JP3797184B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP3797184B2
JP3797184B2 JP2001311867A JP2001311867A JP3797184B2 JP 3797184 B2 JP3797184 B2 JP 3797184B2 JP 2001311867 A JP2001311867 A JP 2001311867A JP 2001311867 A JP2001311867 A JP 2001311867A JP 3797184 B2 JP3797184 B2 JP 3797184B2
Authority
JP
Japan
Prior art keywords
limonite
ore
raw material
amount
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001311867A
Other languages
Japanese (ja)
Other versions
JP2003113426A (en
Inventor
親司 上城
勝 松村
尊三 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001311867A priority Critical patent/JP3797184B2/en
Publication of JP2003113426A publication Critical patent/JP2003113426A/en
Application granted granted Critical
Publication of JP3797184B2 publication Critical patent/JP3797184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塊状の褐鉄鉱を焼結原料として使用するときに問題となる発塵や原料歩留の低下を低減できる焼結鉱の製造方法に関する。
【0002】
【従来の技術】
高炉において使用される鉄源としては、一般に、塊状の鉄鉱石、焼結鉱そしてペレットが使用され、塊状の鉄鉱石としては主に赤鉄鉱(Fe2O3:Hematite)、磁鉄鉱(Fe3O4:Magnetite)等が使用されてきた。しかし近年、これらの良質な塊状の鉄鉱石の産出量が減少するにつれ、針鉄鉱(Fe2O3・H2O:Goethite)を多量に含有する褐鉄鉱の使用量が次第に増加する傾向にある。この褐鉄鉱は他の鉄鉱石に比べ高炉原料として劣質であるが、安価であるため、製銑コストの低減化を狙い褐鉄鉱を高炉で使用する技術が必要となってきている。
【0003】
この褐鉄鉱を高炉で使用するときに最も問題になるのが、昇温時に褐鉄鉱中の結晶水が分解して粉化することである。粉化し易い褐鉄鉱を高炉に装入すると、昇温中に多量の粉が発生し、高炉内に堆積した部分で通気性が阻害され圧損が大きくなる。この圧損が大きくなった部分では還元ガスが流れることが困難となるので、その部分では昇温遅れや還元遅れが発生し、高炉内の各種反応が円周方向で不均一となり、高炉操業が不安定になるという問題が起きる。
【0004】
粉発生量がさらに増加すると、ついには圧損の増大により、圧損が装入物の荷重を上回り、圧損の増大部位で吹き抜けが起こることになる。ここで吹き抜けを回避するために送風量を下げれば、出銑量の低下や微粉炭吹き込み量の低下が起こり、溶銑製造コストを上昇させる事態となる。そこで実操業では、褐鉄鉱の塊鉱を少量ずつ使用し、高炉の通気性が悪化しない限界量を見極め、その限界量を超えない範囲で使用しているのが現状である。また、褐鉄鉱を焼結鉱原料として使用する技術が提案されている。
【0005】
例えば、特開昭60−194023号公報には、焼結機で事前に焼結鉱原料を熱処理し、付着水分及び結晶水を除去し、粉化を抑制する方法が開示されている。すなわち、同公報には、通常の粉末原料、返鉱及びコークスブリーズよりなる配合原料の混合物に、10〜60mmの粒径の塊鉱を重量比で最高40%まで混合した焼結原料を使用し、焼結鉱を製造する方法が開示されている。この方法では、グレート上の配合原料層を上層、中層および下層に分け、塊鉱分は上層に2.3%、中層に12.9%、下層に84.3%含有し、上層及び中層においては塊鉱が均一分散した焼結鉱が得られ、下層では塊鉱主体の層を得ることができる。このように、塊鉱が下層に集中することを利用して、焼結原料の下に置かれる床敷鉱を塊鉱に肩代わりさせ、床敷鉱供給設備を不要にすることができる。
【0006】
【発明が解決しようとする課題】
しかし同公報に開示された発明(以下、従来技術ともいう)は、塊鉱として褐鉄鉱を使用した場合には、種々の問題が発生する。すなわち、前記下層への偏析を利用して床敷とした塊鉱の褐鉄鉱を使用した場合には、褐鉄鉱中の結晶水が分解する際に塊鉱が崩壊し粉状になる。この塊鉱の粉化現象により発生した粉体は、ダストとして系外に排出され、環境問題となる発塵や原料歩留の低下を引き起こすため改善が必要である。
【0007】
本発明の目的は、塊状の褐鉄鉱を焼結原料として使用するときに従来技術で問題となる発塵や原料歩留の低下を低減できる焼結鉱の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、塊鉱の褐鉄鉱を焼結原料として使用する方法について検討した結果、下記の知見を得た。
【0009】
(A)塊状の褐鉄鉱(以下、単に塊鉱ともいう)が焼結機内の昇温により結晶水の分解に伴って粉化したとき、周囲にCaOを含有する粉体(以下、CaO含有粉体ともいう)が前記の粉化した褐鉄鉱(以下、発生粉ともいう)の周囲に存在すれば、CaO含有粉体が溶剤となって発生粉を溶解し焼結化する。
【0010】
(B)床敷をした上で、CaO含有粉体に水分を添加し造粒した粒子中に塊鉱を配合し焼結化したところ、発生粉由来のダスト発生量を低減させることができる。
【0011】
(C)造粒した粒子中に塊鉱を配合するときに、混合機で1分間混合してから焼結化したところ、ダスト発生量がさらに低減する。
(D)一方、塊鉱とCaO含有粉体とを始めから配合し、水分を添加して造粒した試験を行ったところ、ダスト発生量は軽減されたが、塊鉱とCaO含有粉体とが擬似粒子化し、融体が充填層下部で過剰に生成するため通気性が悪化し、焼結反応の進行が困難となり原料歩留が低下する。
【0012】
本発明は、以上の知見に基づいてなされたもので、その要旨は、下記のとおりである。
(1)褐鉄鉱を含む鉄鉱石原料とその他の副原料とから成る配合原料を焼結機のパレット上に供給して焼結することで焼結鉱を製造する方法において、前記配合原料の一部である粒径が5〜40mmの褐鉄鉱を除いた配合原料を造粒後、前記粒径が5〜40mmの褐鉄鉱を5〜20質量%配合することを特徴とする焼結鉱の製造方法。
【0013】
(2)前記配合原料を混合機で混合することを特徴とする上記(1)に記載の焼結鉱の製造方法。
【0014】
【発明の実施の形態】
図1は、本発明の焼結鉱の製造方法例を示す概念図である。
同図に示すように、床敷鉱ホッパー1から床敷鉱2をパレット3上に供給し、塊状の褐鉄鉱と、塊状の褐鉄鉱を除く粉状の原料に水分を添加して造粒設備4で造粒した造粒物とからなる配合原料をサージホッパー5からドラムフィーダ6によってスローピングプレート7を介してパレット3に装入して焼結鉱を製造する。造粒設備4は、一般に転動型造粒機や高速撹拌ミキサーが用いられる。造粒設備4への水は、塊状の褐鉄鉱を除く粉状の原料の水分含有量として、5〜8質量%(以下、単に%で質量%を表す)とするように添加することが好ましい。その理由は、水分が5%未満では未造粒の原料が残留するおそれがあり、8%を超えると、造粒された疑似粒子間の空隙に水分が存在し、通気性が悪化するおそれがあるからである。造粒された疑似粒子の粒径は、現在稼働中の焼結機に装入されている原料と同様であり、算術平均粒子径で3〜5mm程度である。
【0015】
床敷鉱2としては、焼結鉱が使用され、粒径は5〜20mm程度のものが使用される。
図2は、配合原料を混合機で混合する工程を含む概念図である。
【0016】
同図に示すように、塊状の褐鉄鉱と、塊状の褐鉄鉱を除く粉状の原料に水分を添加して造粒設備4で造粒した造粒物とからなる配合原料を混合機8に装入して混合操作を行う。混合機8は、転動型造粒機が使用されるが、造粒を目的とする使用ではなく、単なる混合を目的として使用するため、混合時間は造粒時よりも短くなる。混合時間は、1〜6分程度でよい。
【0017】
本発明で使用する褐鉄鉱とは結晶水を多く含有する鉄鉱石であり、褐鉄鉱としてはピソライト鉱やマラマンバ鉱があり、これらは結晶水を5.0質量%以上含有する。
【0018】
前記塊状の褐鉄鉱を除く粉状の原料には、粉状鉱石(以下、粉鉱ともいう)、ドロマイト、蛇紋岩、石灰石、返鉱、粉コークス等があり、その粒径は、従来通り10mm以下である。
【0019】
図3は、塊状褐鉄鉱の配合量と、ダスト増加量及び冷間通気性指数(JPU)変化量との関係を示すグラフである。なお、図中のダスト増加量は下記(1)式により定義され、冷間通気性指数(JPU)変化量は下記(2)式により定義される。また、塊状褐鉄鉱としては、粒径が10〜20mmであり、組成が表1に示すものを使用した。
【0020】
ダスト増加量(%)=(b−a)×100/a (1)
但し、a:塊状褐鉄鉱を配合しなかったときのダスト量(dryg)
b:塊状褐鉄鉱を配合したときのダスト量(dryg)
冷間通気性指数(JPU)変化量=(h−g)×100/g (2)
但し、g:塊状褐鉄鉱を配合しなかったときの冷間通気性指数(JPU)
h:塊状褐鉄鉱を配合したときの冷間通気性指数(JPU)
【0021】
【数1】

Figure 0003797184
【0022】
【表1】
Figure 0003797184
【0023】
図3に示すように、配合量が20%超になるとダスト増加量が急激に上昇する。このダスト増加量が急激に上昇する原因は、配合量が20%超となると、塊鉱周囲に融体を形成するためのCaO含有粉体量が相対的に減少し、昇温により塊鉱が崩壊したときに発生する粉体を焼結化させることが困難となり、そのままダストとして排出されるからと推定される。従って、配合量は20%以下がよい。下限配合量は5%である。その理由は、5%以上の配合量がないと通気性が改善されないからである。
【0024】
次に、同じ塊状褐鉄鉱を使用して、塊状褐鉄鉱の粒径と、生産率変化量および歩留変化量との関係を求める試験を行った。
表2に試験方法と試験結果を示す。
【0025】
【表2】
Figure 0003797184
【0026】
なお、表中の生産率変化量とは、下記(3)式により定義され、歩留変化量とは、下記(4)式により定義される。
生産率変化量(%)=(d−c)×100/c (3)
但し、c:塊状褐鉄鉱を配合しなかったときの生産率(t/(d・m2))
d:塊状褐鉄鉱を配合したときの生産率(t/(d・m2))
【0027】
【数2】
Figure 0003797184
【0028】
歩留変化量=(f−e)×100/e (4)
但し、e:塊状褐鉄鉱を配合しなかったときの歩留(%)
f:塊状褐鉄鉱を配合したときの歩留(%)
【0029】
【数3】
Figure 0003797184
【0030】
また、このときの配合量は、10%一定で行った。
表2に示すように、粒径40mm超の塊状褐鉄鉱を装入すると、塊状褐鉄鉱が焼結化せずにそのまま排出されることが認められた。一方、粒径5mm未満の場合には、塊状褐鉄鉱を装入することによる通気性の改善効果が発現しなかった。従って、塊状褐鉄鉱の粒径は5〜40mmがよい。
【0031】
なお、本発明方法において、粒子の大きさを表す「mm」とは、篩目の代表径を意味する。例えば40mm以下の粒子とは篩目が40mmの篩でふるったときの篩下を意味し、粒径5〜40mmの粒子とは篩目が40mmの篩でふるったときの篩下であって、5mmの篩上に残った粒子を意味する。
【0032】
次に、塊状赤鉄鉱(以下、塊鉱Aともいう)を使用した場合と塊状褐鉄鉱(以下、塊鉱Bともいう)を使用した場合との比較を行った。
表3に使用した塊鉱Aおよび塊鉱Bの組成(質量%)を示す。
【0033】
【表3】
Figure 0003797184
【0034】
また、塊鉱Aおよび塊鉱Bともに粒径が10〜20mmのものを使用した。
表4に試験方法と試験結果を示す。
【0035】
【表4】
Figure 0003797184
【0036】
表4に示すように、塊鉱Aまたは塊鉱B何れの場合も生産率が向上することを確認した。一方、図示していないが、製造された焼結鉱の粒径は、塊鉱Aを添加した場合の方が塊鉱Bに比べて大きく、歩留も塊鉱Aの方が良かった。この塊鉱Aが塊鉱Bに比べて歩留が良好な原因は、褐鉄鉱中の結晶水の分解によって、塊鉱A中に微細な気孔や亀裂が発生し、塊鉱Aの反応面積が著しく増大し、CaO含有粉体中のCaOとの反応が起きやすくなった結果、CaO含有粉体と塊鉱Aとが合体し、粒径の大きな焼結鉱が生成されたからと推定される。一方、塊鉱Bは、塊鉱Aのように結晶水がないため、塊鉱B内に微細な気孔や亀裂を生じることがなく、粒径が小さな焼結鉱しか得られないから、歩留が塊鉱Aと比較して低下するものと推定される。
【0037】
次に、焼結鉱中のCaO含有量について検討した。
ところで、焼結鉱中のCaO含有量の増加は、高炉スラグの増加を意味するので、CaOをなるべく少なくすることが望ましい。
【0038】
図4は、塊鉱Aの配合量をパラメータとしたときの焼結鉱中のCaO含有量と生産率との関係を示すグラフである。
なお、このときの焼結鉱の生産方法は、造粒時の水分量が7質量%であり、造粒後に塊鉱Aと造粒物とを転動型造粒機で1分間混合した。
【0039】
図4に示すように、塊鉱Aを無配合したものに比べて、塊鉱Aを5%配合した場合には、CaO含有量の広い範囲(8〜12%)にわたって生産率を高く維持できる。特に、CaO含有量が低い8%でも生産率を高く維持できることが認められる。すなわち、融体流動性が一般に低下するとされているCaO含有量が10%以下であっても、生産性を高く維持できる。
【0040】
【実施例】
本発明の効果を検証するため、幅400mm、長さ800mm、高さ450mmのパレットを2個持った、小型焼結試験装置を用いて実験を行った。本装置は実機焼結機を小型にしたものなので、給鉱時の偏析も再現することが出来る。
【0041】
また、造粒設備は、高速撹拌ミキサーと転動型造粒機とを使用した。
さらに、混合機としては、転動型造粒機を使用し、1分間混合した。
表5に配合条件と試験結果を示す。
【0042】
【表5】
Figure 0003797184
【0043】
なお、試験に使用した塊鉱は、前記表1に示す組成の塊状褐鉄鉱を使用した。また、従来例1は、塊状褐鉄鉱を使用しないで焼結鉱を試作した例を示し、評価指標のダスト増加量、生産率変化量および歩留変化量の規準とした。
【0044】
一方、床敷鉱として、焼結鉱を使用し、その粒径が5〜20 mm程度のものを層厚50mm程度装入した。
従来例2および比較例1は、焼結鉱原料として塊状褐鉄鉱を同様に10%使用した例であるが、塊状褐鉄鉱の添加方法が相違する。すなわち、従来例2は塊状褐鉄鉱を床敷として装入したものであるが、比較例1は塊状褐鉄鉱を含む焼結鉱原料を混合し造粒したものである。
【0045】
表5に試験結果を示すように、従来例2は、従来例1に比較してダストが10%増加し、歩留も10%悪化した。
この原因は、床敷にした塊状褐鉄鉱が昇温による結晶水の分解に伴って粉化し、ダスト量が増加し、歩留も低下したものと推定される。
【0046】
本発明例1は、塊状褐鉄鉱を除く焼結鉱原料を造粒後に塊状褐鉄鉱を混合したものであるが、従来例2に比べて大幅にダスト量が低減され、歩留も大幅に改善した。この改善された理由は、塊状褐鉄鉱と造粒物を混合したため、塊状褐鉄鉱の周りに存在する造粒物中のCaOが溶剤として働き、塊状褐鉄鉱が昇温による結晶水の分解に伴って粉化しても発生粉体同士が焼結化し易くなるためと推定される。
【0047】
本発明例2は、塊状褐鉄鉱を除く焼結鉱原料を造粒後に塊状褐鉄鉱を混合機で混合したものであるが、本発明例1に比べてダスト量が更に改善され、歩留も改善した。
【0048】
本発明例2が本発明例1に比べて更にダスト量が低減された理由は、混合機で更に効率よく混合されるために、造粒物中のCaO成分がより塊状褐鉄鉱に接近可能となるため、塊状褐鉄鉱が昇温による結晶水の分解に伴って粉化しても発生粉体同士がさらに焼結化し易くなるためと推定される。
【0049】
比較例1は、前述の通り塊状褐鉄鉱を含む焼結鉱原料を混合し造粒したものであるが、本発明例1並にダスト量が改善されたものの、歩留が悪化した。
この歩留が悪化した原因は、塊状褐鉄鉱を含む焼結鉱原料を混合し造粒したため、塊状褐鉄鉱と粉体原料が疑似粒子化し、塊状褐鉄鉱が偏析し易い下層に多量の粉原料を持ち込む結果になり、溶融物が下層に過剰に生成し、通気性が悪化し、焼結反応の効率的な進行が困難となるためと推定される。
【0050】
【発明の効果】
本発明の焼結鉱の製造方法により、塊状の褐鉄鉱を焼結原料として使用するときに問題となる発塵や原料歩留の低下を低減できる。
【図面の簡単な説明】
【図1】本発明の焼結鉱の製造方法例を示す概念図である。
【図2】配合原料を混合機でさらに混合する工程を含む概念図である。
【図3】塊状褐鉄鉱の配合量と、ダスト増加量及び冷間通気性指数(JPU)変化量との関係を示すグラフである。
【図4】塊鉱Aの配合量をパラメータとしたときの焼結鉱中のCaO含有量と生産率との関係を示すグラフである。
【符号の説明】
1:床敷鉱ホッパー
2:床敷鉱
3:パレット
4:造粒設備
5:サージホッパー
6:ドラムフィーダ
7:スローピングプレート
8:混合機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sintered ore that can reduce dust generation and a decrease in raw material yield, which are problems when using massive limonite as a sintering raw material.
[0002]
[Prior art]
In general, massive iron ores, sintered ores and pellets are used as iron sources used in blast furnaces. Major massive iron ores include hematite (Fe 2 O 3 : Hematite) and magnetite (Fe 3 O). 4 : Magnetite) etc. have been used. However, in recent years, the amount of limonite containing a large amount of goethite (Fe 2 O 3 · H 2 O: Goethite) tends to gradually increase as the production of these high-quality massive iron ores decreases. Although this limonite is inferior in quality as a blast furnace raw material compared with other iron ores, since it is cheap, a technique for using limonite in a blast furnace is required to reduce the cost of ironmaking.
[0003]
The biggest problem when using this limonite in a blast furnace is that the crystal water in limonite decomposes and pulverizes when the temperature rises. When limonite that is easily pulverized is charged into the blast furnace, a large amount of powder is generated during the temperature rise, and air permeability is hindered in the portion accumulated in the blast furnace, and the pressure loss increases. Since it is difficult for the reducing gas to flow in the part where this pressure loss is large, a delay in temperature rise or reduction occurs in that part, and various reactions in the blast furnace become uneven in the circumferential direction, resulting in poor blast furnace operation. The problem of stability occurs.
[0004]
If the amount of generated powder further increases, the pressure loss finally increases due to the increase in pressure loss, and blow-through occurs at the portion where the pressure loss increases. Here, if the air flow rate is lowered to avoid blow-through, the amount of molten iron and the amount of pulverized coal blown are reduced, resulting in an increase in hot metal production cost. Therefore, in actual operation, limonite block ore is used in small amounts, the limit amount that does not deteriorate the air permeability of the blast furnace is determined, and it is used within the range not exceeding the limit amount. Moreover, the technique which uses limonite as a sintered ore raw material is proposed.
[0005]
For example, Japanese Patent Application Laid-Open No. 60-194023 discloses a method in which a sintered ore raw material is heat-treated in advance with a sintering machine to remove adhering moisture and crystal water, thereby suppressing powdering. That is, this publication uses a sintered raw material obtained by mixing up to 40% by weight of a lump ore with a particle size of 10 to 60 mm in a mixture of blended raw materials consisting of ordinary powder raw material, return mineral and coke breeze. A method for producing a sintered ore is disclosed. In this method, the blended raw material layer on the great is divided into an upper layer, a middle layer and a lower layer, and the ore content is 2.3% in the upper layer, 12.9% in the middle layer and 84.3% in the lower layer. Can obtain a sintered ore in which a massive ore is uniformly dispersed, and a layer mainly composed of a massive ore can be obtained in the lower layer. In this way, by utilizing the concentration of the lump ore in the lower layer, the bedding ore placed under the sintered raw material can be replaced by the lump ore, and the bedding ore supply facility can be made unnecessary.
[0006]
[Problems to be solved by the invention]
However, the invention disclosed in the publication (hereinafter also referred to as the prior art) has various problems when limonite is used as the lump ore. That is, when using the limonite of the lump ore used as a bed using the segregation to the lower layer, the lump ore collapses and becomes powdery when the crystal water in the limonite decomposes. The powder generated by the pulverization phenomenon of the agglomerate is discharged out of the system as dust, and it needs to be improved because it causes environmental problems such as dust generation and a decrease in raw material yield.
[0007]
The objective of this invention is providing the manufacturing method of the sintered ore which can reduce the dust generation and the fall of raw material yield which are a problem in a prior art, when using a lump-shaped limonite as a sintering raw material.
[0008]
[Means for Solving the Problems]
As a result of studying a method of using lump ore limonite as a sintering raw material, the present inventors have obtained the following knowledge.
[0009]
(A) When lumpy limonite (hereinafter, also simply referred to as agglomerate) is pulverized as the crystal water is decomposed due to the temperature rise in the sintering machine, powder containing CaO (hereinafter referred to as CaO-containing powder) ) Also exists around the powdered limonite (hereinafter also referred to as generated powder), the CaO-containing powder serves as a solvent to dissolve the generated powder and sinter.
[0010]
(B) After littering, agglomerates are blended and sintered in particles granulated by adding moisture to CaO-containing powder, and the amount of dust generated from the generated powder can be reduced.
[0011]
(C) When agglomerates are blended in the granulated particles, the mixture is mixed for 1 minute by a mixer and then sintered, and the amount of dust generated is further reduced.
(D) On the other hand, when a test was conducted by mixing agglomerate and CaO-containing powder from the beginning and adding water to granulate, the amount of dust generation was reduced, but the agglomerate and CaO-containing powder Becomes pseudo particles, and the melt is excessively generated in the lower part of the packed bed, so that the air permeability is deteriorated, the progress of the sintering reaction becomes difficult, and the raw material yield is lowered.
[0012]
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In a method for producing sintered ore by supplying a raw material composed of iron ore containing limonite and other auxiliary raw materials onto a pallet of a sintering machine and sintering, a part of the raw material A granulated raw material excluding limonite having a particle size of 5 to 40 mm, and then blending 5 to 20% by mass of limonite having a particle size of 5 to 40 mm.
[0013]
(2) The method for producing a sintered ore according to (1), wherein the blended raw materials are mixed with a mixer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a conceptual diagram showing an example of a method for producing a sintered ore according to the present invention.
As shown in the figure, the bedding ore 2 is supplied from the bedding ore hopper 1 onto the pallet 3, and water is added to the lump-like limonite and the powdered raw material excluding the lump-like limonite and the granulation equipment 4 A blended raw material comprising the granulated product is charged into the pallet 3 from the surge hopper 5 by the drum feeder 6 through the slowing plate 7 to produce sintered ore. As the granulation equipment 4, a rolling granulator or a high-speed stirring mixer is generally used. It is preferable to add the water to the granulation equipment 4 so that the water content of the powdery raw material excluding the lump-shaped limonite is 5 to 8% by mass (hereinafter simply expressed as% by mass). The reason is that if the moisture content is less than 5%, ungranulated raw materials may remain. If the moisture content exceeds 8%, moisture may exist in the voids between the granulated pseudo particles, and the air permeability may deteriorate. Because there is. The particle size of the granulated pseudo particles is the same as that of the raw material charged in the sintering machine currently in operation, and the arithmetic average particle size is about 3 to 5 mm.
[0015]
As the bedding ore 2, sintered ore is used, and those having a particle size of about 5 to 20 mm are used.
FIG. 2 is a conceptual diagram including a step of mixing the blended raw materials with a mixer.
[0016]
As shown in the figure, a blended raw material consisting of a lump of limonite and a granulated product obtained by adding water to the powdery raw material excluding the lump of limonite and granulating with the granulation equipment 4 is charged into the mixer 8. And mixing operation. As the mixer 8, a rolling granulator is used. However, since the mixer 8 is used not for the purpose of granulation but for the purpose of mere mixing, the mixing time is shorter than that for granulation. The mixing time may be about 1 to 6 minutes.
[0017]
The limonite used in the present invention is iron ore containing a large amount of crystal water, and examples of limonite include pisolite or maramambaite, which contain 5.0% by mass or more of crystal water.
[0018]
The powdery raw material excluding the lump-shaped limonite includes powdered ore (hereinafter also referred to as powdered ore), dolomite, serpentine, limestone, return mineral, powdered coke, etc., and the particle size is 10 mm or less as usual. It is.
[0019]
FIG. 3 is a graph showing the relationship between the blended amount of massive limonite, the amount of increase in dust, and the amount of change in cold breathability index (JPU). The amount of increase in dust in the figure is defined by the following equation (1), and the amount of change in cold air permeability index (JPU) is defined by the following equation (2). Moreover, as a lump limonite, what has a particle size of 10-20 mm and a composition shows in Table 1 was used.
[0020]
Dust increase (%) = (b−a) × 100 / a (1)
However, a: Amount of dust (dryg) when no bulk limonite is blended
b: Dust amount (dryg) when mixed limonite
Cold air permeability index (JPU) change amount = (h−g) × 100 / g (2)
However, g: Cold air permeability index (JPU) when not including bulk limonite
h: Cold breathability index (JPU) when bulk limonite is blended
[0021]
[Expression 1]
Figure 0003797184
[0022]
[Table 1]
Figure 0003797184
[0023]
As shown in FIG. 3, when the blending amount exceeds 20%, the dust increase amount rapidly increases. The cause of the sudden increase in the amount of increase in dust is that when the blending amount exceeds 20%, the amount of CaO-containing powder for forming a melt around the agglomerate is relatively reduced, and the agglomeration is caused by the temperature rise. It is estimated that it is difficult to sinter the powder generated when it collapses, and it is discharged as dust as it is. Therefore, the blending amount is preferably 20% or less. The lower limit compounding amount is 5%. The reason is that the air permeability is not improved unless the blending amount is 5% or more.
[0024]
Next, the same lump limonite was used, and the test which asks for the relation between the particle size of lump limonite, the production rate change, and the yield change was conducted.
Table 2 shows test methods and test results.
[0025]
[Table 2]
Figure 0003797184
[0026]
The production rate change amount in the table is defined by the following equation (3), and the yield change amount is defined by the following equation (4).
Change in production rate (%) = (dc) × 100 / c (3)
However, c: Production rate when not including bulk limonite (t / (d · m 2 ))
d: Production rate (t / (d · m 2 )) when massive limonite is blended
[0027]
[Expression 2]
Figure 0003797184
[0028]
Yield change = (f−e) × 100 / e (4)
However, e: Yield when no bulk limonite is blended (%)
f: Yield (%) when blending massive limonite
[0029]
[Equation 3]
Figure 0003797184
[0030]
The blending amount at this time was constant at 10%.
As shown in Table 2, it was confirmed that when lump limonite having a particle size of more than 40 mm was charged, lump limonite was discharged without being sintered. On the other hand, when the particle size was less than 5 mm, the air permeability improvement effect by charging the bulk limonite was not expressed. Therefore, the grain size of the massive limonite is preferably 5 to 40 mm.
[0031]
In the method of the present invention, “mm” representing the particle size means the representative diameter of the mesh. For example, a particle having a particle size of 40 mm or less means a sieving when the sieve is sieved with a 40 mm sieve, and a particle having a particle size of 5 to 40 mm is a sieving when the sieve is sieved with a 40 mm sieve, Means particles left on a 5 mm sieve.
[0032]
Next, a comparison was made between the case of using massive hematite (hereinafter also referred to as “concrete A”) and the case of using massive limonite (hereinafter also referred to as “concrete B”).
Table 3 shows the composition (mass%) of the ore A and the ore B used.
[0033]
[Table 3]
Figure 0003797184
[0034]
Moreover, the thing with a particle size of 10-20 mm was used for both the ore A and the ore B.
Table 4 shows test methods and test results.
[0035]
[Table 4]
Figure 0003797184
[0036]
As shown in Table 4, it was confirmed that the production rate was improved in both cases of the ore A and the ore B. On the other hand, although not shown, the particle diameter of the produced sintered ore was larger when the ore A was added than the ore B, and the yield was better for the ore A. The reason why the ore A has a better yield than the ore B is that fine pores and cracks are generated in the ore A due to the decomposition of crystal water in limonite, and the reaction area of the ore A is remarkably large. As a result of the increase in the reaction with CaO in the CaO-containing powder, it is presumed that the CaO-containing powder and the agglomerate A merged to produce a sintered ore having a large particle size. On the other hand, the ore B has no crystal water like the ore A, so that fine pores and cracks are not generated in the ore B, and only a sintered ore with a small particle size can be obtained. Is estimated to be lower than ore A.
[0037]
Next, the CaO content in the sintered ore was examined.
By the way, since the increase in CaO content in a sintered ore means the increase in blast furnace slag, it is desirable to reduce CaO as much as possible.
[0038]
FIG. 4 is a graph showing the relationship between the CaO content in the sintered ore and the production rate when the blending amount of the ore A is used as a parameter.
In addition, the amount of moisture at the time of granulation was 7 mass% in the production method of the sintered ore at this time, and the agglomerate A and the granulated material were mixed for 1 minute with a rolling granulator after granulation.
[0039]
As shown in FIG. 4, when 5% of the ore A is blended compared to the one without the ore A, the production rate can be maintained high over a wide range (8 to 12%) of the CaO content. . In particular, it can be seen that the production rate can be maintained high even at a low CaO content of 8%. That is, even if the CaO content, which is generally considered to decrease the melt fluidity, is 10% or less, the productivity can be maintained high.
[0040]
【Example】
In order to verify the effect of the present invention, an experiment was conducted using a small sintering test apparatus having two pallets having a width of 400 mm, a length of 800 mm, and a height of 450 mm. Since this equipment is a small-sized actual sintering machine, segregation during mining can be reproduced.
[0041]
Moreover, the granulation equipment used the high-speed stirring mixer and the rolling granulator.
Furthermore, as a mixer, a rolling granulator was used and mixed for 1 minute.
Table 5 shows blending conditions and test results.
[0042]
[Table 5]
Figure 0003797184
[0043]
The lump used in the test was lump limonite having the composition shown in Table 1 above. Further, Conventional Example 1 shows an example in which a sintered ore was produced without using bulk limonite, and was used as a criterion for evaluation index dust increase, production rate change, and yield change.
[0044]
On the other hand, a sintered ore was used as the bedding ore, and a particle size of about 5 to 20 mm was charged to a layer thickness of about 50 mm.
Conventional Example 2 and Comparative Example 1 are examples in which lump limonite is similarly used as a sintered ore raw material, but the addition method of lump limonite is different. That is, Conventional Example 2 is one in which massive limonite is charged as a bedding, while Comparative Example 1 is a mixture of granulated sintered ore raw materials containing massive limonite.
[0045]
As shown in the test results in Table 5, in the conventional example 2, the dust increased by 10% and the yield deteriorated by 10% compared to the conventional example 1.
This is presumably because the bulk limonite on the floor was pulverized as the crystallization water decomposed due to the temperature rise, the amount of dust increased, and the yield decreased.
[0046]
Invention Example 1 is a mixture of granulated limonite after granulating a sintered ore raw material excluding massive limonite, but the amount of dust was greatly reduced and yield was greatly improved as compared with Conventional Example 2. The reason for this improvement is that the bulk limonite and the granulated product were mixed, so CaO in the granulated product existing around the massive limonite worked as a solvent, and the bulk limonite was pulverized as the crystallization water decomposed due to the temperature rise. However, it is estimated that the generated powders are easily sintered.
[0047]
Invention Example 2 is a mixture of granulated limonite with a mixer after granulating sintered ore raw materials excluding massive limonite, but the amount of dust was further improved and the yield was also improved as compared with Invention Example 1. .
[0048]
The reason why the amount of dust was further reduced in Example 2 of the present invention compared to Example 1 of the present invention is that the CaO component in the granulated product becomes more accessible to massive limonite because it is more efficiently mixed in the mixer. For this reason, it is estimated that even if the lump limonite is pulverized as the crystallization water is decomposed due to the temperature rise, the generated powders are more easily sintered.
[0049]
In Comparative Example 1, as described above, a sintered ore raw material containing massive limonite was mixed and granulated, but although the amount of dust was improved to the same level as Example 1, the yield deteriorated.
The reason why this yield deteriorated was the result of mixing and granulating sinter ore raw materials containing massive limonite, resulting in pseudo-granularization of massive limonite and powder raw materials, and bringing a large amount of powdery raw material into the lower layer where massive limonite tends to segregate It is estimated that the melt is excessively generated in the lower layer, the air permeability is deteriorated, and the efficient progress of the sintering reaction is difficult.
[0050]
【The invention's effect】
According to the method for producing sintered ore of the present invention, it is possible to reduce dust generation and reduction in raw material yield, which are problems when using massive limonite as a sintering raw material.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a method for producing a sintered ore according to the present invention.
FIG. 2 is a conceptual diagram including a step of further mixing the blended raw materials with a mixer.
FIG. 3 is a graph showing the relationship between the blending amount of massive limonite, the amount of increase in dust, and the amount of change in cold breathability index (JPU).
FIG. 4 is a graph showing the relationship between the CaO content in the sintered ore and the production rate when the blending amount of the ore A is used as a parameter.
[Explanation of symbols]
1: flooring hopper 2: flooring ore 3: pallet 4: granulation equipment 5: surge hopper 6: drum feeder 7: sloping plate 8: mixer

Claims (2)

褐鉄鉱を含む鉄鉱石原料とその他の副原料とから成る配合原料を焼結機のパレット上に供給して焼結することで焼結鉱を製造する方法において、前記配合原料の一部である粒径が5〜40mmの褐鉄鉱を除いた配合原料を造粒後、前記粒径が5〜40mmの褐鉄鉱を5〜20質量%配合することを特徴とする焼結鉱の製造方法。In a method for producing a sintered ore by supplying and sintering a blended raw material comprising iron ore raw material containing limonite and other auxiliary raw materials onto a pallet of a sintering machine, grains that are part of the blended raw material A granulated raw material excluding limonite having a diameter of 5 to 40 mm, and thereafter blending 5 to 20% by mass of limonite having a particle diameter of 5 to 40 mm. 前記配合原料を混合機で混合することを特徴とする請求項1に記載の焼結鉱の製造方法。2. The method for producing a sintered ore according to claim 1, wherein the blended raw materials are mixed with a mixer.
JP2001311867A 2001-10-09 2001-10-09 Method for producing sintered ore Expired - Fee Related JP3797184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311867A JP3797184B2 (en) 2001-10-09 2001-10-09 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311867A JP3797184B2 (en) 2001-10-09 2001-10-09 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2003113426A JP2003113426A (en) 2003-04-18
JP3797184B2 true JP3797184B2 (en) 2006-07-12

Family

ID=19130615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311867A Expired - Fee Related JP3797184B2 (en) 2001-10-09 2001-10-09 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP3797184B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124969B2 (en) * 2006-04-03 2013-01-23 Jfeスチール株式会社 Sinter ore manufacturing method
KR102139634B1 (en) * 2018-07-12 2020-07-30 주식회사 포스코 Method of manufacturing sintered ore
JP7047645B2 (en) * 2018-07-19 2022-04-05 日本製鉄株式会社 Sintered ore manufacturing method
CN113528808B (en) * 2021-05-24 2022-07-01 红河钢铁有限公司 Sintered ore based on high-crystal-water limonite and magnetic separation tailings and production method thereof

Also Published As

Publication number Publication date
JP2003113426A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
JP2007077484A (en) Method for manufacturing carbonaceous material-containing agglomerate
EA031206B1 (en) Method for producing manganese containing ferroalloy
JP4256645B2 (en) Metal iron manufacturing method
JP2007231418A (en) Method for producing reduced metal
JP3797184B2 (en) Method for producing sintered ore
JP4781807B2 (en) Manufacturing method of dephosphorizing agent for steel making using sintering machine
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP4997712B2 (en) Blast furnace operation method
JP4600102B2 (en) Method for producing reduced iron
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
JP3708981B2 (en) Agglomerate for iron making
JP2014201763A (en) Method for producing granulation raw material for sintering
JP6235439B2 (en) Manufacturing method of granular metallic iron
WO2014129282A1 (en) Method for manufacturing reduced iron
JPH0816249B2 (en) Pretreatment method in agglomerated ore production
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP2014084526A (en) Method for manufacturing direct-reduced iron
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JP2014167164A (en) Method for manufacturing reduced iron
JP2000303121A (en) Pretreatment of sintering raw material
JP3485787B2 (en) How to charge raw materials for blast furnace
JPH0885829A (en) Production of sintered ore
JPH066754B2 (en) Sintering method of iron ore
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Ref document number: 3797184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees