production for sintered ore compounded at high ratio with high alumina iron ore
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace
JPH0587571B2 (en)
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
JP2006124793A (en) Method for producing sintered ore, and pseudo-particle containing reduced iron for producing sintered ore
JPH066754B2 (en) Sintering method of iron ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees