JP2007077484A - Method for manufacturing carbonaceous material-containing agglomerate - Google Patents

Method for manufacturing carbonaceous material-containing agglomerate Download PDF

Info

Publication number
JP2007077484A
JP2007077484A JP2005270690A JP2005270690A JP2007077484A JP 2007077484 A JP2007077484 A JP 2007077484A JP 2005270690 A JP2005270690 A JP 2005270690A JP 2005270690 A JP2005270690 A JP 2005270690A JP 2007077484 A JP2007077484 A JP 2007077484A
Authority
JP
Japan
Prior art keywords
ore
iron
carbonaceous material
powdered
containing raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005270690A
Other languages
Japanese (ja)
Other versions
JP4627236B2 (en
Inventor
Akito Kasai
昭人 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005270690A priority Critical patent/JP4627236B2/en
Publication of JP2007077484A publication Critical patent/JP2007077484A/en
Application granted granted Critical
Publication of JP4627236B2 publication Critical patent/JP4627236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method in which powdery blended iron-containing raw materials prepared by blending a plurality of iron-containing raw materials are mixed with a powdery carbonaceous material having softening and melting properties and the resultant mixture is hot formed to manufacture carbonaceous material-containing agglomerates and by which both of the strength and reducibility of the carbonaceous material-containing agglomerates can be maintained or improved even in the case where low-quality ores, such as maramanba ore and pisolite ore, are used as the raw materials to be blended for the powdery blended iron-containing raw materials. <P>SOLUTION: The respective blending amounts of a porous ore (e.g. maramanba ore) B1 and a dense ore (e.g. undersize of sintered pellets) B2 are regulated in such a way that the specific surface area of the powdery blended iron-containing raw materials B after blending measured by the BET method becomes a previously set desired value (e.g. 0.6 to 10 m<SP>2</SP>/g). A mixture C of the powdery blended iron-containing raw materials B blended as above and the powdery carbonaceous material A having softening and melting properties is hot formed at 250 to 550°C to manufacture the carbonaceous material-containing agglomerates E. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉用装入原料としての炭材内装塊成化物の製造方法に関し、特にマラマンバ鉱石やピソライト鉱石などの劣質鉱石を用いた炭材内装塊成化物の製造方法に関する。   The present invention relates to a method for producing an agglomerated carbonaceous material agglomerated as a raw material for a blast furnace, and more particularly to a method for producing an agglomerated carbonaceous material agglomerated material using an inferior ore such as maramanba ore or pisolite ore.

マラマンバ鉱石やピソライト鉱石などの劣質鉱石(多孔質・高結晶水鉱石[=結晶水を3質量%以上含有している鉱石])は、通常の鉄鉱石に比べて、結晶水の含有量が多い、微粉が多い、吸水性が高い等の特徴を有している。このため、これらの劣質鉱石を高炉用原料として焼結鉱の製造に用いると、結晶水の分解による熱量不足と、微粉量の増加および吸水量の増加による造粒性の低下に伴う焼結ベッドの通気性悪化等を原因として、生産性や成品歩留が低下することが知られている。   Inferior ores such as maramamba ore and pisolite ore (porous or highly crystalline water ore [= ore containing 3% by mass or more of crystal water]) have a higher content of crystal water than ordinary iron ore. It has features such as high fine powder and high water absorption. For this reason, when these inferior ores are used as raw materials for blast furnaces in the production of sintered ores, the sintering bed is accompanied by a lack of heat due to the decomposition of crystal water and a decrease in granulation due to an increase in fines and water absorption. It is known that productivity and product yield decrease due to deterioration in air permeability of the product.

また、上記劣質鉱石を焼成ペレットの製造に用いると、結晶水の分解によるバースティングの増加と、吸水量の増加による造粒性の低下による予熱強度の低下等を原因として、やはり生産性や成品歩留が低下することが知られている。   In addition, when the above-mentioned inferior ore is used in the production of fired pellets, the productivity and product are also increased due to the increase in bursting due to the decomposition of crystal water and the decrease in preheating strength due to the decrease in granulation due to the increase in water absorption. It is known that the yield decreases.

したがって、高炉用装入原料としては、上記劣質鉱石は少量しか使用できていないのが現状である。   Therefore, the present condition is that only a small amount of the above-mentioned inferior ore can be used as the raw material for blast furnace.

しかしながら、上記劣質鉱石は、今後さらに購入量が増える傾向にあり、また、これら劣質鉱石は通常の鉄鉱石より安価であるのでコストダウンの観点からも、高炉用装入原料として多量に使用できる塊成化技術の開発が望まれている。   However, the above-mentioned inferior ores tend to be further purchased in the future, and since these inferior ores are cheaper than ordinary iron ores, they can be used in large quantities as raw materials for blast furnaces from the viewpoint of cost reduction. Development of chemical conversion technology is desired.

いっぽう、本出願人は、高炉などの竪型炉の装入原料として、粉鉱石と粘結炭の混合物を熱間成型後、加熱処理することによりセメントなどのバインダを添加せずとも高強度の炭材内装塊成化物を製造できる方法を開発した(特許文献1参照)。   On the other hand, the present applicant, as a charging raw material of a vertical furnace such as a blast furnace, is hot-molded with a mixture of fine ore and caking coal, and then heat-treated without adding a binder such as cement. A method that can produce an agglomerated carbonaceous material was developed (see Patent Document 1).

さらに、本発明者らは上記炭材内装塊成化物の製造方法の改良に取り組み、粉状炭材のギーセラ最高流動度および体積配合比率を規定することにより高価な粘結炭の使用量を低減できる方法(特許文献2参照)、粉鉱石と粉状炭材の混合物に振動を加えて密充填にした後に熱間成型をすることにより炭材内装塊成化物を確実に高強度化できる方法(特許文献3参照)を完成し、それぞれ特許出願を行った。   Furthermore, the present inventors worked on improving the method for producing the above-mentioned agglomerated carbonaceous material agglomerated material, and reduced the amount of expensive caking coal by specifying the maximum flow rate and volume mixing ratio of powdery carbonaceous material. Method (see Patent Document 2), a method in which the agglomerated carbonaceous material agglomerated material can be reliably increased in strength by hot molding after applying vibration to the mixture of fine ore and powdered carbonaceous material ( (See Patent Document 3) and filed patent applications.

そこで、本発明者らは、上記劣質鉱石を用いて上記炭材内装塊成化物を製造し、高炉に使用できれば、上記課題を解決し得るものと考えた。   Then, the present inventors considered that the above-mentioned problem could be solved if the above-mentioned inferior ore was used to produce the above-mentioned agglomerated carbonaceous material agglomerate and used it in a blast furnace.

しかしながら、上記劣質鉱石を用いた場合の上記炭材内装塊成化物の強度、被還元性等に及ぼす影響については不明であり、上記劣質鉱石を用いた場合の最適な製造条件については検討の余地があった。
特開平11−092833号公報(特許請求の範囲等) 特許第3502008号公報(特許請求の範囲等) 特許第3502011号公報(特許請求の範囲等)
However, the effect on the strength, reducibility, etc. of the carbonaceous agglomerates when using the above-mentioned inferior ore is unknown, and there is room for study on the optimum production conditions when using the above-mentioned inferior ore. was there.
JP-A-11-092833 (claims, etc.) Japanese Patent No. 3502008 (Claims) Japanese Patent No. 3502011 (Claims)

そこで本発明は、複数種類の鉄含有原料(鉄鉱石)を配合してなる粉状配合鉄含有原料と軟化溶融性を有する粉状炭材(粉状石炭)との混合物を熱間成型して炭材内装塊成化物を製造する方法であって、マラマンバ鉱石やピソライト鉱石などの劣質鉱石を粉状配合鉄含有原料の配合原料として使用しても、炭材内装塊成化物の強度および被還元性をともに維持ないし向上しうる製造方法を提供することを目的とする。   Therefore, the present invention hot-molds a mixture of a powdered iron-containing raw material obtained by blending a plurality of types of iron-containing raw materials (iron ore) and a powdered carbonaceous material (powdered coal) having soft melting properties. A method for producing an agglomerated carbonaceous material agglomerate, and even if inferior ores such as maramamba ore and pisolite ore are used as a blended raw material for powdered mixed iron-containing raw materials, It aims at providing the manufacturing method which can maintain or improve both property.

本発明者らは、マラマンバ鉱石やピソライト鉱石などの劣質鉱石を粉状配合鉄含有原料の配合原料として使用したときに、炭材内装塊成化物(以下、単に「塊成化物」と略称することもある。)の強度に及ぼす影響を明らかにするため、以下のラボ実験を実施した。   When the present inventors use inferior ores such as maramamba ore and pisolite ore as a blending raw material for powdered blended iron-containing raw materials, they are abbreviated as carbonaceous agglomerates (hereinafter simply referred to as “agglomerated products”). The following lab experiment was conducted to clarify the effect on the strength.

すなわち、各種の単一銘柄の粉状鉄鉱石と、logMF=2.0の粉状石炭とを用いて、これらを55:45〜30:70の体積割合で混合した混合物を420℃で熱間成型してタブレット状の塊成化物を作成し、このタブレットの引張強度を測定した(タブレットの引張強度の測定方法については、後記実施例を参照のこと)。なお、もともと粉状の鉄鉱石であるマラマンバ鉱石や焼結返鉱などは1.4mm以下に篩い分けたものを使用し、粒状または塊状のピソライト鉱石や焼成ペレット篩下などは粉砕して1.4mm以下としたものを使用した。測定結果を図3に示す。同図に示すように、マラマンバ鉱石(豪州産鉱石A,B,C)またはピソライト鉱石(豪州産鉱石D,E)を単味で用いた塊成化物は、通常のシンターフィード(南米産鉱石F,G)およびペレットフィード(南米産鉱石H)や、一度熱処理を受けた焼結返鉱(鉱石I)および焼成ペレット篩下(鉱石J)を単味で用いた塊成化物に比べて引張強度が低くなるのがわかった。このように鉱石銘柄により塊成化物の強度が変化する理由を明らかにするため、鉱石の各種性状と塊成化物の引張強度との関係を調査した結果、図4に示すように、BET法で測定した鉱石の比表面積(以下、「BET比表面積」ともいう。)との間に強い相関があり、BET比表面積が小さくなるほど引張強度が高くなることがわかった。このように鉱石の比表面積が塊成化物の引張強度に強い影響を及ぼす理由を、図2の模式図を用いて説明する。マラマンバ鉱石やピソライト鉱石などの多孔質の鉄鉱石では、粒子表面に微細な開気孔が多いが、これらの微細開気孔中には粘性が水より高い溶融炭材は侵入しにくいため、結果として溶融炭材との接触面積が少なくなり、結合力が低下する(同図(a)参照)。これに対し、通常のシンターフィードおよびペレットフィードなどもともと緻密質の鉱石や、一度熱処理を受けてその表面が緻密化した焼結返鉱や焼成ペレット篩下などは、その表面に微細な開気孔が少なくつるつるの状態になっているため、溶融炭材との接触面積が大きくなり、強固な結合力が得られる(同図(b)参照)ものと想定される。   That is, using various types of single-grade powdered iron ore and powdered coal with log MF = 2.0, a mixture of these in a volume ratio of 55:45 to 30:70 was hot at 420 ° C. A tablet-like agglomerated material was formed by molding, and the tensile strength of the tablet was measured (for the method of measuring the tensile strength of the tablet, refer to Examples below). In addition, maramamba ore, which is originally a powdered iron ore, and sinter-returned ore are used by sieving to 1.4 mm or less. What was 4 mm or less was used. The measurement results are shown in FIG. As shown in the figure, agglomerates using maramamba ore (Australian ores A, B and C) or pisolite ore (Australian ores D and E) in a simple manner are obtained from ordinary sinter feed (South American ore F , G) and pellet feed (South American ore H), or sintered agglomerated (Ore I) and calcined pellet sieving (Ore J) once subjected to heat treatment, tensile strength compared to agglomerates Was found to be lower. In order to clarify the reason why the strength of the agglomerates changes depending on the ore brand, the relationship between various properties of the ore and the tensile strength of the agglomerates was investigated. As shown in FIG. It was found that there was a strong correlation with the measured specific surface area of the ore (hereinafter also referred to as “BET specific surface area”), and the tensile strength increased as the BET specific surface area decreased. The reason why the specific surface area of the ore has a strong influence on the tensile strength of the agglomerated material will be described with reference to the schematic diagram of FIG. Porous iron ores, such as maramamba ore and pisolite ore, have many fine open pores on the particle surface, but molten carbon material with higher viscosity than water does not easily penetrate into these fine open pores. The contact area with the carbon material is reduced, and the bonding force is reduced (see FIG. 1A). On the other hand, fine ores such as ordinary sinter feed and pellet feed, and fine ore on the surface of sintered ore and sinter pellets that have been heat-treated once densified. Since it is in a smooth state, it is assumed that the contact area with the molten carbon material is increased and a strong bonding force can be obtained (see FIG. 5B).

そこで、BET比表面積の小さい鉄鉱石にBET比表面積の大きい鉱石を配合することで塊成化物の強度を向上できると考え、マラマンバ鉱石(豪州産鉱石A)とシンターフィード(南米産鉱石F)を、配合割合を種々変化させて配合したものを粉状配合鉄含有原料として用いて塊成化物を作製し、その引張強度に及ぼす影響を調査した。その結果、図5に示すように、上記配合割合と塊成化物の引張強度とはほぼ直線関係にあることがわかった。また、2種類の鉄鉱石を配合した粉状配合鉄含有原料のBET比表面積は、各鉄鉱石のBET比表面積を加重平均したものであるから、粉状配合鉄含有原料のBET比表面積と塊成化物の引張強度との関係もほぼ直線関係にあり、塊成化物の引張強度に及ぼす各鉄鉱石のBET比表面積の影響には加成性が成り立つことがわかった。本発明者らは、上記知見に基づき、粉状配合鉄含有原料のBET比表面積を調整することにより塊成化物の引張強度を制御できることを見出し、さらに検討を重ねた結果、以下の発明を完成させるに至った。   Therefore, it is thought that the strength of agglomerates can be improved by adding ores with a large BET specific surface area to iron ores with a small BET specific surface area, and maramamba ore (Australian ore A) and sinter feed (South American ore F). The agglomerates were prepared using various blending ratios as the powdered iron-containing raw material, and the influence on the tensile strength was investigated. As a result, as shown in FIG. 5, it was found that the blending ratio and the tensile strength of the agglomerated material were in a substantially linear relationship. In addition, the BET specific surface area of the powdered iron-containing raw material containing two types of iron ore is a weighted average of the BET specific surface areas of each iron ore. The relationship with the tensile strength of the agglomerated material is also almost linear, and it has been found that the effect of the BET specific surface area of each iron ore on the tensile strength of the agglomerated material holds additivity. Based on the above findings, the present inventors have found that the tensile strength of the agglomerated material can be controlled by adjusting the BET specific surface area of the powdered iron-containing raw material. As a result of further studies, the following invention has been completed. I came to let you.

請求項1に記載の発明は、複数種類の鉄含有原料を配合してなる粉状配合鉄含有原料と軟化溶融性を有する粉状炭材との混合物を250〜550℃で熱間成型して炭材内装塊成化物を製造する方法であって、前記粉状配合鉄含有原料のBET法による比表面積が、あらかじめ設定した目標値となるように、前記複数種類の粉状鉄含有原料の配合割合を調整することを特徴とする炭材内装塊成化物の製造方法である。   Invention of Claim 1 hot-molds the mixture of the powdered iron-containing raw material which mix | blends multiple types of iron-containing raw materials, and the powdered carbonaceous material which has soft melting property at 250-550 degreeC. A method for producing an agglomerated carbonaceous material, wherein the powdered iron-containing raw material is blended with the plurality of types of powdered iron-containing raw material so that the specific surface area according to the BET method is a preset target value. It is a manufacturing method of the carbonaceous material agglomerated material characterized by adjusting a ratio.

請求項2に記載の発明は、前記複数種類の鉄含有原料の一部として、マラマンバ鉱石および/またはピソライト鉱石を用いる請求項1に記載の炭材内装塊成化物の製造方法である。 Invention of Claim 2 is a manufacturing method of the carbonaceous material agglomerate of Claim 1 which uses a maramamba ore and / or a pisolite ore as a part of said multiple types of iron containing raw material.

請求項3に記載の発明は、前記複数種類の鉄含有原料の別の一部として、焼結返鉱、焼成ペレット篩下など鉄鉱石を焼成したものを用いる請求項2に記載の炭材内装塊成化物の製造方法である。 The invention according to claim 3 is the carbonaceous material interior according to claim 2, wherein the iron ore, such as sintered ore and calcined pellet sieve, is used as another part of the plurality of types of iron-containing raw materials. It is a manufacturing method of an agglomerated material.

請求項4に記載の発明は、前記比表面積の目標値を0.6〜10m/gとする請求項1〜3のいずれか1項に記載の炭材内装塊成化物の製造方法である。 Invention of Claim 4 is a manufacturing method of the carbonaceous material agglomerated material of any one of Claims 1-3 which sets the target value of the said specific surface area to 0.6-10 m < 2 > / g. .

なお、「鉄含有原料」とは、鉄鉱石、製鉄所雑物(焼結返鉱、焼成ペレット篩下など)、製鉄ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケールなど)など主として酸化鉄を含有する原料をいう。また、「軟化溶融性を有する粉状炭材」とは、logMF(ここに、MFはギーセラ最高流動度[JIS M8801参照]である。)が1.0以上の石炭、SRC、タイヤチップ、プラスチック、アスファルト、タールなど軟化溶融性を有する炭素質物質を少なくとも1種含むものであって、粉状のものの総称である。なお、この「軟化溶融性を有する粉状炭材」は、上記軟化溶融性を有する炭素質物質に加えて、さらにコークス、一般炭、無煙炭、オイルコークスなど軟化溶融性を実質的に有しない炭素質物質を1種以上混合したものであってもよい。   "Iron-containing raw materials" mainly include iron ore, ironworks miscellaneous materials (sintered ore, calcined pellet sieve, etc.), ironmaking dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.) A raw material containing iron oxide. “Powdered carbon material having softening and melting property” means coal, SRC, tire chip, plastic having a log MF (here, MF is Giesera maximum fluidity [see JIS M8801]) of 1.0 or more. It is a generic name for powdery substances containing at least one carbonaceous material having softening and melting properties such as asphalt and tar. This “powdered carbonaceous material having softening and melting properties” includes carbon having substantially no softening and melting properties, such as coke, steaming coal, anthracite, and oil coke, in addition to the carbonaceous material having softening and melting properties. It may be a mixture of one or more substances.

本発明によれば、粉状配合鉄含有原料の比表面積を調整することにより、マラマンバ鉱石やピソライト鉱石などの劣質鉱石を粉状配合鉄含有原料の配合原料として使用しても、炭材内装塊成化物の強度および被還元性をともに維持ないし向上することができ、高炉への装入原料に適した炭材内装塊成化物を安価に製造することができる。さらに、上記劣質鉱石を炭材内装塊成化物の製造に優先的に使用することにより、焼結鉱やペレットといった従来の高炉用装入原料への上記劣質鉱石の配合割合を低減でき、これら従来の高炉用装入原料の生産性や成品歩留を向上させる効果も得られる。   According to the present invention, by adjusting the specific surface area of the powdered mixed iron-containing raw material, even if inferior ores such as maramamba ore and pisolite ore are used as the mixed raw material of the powdered mixed iron-containing raw material, Both the strength and reducibility of the compound can be maintained or improved, and a carbonaceous agglomerate suitable for a raw material charged into the blast furnace can be produced at a low cost. Furthermore, by using the above-mentioned inferior ore preferentially in the production of a carbonaceous agglomerate, it is possible to reduce the blending ratio of the inferior ore into the conventional raw materials for blast furnaces such as sintered ores and pellets. The effect of improving the productivity and product yield of the raw materials for blast furnaces can be obtained.

図1に本発明の一実施形態に係る炭材内装塊成化物の製造フローの概念図を示す。以下、複数種類の鉄含有原料として劣質鉱石(多孔質・高結晶水鉱石)であるマラマンバ鉱石と通常のシンターフィードの2種類の鉄鉱石を、軟化溶融性を有する炭材としてlogMF≧1.0の石炭を、それぞれ代表例として説明する。   The conceptual diagram of the manufacture flow of the carbonaceous material interior agglomerate which concerns on FIG. 1 at one Embodiment of this invention is shown. Hereinafter, two types of iron ore, a marine mamba ore which is an inferior ore (porous and high crystal water ore) and a normal sinter feed as a plurality of types of iron-containing raw materials, and log MF ≧ 1.0 as a carbonaceous material having soft melting property Each of these coals will be described as a representative example.

まず、あらかじめ、マラマンバ鉱石B1と通常のシンターフィードB2のそれぞれについてBET比表面積を測定するとともに、各鉱石単味で上記タブレット状の炭材内装塊成化物を作製し、引張強度を測定しておく。つぎに、これらのBET比表面積および塊成化物の引張強度のデータに基づき、粉状配合鉄含有原料BのBET比表面積Sと塊成化物の引張強度σとの関係式σ=a−bSの定数a,bを決定する。そして、この関係式を用いて、高炉用装入原料に適した所定の引張強度σ(例えば6kgf/cm≒0.6MPa)が得られるBET比表面積S(例えば5m/g)を、粉状配合鉄含有原料BのBET比表面積の目標値として設定する。そして、配合後の粉状鉱石(粉状配合鉄含有原料)BのBET比表面積が上記目標値となるように、マラマンバ鉱石B1と通常のシンターフィードB2の配合割合を求める。ここに、配合後の粉状鉱石(粉状配合鉄含有原料)BのBET比表面積は、各鉱石B1,B2のBET比表面積を質量基準の配合割合で加重平均して求めることができる。 First, in advance, the BET specific surface area is measured for each of the maramamba ore B1 and the normal sinter feed B2, and the tablet-like carbonaceous material agglomerates are prepared for each ore and the tensile strength is measured in advance. . Next, based on these BET specific surface area and agglomerate tensile strength data, the relational expression σ = a−bS between the BET specific surface area S of the powdered iron-containing raw material B and the agglomerate tensile strength σ Constants a and b are determined. Then, using this relational expression, a BET specific surface area S (for example, 5 m 2 / g) at which a predetermined tensile strength σ (for example, 6 kgf / cm 2 ≈0.6 MPa) suitable for the blast furnace charging raw material is obtained can be obtained. Is set as a target value for the BET specific surface area of the iron-containing raw material B. Then, the blending ratio of the maramamba ore B1 and the normal sinter feed B2 is determined so that the BET specific surface area of the powdered ore (raw powdered iron-containing raw material) B after blending becomes the above target value. Here, the BET specific surface area of the powdered ore after blending (powdered iron-containing raw material) B can be obtained by weighted averaging the BET specific surface areas of the ores B1 and B2 at a blending ratio based on mass.

なお、粉状配合鉄含有原料のBET比表面積の目標値は、高炉への装入原料に適した塊成化物の引張強度(5kg/cm[約0.5MPa]以上)が得られるように、10m/g以下とするのが好ましい。一方、BET比表面積は小さくしすぎると塊成化物の被還元性が劣化するので、0.6m/g以上とするのが好ましい。 The target value of the BET specific surface area of the powdered iron-containing raw material is such that the tensile strength (5 kg / cm 2 [about 0.5 MPa] or more) of the agglomerate suitable for the raw material charged into the blast furnace can be obtained. It is preferably 10 m 2 / g or less. On the other hand, if the BET specific surface area is too small, the reducibility of the agglomerated material is deteriorated, so that it is preferably 0.6 m 2 / g or more.

これらの鉄鉱石B1,B2は、必要により粉砕して配合後に例えば最頻粒径(レーザ散乱・回折式粒度分布計で測定した粒度分布から求めた最も頻度の大きい粒径、以下同じ)が50μm程度の粉状配合鉄鉱石(粉状配合鉄含有原料)Bとする。なお、粉砕は銘柄別に行ってもよいし、配合後に一緒に粉砕してもよい。   These iron ores B1 and B2 are ground, if necessary, after blending, for example, the most frequent particle size (the most frequent particle size obtained from the particle size distribution measured with a laser scattering / diffraction type particle size distribution meter, the same applies hereinafter) 50 μm A powdery mixed iron ore (a raw material containing powdered mixed iron) B is used. The pulverization may be performed for each brand or may be pulverized together after blending.

石炭は、上記粉状配合鉄鉱石との混合時にその間隙に満遍なく配置するように、必要により粉砕して粉状配合鉄鉱石Bより少し細かい粒度(例えば、最頻粒径が粉状配合鉄鉱石Bの最頻粒径の0.2〜0.8倍、より好ましくは0.3〜0.7倍程度)の粉状石炭(粉状炭材)Aとする。   Coal is pulverized as necessary so that it is evenly arranged in the gaps when mixed with the above-mentioned powdered iron ore, and is a little finer than powdered iron ore B (for example, the modest particle size is powdered iron ore) Powdered coal (powdered carbonaceous material) A having a mode diameter of B of 0.2 to 0.8 times, more preferably about 0.3 to 0.7 times.

〔炭材乾燥加熱工程〕
このようにして粒度調整された粉状石炭Aは、炭材乾燥加熱設備(例えば、ロータリドライヤ)1で、石炭Aが実質的に軟化溶融しない350℃以下の温度で乾燥・加熱し、付着水分を除去する。ここで、粉状石炭の乾燥加熱温度は、従来技術(特許文献2,3参照)では石炭が軟化溶融しない「250℃未満」としていたが、発明者らのその後の検討により「350℃」まで乾燥加熱温度を上昇させても石炭は実質上軟化溶融しないことが判明したため、「350℃以下」とした。
[Carbon material drying heating process]
The powdery coal A thus adjusted in particle size is dried and heated at a temperature of 350 ° C. or less at which the coal A does not substantially soften and melt in the carbonaceous material drying and heating equipment (for example, rotary dryer) 1, Remove. Here, the drying heating temperature of the powdered coal was set to “less than 250 ° C.” in which the coal is not softened and melted in the prior art (see Patent Documents 2 and 3). Since it was found that the coal was not substantially softened and melted even when the drying heating temperature was raised, it was set to “350 ° C. or lower”.

〔原料加熱工程〕
一方、粉状配合鉄鉱石Bは、粉状石炭Aと混合したときに目標温度の250〜550℃となるように、原料加熱設備(例えば、ロータリキルン)2で500〜800℃に予熱する。500℃以上で予熱することで、マラマンバ鉱石中の結晶水は解離し除去される。したがって、塊成化物を高炉に装入したとき、すでに結晶水が除去されているので、従来のコールドボンドペレットのように結晶水解離による昇温遅れが生じることが防止される。
[Raw material heating process]
On the other hand, the powdered blended iron ore B is preheated to 500 to 800 ° C. with the raw material heating equipment (for example, rotary kiln) 2 so that the target temperature becomes 250 to 550 ° C. when mixed with the powdered coal A. By preheating at 500 ° C. or higher, the crystal water in the maramamba ore is dissociated and removed. Therefore, when the agglomerated material is charged into the blast furnace, the crystallization water is already removed, so that a temperature rise delay due to dissociation of the crystallization water as in the conventional cold bond pellet is prevented.

〔混合工程〕
乾燥した粉状石炭Aと予熱した粉状配合鉄鉱石Bとの混合には、混合設備として、粉状石炭Aの無機化および/または石炭軟化による不要な造粒を抑制するために短時間で混合できるこの業種で常用されている、例えば竪形混合槽3を用いる。この竪形混合槽3は成型温度を確保するために断熱および/または保温するとよい。
[Mixing process]
For mixing the dried powdered coal A and the preheated powdered mixed iron ore B, as mixing equipment, in order to suppress unnecessary granulation due to mineralization and / or coal softening of the powdered coal A, it takes a short time. For example, a bowl-shaped mixing tank 3 that is commonly used in this type of industry that can be mixed is used. This bowl-shaped mixing tank 3 is preferably insulated and / or kept warm in order to ensure the molding temperature.

ここで、配合後の粉状鉱石BのBET比表面積を上記目標値に合わせたことにより、鉄鉱石粒子表面への溶融石炭の接触面積が十分に得られ、石炭固化後に強固な結合力が発現して剥がれ難くなり、高い引張強度が得られる。   Here, by adjusting the BET specific surface area of the powdered ore B after blending to the above target value, a sufficient contact area of the molten coal to the iron ore particle surface is obtained, and a strong binding force is expressed after the coal solidification Therefore, it becomes difficult to peel off and high tensile strength is obtained.

また、粉状石炭の配合割合は、粉状配合鉄鉱石Bの間隙へ粉状石炭Aを過不足なく充填するため、粉状石炭Aと粉状配合鉄鉱石Bからなる混合物Cに対する体積割合で45〜65%とするのが好ましい。ここに、粉状石炭Aおよび粉状配合鉄鉱石Bの体積は、内部の気孔体積を含んだ見掛けの体積を意味し、混合物Cの体積は、これら粉状石炭Aと粉状配合鉄鉱石Bのそれぞれの見掛け体積を単に合計したものを意味するものとする(すなわち、加熱による石炭Aの溶融による体積変化等を考慮しない。)。   In addition, the blending ratio of the powdered coal is the volume ratio with respect to the mixture C composed of the powdered coal A and the powdered blended iron ore B in order to fill the gap between the powdered blended iron ore B without excess or deficiency. It is preferable to set it as 45 to 65%. Here, the volume of the powdered coal A and the powdered blended iron ore B means an apparent volume including the pore volume inside, and the volume of the mixture C is the powdered coal A and the powdered blended iron ore B. It is assumed that the apparent volume of each of the above is simply summed (that is, the volume change due to melting of coal A by heating is not considered).

〔熱間成型工程〕
粉状石炭Aと粉状配合鉄鉱石Bからなる混合物Cは、成型設備として例えば熱間成型用の双ロール型成型機4を用いて加圧成型し、成型物Dとなす。加圧成型は、成型物Dを熱処理して得られた塊成化物Eが成型機4から竪型炉(例えば、高炉)への装入までのハンドリングに耐え得るに十分な強度である0.5kN/個以上が得られるよう、成型加圧力を10kN/cm以上とする。
[Hot forming process]
The mixture C composed of the powdered coal A and the powdered blended iron ore B is pressure-molded by using, for example, a hot-roll twin roll molding machine 4 as a molding facility to obtain a molded product D. The pressure molding has a strength sufficient for the agglomerate E obtained by heat-treating the molding D to withstand handling from the molding machine 4 to the vertical furnace (for example, blast furnace). The molding pressure is set to 10 kN / cm or more so that 5 kN / piece or more is obtained.

このようにして成型された成型物Dは、粉状配合鉄鉱石Bの間隙に溶融した石炭Aが万遍なく浸入し、この溶融した石炭Aが潤滑剤として作用して、成型物Dの表面に加えられた成型加圧力が成型物Dの内部にまでほぼ均一に及ぶため、表面近傍のみが圧密されることが防止され、成型物D内の気孔率分布が平均化され、加熱時に爆裂が起こらない塊成化物Eが得られる。 In the molded product D thus molded, the molten coal A uniformly enters the gaps of the powdered mixed iron ore B, and the molten coal A acts as a lubricant, and the surface of the molded product D Since the molding pressure applied to the inside of the molding D is almost evenly distributed, only the vicinity of the surface is prevented from being consolidated, the porosity distribution in the molding D is averaged, and explosion occurs during heating. An agglomerate E that does not occur is obtained.

また、固化後の石炭Aは、粉状鉄鉱石Bの粒子表面との接触面積も十分大きくなっており、高強度の塊成化物Eが得られる。また、多孔質のマラマンバ鉱石を配合しているのでより被還元性に優れたものとなる。   Moreover, the coal A after solidification has a sufficiently large contact area with the particle surface of the powdered iron ore B, and a high-strength agglomerate E is obtained. Moreover, since it contains a porous maramamba ore, the reducibility is further improved.

〔熱処理工程〕
この成型物Dを上記熱間成型温度(250〜550℃)以上800℃以下の温度に調整した熱処理設備(例えば、シャフト炉)5内に装入し、成型物D中に残存する揮発分およびタール分を除去し、石炭を固化させる。これにより、成型物Dが熱処理されて得られた塊成化物Eが竪型炉に装入されて加熱された際に、もはや石炭が軟化することがなく塊成化物Eの強度が維持されるとともに、タール分が多量に発生することがなく竪型炉の排ガス系統にタールが固着する等のトラブルの発生を防止できる。シャフト炉5内温度の下限を成型温度としたのは成型温度を下回ると揮発分やタール分の除去は非常に困難となるためであり、上限を800℃としたのは成型物D中の鉄分がシャフト炉5内で不必要に還元されて塊成化物Hの強度が低下してしまうのを防止するためである。また、揮発分やタール分の除去を促進するために、シャフト炉5内を負圧に制御することも有効な手段の一つである。
[Heat treatment process]
The molded product D was charged into a heat treatment facility (for example, a shaft furnace) 5 adjusted to a temperature of the hot molding temperature (250 to 550 ° C.) or higher and 800 ° C. or lower, and the volatile matter remaining in the molded product D and Tar content is removed and coal is solidified. Thereby, when the agglomerate E obtained by heat-treating the molded product D is charged into the vertical furnace and heated, the coal is no longer softened and the strength of the agglomerate E is maintained. In addition, a large amount of tar is not generated, and troubles such as tar sticking to the exhaust gas system of the vertical furnace can be prevented. The lower limit of the temperature in the shaft furnace 5 is set as the molding temperature because if the temperature is lower than the molding temperature, it is very difficult to remove volatile components and tar components. The upper limit is set to 800 ° C. The iron content in the molded product D This is to prevent the strength of the agglomerated material H from being reduced unnecessarily in the shaft furnace 5. Further, in order to promote the removal of volatile matter and tar content, it is one of effective means to control the inside of the shaft furnace 5 to a negative pressure.

シャフト炉5で熱処理された塊成化物Eは、熱いまま大気中に排出すると発火や燃焼や再酸化のおそれがあるため、シャフト炉5の下部で窒素ガスなどの不活性ガスにより400℃以下まで冷却してから排出するのが望ましい。   The agglomerate E heat-treated in the shaft furnace 5 may be ignited, burned or reoxidized if discharged into the atmosphere while being hot. Therefore, the lower part of the shaft furnace 5 is heated to 400 ° C. or less by an inert gas such as nitrogen gas. It is desirable to discharge after cooling.

なお、ロータリドライヤ1、竪形混合槽3、成型機4およびシャフト炉5は外部からの大気(酸素)の侵入を防止する構造とし、これらの設備で発生する炭材Aの熱分解ガス(揮発分)は炭化水素が主成分であるので、このガスをエジェクタ等を用いて吸引回収し、回収したガスはロータリキルン2等の加熱燃料として利用する。なお、このガス中には粉塵や高沸点タールなどの有害成分も含有されるため、排ガス処理設備(例えば、安水スクラバ)9により除塵・清浄後に用いるのが望ましい。 The rotary dryer 1, the vertical mixing tank 3, the molding machine 4 and the shaft furnace 5 are structured to prevent the intrusion of air (oxygen) from the outside, and the pyrolytic gas (volatilization) of the carbonaceous material A generated in these facilities. Since the main component is hydrocarbon, the gas is sucked and recovered using an ejector or the like, and the recovered gas is used as a heating fuel for the rotary kiln 2 or the like. In addition, since harmful components such as dust and high boiling point tar are contained in this gas, it is desirable to use it after dust removal and cleaning by an exhaust gas treatment facility (for example, a water-resistant scrubber) 9.

(変形例)
上記の実施形態では、複数種類の粉状鉄含有原料としてマラマンバ鉱石とシンターフィードの2種類の鉄鉱石を用いる例を示したが、マラマンバ鉱石に代えてまたは加えてピソライト鉱石を用いてもよく、また、シンターフィードに代えてまたは加えてペレットフィード、焼結返鉱、焼成ペレット篩下および製鉄ダストの少なくとも1種を用いてもよい。なかでも、焼結返鉱および焼成ペレット篩下は、BET比表面積が特に小さいため、粉状配合鉄含有原料のBET比表面積を目標値とするのに少量の配合でよく、マラマンバ鉱石やピソライト鉱石を多量に配合できる効果が得られる。さらに、焼結返鉱や焼成ペレット篩下といった製鉄所雑物を有効活用できるという効果も得られる。
(Modification)
In the above embodiment, an example using two types of iron ore of maramamba ore and sinter feed as a plurality of types of powdered iron-containing raw materials has been shown, but pisolite ore may be used instead of or in addition to maramamba ore, Further, instead of or in addition to the sinter feed, at least one of pellet feed, sintered reverse sinter, calcined pellet sieving, and iron-making dust may be used. Among them, since the BET specific surface area is particularly small in the sintered sinter and the calcined pellet sieving, a small amount may be used to set the BET specific surface area of the powdered mixed iron-containing raw material as the target value. The effect that can be blended in a large amount is obtained. In addition, it is possible to effectively use ironworks miscellaneous materials such as sintered ore and fired pellets.

本発明の効果を確認するため以下のラボ実験を実施した。
なお、下記比較例1,2および発明例とも、粉状石炭として、配合炭(logMF=2.0)をボールミルにて300μm以下に粉砕したもの(最頻粒径20μm)を共通に用いた。
In order to confirm the effect of the present invention, the following laboratory experiment was conducted.
In the following Comparative Examples 1 and 2 and Invention Examples, powdered coal (log MF = 2.0) obtained by pulverizing blended coal (log MF = 2.0) to 300 μm or less with a ball mill (moderate particle size 20 μm) was used in common.

(比較例1)
粉状鉄鉱石として、マラマンバ鉱石の一種である豪州産鉱石Aを700℃で焼成し、1.4mm以下に篩い分けたもの(最頻粒径50μm)を単味で用いた。この鉱石AのBET比表面積をBET比表面積測定装置(SHIMADZUマイクロメトリックス社製、型式:ジェミニ2375)にて測定した結果、13.7m/gであった。
(Comparative Example 1)
As powdered iron ore, Australian ore A, which is a kind of maramamba ore, was calcined at 700 ° C. and sieved to 1.4 mm or less (mode particle size 50 μm) as a plain. It was 13.7 m < 2 > / g as a result of measuring the BET specific surface area of this ore A with the BET specific surface area measuring apparatus (SHIMADZU micrometrics make, model: Gemini 2375).

(比較例2)
粉状鉄鉱石として、製鉄所雑物の一種である焼成ペレット篩下(鉱石J)を粉砕後700℃で焼成し、1.4mm以下に篩い分けたもの(最頻粒径300μm)を単味で用いた。この焼成ペレット篩下(鉱石J)のBET比表面積を上記比較例1と同じBET比表面積測定装置にて測定した結果、0.5m/gであった。
(Comparative Example 2)
As powdered iron ore, sinter pellets (ore J), which is a kind of ironworks miscellaneous material, is pulverized and then fired at 700 ° C. and sieved to 1.4 mm or less (moderate particle size 300 μm). Used in. The BET specific surface area of this calcined pellet sieve (Ore J) was measured by the same BET specific surface area measuring apparatus as in Comparative Example 1 and found to be 0.5 m 2 / g.

(発明例)
粉状配合鉄鉱石として、上記比較例1,2で粒度調整されたマラマンバ鉱石(鉱石A)と焼成ペレット篩下(鉱石J)の2種類の鉱石を配合し、配合後のBET比表面積が7.0m/g(目標値)となるように調整したものを用いた。
(Invention example)
As the powdered mixed iron ore, two kinds of ores of maramamba ore (Ore A) and calcined pellet sieve (Ore J) adjusted in particle size in Comparative Examples 1 and 2 above are blended, and the BET specific surface area after blending is 7 What was adjusted so that it might be set to 0.0 m < 2 > / g (target value) was used.

上記各単味の粉状鉄鉱石およびこれらを配合して作製した粉状配合鉄鉱石をそれぞれ小型加熱炉で所定温度に加熱し、これに上記粉状石炭を混合物に対する体積割合で55%添加・混合して420℃(目標)の混合物を作成し、これを直ちに圧潰強度試験機にて800kgf/cm(≒78.5MPa)の加圧力で直径d=20mm,高さh=20mmのタブレット状の炭材内装塊成化物に成型した。 Each simple powdered iron ore and the powdered mixed iron ore prepared by blending these are heated to a predetermined temperature in a small heating furnace, and the powdered coal is added to the mixture at a volume ratio of 55%. A mixture of 420 ° C. (target) was prepared by mixing, and this was immediately tableted in a crushing strength tester with a pressure of 800 kgf / cm 2 (≈78.5 MPa) and a diameter d = 20 mm and a height h = 20 mm. Molded into an agglomerate of carbonaceous material.

そして、このタブレットを室温まで冷却した後、コンクリートの引張強度試験方法(JIS−A1113)に準じて、上記圧潰強度試験機にてタブレットの直径方向に圧縮荷重を掛けて破壊荷重Pを測定し、これをσ=2P/(πdh)の関係式を用いてタブレット高さ方向の引張強度σに換算した。 And after cooling this tablet to room temperature, according to the tensile strength test method (JIS-A1113) of concrete, the fracture load P is measured by applying a compressive load in the diameter direction of the tablet with the above crushing strength tester, This was converted into a tensile strength σ in the tablet height direction using a relational expression of σ = 2P / (πdh).

また、上記タブレットをCO:50容量%+N:50容量%の雰囲気下で900℃×1h保持する条件で還元試験を行い、還元試験後のタブレットの還元率を求め、これを被還元性とした。 In addition, a reduction test was performed under the condition that the tablet was held at 900 ° C. × 1 h in an atmosphere of CO: 50 vol% + N 2 : 50 vol%, and the reduction rate of the tablet after the reduction test was determined. did.

測定結果を表3に示す。同表に示すように、比較例1では、被還元性に優れるものの引張強度は低く、比較例2では、引張強度は高いものの被還元性が劣り、両特性を同時に満足する塊成化物が得られていない。これに対し、発明例では、引張強度、被還元性とも高い水準の値が得られており、両特性を同時に満足する塊成化物が得られることを確認した。

Figure 2007077484
Table 3 shows the measurement results. As shown in the table, Comparative Example 1 has excellent reducibility but low tensile strength, and Comparative Example 2 has high tensile strength but poor reducibility, and an agglomerated material satisfying both characteristics at the same time is obtained. It is not done. On the other hand, in the invention examples, high levels of both tensile strength and reducibility were obtained, and it was confirmed that an agglomerated material satisfying both characteristics was obtained.
Figure 2007077484

本発明の実施に係る炭材内装塊成化物の製造フローの概念図である。It is a conceptual diagram of the manufacture flow of the carbonaceous material interior agglomerate which concerns on implementation of this invention. 溶融炭材と鉄鉱石表面との接触状態を説明する模式図であり、鉄鉱石として(a)は多孔質鉄鉱石、(b)は緻密質鉱石の場合を示す。It is a schematic diagram explaining the contact state of a molten carbon material and an iron ore surface, (a) is a porous iron ore and (b) shows the case of a dense ore as an iron ore. 各種単一銘柄の鉄鉱石のBET比表面積を示すグラフ図である。It is a graph which shows the BET specific surface area of the iron ore of various single brands. 鉄鉱石のBET比表面積と炭材内装塊成化物の引張強度との関係を示すグラフ図である。It is a graph which shows the relationship between the BET specific surface area of an iron ore, and the tensile strength of a carbonaceous material interior agglomerate. 粉状配合鉄鉱石への緻密質鉱石の配合割合と炭材内装塊成化物の引張強度との関係を示すグラフ図である。It is a graph which shows the relationship between the mixture ratio of the dense ore to a powdery mix iron ore, and the tensile strength of a carbonaceous material agglomerated material.

符号の説明Explanation of symbols

1:炭材乾燥加熱設備(ロータリドライヤ)
2:原料加熱設備(ロータリキルン)
3:混合設備(竪形混合槽)
4:成型設備(双ロール型成型機)
5:熱処理設備(シャフト炉)
9:排ガス処理設備(安水スクラバ)
A:粉状炭材(粉状石炭)
B:粉状配合鉄含有原料(粉状配合鉄鉱石)
B1,B2:鉄含有原料(鉄鉱石)
C:混合物
D:成型物
E:炭材内装塊成化物
1: Carbon material drying and heating equipment (rotary dryer)
2: Raw material heating equipment (rotary kiln)
3: Mixing equipment (vertical mixing tank)
4: Molding equipment (double roll type molding machine)
5: Heat treatment equipment (shaft furnace)
9: Exhaust gas treatment facility (Ansui scrubber)
A: Powdered carbon material (powdered coal)
B: Powdered mixed iron-containing raw material (powdered mixed iron ore)
B1, B2: Iron-containing raw material (iron ore)
C: Mixture D: Molded product E: Carbon material interior agglomerate

Claims (4)

複数種類の鉄含有原料を配合してなる粉状配合鉄含有原料と軟化溶融性を有する粉状炭材との混合物を250〜550℃で熱間成型して炭材内装塊成化物を製造する方法であって、前記粉状配合鉄含有原料のBET法による比表面積が、あらかじめ設定した目標値となるように、前記複数種類の粉状鉄含有原料の配合割合を調整することを特徴とする炭材内装塊成化物の製造方法。   A mixture of a powdered iron-containing raw material containing a plurality of types of iron-containing raw materials and a soft powdered carbonaceous material is hot-molded at 250 to 550 ° C. to produce a carbonaceous material agglomerated material. It is a method, Comprising: The blending ratio of the said multiple types of powder iron containing raw material is adjusted so that the specific surface area by the BET method of the said powder iron blend raw material may become a preset target value, It is characterized by the above-mentioned. A method for producing a carbonized material agglomerated material. 前記複数種類の鉄含有原料の一部として、マラマンバ鉱石および/またはピソライト鉱石を用いる請求項1に記載の炭材内装塊成化物の製造方法。   The method for producing an agglomerated carbonaceous material agglomerated product according to claim 1, wherein maramamba ore and / or pisolite ore are used as part of the plurality of types of iron-containing raw materials. 前記複数種類の鉄含有原料の別の一部として、焼結返鉱、焼成ペレット篩下など鉄鉱石を焼成したものを用いる請求項2に記載の炭材内装塊成化物の製造方法。   The method for producing an agglomerated carbonaceous material agglomerated product according to claim 2, wherein one or more of the plurality of types of iron-containing raw materials used are those obtained by firing iron ore such as sintered ore and calcined pellet sieve. 前記比表面積の目標値を0.6〜10m/gとする請求項1〜3のいずれか1項に記載の炭材内装塊成化物の製造方法。 The method for producing an agglomerated carbonaceous material agglomerated product according to any one of claims 1 to 3, wherein a target value of the specific surface area is 0.6 to 10 m 2 / g.
JP2005270690A 2005-09-16 2005-09-16 Manufacturing method of carbonized material agglomerates Expired - Fee Related JP4627236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270690A JP4627236B2 (en) 2005-09-16 2005-09-16 Manufacturing method of carbonized material agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270690A JP4627236B2 (en) 2005-09-16 2005-09-16 Manufacturing method of carbonized material agglomerates

Publications (2)

Publication Number Publication Date
JP2007077484A true JP2007077484A (en) 2007-03-29
JP4627236B2 JP4627236B2 (en) 2011-02-09

Family

ID=37938085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270690A Expired - Fee Related JP4627236B2 (en) 2005-09-16 2005-09-16 Manufacturing method of carbonized material agglomerates

Country Status (1)

Country Link
JP (1) JP4627236B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008270A1 (en) * 2007-07-10 2009-01-15 Kabushiki Kaisha Kobe Seiko Sho Carbon composite iron oxide briquette and process for producing the same
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2012107288A (en) * 2010-11-17 2012-06-07 Nippon Steel Corp Method for operating blast furnace using non-calcinating carbon-containing agglomerated ore
JP2012153945A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153946A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2017172020A (en) * 2016-03-25 2017-09-28 Jfeスチール株式会社 Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same
WO2020218170A1 (en) * 2019-04-23 2020-10-29 株式会社神戸製鋼所 Method for producing iron ore pellet
JP7366832B2 (en) 2019-04-23 2023-10-23 株式会社神戸製鋼所 Method for manufacturing iron ore pellets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247534A (en) * 1988-03-30 1989-10-03 Nippon Steel Corp Treatment of ore as stock for smelting and reducing
JP2003328043A (en) * 2002-05-17 2003-11-19 Kobe Steel Ltd Process for manufacturing sintered ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247534A (en) * 1988-03-30 1989-10-03 Nippon Steel Corp Treatment of ore as stock for smelting and reducing
JP2003328043A (en) * 2002-05-17 2003-11-19 Kobe Steel Ltd Process for manufacturing sintered ore

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008270A1 (en) * 2007-07-10 2009-01-15 Kabushiki Kaisha Kobe Seiko Sho Carbon composite iron oxide briquette and process for producing the same
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2012107288A (en) * 2010-11-17 2012-06-07 Nippon Steel Corp Method for operating blast furnace using non-calcinating carbon-containing agglomerated ore
JP2012153945A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153946A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2017172020A (en) * 2016-03-25 2017-09-28 Jfeスチール株式会社 Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same
WO2020218170A1 (en) * 2019-04-23 2020-10-29 株式会社神戸製鋼所 Method for producing iron ore pellet
JP7366832B2 (en) 2019-04-23 2023-10-23 株式会社神戸製鋼所 Method for manufacturing iron ore pellets

Also Published As

Publication number Publication date
JP4627236B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
KR101644785B1 (en) Process for producing agglomerates of finely particulate iron carriers
CN107419093B (en) Granulated particle of carbon-encapsulated material for use in producing sintered ore, method for producing same, and method for producing sintered ore
EP1004681A1 (en) Pellets incorporated with carbonaceous material and method of producing reduced iron
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
WO2010041770A1 (en) Blast furnace operating method using carbon-containing unfired pellets
JP2015193930A (en) Method for producing sintered ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP2014214334A (en) Method for manufacturing sintered ore
JP4441461B2 (en) Manufacturing method of carbonized material agglomerates
CN113166844B (en) Iron ore powder agglomerate production method and agglomerated product
CN106414778A (en) Production method of granular metallic iron
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
AU2017388174B2 (en) Sintered ore manufacturing method
JP3863052B2 (en) Blast furnace raw material charging method
JP4600102B2 (en) Method for producing reduced iron
JP2007169707A (en) Method for producing dephosphorizing agent for steelmaking using sintering machine
JP3144886B2 (en) Method for producing sintered ore or pellet ore as raw material for blast furnace using lime cake
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees