JP2001164325A - Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace - Google Patents

Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace

Info

Publication number
JP2001164325A
JP2001164325A JP2000301634A JP2000301634A JP2001164325A JP 2001164325 A JP2001164325 A JP 2001164325A JP 2000301634 A JP2000301634 A JP 2000301634A JP 2000301634 A JP2000301634 A JP 2000301634A JP 2001164325 A JP2001164325 A JP 2001164325A
Authority
JP
Japan
Prior art keywords
limestone
raw material
sintering
sinter
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000301634A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yamashita
勝宏 山下
Takashi Watanabe
隆志 渡辺
Hideaki Sato
秀明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000301634A priority Critical patent/JP2001164325A/en
Publication of JP2001164325A publication Critical patent/JP2001164325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure the strength and the yield of sintered ore by receiving lime stone of the grain size distribution as by the ordinary way from a mine, utilizing fine grains without exhausting them out of the system and using a large amount of highly crystallized water-containing ore. SOLUTION: The lime stone 2 is screened and the minus-mesh fine grain lime stones 17 are granulated into pseudo-grains 19 and blended with powdery iron ore 1, or the like, and plus-mesh lime stone 20 to prepare pseudo-grains for sintering, and the sintered ore is produced. The above sintered ore producing process and a sintered ore producing process using the pseudo-grains for sintering by using the lime stone 2 without screening are operated by changing over at any time. The separation point of the screening is made to 1, 0.5 or 0.25 mm. The pseudo-grains for sintering are charged into a pallet in a sintering machine with a charging device having a grain size segregation forming function in the thickness direction of raw material layer. The distribution of the CaO concentration in the raw material charged into the pallet in the raw material thickness direction is formed so as to be higher from the upper layer part toward the lower layer part. Further, the operation after blending a large amount of the high crystallized water-containing ore is execute.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉用焼結鉱の
副原料の一つとして重要な石灰石の使用方法において、
焼結鉱の品質を維持しつつ石灰石をより効率的に使用
し、更に、高結晶水鉱石を多量に使用するための焼結鉱
の製造技術に関するものである。
The present invention relates to a method for using limestone, which is important as one of the auxiliary materials of sinter for blast furnaces,
The present invention relates to a technique for producing sinter which uses limestone more efficiently while maintaining the quality of sinter, and further uses a large amount of highly crystalline water ore.

【0002】[0002]

【従来の技術】高炉用原料として使用される焼結鉱は、
一般に、次のようにして製造される。先ず、本船から荷
揚げされた鉄鉱石を銘柄毎に粉鉱ヤードに山積みする。
次いで、山積みされた各種粉鉱石、含CaO副原料、含
SiO2副原料、鉄分を含むダスト、及び炭材等を所定
の割合ベッディング法により混合しブレンディング粉と
する。このブレンディング粉、単味の粉粒状鉄鉱石、石
灰石、珪石、粉コークス及び返鉱等の各原料をそれぞれ
の配合槽から切り出し、配合原料に水分を添加して混
合、造粒する。こうして造粒された擬似粒子形態の焼結
原料を焼結機のパレットに装入し、点火炉で炭材に点火
し、下方に空気を吸引しながら炭材を燃焼させて、焼結
原料を焼結し、塊成化する。焼成された焼結ケーキを冷
却後、破砕し、整粒して3〜50mmのものを成品焼結
鉱として高炉用原料として使用する。
2. Description of the Related Art Sinters used as raw materials for blast furnaces are:
Generally, it is manufactured as follows. First, iron ores unloaded from the Vessel are piled up in the ore yard for each brand.
Then piled various powder ore and containing CaO auxiliary material, containing SiO 2 auxiliary materials, dust including iron, and the carbonaceous material or the like is mixed with a predetermined ratio bedding method blending powder. Raw materials such as the blending powder, plain iron ore, limestone, silica stone, coke breeze and returned ore are cut out from the respective mixing tanks, and water is added to the mixed raw materials to mix and granulate. The sintering material in the form of quasi-particles thus granulated is charged into a pallet of a sintering machine, and the carbon material is ignited by an ignition furnace. Sinter and agglomerate. After cooling the fired sintered cake, it is crushed and sized, and a product having a size of 3 to 50 mm is used as a product sinter ore as a raw material for a blast furnace.

【0003】上記焼結鉱の製造工程において使用される
石灰石は、造滓材として焼結原料中10wt.%前後乃
至それ以上に多量に配合使用されている。原料焼結時の
初期融液生成反応は主として石灰石と粉鉱石との接触点
で始まり、石灰石は焼結時のバインダー機能を発揮す
る。この融液生成反応が焼結鉱の品質及び焼結操業の安
定性に重要な影響を及ぼす。また、石灰石の配合量がこ
のように多いので、その粒度は焼結機に装入される原料
全体の粒度分布にもかなりの影響を及ぼす。例えば石灰
石の粒度分布が大きい場合には、焼結機ベッド上の焼結
原料層の通気性がよく、単位時間当たりの生産率が増加
する。
[0003] Limestone used in the above-mentioned sinter production process is used as a slag-making material in an amount of 10 wt. % Or more. The initial melt formation reaction during raw material sintering mainly starts at the contact point between limestone and fine ore, and limestone exhibits a binder function during sintering. This melt formation reaction has a significant effect on the quality of the sinter ore and the stability of the sintering operation. Further, since the amount of limestone is so large, the particle size has a considerable influence on the particle size distribution of the entire raw material charged into the sintering machine. For example, when the particle size distribution of limestone is large, the permeability of the sintering material layer on the sintering machine bed is good, and the production rate per unit time increases.

【0004】従って、焼結原料中の石灰石の粒度は焼結
鉱の製造工程において、極めて重要な因子である。この
ような石灰石の粒度に関して、従来、一般的には3mm
以下のものを使用することにより、焼結における融液生
成量を多くして焼結鉱の強度を確保すると共に、焼結鉱
の強度確保に伴なう成品歩留の向上(強度管理基準に対
する合格率の向上)を図ってきた。ところが、石灰石使
用の粒度管理基準を3mm以下にすると、焼結鉱の生産
性低下及び還元粉化性の劣化傾向が起こる。石灰石粒度
が小さいと生産性が低下する主な理由は、例えば1mm
程度以下の石灰石の場合、昇温過程の1100℃以上に
なると石灰石は容易にCaOとCO2とに分解し、粉鉱
石中の酸化鉄と速やかに反応して融液を生成する。その
ため、焼結の比較的初期段階より焼結層の通気性が悪化
して吸引風量が減少し、生産率が低下する。このよう
に、焼結鉱の強度及び歩留を一定水準に確保しつつも、
焼結鉱の生産性及び還元粉化性の悪い焼結鉱製造方法と
なっていた。
[0004] Therefore, the particle size of limestone in the sintering raw material is a very important factor in the sinter production process. Conventionally, regarding the particle size of limestone, conventionally, generally 3 mm
By using the following, the amount of melt generated during sintering is increased to secure the strength of the sinter, and the yield of products resulting from securing the strength of the sinter is improved (based on the strength management standards). Pass rate). However, if the limestone particle size control standard is set to 3 mm or less, the productivity of the sinter ore and the tendency to reduce pulverization deteriorate. The main reason why productivity decreases when the limestone particle size is small is, for example, 1 mm
In the case of limestone having a degree of less than or equal to 1,100 ° C. or more during the heating process, the limestone is easily decomposed into CaO and CO 2 , and quickly reacts with iron oxide in the fine ore to form a melt. Therefore, the air permeability of the sintered layer is deteriorated from the relatively early stage of sintering, the amount of suction air is reduced, and the production rate is reduced. In this way, while maintaining the strength and yield of the sinter at a certain level,
This is a method for producing sinter which has poor sinter productivity and reduced powdering properties.

【0005】そこで、石灰石粒度の管理基準を見直し、
3mm以上の石灰石を適正量配合することにより、焼結
鉱の強度確保及び成品歩留向上、並びに、還元粉化性の
改善及び生産性向上を両立させることを目指して各種提
案がなされている。
Therefore, the management standard of limestone particle size was reviewed,
Various proposals have been made with the aim of ensuring the strength of the sintered ore and improving the product yield, and at the same time improving the reduction pulverizability and improving the productivity by blending an appropriate amount of limestone of 3 mm or more.

【0006】例えば、特開昭57−54230号公報に
は、焼結鉱の還元粉化性を向上させることを目的とし
て、石灰石を粉砕・分級して(0.5〜1)mm以上の
ものの重量比が概ね1/2となるようにし、そして
(0.5〜1)mm以上のものを焼結機原料層の下層部
に多く、(0.5〜1)mm未満のものを焼結機原料層
の上層部に多くし、その比率の適正値を開示している
(以下、「先行技術1」という)。
For example, Japanese Patent Application Laid-Open No. 57-54230 discloses that limestone is crushed and classified (0.5 to 1) mm or more for the purpose of improving the reduction pulverizability of sinter. The weight ratio should be approximately 1/2, and those with (0.5-1) mm or more are more in the lower part of the sintering material layer, and those with less than (0.5-1) mm are sintered. It is increased in the upper part of the machine raw material layer, and an appropriate value of the ratio is disclosed (hereinafter referred to as “prior art 1”).

【0007】また、石灰石の粒度を微粒、細粒及び粗粒
に分け、微粒と粗粒領域のものに対しては上限の配合比
率を低目に設定し、中間の細粒領域のものに対しては下
限の配合比率を高目に設定することにより、強度及び歩
留を一定水準に確保しつつ、還元粉化性のよい焼結鉱を
製造しようとする提案がある。例えば、特開昭57−1
92228号公報には、石灰石の粒度が中間領域の1〜
3mmのものを50wt.%以上、3〜5mmの粗粒領
域のものを10wt.%以下、且つ0.25mm以下の
微粒領域のものを19wt.%以下に制限して他の原料
と配合する方法が開示されている(以下、「先行技術
2」という)。
The particle size of limestone is divided into fine particles, fine particles and coarse particles, and the upper limit of the ratio is set lower for fine particles and coarse particles. In addition, there is a proposal to produce a sintered ore with good reduction powdering property while securing strength and yield at a certain level by setting the lower limit of the mixing ratio to a higher value. For example, JP-A-57-1
No. 92228 discloses that the particle size of limestone is 1 to 1 in the intermediate region.
3 mm 50 wt. % Or more in a coarse-grained region of 3 to 5 mm. % Or less and 0.25 mm or less in a fine grain region of 19 wt. %, And a method of blending with other raw materials is described (hereinafter referred to as “prior art 2”).

【0008】更に、特開平7−252541号公報に
は、焼結原料の層厚方向の粒度分布を下層部で粗く、上
層部で細かくした粒度偏析強化型原料装入の焼結操業に
おいて、石灰石の粒度が大き過ぎることによる滓化不
足、即ち鉄鉱石と石灰石との反応不足による焼結歩留の
低下を回避しつつ、還元粉化性のよい焼結鉱を生産性よ
く製造することを目的としている。そして、焼結機の原
料層厚方向の粒度偏析を強くする機能をもった装入装置
を用いることを前提とし、粒度3〜5mmの石灰石の割
合を従来水準よりも多くして、石灰石全体の10〜30
wt.%の範囲内とした焼結鉱の製造方法を開示してい
る(以下、「先行技術3」という)。
Further, Japanese Patent Application Laid-Open No. 7-252541 discloses a limestone in a sintering operation for charging a grain size segregation strengthening type raw material in which the particle size distribution in the thickness direction of the sintering raw material is coarse in the lower layer and fine in the upper layer. The purpose of the present invention is to produce a sintered ore with good reducibility and pulverizability with good productivity while avoiding a decrease in sintering yield due to insufficient slagging due to an excessively large particle size of iron, that is, an insufficient reaction between iron ore and limestone. And Then, on the premise that a charging device having a function of strengthening the particle size segregation in the thickness direction of the raw material layer of the sintering machine is used, the ratio of limestone having a particle size of 3 to 5 mm is made larger than the conventional level, and 10-30
wt. % (Hereinafter referred to as “prior art 3”).

【0009】一方、鉄鉱石の供給面において、近年特に
赤鉄鉱(Fe23、ヘマタイト)や磁鉄鉱(Fe34
マグネタイト)等の良質な鉄鉱石が減少し、これに伴い
ゲーサイト(Fe23・nH2O)を多く含むピソライ
ト鉱石あるいはマラマンバ鉱石のように結晶水含有量が
高い、所謂「高結晶水鉱石」が増加している。結晶水の
鉱石中含有率は高いものでは10mass%程度に達す
る。このような高結晶水鉱石を高炉用焼結鉱として大量
に、しかも有利に使用する技術が強く要請されるに至っ
た。
On the other hand, in terms of iron ore supply, hematite (Fe 2 O 3 , hematite) and magnetite (Fe 3 O 4 ,
High-quality iron ore such as magnetite) is reduced, and a high crystal water content such as a pisolite ore or maramamba ore containing a large amount of goethite (Fe 2 O 3 .nH 2 O) is generated. Ore ”is increasing. The content of water of crystallization in ore reaches as high as about 10% by mass. There has been a strong demand for a technique for using such a highly crystalline water ore in a large amount and advantageously as a sinter for a blast furnace.

【0010】ところが、上述した高結晶水鉱石には、焼
結鉱製造原料として使用するに際し、一般に下記問題が
ある。 1.焼結原料の温度上昇に際して起こる結晶水離脱時の
熱分解反応に対して、熱補償が必要になり、この分だけ
粉コークスを多く必要とする。 2.結晶水離脱時の結果生じる多孔質化に起因して、焼
結原料の溶融反応過程で生成する融液により、局部的過
溶融反応を引き起こす。このような高結晶水鉱石の易溶
融性のため、焼結機のパレット内焼結原料層内の通気性
が阻害される。このため、焼結の生産率や歩留を低下さ
せる。 3.高結晶水鉱石は結晶化度が低く、粉化し易いので細
粒ないし微粉部分の割合が多い。このため、焼結原料の
造粒性に劣り、焼結機ベッド内の焼結原料層内通気性に
劣り、その結果焼結の生産率や歩留を低下させる。
However, the above-mentioned highly crystalline water ore generally has the following problems when used as a raw material for producing sinter. 1. Heat compensation is required for the thermal decomposition reaction at the time of elimination of water of crystallization that occurs when the temperature of the sintering raw material rises, and accordingly, more coke breeze is required. 2. Due to the porosity resulting from the elimination of water of crystallization, a local overmelting reaction is caused by the melt generated during the melting reaction of the sintering raw material. Due to the high melting property of such a high crystal water ore, air permeability in a sintering raw material layer in a pallet of a sintering machine is hindered. For this reason, the sintering productivity and yield are reduced. 3. Highly crystalline water ore has a low degree of crystallinity and is easily pulverized, so that the proportion of fine or fine powder is large. For this reason, the granulation of the sintering raw material is inferior and the permeability of the sintering raw material layer in the sintering machine bed is inferior, and as a result, the sintering production rate and yield are reduced.

【0011】従来、結晶水を(4〜5)mass%以上
含有する高結晶水鉱石を、混合原料中に占める割合を2
5mass%程度以上に増やすと、上述した第1〜第3
項の問題点が著しくなることがわかっている。
Conventionally, the ratio of highly crystalline water ore containing (4 to 5) mass% or more of crystallization water to the mixed raw material is 2%.
If it is increased to about 5 mass% or more, the first to third
It has been found that the problem of the term becomes significant.

【0012】高結晶水鉱石を使用する場合のこのような
問題に対して、従来技術においては、予め結晶水を除去
するという提案や、焼結過程における初期融液の組成を
制御して過溶融を抑制するといった提案がなされてい
る。
In order to solve such a problem when using highly crystalline water ore, the prior art proposes removing crystal water in advance, or controlling the composition of the initial melt in the sintering process to overmelt. Proposals have been made to curb this.

【0013】[0013]

【発明が解決しようとする課題】上述した先行技術はい
ずれも、所期の直接的な目標を達成している点では優れ
ている。しかしながら、いずれも下記の通りの問題点が
残されている。
The above prior arts are all excellent in that they achieve their intended direct goals. However, in each case, the following problems remain.

【0014】はじめに、石灰石の粒度制御による従来技
術について検討する。先行技術1によれば、石灰石の粒
度(0.5〜1)mm以下のものを約1/2以下にしな
ければならないが、石灰石は通常、山元から焼結鉱製造
工程へ搬入される場合には、(0.5〜1)mm以下の
石灰石の割合はこれよりも著しく多い。従って、何らか
の方法により当該粒度の石灰石の残部の活用方法の開発
が必要である。また、先行技術2においても、石灰石の
粒度0.25mm以下のものの割合を19wt.%以下
に制限するためには、先行技術1におけると同様、粒度
0.25mm以下のものの活用方法を開発しなければな
らない。先行技術2によれば、不要となる0.25mm
以下の微粒石灰石は、溶銑脱P、溶銑脱S、又は底吹き
転炉での気化脱P用に供することができると記載されて
いるが、粉塵発生のため貯蔵や搬送等ハンドリング上の
問題がある。また、焼結鉱製造工程の系内で活用できる
ことが工程運用上からも望ましい。
First, a conventional technique based on limestone particle size control will be discussed. According to Prior Art 1, the size of limestone having a particle size (0.5 to 1) mm or less must be reduced to about 、 or less. However, limestone is usually transported from a yamamoto to a sinter production process. The ratio of limestone of (0.5 to 1) mm or less is significantly higher than this. Therefore, it is necessary to develop a method of utilizing the remainder of the limestone having the particle size by any method. Also, in Prior Art 2, the proportion of limestone having a particle size of 0.25 mm or less was 19 wt. In order to limit the percentage to less than 0.2%, as in the prior art 1, it is necessary to develop a method of utilizing a particle having a particle size of 0.25 mm or less. According to Prior Art 2, 0.25 mm becomes unnecessary.
The following fine limestone is described as being able to be used for hot metal removal P, hot metal removal S, or vaporization removal P in a bottom-blowing converter. is there. It is also desirable from the viewpoint of the process operation that it can be used in the sinter production process.

【0015】一般に、焼結鉱の生産性向上に及ぼす焼結
原料の粒度構成は、原料層中の通気性確保の観点より、
適切な範囲内で粗粒である方が望ましい。その点から
は、原料の約10wt.%前後乃至それ以上を占める石
灰石の粒度分布も大きい方が生産性向上にとって望まし
い。ところで、先行技術3によれば、焼結原料の粒度偏
析形成用装入装置を使用し、配合する石灰石の粒度分布
を3〜5mmのものを10〜30wt.%の範囲内とす
ることにより、歩留を維持しつつ生産性の向上及び還元
粉化性の改善を図っている。しかしながら、石灰石粒度
が3mm以下のもののみに注目した場合の粒度分布は従
来と変わらない。従って、石灰石以外の原料の粒度構成
如何によっては、生産性の向上及び還元粉化性の改善が
行なわれない場合が発生する恐れがある。本発明者等の
実験結果によれば、上記恐れが発生する場合があること
が明らかとなった。
Generally, the particle size composition of the sintering raw material that affects the productivity of the sinter ore is determined from the viewpoint of ensuring the air permeability in the raw material layer.
It is desirable that the grains are coarse within an appropriate range. From that point, about 10 wt. It is desirable that the particle size distribution of the limestone occupying around% or more is large for improving the productivity. By the way, according to Prior Art 3, a limestone to be blended having a particle size distribution of 3 to 5 mm using a charging device for forming a particle size segregation of sintering raw material of 10 to 30 wt. %, Improvement in productivity and improvement in reduced pulverization while maintaining the yield are achieved. However, when attention is paid only to a limestone having a particle size of 3 mm or less, the particle size distribution is not different from the conventional one. Therefore, depending on the particle size configuration of the raw material other than limestone, there is a possibility that the productivity and the reduction pulverizability may not be improved. According to the experimental results of the present inventors, it has become clear that the above fear may occur.

【0016】上述したように、先行技術では、石灰石中
に占める微粒石灰石の割合の低減手段としては、篩い分
けにより微粒石灰石を除去し、これを焼結鉱製造工程の
系外に排出することを基本工程としているか、又は、粗
粒側石灰石粒子を所要範囲内に制限して混合付加して
も、当該粗粒側石灰石粒子を除く微粒石灰粒子の粒度分
布は従来と変わっていないことがわかる。かかる事項に
より引き起こされる焼結鉱製造上の問題点をなくす必要
がある。
As described above, in the prior art, as a means for reducing the proportion of fine limestone in limestone, fine limestone is removed by sieving and the fine limestone is discharged out of the sinter production process. It can be seen that the particle size distribution of the fine lime particles other than the coarse limestone particles is not different from the conventional one even if it is used as a basic step or the coarse limestone particles are limited to a required range and mixed and added. It is necessary to eliminate problems in sinter production caused by such matters.

【0017】次に、高結晶水鉱石の使用技術についてみ
る。これに関しては、前述したように、予め結晶水を除
去したり、焼結における初期融液の生成を制御抑制する
ために、焼結鉱配合原料中のスラグ化成分の組成を適切
化したり、更に高結晶水鉱石の事前処理を適切化すると
いった方法に頼っている。そして、焼結配合原料中の石
灰石粒度に注目した技術は見当たらない。
Next, the use technology of the highly crystalline water ore will be described. In this regard, as described above, in order to remove the water of crystallization in advance, or to control and suppress the generation of the initial melt in sintering, to optimize the composition of the slag-forming component in the sintering compounding raw material, It relies on appropriate pretreatment of highly crystalline water ores. And there is no technology that focuses on the limestone particle size in the sintering compound raw material.

【0018】そこで、この発明の課題は、石灰石を供給
する山元から受け入れる石灰石として、その粒度分布は
従来と変えることなく、焼結鉱製造の標準的操業時にお
いては、石灰石中に占める微粒領域のもの、例えば粒度
が(0.25〜1)mm以下のものの割合を低減させた
粒度分布の石灰石を用い、且つその低減分の石灰石を焼
結鉱製造工程の系外へ排出せずに活用することを前提と
し、焼結鉱の強度及び成品歩留を所要値に確保しつつ、
生産性の向上及び還元粉化性の改善が可能となる、焼結
鉱の製造技術を開発することにある。更に、石灰石以外
の各焼結原料の粒度分布に、実用上の変動が発生した場
合にあっても、焼結鉱の強度及び成品歩留と生産性及び
還元粉化性とのバランスを良好に保つことが可能となる
焼結鉱の製造技術を開発することにある。
Therefore, an object of the present invention is to provide a limestone which is received from a mine supplying limestone, without changing its particle size distribution from the conventional one, and in a standard operation of sinter ore production, a fine-grained area occupying the limestone. A limestone having a reduced particle size distribution, for example, a particle having a particle size of (0.25 to 1) mm or less is used, and the reduced amount of limestone is used without being discharged out of the sinter production process. Based on the premise that the strength of sinter and product yield are maintained at required values,
It is an object of the present invention to develop a sinter ore production technique capable of improving productivity and reducing pulverizability. Furthermore, even when the particle size distribution of each sintering raw material other than limestone fluctuates in practical use, the balance between the strength and product yield of the sinter and the productivity and reduced powderability is improved. An object of the present invention is to develop a technology for producing a sintered ore that can be maintained.

【0019】かくして、この発明の目的は、上記課題を
解決することにより、下方吸引式焼結機により強度及び
歩留を従来通り確保し、且つ還元粉化性が改善された焼
結鉱を生産性高く製造するための、高炉用焼結鉱の製造
方法を提供することにある。
Thus, an object of the present invention is to solve the above-mentioned problems and to produce a sintered ore in which the strength and the yield are secured by the downward suction type sintering machine and the reduced pulverizability is improved by the conventional method. It is an object of the present invention to provide a method for producing a sintered ore for a blast furnace for producing the sintered ore with high efficiency.

【0020】[0020]

【課題を解決するための手段】本発明者等は、上記観点
から試験研究を重ねた結果、下記知見を得た。
Means for Solving the Problems The inventors of the present invention have conducted the following studies from the above viewpoints, and have obtained the following findings.

【0021】先ず、石灰石の破砕処理工程における篩い
の目開きを、従来の3mmを5mmに変更して、石灰石
中に占める粒度3〜5mmの石灰石の割合を、従来法で
の8wt.%を34wt.%に増加させ、残部はいずれ
も従来通りの粒度分布の3mmアンダーの石灰石で構成
した石灰石を所定の配合率で他の焼結原料に配合し、従
来の常法により混合・造粒して擬似粒子を調製し、下方
吸引式焼結機に粒度偏析形成装入装置を用いて装入し、
標準の操業条件で焼成した。こうして、従来法と今回の
試験法とについて、粒度3〜5mmの石灰石の割合増加
による焼結鉱の生産性の向上及び還元粉化性の改善に及
ぼす効果を試験したところ、その効果は殆どみられなか
った。そして、試験結果の解析・検討の結果、明確な上
記効果が見られなかった原因は、粒度3〜5mmの石灰
石割合を増やしたにもかかわらず、3mm以下のものの
粒度分布は従来通りの同じ石灰石を使用したためである
との結論を得た。
First, the opening of the sieve in the limestone crushing process was changed from 3 mm to 5 mm in the conventional method, and the ratio of limestone having a particle size of 3 to 5 mm in the limestone was reduced to 8 wt. % To 34 wt. %, And the remainder is mixed with limestone composed of limestone with a particle size distribution of 3 mm under as usual and other sintering raw materials at a predetermined mixing ratio, and mixed and granulated by a conventional method to form a pseudo. The particles are prepared and charged into a downward suction type sintering machine using a particle size segregation forming charging device,
It was fired under standard operating conditions. In this way, the effect of increasing the proportion of limestone having a particle size of 3 to 5 mm on the improvement of the productivity of sinter and the improvement of the reduction pulverizability of the conventional method and the present test method was found to be almost ineffective. I couldn't. As a result of the analysis and examination of the test results, the reason why the above-mentioned effect was not clearly observed was that the particle size distribution of those having a particle size of 3 mm or less was the same as that of the conventional limestone despite increasing the proportion of limestone having a particle size of 3 to 5 mm. Was used.

【0022】そこで、粒度3mmアンダーの粒度分布が
従来の石灰石と同じ粒度分布を有する石灰石を篩い分け
装置で処理し、粒度0.25mmアンダーの石灰石のみ
を、平均粒径として1.7mmを目標として擬似粒子に
造粒し、これを配合原料中の本来の石灰石配合割合の一
部として添加した配合原料を調製した。こうして調製さ
れた配合原料を使用して焼結鉱を製造する試験を行なっ
た。こうして製造された焼結鉱は、強度の管理水準を維
持し、成品歩留は従来の水準を確保した。そしてしか
も、生産性の向上及び還元粉化性の改善効果があること
を見出した。
Therefore, limestone having a particle size distribution under 3 mm and having the same particle size distribution as conventional limestone is treated by a sieving apparatus, and only limestone having a particle size under 0.25 mm is targeted at an average particle size of 1.7 mm. Pseudo-particles were granulated, and a blended raw material was prepared by adding this as a part of the original limestone blending ratio in the blended raw material. A test for producing a sintered ore was performed using the blended raw materials thus prepared. The sintered ore produced in this way maintained the strength control level, and the product yield maintained the conventional level. In addition, they have found that there are effects of improving productivity and reducing pulverizability.

【0023】本発明者等は更に、上記焼結鉱製造試験条
件において、篩い分け装置の目開きを0.25mmから
1mmに変更して、以下、同様の試験を行なった。その
結果、焼結鉱の強度水準及び成品歩留、並びに生産性及
び還元粉化性の改善効果が更に増した。
The present inventors further performed the same test as described below, except that the opening of the sieving apparatus was changed from 0.25 mm to 1 mm under the above-mentioned sinter production test conditions. As a result, the effects of improving the strength level and product yield of the sinter, as well as the productivity and reduced pulverizability, were further increased.

【0024】この発明は、上記知見に基づきなされたも
のであり、その要旨は下記の通りである。即ち、請求項
1記載の高炉用焼結鉱の製造方法は、鉄鉱石に石灰石を
他の配合用原料と共に配合し、水分を添加し、擬似粒子
に造粒し、得られた擬似粒子を下方吸引式焼結機で焼結
する焼結鉱の製造方法において、上記石灰石を当該石灰
石の配合槽から切り出し、切り出された石灰石を篩い分
けし、篩上の石灰石についてはこれを上記の鉄鉱石及び
他の配合用原料と配合し、一方、篩下の石灰石について
はこれを予め造粒機で石灰石の擬似粒子に造粒し、得ら
れた当該石灰石擬似粒子を上記篩上の石灰石と同じよう
に、鉄鉱石及び他の配合用原料と配合する。こうして篩
上の石灰石と、予め擬似粒子化された篩下の石灰石とが
いずれも鉄鉱石及び他の配合用原料と配合された配合原
料を調製する。次いで、常法に従って水分を添加し、混
合・造粒して焼結用擬似粒子を調製する。こうして調製
された焼結用擬似粒子を焼結原料として下方吸引式焼結
機に装入し、高炉用焼結鉱を製造することに特徴を有す
るものである。
The present invention has been made based on the above findings, and the gist is as follows. That is, in the method for producing a sintered ore for a blast furnace according to claim 1, limestone is compounded with iron ore together with other raw materials for compounding, water is added, granulated into pseudo-particles, and the obtained pseudo-particles are lowered. In the method for producing a sintered ore to be sintered by a suction type sintering machine, the limestone is cut out from a mixing tank of the limestone, and the cut out limestone is sieved. It is blended with other ingredients for blending, while the limestone under the sieve is granulated in advance into granules of limestone by a granulator, and the obtained limestone pseudo particles are treated in the same manner as the limestone on the sieve. Blended with iron ore and other ingredients for blending. Thus, a blending raw material is prepared in which the limestone on the sieve and the limestone under the sieve that has been previously quasi-particled are blended with iron ore and other blending raw materials. Next, water is added according to a conventional method, mixed and granulated to prepare pseudo particles for sintering. The simulated particles for sintering thus prepared are charged into a downward suction type sintering machine as a sintering raw material to produce sinter for a blast furnace.

【0025】請求項2記載の高炉用焼結鉱製造の操業方
法は、請求項1に記載の焼結鉱の製造工程と、請求項1
に記載の焼結鉱の製造工程において上記配合槽から切り
出された石灰石を篩い分けすることなく、鉄鉱石及び他
の配合用原料と配合し、そして焼結用擬似粒子に調製
し、こうして得られた焼結用擬似粒子を下方吸引式焼結
機で焼結する焼結鉱の製造工程とを、随時切り替えて操
業することに特徴を有するものである。
According to a second aspect of the present invention, there is provided an operation method for producing a sinter for a blast furnace.
The limestone cut from the mixing tank in the sinter production process described in the above is blended with iron ore and other raw materials for compounding without sieving, and prepared into pseudo particles for sintering, and thus obtained. The method is characterized in that the sintering pseudo-particles are sintered by a downward suction type sintering machine, and the sinter production process is switched as needed to operate.

【0026】請求項3記載の高炉用焼結鉱の製造方法
は、請求項1記載の製造方法において、石灰石の篩い分
け粒度の分岐点を、1mm、0.5mm又は0.25m
mとして焼結鉱を製造することに特徴を有するものであ
る。
According to a third aspect of the present invention, there is provided a method for manufacturing a blast furnace sintered ore according to the first aspect, wherein the branching point of the limestone sieving particle size is 1 mm, 0.5 mm or 0.25 m.
The characteristic feature is that sinter is produced as m.

【0027】請求項4記載の高炉用焼結鉱製造の操業方
法は、請求項2記載の操業方法において、石灰石の篩い
分け粒度の分岐点を、1mm、0.5mm又は0.25
mmとして焼結鉱製造の操業をすることに特徴を有する
ものである。
According to a fourth aspect of the present invention, there is provided the operation method for producing a sinter for a blast furnace according to the second aspect, wherein the branch point of the limestone sieved particle size is 1 mm, 0.5 mm or 0.25 mm.
It is characterized in that it operates in the production of sinter ore as mm.

【0028】請求項5記載の高炉用焼結鉱の製造方法
は、請求項1又は3記載の製造方法において、上記焼結
用擬似粒子を下方吸引式焼結機のパレットに装入するに
際し、その装入装置として当該パレット上の原料層厚方
向の粒度偏析形成機能を有する装入装置を使用して装入
し、焼結鉱を製造することに特徴を有するものである。
According to a fifth aspect of the present invention, in the method for producing a blast furnace sintered ore according to the first or third aspect, the pseudo particles for sintering are charged into a pallet of a downward suction type sintering machine. As a charging device, the charging is performed using a charging device having a function of forming a grain size segregation in the thickness direction of the raw material layer on the pallet, thereby producing a sintered ore.

【0029】請求項6記載の高炉用焼結鉱製造の操業方
法は、請求項2又は4記載の操業方法において、上記焼
結用擬似粒子を下方吸引式焼結機のパレットに装入する
に際し、その装入装置として当該パレット上の原料層厚
方向の粒度偏析形成機能を有する装入装置を使用して装
入し、焼結鉱製造の操業をすることに特徴を有するもの
である。
According to a sixth aspect of the present invention, there is provided an operation method for producing a sinter for a blast furnace according to the second or fourth aspect, wherein the pseudo particles for sintering are charged into a pallet of a downward suction type sintering machine. It is characterized in that the pallet is charged by using a charging device having a function of forming a grain size segregation in the thickness direction of the raw material layer on the pallet, and the sinter is manufactured.

【0030】請求項7記載の高炉用焼結鉱の製造方法
は、請求項5記載の製造方法において、上記粒度偏析形
成機能を有する装入装置によりパレットに装入された原
料中CaO濃度についての当該原料層厚方向の分布を、
上層部から下層部に向かって高濃度になるように形成さ
せて焼結鉱を製造することに特徴を有するものである。
In a seventh aspect of the present invention, there is provided a method for producing a sintered ore for a blast furnace according to the fifth aspect, wherein the CaO concentration in the raw material charged on the pallet by the charging device having the function of forming a particle size segregation. The distribution in the raw material layer thickness direction,
It is characterized in that a sintered ore is produced by forming a high concentration from an upper layer portion toward a lower layer portion.

【0031】請求項8記載の高炉用焼結鉱製造の操業方
法は、請求項6記載の操業方法において、上記粒度偏析
形成機能を有する装入装置によりパレットに装入された
原料中CaO濃度についての当該原料層厚方向の分布
を、上層部から下層部に向かって高濃度になるように形
成させて焼結鉱製造の操業をすることに特徴を有するも
のである。
According to an eighth aspect of the present invention, there is provided an operation method for producing a sinter for a blast furnace according to the sixth aspect, wherein the CaO concentration in the raw material charged on the pallet by the charging apparatus having the function of forming the particle size segregation is provided. The distribution of the raw material layer in the thickness direction is formed so as to increase in concentration from the upper part to the lower part, and the sinter production is operated.

【0032】請求項9記載の高炉用焼結鉱の製造方法
は、請求項1、3、5又は7記載の製造方法において、
上記配合原料中の鉄鉱石として、結晶水を4mass%
以上含む鉄鉱石を主原料中25mass%以上配合して
焼結鉱を製造することに特徴を有するものである。
The method for producing a sintered ore for a blast furnace according to the ninth aspect is the production method according to the first, third, fifth or seventh aspect,
4 mass% of crystallization water as iron ore in the compounding raw material
The iron ore containing the above is blended in the main raw material in an amount of 25 mass% or more to produce a sintered ore.

【0033】請求項10記載の高炉用焼結鉱製造の操業
方法は、請求項2、4、6又は8記載の操業方法におい
て、上記配合原料中の鉄鉱石として、結晶水を4mas
s%以上含む鉄鉱石を主原料中25mass%以上配合
して焼結鉱製造の操業をすることに特徴を有するもので
ある。
According to a tenth aspect of the present invention, there is provided the operation method for producing a blast furnace sinter according to the second, fourth, sixth, or eighth aspect, wherein the iron ore in the compounding raw material comprises 4mass of crystallization water.
The iron ore containing s% or more is blended in the main raw material in an amount of 25 mass% or more to operate sinter production.

【0034】ここで、配合原料中の鉄鉱石とは、ブレン
ディング粉(B粉)及び単味の粉粒状鉄鉱石を指し、主
原料とは鉄鉱石、返鉱及びこれらに準じるものとする。
Here, the iron ore in the blended raw material refers to blending powder (B powder) and plain iron ore, and the main raw materials are iron ore, returned ore, and the like.

【0035】[0035]

【発明の実施の形態】次に、この発明を、図面を参照し
ながら説明する。
Next, the present invention will be described with reference to the drawings.

【0036】図1は、本発明の焼結鉱の製造方法、及び
焼結鉱製造の操業方法の実施形態の例を説明するための
高炉用焼結鉱製造フローである。粉鉱石1、石灰石2、
珪石3、粉コークス4、返鉱5及びその他雑原料6の各
原料を、それぞれの配合槽7から切り出し、所定の割合
で配合された配合原料8に水分9を添加し、混合機10
及び造粒機11で処理して擬似粒子化する。更に適宜粉
コークス12を添加し、コーティングミキサー13で処
理する。こうして造粒された擬似粒子形態の焼結原料1
4を焼結機15に装入し、焼結して塊成化する。焼結用
擬似粒子を焼結機15パレットに装入するに際しては、
原料層厚方向の粒度分布が、下層部に粗粒、上層部に細
粒となるように層厚方向偏析形成機能を有する装入装置
を使用する。焼結原料の粒子分布をこのように偏析さ
せ、且つ燃料の粉コークス量分布を下層部に比較して上
層部に多くすることにより、焼結鉱の品質及び生産性の
向上に効果的である。焼結機から排鉱後、熱間破砕し冷
却し、破砕・整粒して焼結鉱成品を得る。
FIG. 1 is a sinter ore production flow for a blast furnace for explaining an example of an embodiment of a method for producing a sinter ore and an operation method for sinter ore production according to the present invention. Fine ore 1, limestone 2,
The raw materials of silica stone 3, coke breeze 4, returned ore 5 and other miscellaneous raw materials 6 are cut out from the respective mixing tanks 7, and water 9 is added to the mixed raw materials 8 mixed at a predetermined ratio, and
Then, the mixture is processed by the granulator 11 to form pseudo particles. Further, coke breeze 12 is appropriately added, and the mixture is treated by the coating mixer 13. Pulverized sintering raw material 1 in the form of pseudo particles
4 is charged into a sintering machine 15 and sintered to agglomerate. When charging the pseudo particles for sintering to the pallet of the sintering machine 15,
A charging apparatus having a segregation forming function in the thickness direction is used so that the particle size distribution in the thickness direction of the raw material layer is coarse in the lower layer and fine in the upper layer. By segregating the particle distribution of the sintering raw material in this manner and increasing the fuel coke distribution in the upper layer compared to the lower layer, it is effective in improving the quality and productivity of the sinter. . After mining from the sintering machine, hot crushing and cooling, crushing and sizing are performed to obtain a sintered mineralized product.

【0037】本発明の基本的特徴は、上記工程におい
て、原料の石灰石2はその粒度分布が従来と変わること
のないものを配合槽7から切り出すが、図1の焼結鉱製
造フローに示したように、原料石灰石2の事前処理とし
て、篩い分け装置16で篩い分けし、得られた所定粒度
以下の篩下石灰石17については小型造粒機18で造粒
する。なお、篩い分け装置16の方式としては、微粒子
の篩い分けに適したものとして、従来の振動スクリーン
ではなく、スクリーン自体を緊張・弛緩させる方式のジ
ャンピングスクリーンを用いれば、より細かい粒度の石
灰石まで、目詰まりトラブルなく篩い分けができるので
望ましい。こうして、微粒石灰石を含む篩下石灰石17
の粒度分布を大きい方向に変化させた石灰石擬似粒子1
9に調製する。これを篩上石灰石20と同様、他の配合
用原料と配合することにある。
The basic feature of the present invention is that, in the above-mentioned process, limestone 2 as a raw material is cut out from the mixing tank 7 with the particle size distribution unchanged from the conventional one. As described above, as a pretreatment of the raw material limestone 2, the raw material limestone 2 is sieved by the sieving device 16, and the obtained undersized limestone 17 having a predetermined particle size or less is granulated by the small granulator 18. In addition, as a method of the sieving device 16, as a device suitable for sieving fine particles, instead of a conventional vibrating screen, if a jumping screen of a method of tensioning and relaxing the screen itself is used, up to limestone of finer particle size, This is desirable because sieving can be performed without clogging trouble. Thus, the sieved limestone 17 containing fine limestone
Limestone Pseudo-particles 1 with the particle size distribution changed in the larger direction
Prepare to 9. This is to mix it with other compounding raw materials like the limestone 20 on the sieve.

【0038】この方法によれば、焼結工場へ受け入れ
られた石灰石2の内、例えば−0.5mmあるいは−
0.25mmといった微粒側の石灰石の粒度分布を適切
な量だけ嵩上げして、微粒石灰石の配合割合を減らすこ
とになる。勿論、−1mmの細粒部分についても同様
に、粒度分布を嵩上げして同じ効果が得られる。こうす
ることにより、焼結用配合原料中に占める微粒石灰石の
割合を減らそうとする場合に問題となる、焼結工程系外
へのそれの排出に伴なう活用方法の開発問題が解消され
る。微粒石灰石として、−0.25mm、−0.5mm
あるいは−1mmの粒度の石灰石を擬似粒子化すれば、
焼結鉱成品の還元粉化性の改善効果に対して有利であ
る。
According to this method, of the limestone 2 received by the sintering plant, for example, -0.5 mm or-
The particle size distribution of the fine limestone such as 0.25 mm is raised by an appropriate amount to reduce the mixing ratio of the fine limestone. Of course, the same effect can be obtained by raising the particle size distribution in the fine grain portion of -1 mm. This solves the problem of developing a method for utilizing the limestone in the sintering process, which is a problem when trying to reduce the proportion of fine-grained limestone in the compounding material for sintering. You. -0.25mm, -0.5mm as fine limestone
Or if limestone with a particle size of -1 mm is turned into pseudo particles,
This is advantageous for the effect of improving the reduction pulverizability of the sintered mineral product.

【0039】更に、上述した先行技術2及び3にて提
案されているように、還元粉化性改善のために、焼結工
場へ受け入れられた石灰石2を篩い分けし、単に、粗粒
側石灰石の割合を増やすと共に微粒側石灰石の割合を減
らすだけによる粒度構成の石灰石に調製した場合には、
微粒側石灰石のみに注目した粒度分布は、従来と相似で
あって全く変わっていないことになる。即ち、この場合
には、微粒側石灰石中の最小粒径は従来水準と変化しな
いことになる。これに起因する還元粉化性の劣化傾向を
改善することが困難である。ところが、本発明の石灰石
の事前における篩い分け及び微粒石灰石の造粒処理によ
り、その問題を解決することが可能となる。
Further, as proposed in the above-mentioned prior arts 2 and 3, the limestone 2 received by the sintering plant is sieved in order to improve the reduction pulverizability, and the limestone 2 is simply coarse-grained limestone. In the case of limestone with a particle size composition by simply increasing the proportion of limestone and decreasing the proportion of fine-grained limestone,
The particle size distribution focusing only on the fine-grained limestone is similar to the conventional one and has not changed at all. That is, in this case, the minimum particle size in the fine limestone does not change from the conventional level. It is difficult to improve the tendency of the reduction pulverizability to deteriorate due to this. However, the problem can be solved by preliminarily sieving limestone and granulating limestone of the present invention.

【0040】次に、本発明の焼結鉱製造の操業方法は、
図1の焼結鉱製造フローに示したように、原料石灰石2
を、(A)事前処理としての篩い分け処理とそれに伴な
う微粒石灰石の造粒処理とを行なう石灰石事前処理工程
21を経た後に、石灰石全量を配合用原料として使用す
る製造工程(以下、「製造工程A」という)と、(B)
上記石灰石事前処理工程21を経ることなく、直接、そ
の他の配合用原料と配合して使用する製造工程(以下、
「製造工程B」という)とを、随時切り替えて操業する
ものである。
Next, the operation method of the present invention for producing sinter is as follows.
As shown in the sinter production flow of FIG.
Is passed through a limestone pre-treatment step 21 in which (A) a sieving treatment as a pre-treatment and a granulation treatment of fine limestone accompanying the limestone pre-treatment are carried out, and then a production process (hereinafter, referred to as a “mixing raw material”). Manufacturing process A ”) and (B)
A production process (hereinafter, referred to as a limestone pre-treatment process 21) in which the limestone is directly blended with other blending raw materials without being used.
The operation is switched at any time from “manufacturing process B”.

【0041】ここで、製造工程A又は製造工程Bの選定
及び切り替えは、焼結鉱成品の品質管理基準に対するそ
の成績と、使用する配合用各原料の品質特性及び水準並
びに需給状況と、生産工程計画とを勘案しつつ、パレッ
トの焼結原料層の温度分布、通風性、及び焼成状態を考
察して決定する。また、成品品質の特性としては、特
に、強度と還元粉化性との良好なバランスに注目し、配
合用各原料の特性要因としては、特に、鉄鉱石の化学成
分組成及び粒度分布、石灰石を除く副原料やミルスケー
ル等雑原料の化学成分組成及び粒度、及び、粉コークス
の粒度等を考慮し、そして、生産工程計画に関連して生
産性の確保を図る。このように、製造工程AとBとを適
宜切り替える方式の操業をすることにより、成品品質が
安定し、原料費及び運転費が節約され、生産の工程運用
が安定化する。
Here, the selection and switching of the production process A or the production process B are performed based on the results of the quality control standards of the sintered mineral products, the quality characteristics and level of each raw material for compounding used, the supply / demand situation, the production process, and the like. Considering the plan, the temperature distribution, air permeability, and firing state of the sintering raw material layer of the pallet are determined and determined. In addition, as the characteristics of the product quality, attention is paid particularly to a good balance between strength and reduced powderability, and the characteristic factors of each raw material for compounding are, in particular, the chemical composition and particle size distribution of iron ore, limestone. Consider the chemical component composition and particle size of minor raw materials, such as excluding auxiliary raw materials and mill scale, and the particle size of coke breeze, etc., and ensure productivity in connection with the production process plan. In this way, by operating the method of appropriately switching between the manufacturing processes A and B, the product quality is stabilized, the raw material cost and the operating cost are saved, and the production process operation is stabilized.

【0042】また、本発明においては、配合用原料石灰
石は、前述したように事前処理してから配合用原料に使
用し、しかも、擬似粒子化された焼結原料を焼結機15
パレットへ装入するに際しては、パレット上原料層厚方
向の粒度分布が、下層部に粗粒、上層部に細粒がそれぞ
れ多く分布するように層厚方向偏析装入装置を使用す
る。このように、配合用原料石灰石を事前処理した場
合、即ち、篩下の粒度が例えば−1mm、−0.5m
m、あるいは−0.25mmの微粒石灰石を造粒して石
灰石擬似粒子を調製し、こうして微粒石灰石の平均粒径
を大きくしてから他の原料と配合した場合の、この配合
原料から造粒された擬似粒子を、層厚方向偏析装入装置
を使用した場合の原料層厚の内部状態、即ち、層厚方向
の粒度分布(但し、図1に示した符号10〜13の造粒
工程において真粒子のまま、及び石灰石擬似粒子のまま
残留したものも含む粒度分布)、擬似粒子に付着した石
灰石の形態・分布、及び、層厚方向のCaO成分分布
が、石灰石の事前処理をしない場合と異なることは明ら
かである。
In the present invention, the raw material limestone for blending is used as a raw material for blending after being pre-treated as described above.
When charging the pallet, a segregation charging apparatus in the thickness direction is used so that the particle size distribution in the thickness direction of the raw material layer on the pallet is such that coarse particles are distributed more in the lower part and fine particles are distributed more in the upper part. Thus, when the raw limestone for blending is pre-treated, that is, the particle size under the sieve is, for example, -1 mm, -0.5 m
m, or -0.25 mm granulated fine limestone to prepare limestone pseudo-particles, thus increasing the average particle size of the fine limestone and blending with other raw materials, granulated from this blended raw material The pseudo-particles obtained are subjected to the internal state of the raw material layer thickness when the layer thickness direction segregation charging apparatus is used, that is, the particle size distribution in the layer thickness direction (however, true in the granulation steps 10 to 13 shown in FIG. 1). Particle size distribution including particles and limestone pseudo-particles remaining), morphology and distribution of limestone attached to pseudo-particles, and CaO component distribution in layer thickness direction are different from those in the case where limestone is not pre-treated. It is clear.

【0043】本発明者等は、種々の検討・考察の結果、
下記結論を得た。
As a result of various studies and considerations, the present inventors
The following conclusions were obtained.

【0044】上述した石灰石の事前処理工程を付加する
ことにより、焼結機パレット上原料層中の層厚方向の粒
度分布は、石灰石の事前処理工程を付加しない場合と比
較して、上層部に占める細粒の割合が一層減少し、一
方、下層部に占める粗粒の割合が一層増加する。更に、
層厚方向の石灰石量、従ってCaO濃度は、上層部に低
く下層部に向かって高くなるとの結論を得た。図2に、
焼結機パレット上原料層中の層厚方向の粒度分布に関し
て、従来法(同図、(a))と本発明法(同図、
(b))につき模式的に比較した図を示し、図3に、層
厚方向のCaO濃度変化の推定を、従来法(同図、
(a))と本発明法(同図、(b))につき比較した図
を示す。下方吸引式焼結機においては、このように、原
料層中上層部においては、石灰石量の低減による分解反
応に伴なう吸熱反応の減少により温度が上昇傾向を示
し、焼結鉱成品の強度及び歩留が向上する。一方、原料
層中下層部においては、粗粒側石灰石量の増加により通
気性が改善され、更に冷却速度が向上するので、生産性
及び還元粉化性が向上する。
By adding the above-described limestone pretreatment step, the grain size distribution in the layer thickness direction in the raw material layer on the pallet of the sintering machine becomes larger in the upper part compared with the case where the limestone pretreatment step is not added. The proportion of fine grains occupying further decreases, while the proportion of coarse grains occupying the lower part further increases. Furthermore,
It was concluded that the amount of limestone in the thickness direction, and thus the CaO concentration, was lower in the upper part and higher in the lower part. In FIG.
Regarding the particle size distribution in the layer thickness direction in the raw material layer on the pallet of the sintering machine, the conventional method (FIG. 3A) and the method of the present invention (FIG.
FIG. 3 is a diagram schematically comparing (b)), and FIG. 3 shows an estimation of a CaO concentration change in a layer thickness direction by a conventional method (FIG.
(A)) and a diagram comparing the method of the present invention (the same figure, (b)). As described above, in the lower suction type sintering machine, in the upper part of the raw material layer, the temperature tends to increase due to the decrease in the endothermic reaction accompanying the decomposition reaction due to the reduction in the amount of limestone, and the strength of the sintered mineral product And the yield is improved. On the other hand, in the lower part of the raw material layer, the permeability is improved by increasing the amount of coarse-grained limestone, and the cooling rate is further improved, so that the productivity and the reduction pulverization property are improved.

【0045】上述した通り、微粒側粒度の石灰石の擬似
粒子化により、パレット内焼結原料層中の通気性改善効
果に助けられて、高結晶水鉱石多量使用時の通気性劣化
が緩和されることも確認した。
As described above, quasi-granularization of limestone having a finer grain size is helped by the effect of improving the permeability in the sintering material layer in the pallet, and the deterioration of the permeability when a large amount of highly crystalline water ore is used is alleviated. I also confirmed that.

【0046】[0046]

【発明の効果】焼結鉱成品の強度と歩留を確保し、その
上で更にその生産性向上と還元粉化性の改善をするため
に、焼結原料用石灰石の粒度分布を粗粒化方向に調整す
る方法においては、従来、微粒領域の石灰石、例えば−
0.5mmあるいは−0.25mmの微粒石灰石を焼結
工程の系外に排出しており、その使用に有効な利用方法
がなかったが、この発明によれば、簡単な事前処理によ
り微粒領域の石灰石もすべて焼結鉱製造用原料として使
用することが可能である。また、焼結鉱製造時の原料品
質特性や水準、原料の需給状況、生産工程計画を勘案し
ながら、成品品質管理基準と現在の品質成績との比較、
及び品質以外の操業成績に応じて、上記石灰石の事前処
理の要否を判断し、コスト低減操業を行なうことができ
る。更に、焼結機パレット上原料の層厚方向の粒度分布
及び成分濃度分布が一層改善されて、成品の強度及び歩
留確保と、生産性向上及び還元粉化性改善とのより良好
なバランスをとることができる。更に、このような石灰
石粒度の制御技術による焼結ベッド内通気性の改善によ
り、高結晶水鉱石の多量配合操業が安定化する。そのた
め、原料供給動向にスムーズに対応できると共に、原料
コスト低減が図られる。本発明によれば、上述したよう
な高炉用焼結鉱の製造方法、及び高炉用焼結鉱製に関す
る操業方法を提供することができ、工業上有用な効果が
もたらされる。
According to the present invention, the grain size distribution of limestone for sintering raw materials is coarsened in order to secure the strength and yield of sintered mineral products, and further improve the productivity and the reduction pulverizability. In the method of adjusting in the direction, conventionally, limestone in a fine-grain area, for example,-
0.5 mm or -0.25 mm of fine limestone is discharged out of the sintering process, and there is no effective method for its use. All limestone can be used as a raw material for sinter production. Also, taking into account the quality and characteristics of raw materials at the time of sinter production, the supply and demand of raw materials, and the production process plan, compare the quality control standards with current quality results,
In addition, it is possible to judge whether or not the pretreatment of the limestone is necessary according to the operation result other than the quality, and perform the cost reduction operation. Furthermore, the particle size distribution and component concentration distribution of the raw material on the sintering machine pallet in the layer thickness direction are further improved, and a better balance between product strength and yield assurance, productivity improvement and reduction powdering property improvement is achieved. Can be taken. Furthermore, the improvement of air permeability in the sintering bed by such a limestone particle size control technique stabilizes the operation of blending a large amount of highly crystalline water ore. Therefore, it is possible to smoothly respond to the raw material supply trend and reduce the raw material cost. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the above-mentioned sintered ore for blast furnaces, and the operation method regarding the production of sintered ore for blast furnaces can be provided, and an industrially useful effect is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焼結鉱の製造方法、及び焼結鉱製造の
操業方法の実施形態を説明するための高炉用焼結鉱製造
フローである。
FIG. 1 is a sinter ore production flow for a blast furnace for describing an embodiment of a method for producing a sinter ore and an operation method for sinter production according to the present invention.

【図2】焼結機パレット上原料層中の層厚方向の粒度分
布に関して、従来法と本発明法につき比較した模式図で
ある。
FIG. 2 is a schematic diagram comparing a particle size distribution in a layer thickness direction in a raw material layer on a sintering machine pallet with a conventional method and the present invention method.

【図3】焼結機パレット上原料層中の層厚方向のCaO
濃度変化に関して、従来法と本発明法につき推定比較し
た図である。
FIG. 3 CaO in the thickness direction of the raw material layer on the pallet of the sintering machine
FIG. 5 is a diagram showing a comparison between a conventional method and a method according to the present invention regarding a change in concentration.

【符号の説明】[Explanation of symbols]

1 粉鉱石 2 石灰石 3 珪石 4 粉コークス 5 返鉱 6 その他雑原料 7 配合槽 8 配合原料 9 水分 10 混合機 11 造粒機 12 粉コークス 13 コーティングミキサー 14 焼結原料 15 焼結機 16 篩い分け装置 17 篩下石灰石 18 小型造粒機 19 石灰石擬似粒子 20 篩上石灰石 21 石灰石事前処理工程 DESCRIPTION OF SYMBOLS 1 Fine ore 2 Limestone 3 Silica 4 Coke breeze 5 Return ore 6 Other miscellaneous raw materials 7 Blending tank 8 Blended raw material 9 Water 10 Mixer 11 Granulator 12 Granulated coke 13 Coating mixer 14 Sintering raw material 15 Sintering machine 16 Sieving device 17 Limestone under sieve 18 Small granulator 19 Limestone pseudo-particle 20 Limestone on sieve 21 Limestone pretreatment process

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 秀明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K001 AA10 BA02 CA34 CA39 CA41 GA10 GB02  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Sato 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4K001 AA10 BA02 CA34 CA39 CA41 GA10 GB02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 鉄鉱石に石灰石を他の配合用原料と共に
配合し、水分を添加し、擬似粒子に造粒し、得られた擬
似粒子を下方吸引式焼結機で焼結する焼結鉱の製造方法
において、 前記石灰石を当該石灰石の配合槽から切り出し、切り出
された石灰石を篩い分けし、篩上の石灰石はこれを前記
鉄鉱石及び他の配合用原料と配合し、篩下の石灰石はこ
れを石灰石の擬似粒子に造粒し、得られた当該石灰石擬
似粒子を前記鉄鉱石及び他の配合用原料と配合し、こう
して前記篩上の石灰石及び篩下の石灰石が共に前記鉄鉱
石及び他の配合用原料と配合された配合原料から焼結用
擬似粒子を調製し、こうして調製された焼結用擬似粒子
を焼結原料として用いることを特徴とする、高炉用焼結
鉱の製造方法。
1. A sinter in which limestone is mixed with iron ore together with other raw materials for mixing, water is added, granulated into pseudo-particles, and the obtained pseudo-particles are sintered by a downward suction type sintering machine. In the manufacturing method, the limestone is cut out from the limestone blending tank, the cut limestone is sieved, the limestone on the sieve is blended with the iron ore and other raw materials for blending, and the limestone under the sieve is This is granulated into limestone pseudo-particles, and the obtained limestone pseudo-particles are blended with the iron ore and other compounding raw materials. Thus, the limestone on the sieve and the limestone under the sieve are both the iron ore and the other. A sintering ore for a blast furnace, characterized in that pseudo-particles for sintering are prepared from the raw material for mixing and the raw material for mixing, and the pseudo-particles for sintering thus prepared are used as a raw material for sintering.
【請求項2】 請求項1記載の焼結鉱の製造工程と、請
求項1記載の焼結鉱の製造工程において前記配合槽から
切り出された石灰石を篩い分けすることなく、鉄鉱石及
び他の配合用原料と配合し、そして焼結用擬似粒子に調
製し、こうして得られた焼結用擬似粒子を下方吸引式焼
結機で焼結する焼結鉱の製造工程とを、随時切り替えて
操業することを特徴とする、高炉用焼結鉱製造の操業方
法。
2. A process for producing a sinter according to claim 1 and a process for producing a sinter according to claim 1, wherein the limestone cut from the mixing tank is not sieved, and iron ore and other limestone are removed. The production process of sinter, which mixes with the raw materials for compounding and prepares pseudo-particles for sintering, and sinters the pseudo-particles for sintering thus obtained with a downward suction type sintering machine, is switched as needed to operate An operation method for producing sinter for a blast furnace, comprising:
【請求項3】 前記石灰石の篩い分け粒度の分岐点を、
1mm、0.5mm又は0.25mmとする、請求項1
記載の高炉用焼結鉱の製造方法。
3. The branching point of the limestone sieving particle size,
2. The method according to claim 1, wherein the distance is 1 mm, 0.5 mm, or 0.25 mm.
A method for producing a sintered ore for a blast furnace according to the above.
【請求項4】 前記石灰石の篩い分け粒度の分岐点を、
1mm、0.5mm又は0.25mmとする、請求項2
記載の高炉用焼結鉱製造の操業方法。
4. The branching point of the limestone sieving particle size,
The thickness is set to 1 mm, 0.5 mm or 0.25 mm.
An operation method for producing a sintered ore for a blast furnace as described above.
【請求項5】 前記焼結用擬似粒子を前記下方吸引式焼
結機のパレットに装入するに際し、その装入装置として
当該パレット上の原料層厚方向の粒度偏析形成機能を有
する装入装置を使用する、請求項1又は3記載の高炉用
焼結鉱の製造方法。
5. A charging device having a function of forming a grain size segregation in the thickness direction of a raw material layer on the pallet when charging the sintering pseudo particles into a pallet of the downward suction type sintering machine. 4. The method for producing a sintered ore for a blast furnace according to claim 1 or 3, wherein:
【請求項6】 前記焼結用擬似粒子を前記下方吸引式焼
結機のパレットに装入するに際し、その装入装置として
当該パレット上の原料層厚方向の粒度偏析形成機能を有
する装入装置を使用する、請求項2又は4記載の高炉用
焼結鉱製造の操業方法。
6. A charging device having a function of forming a grain size segregation in a thickness direction of a raw material layer on the pallet when charging the sintering pseudo particles into a pallet of the downward suction type sintering machine. The operation method for producing a sinter for a blast furnace according to claim 2 or 4, wherein
【請求項7】 前記粒度偏析形成機能を有する装入装置
により前記パレットに装入された原料中CaO濃度につ
いての当該原料層厚方向の分布を、上層部から下層部に
向かって高濃度になるように形成させることを特徴とす
る、請求項5記載の高炉用焼結鉱の製造方法。
7. The distribution of the CaO concentration in the raw material loaded in the pallet in the raw material layer in the thickness direction of the raw material charged into the pallet by the charging device having the function of forming the particle size segregation becomes higher from the upper part to the lower part. The method for producing a sintered ore for a blast furnace according to claim 5, wherein the sinter is formed as follows.
【請求項8】 前記粒度偏析形成機能を有する装入装置
により前記パレットに装入された原料中CaO濃度につ
いての当該原料層厚方向の分布を、上層部から下層部に
向かって高濃度になるように形成させることを特徴とす
る、請求項6記載の高炉用焼結鉱製造の操業方法。
8. The distribution of the CaO concentration in the raw material charged into the pallet loaded in the pallet by the charging device having the particle size segregation forming function in the thickness direction of the raw material layer becomes higher from the upper part to the lower part. The operation method for producing a sinter for a blast furnace according to claim 6, wherein the sinter is formed as described above.
【請求項9】 前記配合原料中の前記鉄鉱石として、結
晶水を4mass%以上含む鉄鉱石を主原料中25ma
ss%以上配合することを特徴とする、請求項1、3、
5又は7記載の高炉用焼結鉱の製造方法。
9. An iron ore containing 4 mass% or more of crystallization water as the iron ore in the raw material is 25 ma in the main raw material.
Claims 1 and 3, characterized in that ss% or more is blended.
8. The method for producing a blast furnace sintered ore according to 5 or 7.
【請求項10】 前記配合原料中の前記鉄鉱石として、
結晶水を4mass%以上含む鉄鉱石を主原料中25m
ass%以上配合することを特徴とする、請求項2、
4、6又は8記載の高炉用焼結鉱製造の操業方法。
10. The iron ore in the compounding raw material,
Iron ore containing 4 mass% or more of crystallization water in the main raw material 25m
ass% or more, characterized in that:
The operation method for producing a sinter for a blast furnace according to 4, 6, or 8.
JP2000301634A 1999-10-01 2000-10-02 Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace Pending JP2001164325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000301634A JP2001164325A (en) 1999-10-01 2000-10-02 Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28155499 1999-10-01
JP11-281554 1999-10-01
JP2000301634A JP2001164325A (en) 1999-10-01 2000-10-02 Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace

Publications (1)

Publication Number Publication Date
JP2001164325A true JP2001164325A (en) 2001-06-19

Family

ID=26554233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000301634A Pending JP2001164325A (en) 1999-10-01 2000-10-02 Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace

Country Status (1)

Country Link
JP (1) JP2001164325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299092A (en) * 2008-06-10 2009-12-24 Jfe Steel Corp Method for operating vertical furnace, and facility for preventing coke to be charged into vertical furnace from being powdered in furnace
CN110132013A (en) * 2019-06-11 2019-08-16 山东钢铁股份有限公司 A kind of hearth layer for sintering process optimization and with addition of technical equipment
CN116144921A (en) * 2022-12-07 2023-05-23 中冶长天国际工程有限责任公司 Material distribution method for composite agglomeration of sintering machine and composite agglomerate ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299092A (en) * 2008-06-10 2009-12-24 Jfe Steel Corp Method for operating vertical furnace, and facility for preventing coke to be charged into vertical furnace from being powdered in furnace
CN110132013A (en) * 2019-06-11 2019-08-16 山东钢铁股份有限公司 A kind of hearth layer for sintering process optimization and with addition of technical equipment
CN116144921A (en) * 2022-12-07 2023-05-23 中冶长天国际工程有限责任公司 Material distribution method for composite agglomeration of sintering machine and composite agglomerate ore

Similar Documents

Publication Publication Date Title
AU2006335814B2 (en) Method for manufacturing metallic iron
JP5477170B2 (en) Method for producing sintered ore
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP3736500B2 (en) Method for producing sintered ore
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP3797184B2 (en) Method for producing sintered ore
JPH0816249B2 (en) Pretreatment method in agglomerated ore production
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JPH06220549A (en) Pretreatment of raw material to be sintered
JPH03111521A (en) Production of sintered ore
JP2000169916A (en) High quality sintered ore and production thereof
JPH0819486B2 (en) Manufacturing method of sinter for blast furnace using high goethite ore as raw material
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPH0480327A (en) Pretreatment of raw material for sintering
JP2011179090A (en) Method for producing granulated iron
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JP2711739B2 (en) Sinter production method
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPS5935971B2 (en) How to process sintered ore
JP2002020819A (en) Method for pretreating sintering raw material
JPH10317069A (en) Sintering raw material treatment
JPS60248827A (en) Preliminary treatment of sintered raw material
JP4415690B2 (en) Method for producing sintered ore
JPH09279260A (en) Method for agglomerating iron ore

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921