JP3502064B2 - Method for producing agglomerates of ironmaking raw materials - Google Patents

Method for producing agglomerates of ironmaking raw materials

Info

Publication number
JP3502064B2
JP3502064B2 JP2001158897A JP2001158897A JP3502064B2 JP 3502064 B2 JP3502064 B2 JP 3502064B2 JP 2001158897 A JP2001158897 A JP 2001158897A JP 2001158897 A JP2001158897 A JP 2001158897A JP 3502064 B2 JP3502064 B2 JP 3502064B2
Authority
JP
Japan
Prior art keywords
iron
agglomerates
cao
agglomerate
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001158897A
Other languages
Japanese (ja)
Other versions
JP2002146444A (en
Inventor
正賢 清水
昭人 笠井
良行 松井
修三 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001158897A priority Critical patent/JP3502064B2/en
Publication of JP2002146444A publication Critical patent/JP2002146444A/en
Application granted granted Critical
Publication of JP3502064B2 publication Critical patent/JP3502064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、炭材内装塊成化物
中の鉄源を還元して還元鉄または還元鉄を溶解して溶銑
を製造する技術分野に属し、詳しくは、炭材内装塊成化
物中に副原料を添加することにより、スラグ・メタル溶
融分離温度を下げ、さらに金属鉄中の硫黄含有量を低減
する製鉄原料の塊成化物製造方法の技術分野に属するも
のである。 【0002】 【従来の技術】従来の塊成化物は、鉄源である鉄鉱石粉
に炭材である石炭粉を混合して、石炭の軟化および/ま
たは溶融温度範囲内で加圧成形し、成形温度範囲で5分
以上の脱ガス処理を行なって塊成化物を製造し、その
後、塊成化物を還元した還元鉄の見掛け密度が2300
kg/m3 以上になる塊成化物である。その理由は、石
炭の軟化および/または溶融温度範囲内で加圧成形する
ことによつて、石炭と鉄鉱石粉との接触面積が大きくな
り見掛け密度が大きくなる。その結果、熱伝導性がよく
なり還元速度を高めることができるからである。また、
塊成化物の成形時に使用していたベントナイト等の無機
物のバインダーも不要となり還元鉄の品位を向上させる
ことができ、さらに還元鉄の見掛け密度も大きくするこ
とができる。還元鉄の見掛け密度が2300kg/m3
以上になると、還元鉄の溶解に際して、還元鉄は溶解炉
中のスラグ上に浮くことがなくなり短時間で溶解してし
まうと言う利点がある。 【0003】 【発明が解決しようとする課題】しかし、従来の塊成化
物では、原料中に含まれる硫黄成分の一部は還元鉄、還
元鉄の溶解過程で金属鉄中に含有され、溶銑の品質を下
げるとともに製鋼過程での脱硫処理が不可欠となり製鋼
コストを引き上げる要因となる。 【0004】また、還元鉄のスラグの融点が高いと、還
元鉄の溶解に際して、スラグ・メタルの溶解が遅れスラ
グ・メタルの分離効率が低下するとともに、溶解までに
長時間を要し溶解エネルギーコストの増大を招くことに
なる。 【0005】本発明は、上記の問題点を解決するために
なされたもので、鉄源と炭材を混合し、炭材の軟化溶融
温度範囲内で加圧成形し、見掛け密度が2300kg/
3以上である塊成化物を製造するに際して、鉄源と炭
材を混合した原料中に副原料の脱硫材を添加し、さらに
スラグ成分の塩基度を調整することによって、溶解時に
金属鉄中への硫黄成分の含有量を低減し、スラグ・メタ
ル分離効率を向上させることができる製鉄原料の塊成化
物を提供することを目的とする。 【0006】 【課題を解決するための手段】その要旨は、鉄源と炭材
とを混合してなる原料を、前記炭材の軟化溶融温度範囲
内で加圧成形して、見掛け密度が2300kg/m 3
上である塊成化物を製造するに際し、前記炭材のギーセ
ラー最高流動度MFをlogMF≧1.5とし、前記原
料中のスラグ成分の塩基度(CaO/SiO 2 )が1.
05〜1.5の範囲になるように前記原料にCaO含有
物質を添加し、前記塊成化物を還元炉で還元してなる還
元鉄の溶解時に、スラグ・メタルの溶融分離温度が15
00℃以下で、かつ金属鉄中の硫黄成分が0.04%以
下になることを特徴とする製鉄原料の塊成化物製造方法
である。 【0007】 【0008】 【0009】還元材である炭材は、炭種によって260
℃を超えると熱分解が始まり軟化溶融し、550℃を超
えると固化する。この温度域で鉄鉱石粉(鉄源)と炭材
を混合し加圧成形すると、鉄鉱石粉粒子間の空隙に溶融
した炭材が容易に浸入し、鉄鉱石粉同士を強固に連結す
る。このため、従来の方法では、バインダーが必要であ
ったが、本発明ではバインダーが不要となり還元鉄の品
位を高めることができる。本発明では、この軟化溶融性
を有する炭材を用いる。 【0010】また、260〜550℃の温度域で熱間成
形した塊成化物を、この成形温度範囲で、5分間以上の
脱ガス処理を行なうことによって、塊成化物中の炭材か
らの揮発分を抜き塊成化物の強度を高め、その後の還元
工程での塊成化物の膨れによる割れを防止することがで
きる。脱ガス処理後の塊成化物の見掛け密度は揮発分が
抜けた分、収縮するため、脱ガス処理前後の塊成化物の
見掛け密度はほとんど変わらない。しかし、脱ガス処理
を行なうことによって、還元過程での塊成化物の膨れが
なくなり還元鉄の見掛け密度は大きくなる。 【0011】図4に塊成化物と還元鉄の見掛け密度の関
係を示す。図に示すように、還元鉄の見掛け密度は還元
前の塊成化物の見掛け密度が大きくなると、それにほぼ
比例して大きくなる。また、熱間成形ブリケットに50
0℃で30分間の脱ガス処理を行なうと、還元過程での
ブリケットの膨れがなくなり、見掛け密度は大きくな
る。このように、熱間成形したブリケットに脱ガス処理
を行なうことにより見掛け密度を2300kg/m3
上にすることによって、図5に示すように、次工程の還
元鉄を溶解する際に、還元鉄の見掛け密度は溶解炉中の
スラグの見掛け密度より大きくなり、還元鉄は速やかに
スラグ中に沈み込み溶解が促進され、溶解時の生産性が
向上する。 【0012】上記の製鉄原料の塊成化物の製造方法につ
いては、本発明者等の一人によって特願平10−081
540号に提案されている。 【0013】 【発明の実施の形態】以下に、本発明を詳細に説明す
る。図1に本発明に係わる製鉄原料の塊成化物の製造プ
ロセスの概念図の一例を示す。図に示すように、まず原
料である炭材と鉄鉱石を粉砕機で粉砕する。このとき
に、鉄鉱石あるいは炭材に脱硫材である副原料のCaO
含有物質を添加して原料とともに粉砕する。同様に、原
料のスラグ成分の塩基度を調整する場合も、鉄鉱石ある
いは炭材に副原料のCaO含有物質を添加して原料とと
もに粉砕する。CaO含有物質としては生石灰、消石
灰、石灰石等を用いることができる。炭材は鉄鉱石等と
の混合状態を良好に保つために1mm以下に粉砕するの
が好ましい。また炭材は溶融軟化性の程度を示すギーセ
ラー最高流動度が高いものが好ましく、炭材の配合比率
は塊成化物中に体積比率で30%以上が望ましい。粉砕
後の鉄鉱石と炭材の乾燥・予熱に関しては、炭材は水分
変動による鉄鉱石との混合時の温度変動を少なくするた
めに、ロータリードライヤーで200℃以下の温度で乾
燥し、付着水分を除去する。一方、鉄鉱石は、炭材と混
合した時に目標成形温度になるように、ロータリーキル
ンで予熱する。 【0014】乾燥・予熱した鉄鉱石と炭材の混合には、
炭材の一部の過熱を防止するために短時間で混合できる
この業種で常用されている、例えば二軸型のミキサーを
用いる。原料の粉砕時に脱硫材および塩基度を調整する
副原料のCaOを添加しない場合は、別途粉砕したCa
Oをミキサーに添加し、鉄鉱石、炭材とともに混合して
もよい。また、ミキサーは成形温度を確保するために保
温する。 【0015】混合後の鉄鉱石、炭材およびCaOは、熱
間成形用の成形機を用いて塊成化物(ブリケット)に加
圧成形する。加圧成形は塊成化物がハンドリングに耐え
得るに十分な強度が得られればよく、従って、成形加圧
力は1.5t/cm以上とする。このようにして成形し
た塊成化物は、図6(b)に示すように、鉄鉱石粉粒子
間の空隙に溶融した炭材が浸入し、鉄鉱石同士を強固に
連結し、また、炭材と鉄鉱石との接触面積も大きくなっ
ている。また、ミキサーと成形機は密閉構造とし、ミキ
サーおよび成形機で発生するガスをエジェクター等を用
いて吸引回収し、回収したガスは還元炉の還元末期ゾー
ンに吹き込まれ還元ガスとして利用される。 【0016】成形後の塊成化物は揮発分が若干残ってい
る。これをこのまま還元炉に装入すると、揮発分の発生
により塊成化物は膨張し、場合によっては亀裂が入り粉
化する。これを防止し、塊成化物の強度を高めるため
に、成形温度付近あるいはそれ以上の温度に保持した脱
ガス・固化槽に塊成化物を装入して炭材を固化させ、同
時に揮発分も減少させる。揮発分を抜いた塊成化物は、
図6(c)に示すように、揮発分が抜けたガス穴(微細
な気孔)が認められる。このようにして製造された塊成
化物の見掛け密度は2400kg/m3以上である。従
って、この脱ガス・固化処理は、塊成化物の崩壊を防止
し、密度の高い還元鉄を得るために重要な工程である。
このようにして得られた塊成化物は脱ガス・固化槽から
出た後、篩われ、篩上は還元炉に装入され、篩下の粉は
原料として再びミキサーに戻される。 【0017】塊成化物の製造時に脱硫材としてCaOを
添加することによって、還元時あるいは還元鉄の溶解時
に、CaOは炭材に含有されている硫黄成分と反応して
CaSを形成して炭材に含有されている硫黄成分を固定
するため、金属鉄中の硫黄含有量を低減することができ
る。また、硫黄成分を含有する鉄源(鉄鉱石も含む)の
場合も、一部の硫黄成分がCaOと反応して固定され金
属鉄中の硫黄含有量を低減する。 【0018】図2はCaO添加量と金属鉄中の硫黄成分
(S)量との関係を示す図で、横軸には、塊成化物に対
するCaO添加量を示し、縦軸は金属鉄中のS含有量を
示す。図に示すように、CaO添加量が増加すると金属
鉄中のS含有量が低下することがわかる。従って、鉄源
と炭材に含有されるS量を分析により知り、脱硫したい
S量に見合う量のCaOを原料中に添加することによっ
て、金属鉄中のS量を所定量に脱硫することが可能であ
る。 【0019】また、塊成化物の製造時にCaOを添加し
てスラグ成分の塩基度を調整することによって、還元鉄
の溶解時に、スラグの融点を下げることができるため、
スラグ・メタルの分離効率を高め、清浄な金属鉄を得る
ことができる。また、スラグの融点が下がることで還元
鉄の溶解温度が下がり溶解時間を短縮することができ
る。さらに上記のようにCaOは脱硫材として作用し溶
銑の品質を上げることができる。その結果、製鋼過程で
の脱硫コストも低減される。 【0020】塩基度を左右するSiO2 は、原料中に鉄
鉱石と炭材に付随して混入するものである。従って、塩
基度を調整するためには鉄鉱石および炭材に含有される
SiO2量を分析により知り、調整したい塩基度に見合
う量のCaOを添加することによって、還元鉄中のスラ
グ成分の塩基度を所定の値に調整することが可能であ
る。 【0021】図3は塩基度とスラグ・メタル溶融分離温
度との関係および塩基度と金属鉄中のS含有量との関係
を示す図で、横軸には還元鉄中の塩基度を示し、左縦軸
にはスラグ・メタル溶融分離温度を示し、右縦軸には金
属鉄中のS含有量を示す。図に示すように、塩基度によ
ってスラグ・メタル溶融分離温度は変化することが分か
る。一方、金属鉄中のS含有量は塩基度が高くなると低
下することが分かる。 【0022】図3から明らかなように、本発明では、還
元鉄のスラグ成分の塩基度(CaO/SiO2 )を1.
05〜1.5の範囲に調整することで還元鉄の溶融時
に、スラグ・メタル溶融分離温度を1500℃以下に、
金属鉄中のS含有量を0.04%以下にすることができ
る。このように、塊成化物中に副原料を事前に混合して
おくことにより、竪型炉に塊成化物と副原料とを別々に
装入するよりは、副原料が少なくてすみ、副原料の量が
同じであれば、脱硫効率が高くなる。従って、塊成化物
中に副原料を混合することによって、副原料の量を少な
くして脱硫効率を向上させることができる。副原料は1
mm以下の粒径にした方が塊成化物の密度や強度が増
し、脱硫効率が高くなる。 【0023】塊成化物を還元炉で還元した還元鉄は、製
鉄原料として高炉に装入することもでき、あるいはキュ
ポラ炉に装入して銑鉄の原料として使用することもでき
る。 【0024】また、還元前の製鉄原料の塊成化物は製鉄
原料として、この状態で竪型炉に装入することもでき
る。ここに図7は、還元前の塊成化物(未還元塊成化
物)をJIS M8712に基づくタンブラー回転強度
試験を行い、その試験時の−1mm粉率と圧潰強度との
関係を示したものである。図に示すように、未還元塊成
化物の圧潰強度が400N/個以上あれば、−1mm粉
率は17質量%以下と少なくなり、高炉などの竪型炉へ
の装入時のハンドリングに十分耐えることがわかる。未
還元塊成化物のスラグ成分の塩基度(CaO/SiO
2 )が1.05〜1.5の範囲においては、炭材のギー
セラー最高流動度MFをlogMF≧1.5とすれば圧
潰強度400N/個以上が得られ(後述の実施例3参
照)、高炉等の竪型炉に用いることができる。なお、ギ
ーセラー最高流動度はJIS M8801に基づいて測
定された値である。 【0025】 【実施例1】以下に実施例を挙げて本発明を説明する。
表1に示す炭材と表2に示す鉄鉱石粉を、炭材22%、
鉄鉱石粉78%の質量割合で混合した後、図1に示す成
形前のミキサーに脱硫材として、塊成化物に対するCa
Oの質量割合で3%を添加して混合した。成形は450
℃で、2t/cmの成形圧力で体積約3cm3の塊成化
物を双ロール成形機で成形した。成形後500℃、30
分間の脱ガス処理を行なった。このときの塊成化物の見
掛け密度は2300kg/m3以上であった。なお、ギ
ーセラー最高流動度はJIS M8801に基づいて測
定した。 【0026】 【表1】 【0027】 【表2】 【0028】 上記塊成化物を横型還元炉で、1400℃
で10分間の還元処理を行なった。その結果を表3に示
す。表3に示すように、還元鉄の金属化率(M.Fe/
T.Fe)は98.45%で、金属鉄中のSは0.06
%である。また、比較例として脱硫材を添加しなかった
場合の金属鉄中のSは0.11%であった。このよう
に、原料中に脱硫材として生石灰を添加して成形された
塊成化物は還元過程で脱硫され、後工程での脱硫処理が
軽減される。還元鉄の見掛け密度は2400kg/m3
である。 【0029】 【表3】 【0030】 【実施例2】実施例1と同様に、表1および表2に示す
炭材と鉄鉱石粉を、炭材22%、鉄鉱石粉78%の質量
割合で混合した後、図1に示す成形前のミキサーに塩基
度調整のためのCaOを添加し、混合して、塩基度を
1.2に調整した。成形条件および成形後の脱ガス処理
条件は実施例1と同じである。 【0031】この塊成化物について還元溶融実験を行
い、スラグ・メタル溶融分離温度を測定した結果、スラ
グ・メタル溶融分離温度は1440℃であった。そし
て、この時の金属鉄中のSは0.03%であった。この
ように、原料中に塩基度調整のためのCaOを添加して
成形した塊成化物は還元後の溶解過程でのスラグ・メタ
ル溶融分離温度が低下し、溶融温度を下げることができ
る。さらに脱硫も行なわれ、後工程での脱硫処理が軽減
される。なお、還元溶融実験は、鉄鉱石類の高温荷重軟
化試験法に基づいて行なったものである。 【0032】 【実施例3】炭材として、ギーセラー最高流動度MFが
logMFで1.23〜3.54の範囲の石炭4種類を
それぞれ粉砕して粒度が74μm以下70〜80質量%
とした石炭粉を用いた。各石炭粉ごとに表2に示す鉄鉱
石粉と、石炭粉22%、鉄鉱石粉の質量割合で混合した
後、図1の成形前のミキサーに表4に示す石灰石粉をそ
の添加量を種々変更して添加し、混合して、塩基度を
0.0〜2.0の範囲で変化させた。成形条件および成
形後の脱ガス処理条件は実施例1と同じである。 【0033】 【表4】 【0034】この塊成化物の圧潰強度を測定し、その結
果を図8に、塊成化物中スラグ成分の塩基度(CaO/
SiO2 )および炭材のギーセラー最高流動度MFと塊
成化物の圧潰強度との関係を示す図として表した。図よ
り、石灰石の添加量が増加して塊成化物中スラグ成分の
塩基度(CaO/SiO2 )が大きくなるにしたがい圧
潰強度は低下する傾向にあるが、炭材のギーセラー最高
流動度MFが大きくなるほど圧潰強度は上昇することが
分かる。また図8から明らかなように、塊成化物のスラ
グ成分の塩基度(CaO/SiO2 )が1.05〜1.
5の範囲においては、炭材のギーセラー最高流動度MF
をlogMF≧1.5とすることにより、圧潰強度が4
00N/個以上の塊成化物が得られ、ハンドリングによ
る粉化が少なく、高炉等の竪型炉にも装入することがで
きる。 【0035】 【発明の効果】以上述べたところから明らかなように、
本発明に係わる製鉄原料の塊成化物は、副原料としてC
aO含有物質を添加しているため、添加したCaOが脱
硫作用と塩基度調整作用をもたらし、還元工程で硫黄成
分の低い清浄な金属鉄を得ることができる。また、塊成
化物を還元した還元鉄の溶融時には、溶融温度を低下さ
せるため、溶融エネルギーコストを低減し、かつ脱硫も
行なわれるため、後工程での脱硫処理が軽減される。ま
た、本発明に係わる製鉄原料の塊成化物は、炭材として
ギーセラー最高流動度が一定値以上の炭材を用いている
ため、圧潰強度が高く粉化されにくいので高炉等の竪型
炉にも装入することができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to an agglomerated carbonaceous material interior
Hot iron by reducing reduced iron source and dissolving reduced iron or reduced iron
Belongs to the technical field of manufacturing
Slag and metal melt
Lowers the melt separation temperature and further reduces the sulfur content in metallic iron
Belonging to the technical field of agglomeration of ironmaking raw materials
It is. [0002] 2. Description of the Related Art Conventional agglomerates are iron ore powder which is an iron source.
Is mixed with coal powder, which is a coal material, to soften and / or reduce coal.
Or pressure molding within the melting temperature range, 5 minutes at the molding temperature range
By performing the above degassing process to produce agglomerates,
After that, the apparent density of reduced iron that reduced agglomerates was 2300
kg / mThree It is the agglomerate which becomes above. The reason is stone
Press forming within the softening and / or melting temperature range of charcoal
As a result, the contact area between coal and iron ore powder increases.
The apparent density increases. As a result, thermal conductivity is good
This is because the reduction rate can be increased. Also,
Inorganic materials such as bentonite used in forming agglomerates
No need for material binders, which improves the quality of reduced iron
And increase the apparent density of reduced iron.
Can be. The apparent density of reduced iron is 2300kg / mThree
Above, when the reduced iron is melted, the reduced iron
Dissolved in a short time without floating on the slag inside
There is an advantage to say. [0003] However, the conventional agglomeration
In products, some of the sulfur components contained in the raw materials are reduced iron,
Contained in metallic iron during the melting process of the original iron, lowering the quality of the hot metal
And desulfurization during the steel making process becomes indispensable.
This will increase costs. Also, if the melting point of the reduced iron slag is high,
Dissolution of slag and metal is delayed during dissolution of source iron
Metal metal separation efficiency is reduced, and
It takes a long time to increase the melting energy cost
Become. [0005] The present invention has been developed to solve the above problems.
Made by mixing iron source and carbon material, softening and melting the carbon material
Pressure molding within the temperature range, apparent density 2300kg /
mThreeWhen producing the agglomerates described above, iron sources and coal
Add the desulfurizing material as an auxiliary material to the raw material
By adjusting the basicity of the slag component,
Reduces the content of sulfur components in metallic iron,
Agglomeration of steelmaking raw materials that can improve separation efficiency
The purpose is to provide things. [0006] [Summary of the Invention]Iron source and charcoal
And the raw material obtained by mixing
Pressure molding inside, apparent density is 2300kg / m Three Less than
In producing the agglomerate, the grease of the carbon material is used.
The maximum flow rate MF is set to logMF ≧ 1.5,
Basicity of slag component (CaO / SiO Two ) Is 1.
CaO is contained in the raw material so as to be in the range of 0.5 to 1.5.
Adding a substance and reducing the agglomerate in a reduction furnace
The melting and separation temperature of slag and metal is 15
00 ° C or less and the sulfur content in metallic iron is 0.04% or less
Method for producing agglomerates of iron making raw material
Is. [0007] [0008] [0009] The carbon material as a reducing material is 260
If the temperature exceeds ℃, thermal decomposition starts and softens and melts, and exceeds 550 ° C
And solidifies. In this temperature range, iron ore powder (iron source) and carbonaceous material
Is mixed and pressed to melt in the voids between iron ore powder particles.
Carbon material easily penetrates and firmly connects iron ore powders.
You. For this reason, conventional methods require a binder.
However, in the present invention, a binder is not required, and
Rank can be raised. In the present invention, this softening and melting property
Is used. Further, hot forming is performed in a temperature range of 260 to 550 ° C.
The formed agglomerate is allowed to stand at this molding temperature range for 5 minutes or more.
By performing degassing, the carbon material in the agglomerate
These volatiles are removed to increase the strength of the agglomerate and then reduced.
It is possible to prevent cracks caused by blistering of agglomerates in the process.
Wear. The apparent density of agglomerates after degassing is
Because of the shrinkage, the agglomerates before and after degassing
The apparent density hardly changes. But degassing
The swelling of the agglomerates during the reduction process
The apparent density of the reduced iron increases. FIG. 4 shows the relationship between the apparent densities of agglomerates and reduced iron.
Show the person in charge. As shown in the figure, the apparent density of reduced iron
As the apparent density of the previous agglomerate increases,
It increases in proportion. Also, 50 for hot formed briquettes
When degassing is performed at 0 ° C for 30 minutes,
Briquette swelling disappears and apparent density increases.
You. Thus, degassing hot-formed briquettes
To reduce the apparent density to 2300 kg / mThree Less than
By doing so, as shown in FIG.
When melting the original iron, the apparent density of the reduced iron
The density becomes larger than the apparent density of the slag, and the reduced iron
Submersion in slag promotes dissolution, increasing productivity during dissolution
improves. [0012] The above method for producing agglomerates of ironmaking raw materials is described.
In addition, one of the present inventors has filed Japanese Patent Application No. 10-081.
No. 540. [0013] DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
You. FIG. 1 shows a production process of agglomerates of iron-making raw materials according to the present invention.
1 shows an example of a conceptual diagram of a process. As shown in the figure,
The carbonaceous material and iron ore that are the raw materials are crushed by a crusher. At this time
In addition, CaO, an auxiliary raw material that is a desulfurizing material in iron ore or carbonaceous material,
Pulverize the ingredients together with the ingredients. Similarly, Hara
When adjusting the basicity of the slag component of the feed,
Or a carbonaceous material with a CaO-containing substance as an auxiliary material
Crush into pieces. Quicklime, slaked stone as CaO-containing substances
Ash, limestone and the like can be used. Carbon materials are iron ore
Pulverize to 1mm or less to keep the mixed state of
Is preferred. In addition, the carbonaceous material
Higher fluidity is preferable, and the blending ratio of carbon
Is preferably 30% or more by volume in the agglomerate. Grinding
Regarding the drying and preheating of iron ore and carbon material afterwards,
To reduce temperature fluctuations during mixing with iron ore due to fluctuations
Dry at a temperature of 200 ° C or less with a rotary dryer.
Dry and remove adhering water. On the other hand, iron ore is mixed with carbonaceous materials.
Rotary kill to reach the target molding temperature when
Preheat with heat. The mixing of the dried or preheated iron ore and the carbonaceous material includes:
Can be mixed in a short time to prevent overheating of part of carbon material
For example, a two-shaft mixer commonly used in this industry
Used. Adjust desulfurizer and basicity when grinding raw materials
When CaO as an auxiliary material is not added, separately pulverized Ca
Add O to the mixer and mix with iron ore and charcoal
Is also good. Also, keep the mixer in place to ensure the molding temperature.
Warm up. The mixed iron ore, carbonaceous material and CaO are heat
Adds to agglomerates (briquettes) using a forming machine for cold forming
Press forming. In press molding, agglomerates endure handling
It is sufficient if sufficient strength can be obtained, and therefore, molding pressure
The force is 1.5 t / cm or more. Molded in this way
As shown in FIG. 6 (b), the agglomerates were iron ore powder particles.
The molten carbon material penetrates into the gaps between the iron ores, strengthening the iron ores.
And the area of contact between the carbonaceous material and the iron ore also increases.
ing. In addition, the mixer and the molding machine have a closed structure,
Ejector, etc., for gas generated in a molding machine and a molding machine
The collected gas is collected at the end-of-reduction zone in the reduction furnace.
And is used as a reducing gas. The agglomerate after molding has a small amount of volatile components remaining.
You. When this is charged into the reduction furnace as it is, volatile components are generated.
Causes the agglomerates to expand, possibly cracking
Become To prevent this and increase the strength of agglomerates
At a temperature near or above the molding temperature.
The agglomerate is charged into the gas / solidification tank to solidify the carbon material,
Sometimes volatiles are also reduced. The agglomerates without volatiles are
As shown in FIG. 6 (c), gas holes (fine
Pores) are observed. Agglomerates produced in this way
The apparent density of the compound is 2400 kg / mThreeThat is all. Subordinate
Therefore, this degassing and solidification treatment prevents the collapse of agglomerates
However, this is an important step to obtain a high-density reduced iron.
The agglomerate obtained in this way is removed from the degassing / solidification tank.
After leaving, it is sieved, the upper part of the sieve is charged into a reduction furnace, and the powder under the sieve is
The raw material is returned to the mixer again. When producing agglomerates, CaO is used as a desulfurizing material.
By adding, during reduction or dissolution of reduced iron
On the other hand, CaO reacts with sulfur component contained in
Forming CaS to fix sulfur component contained in carbonaceous material
To reduce the sulfur content in metallic iron
You. In addition, iron sources containing sulfur components (including iron ore)
In some cases, some sulfur components react with CaO and become fixed.
Reduce the sulfur content in metallic iron. FIG. 2 shows the amount of CaO added and the sulfur component in metallic iron.
(S) is a graph showing the relationship with the amount, the abscissa is the agglomerate versus
The vertical axis indicates the S content in metallic iron.
Show. As shown in the figure, when the amount of CaO added increases,
It can be seen that the S content in iron decreases. Therefore, iron source
Want to desulfurize by knowing the amount of S contained in carbon and carbonaceous materials by analysis
By adding an amount of CaO corresponding to the amount of S to the raw material,
Therefore, it is possible to desulfurize the S content in the metallic iron to a predetermined amount.
You. Also, CaO is added during the production of agglomerates.
By adjusting the basicity of the slag component, the reduced iron
The melting point of slag can be lowered
Increase the efficiency of slag / metal separation and obtain clean metallic iron
be able to. Also, reducing the melting point of slag reduces
The melting temperature of iron decreases and the melting time can be shortened.
You. Furthermore, as described above, CaO acts as a desulfurizing material and
The quality of the pig can be improved. As a result, during the steelmaking process
Also reduces the desulfurization cost. SiO affecting basicityTwo Is iron in the raw material
It is mixed with ore and carbonaceous materials. Therefore, salt
Included in iron ore and carbonaceous materials to adjust the basis
SiOTwoKnow the amount by analysis and match the basicity you want to adjust
By adding a small amount of CaO, the slurry in the reduced iron
It is possible to adjust the basicity of the
You. FIG. 3 shows basicity and slag / metal melting temperature.
Relationship between basicity and basicity and S content in metallic iron
The horizontal axis shows the basicity in reduced iron, and the left vertical axis
Shows the slag / metal melt separation temperature, and the right vertical axis shows gold
It shows the S content in the metallic iron. As shown in the figure,
Slag-metal melt separation temperature changes
You. On the other hand, the S content in metallic iron decreases as the basicity increases.
You can see that it goes down. As is apparent from FIG. 3, the present invention
Basicity of slag component of original iron (CaO / SiOTwo) To 1.
When the reduced iron is melted by adjusting the range from 0.5 to 1.5
In addition, the slag / metal melting / separation temperature is set to 1500 ° C or less,
S content in metallic iron can be reduced to 0.04% or less
You. In this way, the auxiliary materials are mixed in advance in the agglomerate
In this way, the agglomerates and auxiliary materials can be separated separately in a vertical furnace.
Rather than charging, less auxiliary ingredients are required and the amount of
If they are the same, the desulfurization efficiency increases. Therefore, agglomerates
By mixing the auxiliary raw materials inside, the amount of auxiliary raw materials can be reduced.
Thus, desulfurization efficiency can be improved. Secondary material is 1
The particle size of less than mm increases the density and strength of agglomerates.
And the desulfurization efficiency increases. Reduced iron obtained by reducing agglomerates in a reduction furnace is manufactured by
It can be charged to the blast furnace as iron raw material, or
It can also be used as a raw material for pig iron by charging it into a pora furnace.
You. The agglomerate of the raw material for iron making before reduction is
As a raw material, it can be charged into a vertical furnace in this state.
You. Here, FIG. 7 shows the agglomerate before reduction (unreduced agglomeration).
Tumbler rotation strength based on JIS M8712
A test was conducted, and the -1 mm powder ratio and the crush strength at the time of the test were compared.
It shows the relationship. As shown in the figure, unreduced agglomeration
If the crushing strength of the compound is 400 N / piece or more, -1 mm powder
Rate is reduced to 17 mass% or less, and it can be used for vertical furnaces such as blast furnaces.
It can be understood that it can withstand the handling at the time of charging. Not yet
Basicity of slag component of reduced agglomerate (CaO / SiO
Two ) Is in the range of 1.05 to 1.5,
If the cellar maximum flow rate MF is logMF ≧ 1.5, the pressure is
A crushing strength of 400 N / piece or more was obtained (see Example 3 described later).
) And a vertical furnace such as a blast furnace. In addition,
ー The highest flow rate of the cellar is measured based on JIS M8801.
It is a specified value. [0025] Embodiment 1 The present invention will be described below with reference to embodiments.
The carbonaceous material shown in Table 1 and the iron ore powder shown in Table 2 were combined with a carbonaceous material of 22%
After mixing at a mass ratio of 78% of iron ore powder, the composition shown in FIG.
As a desulfurizer in the mixer before shaping, Ca
3% by mass ratio of O was added and mixed. Molding 450
At about 3cm in volume at a molding pressure of 2t / cmThreeAgglomeration of
The product was formed on a twin roll forming machine. 500 ° C, 30 after molding
For a minute. View of agglomerates at this time
Hanging density is 2300kg / mThreeThat was all. In addition,
ー The highest flow rate of the cellar is measured based on JIS M8801.
Specified. [0026] [Table 1] [0027] [Table 2] [0028] The above agglomerate is placed in a horizontal reduction furnace at 1400 ° C.
For 10 minutes. The results are shown in Table 3.
You. As shown in Table 3, the metallization ratio of reduced iron (M.Fe /
T. Fe) is 98.45%, and S in metallic iron is 0.06%.
%. As a comparative example, no desulfurizing material was added.
In the case, S in the metallic iron was 0.11%. like this
Was formed by adding quicklime as a desulfurizing material to the raw material
The agglomerates are desulfurized during the reduction process, and the desulfurization
It is reduced. The apparent density of reduced iron is 2400kg / mThree
It is. [0029] [Table 3] [0030] Example 2 As in Example 1, the results are shown in Tables 1 and 2.
Carbon material and iron ore powder, mass of carbon material 22%, iron ore powder 78%
After mixing at a ratio, the base was added to the mixer before molding shown in FIG.
Add CaO for adjusting the degree of mixing, mix and adjust the basicity.
Adjusted to 1.2. Molding conditions and degassing after molding
The conditions are the same as in the first embodiment. A reduction melting experiment was performed on the agglomerate.
As a result of measuring the slag / metal melt separation temperature,
The melt separation temperature was 1440 ° C. Soshi
At this time, S in the metallic iron was 0.03%. this
As described above, CaO for adjusting the basicity is added to the raw material.
The formed agglomerate is used as slag and meta during the dissolution process after reduction.
The melting temperature can be lowered, and the melting temperature can be lowered.
You. In addition, desulfurization is also performed, reducing desulfurization processing in subsequent processes
Is done. In the reduction melting experiment, the high-temperature softening of iron ores was performed.
The test was conducted based on the chemical test method. [0032] [Example 3] As the carbon material, the highest flow rate MF
4 kinds of coals in logMF range from 1.23 to 3.54
Each is crushed and the particle size is 74 μm or less 70 to 80% by mass
Coal powder was used. Iron ore shown in Table 2 for each coal powder
Mixed with stone flour, mass ratio of coal powder 22%, iron ore powder
Then, the limestone powder shown in Table 4 was added to the mixer before molding shown in FIG.
Are added in various amounts and mixed, and the basicity is adjusted.
It was changed in the range of 0.0 to 2.0. Molding conditions and
The degassing conditions after shaping are the same as in Example 1. [0033] [Table 4] The crushing strength of the agglomerate was measured, and the
FIG. 8 shows the basicity of the slag component in the agglomerate (CaO /
SiOTwo ) And the grease cellar maximum flow rate MF and lump of charcoal
This is shown as a diagram showing the relationship between the crushing strength of the formed material. Figure
The amount of limestone added increases the slag component in the agglomerate.
Basicity (CaO / SiOTwo ) As the pressure increases
The crushing strength tends to decrease, but it is the best charcoal
The crushing strength may increase as the flow rate MF increases.
I understand. In addition, as is clear from FIG.
Basicity (CaO / SiOTwo ) Is 1.05-1.
In the range of 5, the maximum flow rate MF of the charcoal
By setting logMF ≧ 1.5, the crushing strength is 4
Agglomerates of more than 00N / piece can be obtained and
It can be charged into vertical furnaces such as blast furnaces.
Wear. [0035] As is clear from the above description,
DepartureClearlyThe agglomerates of the related steelmaking raw materials are C
Since the aO-containing substance is added, the added CaO is removed.
Produces a sulfurizing action and a basicity adjusting action.
It is possible to obtain low-purity metallic iron. Also, agglomeration
During the melting of reduced iron, which has reduced
To reduce melting energy costs and reduce desulfurization
Since it is performed, desulfurization treatment in a subsequent step is reduced. Ma
WasThe present inventionThe agglomerates of steelmaking raw materials related to
Uses a carbon material with a maximum flow rate of the greaser above a certain value
Because of this, the crushing strength is high and it is hard to be powdered.
Furnace can also be charged.

【図面の簡単な説明】 【図1】本発明に係わる製鉄原料の塊成化物の製造プロ
セスの概念図の一例である。 【図2】CaO添加量と金属鉄中のS量との関係を示す
図である。 【図3】塩基度とスラグ・メタル溶融分離温度との関係
および塩基度と金属鉄中のS含有量との関係を示す図で
ある。 【図4】塊成化物の還元前の見掛け密度と還元後の見掛
け密度との関係を示す図である。 【図5】見掛け密度1600kg/m3 と2400k
g/m3の還元後の塊成化物を坩堝で溶融試験したとき
の結果を示す図である。 【図6】塊成化物の内部組織の模式図で、(a)は従来
の塊成化物、(b)は脱ガス処理前の塊成化物、(c)
は本発明の脱ガス処理後の塊成化物の内部組織の模式図
である。 【図7】回転強度試験における塊成化物の圧潰強度と粉
率との関係を示す図である。 【図8】塊成化物中スラグ成分の塩基度および炭材のギ
ーセラー最高流動度と塊成化物の圧潰強度影響との関係
を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an example of a conceptual diagram of a production process of an agglomerate of an iron-making raw material according to the present invention. FIG. 2 is a diagram showing the relationship between the amount of CaO added and the amount of S in metallic iron. FIG. 3 is a diagram showing a relationship between basicity and a slag / metal melt separation temperature, and a relationship between basicity and the S content in metallic iron. FIG. 4 is a diagram showing the relationship between the apparent density of agglomerates before reduction and the apparent density after reduction. FIG. 5: apparent density of 1600 kg / m 3 and 2400 k
It is a figure which shows the result when the agglomerate after reduction of g / m < 3 > was melt-tested in the crucible. FIG. 6 is a schematic view of the internal structure of the agglomerate, where (a) is a conventional agglomerate, (b) is an agglomerate before degassing, and (c)
FIG. 3 is a schematic view of the internal structure of the agglomerate after degassing of the present invention. FIG. 7 is a diagram showing the relationship between the crushing strength of agglomerates and the powder ratio in a rotational strength test. FIG. 8 is a graph showing the relationship between the basicity of the slag component in the agglomerate and the maximum flow rate of the ghee cellar of the carbonaceous material, and the effect of the crushing strength of the agglomerate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 修三 大阪府大阪市西区江戸堀1丁目6番14号 ニッセイ肥後橋ビル 株式会社インダ ストリアルサービス・インターナショナ ル内 (56)参考文献 特開 平11−92833(JP,A) 特開 昭62−50420(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 C21B 13/10 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuzo Ito 1-6-14 Edobori, Nishi-ku, Osaka-shi, Osaka Nissay Higobashi Building Inside Industrial Service International Inc. (56) References JP-A-11- 92833 (JP, A) JP-A-62-50420 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1/00-61/00 C21B 13/10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 鉄源と炭材とを混合してなる原料を、前
記炭材の軟化溶融温度範囲内で加圧成形して、見掛け密
度が2300kg/m 3 以上である塊成化物を製造する
に際し、前記炭材のギーセラー最高流動度MFをlog
MF≧1.5とし、前記原料中のスラグ成分の塩基度
(CaO/SiO 2 )が1.05〜1.5の範囲になる
ように前記原料にCaO含有物質を添加し、前記塊成化
物を還元炉で還元してなる還元鉄の溶解時に、スラグ・
メタルの溶融分離温度が1500℃以下で、かつ金属鉄
中の硫黄成分が0.04%以下になることを特徴とする
製鉄原料の塊成化物製造方法
(57) [Claims] [Claim 1] A raw material obtained by mixing an iron source and a carbon material is
Pressure molding within the softening and melting temperature range of
The degree is 2300 kg / m 3 Producing agglomerates that are above
On the occasion, log the maximum flow rate MF
MF ≧ 1.5, basicity of slag component in the raw material
(CaO / SiO 2 ) Is in the range of 1.05 to 1.5
And adding a CaO-containing substance to the raw material,
The slag and
Metal melt separation temperature of 1500 ° C or less and metallic iron
Characterized in that the sulfur content in it is less than 0.04%
Method for producing agglomerates of ironmaking raw materials .
JP2001158897A 2000-08-30 2001-05-28 Method for producing agglomerates of ironmaking raw materials Expired - Fee Related JP3502064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001158897A JP3502064B2 (en) 2000-08-30 2001-05-28 Method for producing agglomerates of ironmaking raw materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000260491 2000-08-30
JP2000-260491 2000-08-30
JP2001158897A JP3502064B2 (en) 2000-08-30 2001-05-28 Method for producing agglomerates of ironmaking raw materials

Publications (2)

Publication Number Publication Date
JP2002146444A JP2002146444A (en) 2002-05-22
JP3502064B2 true JP3502064B2 (en) 2004-03-02

Family

ID=26598757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158897A Expired - Fee Related JP3502064B2 (en) 2000-08-30 2001-05-28 Method for producing agglomerates of ironmaking raw materials

Country Status (1)

Country Link
JP (1) JP3502064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482730A (en) * 2009-08-21 2012-05-30 新日本制铁株式会社 Unfired carbon-containing agglomerate for blast furnaces and production method therefor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116874B2 (en) 2002-12-05 2008-07-09 株式会社神戸製鋼所 Liquid iron manufacturing method
JP4532313B2 (en) * 2005-03-07 2010-08-25 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP4600102B2 (en) * 2005-03-16 2010-12-15 Jfeスチール株式会社 Method for producing reduced iron
KR20080092838A (en) 2007-04-12 2008-10-16 가부시끼 가이샤 구보다 Vehicle with cabin
CN102260790B (en) * 2007-05-28 2014-07-02 株式会社神户制钢所 Method for production of carbon composite metal oxide briquette
BRPI0909727A2 (en) 2008-03-31 2017-10-10 Nippon Steel Corp reduced iron production method
JP2013515853A (en) * 2009-12-24 2013-05-09 イクブ ソン, Method and apparatus for producing molten reduced iron using iron-containing by-products
JP2012067351A (en) * 2010-09-22 2012-04-05 Kobe Steel Ltd Apparatus and method for manufacturing agglomerate
KR101311954B1 (en) * 2011-07-13 2013-09-26 주식회사 포스코 Process for producing ore agglomerates with carbonaceous material incorporated therein
KR101311953B1 (en) * 2011-07-13 2013-09-26 주식회사 포스코 Process for producing briquet with carbonaceous material incorporated therein
KR101311958B1 (en) * 2011-07-13 2013-09-26 주식회사 포스코 Process for producing pellet with carbonaceous material incorporated therein
JP5971482B2 (en) * 2013-05-08 2016-08-17 Jfeスチール株式会社 Agglomerate production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482730A (en) * 2009-08-21 2012-05-30 新日本制铁株式会社 Unfired carbon-containing agglomerate for blast furnaces and production method therefor
CN102482730B (en) * 2009-08-21 2014-07-02 新日铁住金株式会社 Unfired carbon-containing agglomerate for blast furnaces and production method therefor

Also Published As

Publication number Publication date
JP2002146444A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP3953420B2 (en) Method for producing metallized briquette
JP4438297B2 (en) Method for producing reduced metal and agglomerated carbonaceous material agglomerates
JP4348152B2 (en) Method for producing ferronickel and ferronickel refining raw material
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
JP4996105B2 (en) Vertical coal interior agglomerates
JP5958576B1 (en) Saprolite ore smelting method
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP5839090B1 (en) Nickel oxide ore smelting method, pellet charging method
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
JP4600102B2 (en) Method for producing reduced iron
CA2423166C (en) Method for making reduced iron
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
KR20020012506A (en) Method and apparatus for charging raw and carbonaceous materials into a moving hearth furnace
JPH0364571B2 (en)
JP2007211271A (en) Method and equipment for manufacturing carbonaceous-material-containing agglomerate
JP2023019428A (en) Smelting method for nickel oxide ore
JP4401818B2 (en) Briquette manufacturing method
JPS6152324A (en) Simultaneous treatment of slag after steel manufacture, dust after steel manufacture and sludge
JPS62227046A (en) Method for lumping powder iron ore or preliminarily reduced ore
JPS6070111A (en) Manufacture of ferronickel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

R150 Certificate of patent or registration of utility model

Ref document number: 3502064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees