JP3502011B2 - Manufacturing method of carbonized interior agglomerates - Google Patents

Manufacturing method of carbonized interior agglomerates

Info

Publication number
JP3502011B2
JP3502011B2 JP2000122522A JP2000122522A JP3502011B2 JP 3502011 B2 JP3502011 B2 JP 3502011B2 JP 2000122522 A JP2000122522 A JP 2000122522A JP 2000122522 A JP2000122522 A JP 2000122522A JP 3502011 B2 JP3502011 B2 JP 3502011B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
powdery
mixture
iron
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000122522A
Other languages
Japanese (ja)
Other versions
JP2001303143A (en
Inventor
昭人 笠井
良行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000122522A priority Critical patent/JP3502011B2/en
Publication of JP2001303143A publication Critical patent/JP2001303143A/en
Application granted granted Critical
Publication of JP3502011B2 publication Critical patent/JP3502011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉、キューポラ
などの竪型炉用装入原料としての炭材内装塊成化物の製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a carbonaceous material-containing agglomerate as a charging material for a vertical furnace such as a blast furnace and a cupola.

【0002】[0002]

【従来の技術】高炉原料として、従来より用いられてき
た焼結鉱、ペレット、塊鉱石のほかに、固体炭材(例え
ば、石炭粉、コークス粉等)と粉鉱石または製鉄ダスト
(炭素、酸化鉄等の混合物)にバインダーを加えて冷間
成形された炭材内装コールドペレットあるいはブリケッ
ト(以下、炭材内装コールドペレット等)と称するもの
がある。そして炭材内装コールドペレット等は高炉に装
入するとガス利用率が向上することが報告〔井上ら:鉄
と鋼(1986)S885〕されており、高炉の生産性
の向上、燃料比の低減に寄与することが期待され、さら
には従来の焼結鉱やペレットの製造と異なり焼成燃料が
不要で排ガス処理も不要となるなどメリットは大きい。
また、炭材内装コールドペレット等をコークスとともに
キューポラなどの竪型炉に装入して還元・溶解して溶銑
を製造する提案もなされている。
2. Description of the Related Art In addition to sinter, pellets and lump ores that have been conventionally used as blast furnace raw materials, solid carbonaceous materials (for example, coal powder, coke powder, etc.) and powdered ores or ironmaking dust (carbon, oxidation) There is a so-called carbonaceous material-containing cold pellet or briquette (hereinafter referred to as carbonaceous material-containing cold pellet) cold-formed by adding a binder to a mixture of iron or the like). It has been reported that the use of carbonaceous materials such as cold pellets in a blast furnace improves the gas utilization rate [Inoue et al .: Iron and Steel (1986) S885], which improves the productivity of the blast furnace and reduces the fuel ratio. It is expected to contribute, and unlike the conventional production of sinter or pellets, it does not require burning fuel and exhaust gas treatment, which is a great advantage.
Further, it has been proposed that carbonaceous material-containing cold pellets and the like, together with coke, are charged into a vertical furnace such as a cupola to be reduced and melted to produce hot metal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、炭材内
装コールドペレット等が搬送中や高炉への装入の際に粉
化しないよう一定以上の強度(圧潰強度で約400N/
個以上、より好ましくは約500N/個以上)を確保す
る必要があり、通常、冷間成型に際してセメント類をバ
インダーとして添加する方法が用いられている。この方
法では、炭材内装コールドペレット等が強度を発現する
まで数日かかるため広大な養生スペースを必要とし、さ
らには高炉内でスラグ比が上昇し通液性が悪化するこ
と、セメント類の結晶水が分解する際の吸熱による昇温
遅れに伴い還元が遅延すること等の問題が懸念される。
一方、これらを改善するためセメント類以外のバインダ
ーを用いた場合には費用が高くコストメリットがなくな
る。
However, in order to prevent the carbonaceous material-containing cold pellets, etc. from being pulverized during transportation or charging into the blast furnace, a certain strength (a crushing strength of about 400 N /
It is necessary to secure the number of cement or more, more preferably about 500 N / unit or more), and a method of adding cements as a binder during cold forming is usually used. This method requires a vast curing space because it takes several days for the carbonaceous material-containing cold pellets, etc. to develop strength, and further, the slag ratio rises in the blast furnace and the liquid permeability deteriorates, and the cement crystals There is a concern that the reduction may be delayed due to the delay in temperature rise due to the endotherm when water is decomposed.
On the other hand, when a binder other than cement is used to improve these, the cost is high and the cost merit is lost.

【0004】そこで、本願出願人は、特開平11−09
2833号において粉鉱石と粘結炭の混合物を熱間成型
後、脱ガスすることによりバインダーを添加せずとも高
強度の炭材内装塊成化物(ブリケット)を製造できる方
法を提案した。しかしながら、この方法では、使用する
鉄鉱石の種類や粒度によっては、加熱された炭材から発
生する熱分解ガスにより熱間成型機装入前の粉状鉄鉱石
および炭材の混合物が疎充填になり、疎充填のまま熱間
成型機に装入されると成型機への噛み込みが悪く熱間成
型された塊成化物は空隙の多い構造になり、圧潰強度が
低下したり成型できないという問題が生じた。さらに、
粉状鉄鉱石の粒度が大きいと、鉄鉱石と炭材の接触面積
が減少し、塊成化物の基質強度が低下して圧潰強度が低
下するという問題も生じた。
Therefore, the applicant of the present application has filed Japanese Patent Application Laid-Open No. 11-09.
No. 2833 proposed a method capable of producing a high-strength carbonaceous material-containing agglomerate (briquettes) without adding a binder by hot-forming a mixture of powdered ore and caking coal and then degassing. However, in this method, depending on the type and particle size of the iron ore used, the pyrolysis gas generated from the heated carbonaceous material loosely fills the mixture of the powdery iron ore and carbonaceous material before charging into the hot molding machine. Therefore, if the hot-molded agglomerate is not easily bitten into the hot-molding machine when it is charged into the hot-molding machine while it is sparsely packed, the hot-molded agglomerate has a structure with many voids, and the crushing strength decreases and molding is not possible. Occurred. further,
When the particle size of the powdered iron ore is large, the contact area between the iron ore and the carbonaceous material is decreased, and the substrate strength of the agglomerate is reduced, and the crushing strength is also reduced.

【0005】そこで、本発明は上記の問題を解決するた
めになされたもので、たとえ加熱された炭材から発生す
る熱分解ガスや粉状鉄鉱石の粒度が大きいことにより熱
間成型機装入前の粉状鉄鉱石および炭材の混合物が疎充
填であっても、熱間成型機装入時点において混合物が密
充填となることにより高強度の炭材内装塊成化物が製造
できる方法を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned problems. Even if the pyrolysis gas or powdered iron ore generated from heated carbonaceous material has a large particle size, it is charged into a hot molding machine. Providing a method capable of producing a high-strength carbonaceous material-containing agglomerate by closely packing the mixture of the previous powdered iron ore and carbonaceous material even if the mixture is loosely packed The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、粉状鉄
含有原料と粉状炭材との混合物を250〜550℃で熱
間成型して行う炭材内装塊成化物の製造方法であって、
前記粉状鉄含有原料のかさ密度が1.5g/cm3以上
であることを特徴とする炭材内装塊成化物の製造方法で
ある。
The gist of the present invention is a method for producing an agglomerate containing carbonaceous material, which is carried out by hot forming a mixture of a powdery iron-containing raw material and a powdery carbonaceous material at 250 to 550 ° C. There
In the method for producing a carbonaceous material-containing agglomerate, the powdery iron-containing raw material has a bulk density of 1.5 g / cm 3 or more.

【0007】例えば、かさ密度が1.5g/cm3以上
の粉状鉄鉱石を400〜800℃に加熱し、粉状炭材を
250℃以下で乾燥し、ついで前記粉状鉄鉱石と前記粉
状炭材を混合して250〜550℃の混合物とし、その
混合物を熱間成型することを特徴とする炭材内装塊成化
物の製造方法である。
For example, a powdery iron ore having a bulk density of 1.5 g / cm 3 or more is heated to 400 to 800 ° C., a powdery carbonaceous material is dried at 250 ° C. or less, and then the powdery iron ore and the powder The method for producing a carbonaceous material-containing agglomerate is characterized in that the carbonaceous material is mixed to form a mixture at 250 to 550 ° C., and the mixture is hot-molded.

【0008】あるいは、粉状鉄鉱石と製鉄ダストを混合
したときにその混合物のかさ密度が1.5g/cm3
上となるように前記粉状鉄鉱石と前記製鉄ダストの配合
率を定めた後、前記粉状鉄鉱を400〜800℃に加熱
し、粉状炭材を250℃以下で乾燥し、ついで前記粉状
鉄鉱石、前記粉状炭材および加熱しない前記製鉄ダスト
を混合して250〜550℃の混合物とし、その250
〜550℃の混合物を熱間成型することを特徴とする炭
材内装塊成化物の製造方法である。
Alternatively, after the mixing ratio of the powdery iron ore and the iron-making dust is determined such that the bulk density of the mixture when the powdery iron-ore and the iron-making dust are mixed is 1.5 g / cm 3 or more. Heating the pulverized iron ore to 400 to 800 ° C., drying the pulverized carbonaceous material at 250 ° C. or lower, and then mixing the pulverized iron ore, the pulverized carbonaceous material and the iron dust not heated to 250 to 250 as a mixture at 550 ° C
It is a method for producing a carbonaceous material-containing agglomerate, which comprises hot-forming a mixture at 550C.

【0009】 250〜550℃の粉状鉄含有原料と粉
状炭材との混合物を熱間成型して行う炭材内装塊成化物
の製造方法であって、前記混合物に振動を加えて密充填
にした後、熱間成型をすることを特徴とする圧潰強度4
00N/個以上の炭材内装塊成化物の製造方法である。
A method for producing a carbonaceous material-containing agglomerate, which is performed by hot forming a mixture of a powdery iron-containing raw material at 250 to 550 ° C. and a powdery carbonaceous material, wherein the mixture is subjected to vibration and densely packed. Crushing strength 4 characterized by hot forming after
This is a method for producing a carbon material- containing agglomerate of 00 N / piece or more .

【0010】さらに、前記粉状鉄含有原料のかさ密度が
1.4g/cm3以上であることが好ましい。
Further, the bulk density of the powdery iron-containing raw material is preferably 1.4 g / cm 3 or more.

【0011】 例えば、かさ密度が1.4g/cm3
上の粉状鉄鉱石を400〜800℃に加熱し、粉状炭材
を250℃以下で乾燥し、ついで前記粉状鉄鉱石と前記
粉状炭材を混合して250〜550℃の混合物とし、そ
の混合物に振動を加えて密充填にした後、熱間成型する
ことを特徴とする圧潰強度400N/個以上の炭材内装
塊成化物の製造方法である。
For example, a powdery iron ore having a bulk density of 1.4 g / cm 3 or more is heated to 400 to 800 ° C., a powdery carbonaceous material is dried at 250 ° C. or less, and then the powdery iron ore and the powder Charcoal- containing agglomerates having a crushing strength of 400 N / piece or more, characterized in that the carbonaceous materials are mixed to form a mixture of 250 to 550 ° C., the mixture is vibrated to be densely packed, and then hot-molded. Is a manufacturing method.

【0012】 あるいは、粉状鉄鉱石と製鉄ダストを混
合したときにその混合物のかさ密度が1.4g/cm3
以上となるように前記粉状鉄鉱石と前記製鉄ダストの配
合率を定めた後、前記粉状鉄鉱を400〜800℃に加
熱し、粉状炭材を250℃以下で乾燥し、ついで前記粉
状鉄鉱石、前記粉状炭材および加熱しない前記製鉄ダス
トを混合して250〜550℃の混合物とし、その25
0〜550℃の混合物に振動を加えて密充填にした後、
熱間成型することを特徴とする圧潰強度400N/個以
上の炭材内装塊成化物の製造方法である。
Alternatively, when powdered iron ore and ironmaking dust are mixed, the bulk density of the mixture is 1.4 g / cm 3
After determining the mixing ratio of the powdery iron ore and the iron-making dust as described above, the powdery iron ore is heated to 400 to 800 ° C., the powdery carbonaceous material is dried at 250 ° C. or lower, and then the powder Iron ore, the powdered carbonaceous material, and the iron dust that is not heated are mixed to form a mixture at 250 to 550 ° C., 25
After vibrating the mixture at 0 to 550 ° C. to close the mixture,
Crush strength 400N / piece or less characterized by hot molding
It is a method for producing the above agglomerate containing carbon material.

【0013】なお、「鉄含有原料」とは、鉄鉱石、製鉄
ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミル
スケールなど)など主として酸化鉄を含有する原料をい
い、「炭材」とは、石炭、SRCなど加熱時に軟化溶融
性を示す炭素質物質をいう。
The "iron-containing raw material" means a raw material mainly containing iron oxide such as iron ore, iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.), and "carbonaceous material". Means a carbonaceous material such as coal or SRC that exhibits softening and melting properties when heated.

【0014】また、「かさ密度」は、金属粉に対して用
いられるJIS−Z2504に基づいて測定した疎充填
かさ密度である。
The "bulk density" is a loosely packed bulk density measured based on JIS-Z2504 used for metal powder.

【0015】炭材は約250℃を超えると熱分解反応が
始まり軟化溶融し、約550℃を超えると固化する。し
たがって、この温度域で粉状鉄含有原料に軟化溶融性を
有する炭材を混合し加圧成型すると、粉状鉄含有原料の
粒子間の空隙に溶融した炭材が容易に浸入し、粉状鉄含
有原料同士を強固に連結する。このため、バインダーが
不要となり高炉内でのスラグ量の増加を防止することが
できる。
When the carbonaceous material exceeds about 250 ° C., a thermal decomposition reaction starts and it softens and melts, and when it exceeds about 550 ° C., it solidifies. Therefore, if the carbonaceous material having softening and melting property is mixed with the powdery iron-containing raw material in this temperature range and pressure-molded, the melted carbonaceous material easily penetrates into the voids between the particles of the powdery iron-containing raw material and becomes powdery. The iron-containing raw materials are firmly connected to each other. Therefore, the binder is not required, and the increase in the amount of slag in the blast furnace can be prevented.

【0016】また、炭材中に含まれている揮発分やター
ル分は、熱間成型時に大部分が脱揮および脱タールして
おり、塊成化物を高炉に装入してもタール分が揮発し、
ガス処理設備へ付着する問題は起こらない。
Further, most of the volatile components and tar components contained in the carbonaceous material are devolatilized and tar-free during hot molding, and even if the agglomerates are charged into the blast furnace, the tar components will remain. Volatilize,
There is no problem of sticking to gas treatment equipment.

【0017】粉状鉄含有原料は、粒度分布等を調整して
かさ密度を高く維持する(1.5g/cm3以上とす
る)ことが好ましい。粉状炭材との混合物がその炭材か
ら発生した熱分解ガスにより膨張しても、熱間成型機装
入時点において混合物はまだ密な充填状態を維持できる
ので、熱間成型後の塊成化物は空隙の少ない緻密な構造
となり圧潰強度を高くできる。さらに、かさ密度が高く
なるように粉砕することにより鉄鉱石と炭材の接触面積
が増加し、熱間成型後の塊成化物の圧潰強度がより高く
なる効果もある。
It is preferable that the powdery iron-containing raw material maintain a high bulk density (1.5 g / cm 3 or more) by adjusting the particle size distribution and the like. Even if the mixture with powdery carbonaceous material expands due to the pyrolysis gas generated from the carbonaceous material, the mixture can still maintain a dense packing state at the time of charging the hot forming machine, so agglomeration after hot forming The compound has a dense structure with few voids and can increase the crush strength. Further, by crushing so that the bulk density becomes high, the contact area between the iron ore and the carbonaceous material increases, and there is also an effect that the crushing strength of the agglomerate after hot forming becomes higher.

【0018】あるいは、粉状鉄含有原料のかさ密度を高
く維持するかわりに、熱分解ガスで疎充填になった混合
物に熱間成型前に振動を加えて密充填の状態にすると成
型機への噛み込みが良くなり、熱間成型する際に同様の
効果が得られる。
Alternatively, instead of maintaining the bulk density of the powdered iron-containing raw material at a high level, vibration is applied to the mixture loosely filled with the pyrolysis gas before hot forming to bring the mixture into a close packed state. The biting is improved, and the same effect can be obtained during hot molding.

【0019】このようにして製造した塊成化物中の固化
した炭材は粉状鉄含有原料に密着し、固化した炭材と鉄
含有原料との接触面積が大きくなる。そのため、塊成化
物を、焼結鉱、ペレット、塊鉱石等の従来の高炉原料と
ともに高炉に装入すると、従来の高炉原料のみを装入し
た場合には反応が起こらなかった低温域(700〜80
0℃程度)から、塊成化物中で炭材と鉄含有原料中の酸
化鉄が見かけ上直接還元反応(例えばFeO+C→Fe
+CO)を開始する。直接還元反応により発生するガス
はCOが主体なため、塊成化物の間にある焼結鉱、ペレ
ット、塊鉱石等の原料の還元に直接利用され、ガス利用
率が向上し、燃料比が低下する。また、還元反応により
生じたCO2 ガスは塊成化物中に内装した炭材と優先し
て反応するため炉頂から装入した塊コークスとは反応が
抑制された結果、コークスの粉発生量が低下し、高炉内
の通気性が向上する。
The solidified carbonaceous material in the agglomerate thus produced adheres to the powdery iron-containing raw material, and the contact area between the solidified carbonaceous material and the iron-containing raw material increases. Therefore, when the agglomerate is charged into the blast furnace together with the conventional blast furnace raw materials such as sinter, pellets, and lump ores, the reaction does not occur in the low temperature range (700- 80
From about 0 ° C), the carbonaceous material and the iron oxide in the iron-containing raw material in the agglomerate are apparently directly reduced (for example, FeO + C → Fe).
+ CO) to start. Since the gas generated by the direct reduction reaction is mainly CO, it is directly used for the reduction of raw materials such as sinter, pellets, and lump ores between agglomerates, improving the gas utilization rate and lowering the fuel ratio. To do. Further, the CO 2 gas generated by the reduction reaction preferentially reacts with the carbonaceous material contained in the agglomerate, so that the reaction with the agglomerated coke charged from the furnace top is suppressed, and as a result, the amount of coke powder generated is reduced. And the air permeability in the blast furnace is improved.

【0020】[0020]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0021】図1に本発明の実施に係わる炭材内装塊成
化物の製造フローの概念図を示す。鉄含有原料として、
予め測定したかさ密度が1.5g/cm3以上の粉状鉄
鉱石を用いる。かさ密度が1.5g/cm3に満たない
粉状鉄鉱石を用いる場合には、さらに粉砕してかさ密度
を1.5g/cm3以上に調整するとよい。ただし、後
述の実施例1で説明するように、粉砕しすぎるとかえっ
てかさ密度が低下してしまうので、以下の方法によりか
さ密度の調整を行えばよい。すなわち、予め少量の鉄鉱
石を粉砕時間を変えるなどして粉砕粒度を変更し、各粉
砕粒度ごとにかさ密度を測定し、粉砕粒度(粉砕時間)
とかさ密度との関係を求めておき、かさ密度が1.5g
/cm3以上となる粉砕粒度(粉砕時間)を選択すれば
よい。あるいは、2種類以上の粉状鉄鉱石(または、粉
状鉄鉱石と製鉄ダスト)を混合したときに、かさ密度が
1.5g/cm3以上になるように配合率を決めてもよ
い。炭材は粒度に特に制限はないが、粉状鉄含有物との
混合状態を良好に保つために1mm以下に粉砕するのが
望ましい。
FIG. 1 shows a conceptual diagram of a production flow of a carbonaceous material-containing agglomerate according to the present invention. As an iron-containing raw material,
A powdery iron ore having a bulk density of 1.5 g / cm 3 or more measured in advance is used. When powdered iron ore having a bulk density of less than 1.5 g / cm 3 is used, it may be further pulverized to adjust the bulk density to 1.5 g / cm 3 or more. However, as will be described in Example 1 to be described later, since bulk density is rather lowered when pulverized too much, the bulk density may be adjusted by the following method. That is, the crushing particle size is changed by changing the crushing time of a small amount of iron ore in advance, the bulk density is measured for each crushing particle size, and the crushing particle size (crushing time)
The bulk density is 1.5g in advance.
The particle size (crushing time) of crushing / cm 3 or more may be selected. Alternatively, the mixing ratio may be determined so that the bulk density becomes 1.5 g / cm 3 or more when two or more kinds of powdery iron ore (or powdery iron ore and iron-making dust) are mixed. The particle size of the carbonaceous material is not particularly limited, but it is desirable that the carbonaceous material be pulverized to 1 mm or less in order to maintain a good mixed state with the powdery iron-containing material.

【0022】粉状の鉄鉱石と炭材の乾燥・予熱に関して
は、炭材はロータリードライヤー等で250℃以下の温
度で乾燥し、付着水分を除去する。一方、鉄鉱石は、炭
材と混合したときに目標温度の250〜550℃となる
ように、ロータリーキルン等で400〜800℃程度に
予熱する。ただし、鉄鉱石の一部を置き換えて製鉄ダス
トを用いる場合には、製鉄ダストは炭素や金属鉄を含む
ため予熱すると燃焼するので、製鉄ダストは予熱せずに
そのまま混合して用いる。
Regarding the drying and preheating of the powdery iron ore and the carbonaceous material, the carbonaceous material is dried with a rotary dryer or the like at a temperature of 250 ° C. or lower to remove the attached water. On the other hand, the iron ore is preheated to about 400 to 800 ° C. in a rotary kiln or the like so that the target temperature is 250 to 550 ° C. when mixed with the carbonaceous material. However, when iron-making dust is used by replacing a part of the iron ore, the iron-making dust contains carbon and metallic iron and therefore burns when preheated. Therefore, the iron-making dust is used as it is without being preheated.

【0023】乾燥・予熱した炭材と鉄鉱石(および予熱
しない製鉄ダスト)との混合には、炭材の一部の過熱を
防止するために短時間で混合できるこの業種で常用され
ている、例えば二軸型のミキサーを用いる。また、ミキ
サーは成型温度を確保するために保温する。混合後の炭
材と鉄鉱石(および製鉄ダスト)は、好ましくは押し込
み機を有する熱間成型用の成型機を用いて塊成化物(ブ
リケット)に加圧成型する。加圧成型は塊成化物が成型
機から高炉炉頂装入までのハンドリングに耐え得るに十
分な圧潰強度約400N/個(30mm×25mm×1
5mm程度の大きさに対して)が得られるよう、成型加
圧力を10MPa以上、望ましくは20MPa以上とす
る。このようにして成型した塊成化物は、密に充填され
た鉄鉱石(および製鉄ダスト)粒子間の空隙に、溶融し
た軟化溶融性を有する炭材が浸入し、鉄鉱石(および製
鉄ダスト)粒子同士を強固に連結し、また、鉄鉱石(お
よび製鉄ダスト)と溶融・固化後の炭材との接触面積も
大きくなっている。また、ミキサーと成型機は密閉構造
とし、ミキサーおよび成型機で発生する炭材の熱分解ガ
スは炭化水素が主成分であるので、このガスをエジェク
ター等を用いて吸引回収し、回収したガスはロータリー
キルン等の加熱燃料として利用する。
The dry and preheated carbonaceous material and iron ore (and iron dust that is not preheated) are mixed in a short time in order to prevent overheating of a part of the carbonaceous material, which is commonly used in this industry. For example, a biaxial mixer is used. Also, the mixer is kept warm to secure the molding temperature. The mixed carbonaceous material and iron ore (and ironmaking dust) are pressure-molded into an agglomerate (briquette), preferably using a molding machine for hot molding having an indenter. Pressure molding is a crushing strength of about 400 N / piece (30 mm × 25 mm × 1) sufficient for the agglomerate to withstand handling from the molding machine to the blast furnace top charging.
In order to obtain (for a size of about 5 mm), the molding pressure is 10 MPa or more, preferably 20 MPa or more. The agglomerate molded in this way is such that the molten softening and melting carbonaceous material penetrates into the spaces between the closely packed iron ore (and iron making dust) particles, and the iron ore (and iron making dust) particles They are firmly connected to each other, and the contact area between the iron ore (and iron-making dust) and the carbon material after melting and solidification is also large. Also, the mixer and the molding machine have a closed structure, and the pyrolysis gas of the carbonaceous material generated in the mixer and the molding machine is mainly composed of hydrocarbons, so this gas is suctioned and collected using an ejector or the like, and the collected gas is Used as heating fuel for rotary kilns.

【0024】成型直後の温度の高い塊成化物はやわらか
く強度が低いので、バンカー内で不活性ガスにより冷却
し十分強度を発現させた後、バンカーから排出して篩
い、篩下の粉は再びミキサーに戻して原料として利用す
る。篩上は目的とする約400N/個以上の高強度を有
する塊成化物である。塊成化物の高炉炉頂までの搬送時
や高炉炉頂装入時のハンドリングをシミュレートしたタ
ンブラー回転強度試験(JIS−M8712)におけ
る、塊成化物から生じる−1mm粉率と圧潰強度との関
係を図6に示す。図6に示すように、圧潰強度が400
N/個以上になると、−1mm粉率は17質量%以下と
少なくなるので、上記のハンドリングによる塊成化物の
粉化は問題とならない。
Since the agglomerated product having a high temperature immediately after molding is soft and has low strength, it is cooled with an inert gas in the bunker to develop sufficient strength, then discharged from the bunker and sieved, and the powder under the sieve is mixed again. Return to and use as raw material. The upper part of the sieve is an agglomerate having a desired high strength of about 400 N / piece or more. Relationship between -1mm powder ratio and crushing strength generated from agglomerates in a tumbler rotation strength test (JIS-M8712) that simulates handling of agglomerates to the blast furnace top and loading during blast furnace top loading Is shown in FIG. As shown in FIG. 6, the crush strength is 400
If it is N / pieces or more, the -1 mm powder ratio is as small as 17% by mass or less, so that pulverization of the agglomerate by the above handling does not pose a problem.

【0025】なお、特開平11−92833の発明で
は、成型後の塊成化物に残存する揮発分を減少するため
に脱ガス工程を設けているが、本発明においては必ずし
も脱ガス工程を必要としない。特開平11−92833
の発明の塊成化物は1200〜1400℃の高温雰囲気
の還元炉に装入されるため、残存する揮発分の急激な発
生による塊成化物の粉化を防止する目的で脱ガス工程を
設けたものであるのに対して、本発明の方法で製造され
た塊成化物は、高炉に装入され、高炉内で徐々に昇温さ
れるため、残存する揮発分も徐々に除去されるので塊成
化物の粉化は問題とならない。
In the invention of Japanese Patent Laid-Open No. 11-92833, a degassing step is provided to reduce the volatile content remaining in the agglomerate after molding, but the degassing step is not always necessary in the present invention. do not do. Japanese Patent Laid-Open No. 11-92833
Since the agglomerate of the present invention is charged into a reducing furnace in a high temperature atmosphere of 1200 to 1400 ° C., a degassing step is provided for the purpose of preventing agglomeration of the agglomerate due to rapid generation of residual volatile components. On the other hand, the agglomerate produced by the method of the present invention is charged into the blast furnace and gradually heated up in the blast furnace, so that the remaining volatile components are gradually removed. The pulverization of the product is not a problem.

【0026】なお、鉄鉱石の一部を置き換えてZnを高
濃度に含有する製鉄ダストを用いる場合には、高炉内で
のZn循環による炉壁耐火物への付着等の問題が生じな
いよう使用量を制限する必要がある。
When iron-making dust containing a high concentration of Zn is used by replacing a part of the iron ore, use it so that problems such as adhesion to the furnace wall refractory due to Zn circulation in the blast furnace do not occur. You need to limit the amount.

【0027】かさ密度が1.5g/cm3以上の粉状鉄
含有原料を用いるかわりに、例えば、ミキサー出口部シ
ュートにバイブレーターを設置し、ミキサー内で混合さ
れた炭材と鉄鉱石(および製鉄ダスト)の混合物をシュ
ートを介して成型機へ切り出す際にバイブレーターで振
動を加えてかさ密度を上げた後、成型機で加圧成型して
もよい。ミキサー内で混合物が炭材から発生した熱分解
ガスで膨張しても、振動を加えることにより混合物はシ
ュート内で密充填され、成型後の塊成化物は空隙の少な
い緻密な構造になり圧潰強度が高くなる。なお、密充填
の度合いはシュートの長さやバイブレータの振動強度を
適宜変更することにより調整しうるものである。
Instead of using the powdery iron-containing raw material having a bulk density of 1.5 g / cm 3 or more, for example, a vibrator is installed in the chute at the exit of the mixer, and the carbonaceous material and iron ore (and ironmaking) mixed in the mixer are mixed. When the mixture of (dust) is cut into a molding machine through a chute, vibration may be applied by a vibrator to increase the bulk density, and then pressure molding may be performed by the molding machine. Even if the mixture expands in the mixer due to pyrolysis gas generated from the carbonaceous material, the mixture is densely packed in the chute by applying vibration, and the agglomerated product after molding has a dense structure with few voids and crush strength. Becomes higher. The degree of close packing can be adjusted by appropriately changing the length of the chute and the vibration intensity of the vibrator.

【0028】なお、上記の混合物に振動を加える方法に
おいても、粉状鉄含有原料のかさ密度をある程度高く保
つことが塊成化物の圧潰強度を高くできるので好まし
い。例えば、後述の実施例2で示すように1.4g/c
3以上にすることが好ましく、1.5g/cm3以上と
することがさらに好ましい。
Also in the method of applying vibration to the above mixture, it is preferable to keep the bulk density of the powdery iron-containing raw material high to some extent because the crushing strength of the agglomerate can be increased. For example, as shown in Example 2 below, 1.4 g / c
It is preferably m 3 or more, and more preferably 1.5 g / cm 3 or more.

【0029】[0029]

【実施例】(実施例1)図2に本実施例に用いられた熱
間成型機の概要を示す。炭材としては、表1に示す粘結
炭Aを用い、鉄含有原料としては、表2に示す鉄鉱石B
またはCを用いた。なお、鉄鉱石Cについては、ボール
ミルにより粉砕時間を変えて粉砕し、その粒度を変更す
ることによりかさ密度を変化させたものを使用した。各
粉砕粒度ごとにかさ密度を測定し、その結果を図3に示
す。なお、粉砕粒度を表す指標として体積平均径を用い
た。図3より、粉砕粒度(体積平均径)を小さくしてい
くとかさ密度は若干上昇するが、ある粉砕粒度(体積平
均径)でかさ密度は最大となり、さらに粉砕粒度(体積
平均径)を小さくすると逆にかさ密度は低下することが
わかった。粘結炭Aを22質量%、鉄鉱石BまたはCを
78質量%の配合率で、鉄鉱石BまたはCのみを図示し
ない電気炉で600〜700℃に予熱した後、オイルヒ
ーターで400〜500℃に保温されたミキサーに装入
し混合して450〜460℃とし、双ロール型成型機を
用いてロール回転速度6rpm、成型圧力20〜29k
N/cmで30mm×25mm×15mmの卵形のブリ
ケット(塊成化物)に成型し、圧潰強度の変化を調べ
た。その結果を図4に示す。
EXAMPLES (Example 1) FIG. 2 shows an outline of the hot molding machine used in this example. Caking coal A shown in Table 1 is used as the carbonaceous material, and iron ore B shown in Table 2 is used as the iron-containing raw material.
Or C was used. The iron ore C was crushed with a ball mill at different crushing times, and the bulk density was changed by changing the particle size. The bulk density was measured for each crushed particle size, and the results are shown in FIG. The volume average diameter was used as an index showing the pulverized particle size. From FIG. 3, the bulk density slightly increases as the crushed particle size (volume average diameter) is decreased, but the bulk density becomes maximum at a certain crushed particle size (volume average diameter), and when the crushed particle size (volume average diameter) is further decreased. On the contrary, it was found that the bulk density was decreased. Caking coal A is 22% by mass, iron ore B or C is 78% by mass, and only iron ore B or C is preheated to 600 to 700 ° C. in an electric furnace not shown, and then 400 to 500 by an oil heater. The mixture is charged into a mixer kept at ℃ and mixed at 450 to 460 ℃, using a twin roll type molding machine, roll rotation speed 6 rpm, molding pressure 20 to 29 k
It was molded into an egg-shaped briquette (agglomerate) having a size of 30 mm × 25 mm × 15 mm at N / cm, and changes in crushing strength were examined. The result is shown in FIG.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】図4に示すように、鉄鉱石のかさ密度が高
くなるにしたがって圧潰強度が高くなり、かさ密度が
1.5kg/cm3以上であれば圧潰強度約400N/
個以上、かさ密度が1.77kg/cm3以上であれば
より好ましい圧潰強度約500N/個以上が得られるこ
とを確認した。
As shown in FIG. 4, the crush strength increases as the bulk density of the iron ore increases, and if the bulk density is 1.5 kg / cm 3 or more, the crush strength is about 400 N /
It was confirmed that a more preferable crushing strength of about 500 N / piece or more can be obtained when the density is 1 or more and the bulk density is 1.77 kg / cm 3 or more.

【0033】(実施例2)熱間成型前の混合物に振動を
加えることによる密充填の効果を確認するため、図5に
示すように、実施例1で用いた熱間成型機のミキサー出
口部シュートにバイブレーターを設置した。実施例1と
同じ原料を用い、バイブレーターの運転以外は実施例1
と同じ成型条件でブリケット(塊成化物)に成型し、圧
潰強度の変化を調べた。なお、バイブレーターの振動強
度は、振幅1mm、振動数2333rpm、0.15k
Wとした。その結果を図4に併せて示す。
Example 2 In order to confirm the effect of close packing by applying vibration to the mixture before hot molding, as shown in FIG. 5, the mixer outlet of the hot molding machine used in Example 1 was used. A vibrator was installed on the chute. The same raw material as in Example 1 was used, except that the vibrator was operated.
It was molded into a briquette (agglomerate) under the same molding conditions as above and the change in crushing strength was examined. The vibration intensity of the vibrator is as follows: amplitude 1 mm, vibration frequency 2333 rpm, 0.15 k
W. The results are also shown in FIG.

【0034】図4に示すように、バイブレーター設置前
にはほとんど成型ができなかったかさ密度が1.42g
/cm3の粉状鉄鉱石を用いた場合でも、熱間成型前の
混合物にバイブレータで振動を加えて密充填とすること
により、約400N/個の圧潰強度が得られることを確
認した。
As shown in FIG. 4, the bulk density was 1.42 g which could hardly be molded before the installation of the vibrator.
It was confirmed that even when a powdered iron ore of / cm 3 was used, a crushing strength of about 400 N / piece was obtained by vibrating the mixture before hot forming with a vibrator to close the mixture.

【0035】[0035]

【発明の効果】以上より、本発明の方法によれば、かさ
密度が1.5g/cm3以上の粉状鉄含有原料に粉状炭
材を混合した混合物を250〜550℃で熱間成型する
ことによって、高炉に装入しうる高強度の炭材内装塊成
化物が製造できる。
As described above, according to the method of the present invention, a mixture obtained by mixing powdery carbonaceous material with a powdery iron-containing raw material having a bulk density of 1.5 g / cm 3 or more is hot molded at 250 to 550 ° C. By doing so, a high-strength carbonaceous material-containing agglomerate that can be charged into the blast furnace can be manufactured.

【0036】また、粉状鉄鉱石と製鉄ダストを混合した
ときにその混合物のかさ密度が1.5g/cm3以上と
なるように前記粉状鉄鉱石と前記製鉄ダストの配合率を
定めた後、前記粉状鉄鉱石を400〜800℃に加熱
し、粉状炭材を250℃以下で乾燥し、ついで前記粉状
鉄鉱石、前記粉状炭材および加熱しない前記製鉄ダスト
を混合して250〜550℃の混合物とし、その250
〜550℃の混合物を熱間成型することにより、製鉄ダ
ストを用いても高炉に装入しうる高強度の炭材内装塊成
化物が製造できる。
After the mixing ratio of the powdery iron ore and the iron-making dust is determined so that the bulk density of the mixture becomes 1.5 g / cm 3 or more when the powdery iron-ore and the iron-making dust are mixed. The powdery iron ore is heated to 400 to 800 ° C., the powdery carbonaceous material is dried at 250 ° C. or less, and then the powdery iron ore, the powdery carbonaceous material and the iron dust not heated are mixed to form 250. ~ 550 ° C as a mixture, 250
By hot-molding the mixture at ˜550 ° C., it is possible to manufacture a high-strength carbonaceous material-containing agglomerate that can be charged into the blast furnace even when using iron-making dust.

【0037】さらに、前記混合物に振動を加えて密充填
にした後、熱間成型をすることにより、粉状鉄含有原料
のかさ密度が1.5g/cm3より低くても高炉に装入
しうる高強度の炭材内装塊成化物が製造できる。
Furthermore, after vibrating the mixture to make it densely packed, it is hot-molded to be charged into the blast furnace even if the bulk density of the powdery iron-containing raw material is lower than 1.5 g / cm 3. It is possible to produce a high-strength carbon material-containing agglomerate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に係わる炭材内装塊成化物の製造
フローの概念図である。
FIG. 1 is a conceptual diagram of a production flow of a carbonaceous material-containing agglomerate according to an embodiment of the present invention.

【図2】本実施例に用いられた熱間成型機の概要を示す
図である。
FIG. 2 is a diagram showing an outline of a hot molding machine used in this example.

【図3】鉄鉱石の粉砕粒度(体積平均径)とかさ密度と
の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a crushed particle size (volume average diameter) of iron ore and a bulk density.

【図4】鉄鉱石のかさ密度とブリケット(塊成化物)の
圧潰強度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the bulk density of iron ore and the crush strength of briquettes (agglomerates).

【図5】ミキサー出口部シュートへのバイブレーター設
置の状況を示す図である。
FIG. 5 is a view showing a situation where a vibrator is installed on a chute of an exit of a mixer.

【図6】塊成化物のタンブラー回転強度試験時の−1m
m粉率と圧潰強度との関係を示す図である。
[Fig. 6] -1 m during tumbler rotation strength test of agglomerates
It is a figure which shows the relationship between m powder rate and crushing strength.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 C21B 5/00 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) C22B 1/00-61/00 C21B 5/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉状鉄含有原料と粉状炭材との混合物を
250〜550℃で熱間成型して行う炭材内装塊成化物
の製造方法であって、前記粉状鉄含有原料のかさ密度が
1.5g/cm3以上であることを特徴とする炭材内装
塊成化物の製造方法。
1. A method for producing an agglomerate containing carbonaceous material, which is carried out by hot forming a mixture of a powdery iron-containing raw material and a powdery carbonaceous material at 250 to 550 ° C. A method for producing a carbonaceous material-containing agglomerate, which has a hardness density of 1.5 g / cm 3 or more.
【請求項2】 かさ密度が1.5g/cm3以上の粉状
鉄鉱石を400〜800℃に加熱し、粉状炭材を250
℃以下で乾燥し、ついで前記粉状鉄鉱石と前記粉状炭材
を混合して250〜550℃の混合物とし、その混合物
を熱間成型することを特徴とする炭材内装塊成化物の製
造方法。
2. A powdery iron ore having a bulk density of 1.5 g / cm 3 or more is heated to 400 to 800 ° C. to obtain a powdery carbonaceous material of 250.
The carbonaceous material-containing agglomerate characterized by being dried at a temperature of not higher than 0 ° C, and then the powdery iron ore and the powdery carbonaceous material are mixed to form a mixture at 250 to 550 ° C, and the mixture is hot-molded. Method.
【請求項3】 粉状鉄鉱石と製鉄ダストを混合したとき
にその混合物のかさ密度が1.5g/cm3以上となる
ように前記粉状鉄鉱石と前記製鉄ダストの配合率を定め
た後、 前記粉状鉄鉱石を400〜800℃に加熱し、粉状炭材
を250℃以下で乾燥し、ついで前記粉状鉄鉱石、前記
粉状炭材および加熱しない前記製鉄ダストを混合して2
50〜550℃の混合物とし、その250〜550℃の
混合物を熱間成型することを特徴とする炭材内装塊成化
物の製造方法。
3. After the mixture ratio of the powdery iron ore and the iron-making dust is determined so that the bulk density of the mixture becomes 1.5 g / cm 3 or more when the powdery iron-ore and the iron-making dust are mixed. , Heating the powdery iron ore to 400 to 800 ° C., drying the powdery carbonaceous material at 250 ° C. or lower, and then mixing the powdery iron ore, the powdery carbonaceous material and the iron dust that is not heated to 2
A method for producing a carbonaceous material-containing agglomerate, which comprises forming a mixture of 50 to 550 ° C. and hot molding the mixture of 250 to 550 ° C.
【請求項4】 250〜550℃の粉状鉄含有原料と粉
状炭材との混合物を熱間成型して行う炭材内装塊成化物
の製造方法であって、前記混合物に振動を加えて密充填
にした後、熱間成型をすることを特徴とする圧潰強度4
00N/個以上の炭材内装塊成化物の製造方法。
4. A method for producing a carbonaceous material-containing agglomerate, which is performed by hot forming a mixture of a powdery iron-containing raw material at 250 to 550 ° C. and a powdery carbonaceous material, wherein vibration is applied to the mixture. Crushing strength 4 characterized by performing hot forming after dense packing
A method for producing a carbon material- containing agglomerate of 00 N / piece or more .
【請求項5】 請求項4に記載の発明において、前記粉
状鉄含有原料のかさ密度が1.4g/cm3以上である
ことを特徴とする炭材内装塊成化物の製造方法。
5. The method for producing a carbonaceous material-containing agglomerate according to claim 4, wherein the powdery iron-containing raw material has a bulk density of 1.4 g / cm 3 or more.
【請求項6】 かさ密度が1.4g/cm3以上の粉状
鉄鉱石を400〜800℃に加熱し、粉状炭材を250
℃以下で乾燥し、ついで前記粉状鉄鉱石と前記粉状炭材
を混合して250〜550℃の混合物とし、その混合物
に振動を加えて密充填にした後、熱間成型することを特
徴とする圧潰強度400N/個以上の炭材内装塊成化物
の製造方法。
6. A powdery iron ore having a bulk density of 1.4 g / cm 3 or more is heated to 400 to 800 ° C. to obtain a powdery carbonaceous material of 250.
Characterized in that it is dried below ℃, and then the powdered iron ore and the powdered carbonaceous material are mixed to form a mixture of 250 to 550 ° C., and the mixture is vibrated to be densely packed, and then hot-molded. A method for producing a carbonaceous material- containing agglomerate having a crushing strength of 400 N / piece or more .
【請求項7】 粉状鉄鉱石と製鉄ダストを混合したとき
にその混合物のかさ密度が1.4g/cm3以上となる
ように前記粉状鉄鉱石と前記製鉄ダストの配合率を定め
た後、 前記粉状鉄鉱を400〜800℃に加熱し、粉状炭材を
250℃以下で乾燥し、ついで前記粉状鉄鉱石、前記粉
状炭材および加熱しない前記製鉄ダストを混合して25
0〜550℃の混合物とし、その250〜550℃の混
合物に振動を加えて密充填にした後、熱間成型すること
を特徴とする圧潰強度400N/個以上の炭材内装塊成
化物の製造方法。
7. The mixing ratio of the powdery iron ore and the ironmaking dust is determined so that the bulk density of the mixture becomes 1.4 g / cm 3 or more when the powdery iron ore and the ironmaking dust are mixed. , The powdery iron ore is heated to 400 to 800 ° C., the powdery carbonaceous material is dried at 250 ° C. or lower, and then the powdery iron ore, the powdery carbonaceous material, and the iron dust not heated are mixed to obtain 25
Production of a carbonaceous material- containing agglomerate having a crushing strength of 400 N / piece or more, which is characterized by forming a mixture of 0 to 550 ° C., vibrating the mixture of 250 to 550 ° C. to close packing, and then hot molding. Method.
JP2000122522A 2000-04-24 2000-04-24 Manufacturing method of carbonized interior agglomerates Expired - Fee Related JP3502011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122522A JP3502011B2 (en) 2000-04-24 2000-04-24 Manufacturing method of carbonized interior agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122522A JP3502011B2 (en) 2000-04-24 2000-04-24 Manufacturing method of carbonized interior agglomerates

Publications (2)

Publication Number Publication Date
JP2001303143A JP2001303143A (en) 2001-10-31
JP3502011B2 true JP3502011B2 (en) 2004-03-02

Family

ID=18632986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122522A Expired - Fee Related JP3502011B2 (en) 2000-04-24 2000-04-24 Manufacturing method of carbonized interior agglomerates

Country Status (1)

Country Link
JP (1) JP3502011B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005190A1 (en) 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532313B2 (en) * 2005-03-07 2010-08-25 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP4996103B2 (en) * 2006-02-07 2012-08-08 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP5058544B2 (en) * 2006-09-26 2012-10-24 日新製鋼株式会社 Manufacturing method of briquette for steelmaking raw material
JP5821814B2 (en) * 2012-09-11 2015-11-24 新日鐵住金株式会社 Briquette moldability evaluation method and briquette manufacturing method based thereon
JP6729228B2 (en) * 2016-09-15 2020-07-22 日本製鉄株式会社 Method for estimating strength of iron ore compact and method for manufacturing iron ore compact
AU2017388174B2 (en) 2016-12-28 2020-03-12 Jfe Steel Corporation Sintered ore manufacturing method
JP7204590B2 (en) * 2019-06-20 2023-01-16 太平洋セメント株式会社 Valuable metal recovery method and recovery system
WO2021029008A1 (en) * 2019-08-13 2021-02-18 日本製鉄株式会社 Carbon composite ore and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005190A1 (en) 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore

Also Published As

Publication number Publication date
JP2001303143A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4348152B2 (en) Method for producing ferronickel and ferronickel refining raw material
JP3004265B1 (en) Carbon material interior pellet and reduced iron production method
JP4438297B2 (en) Method for producing reduced metal and agglomerated carbonaceous material agglomerates
RU2507275C2 (en) Production method of agglomerates from fine iron carrier
RU2194771C2 (en) Method of metallic iron production and device for method embodiment
US6986801B2 (en) Method of producing reduced iron compacts in rotary hearth-type reducing furnace, reduced iron compacts, and method of producing molten iron using them
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
EP2336371B1 (en) Blast furnace operating method using carbon-containing unfired pellets
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP2004211179A (en) Method of reducing chromium-containing raw material
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP3863052B2 (en) Blast furnace raw material charging method
JP2003183715A (en) Method for manufacturing molten metal
JP2007063605A (en) Method for manufacturing carbonaceous-material-containing agglomerate
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP6926674B2 (en) Oxidized ore smelting method
JP3379360B2 (en) Hot metal production method
JP3863104B2 (en) Blast furnace operation method
JP4078285B2 (en) Blast furnace operation method
WO2001048250A1 (en) Method for utilizing activated carbon powder recovered from exhaust sintering gas treating apparatus
JPS60248831A (en) Manufacture of uncalcined lump ore
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JP2004204287A (en) Method for manufacturing reduced metal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

R150 Certificate of patent or registration of utility model

Ref document number: 3502011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees