JP4532313B2 - Manufacturing method of carbonized material agglomerates - Google Patents

Manufacturing method of carbonized material agglomerates Download PDF

Info

Publication number
JP4532313B2
JP4532313B2 JP2005062705A JP2005062705A JP4532313B2 JP 4532313 B2 JP4532313 B2 JP 4532313B2 JP 2005062705 A JP2005062705 A JP 2005062705A JP 2005062705 A JP2005062705 A JP 2005062705A JP 4532313 B2 JP4532313 B2 JP 4532313B2
Authority
JP
Japan
Prior art keywords
heating
carbonaceous material
raw material
sieving
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005062705A
Other languages
Japanese (ja)
Other versions
JP2006241577A (en
Inventor
佳之 長瀬
恒明 西川
昭人 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005062705A priority Critical patent/JP4532313B2/en
Publication of JP2006241577A publication Critical patent/JP2006241577A/en
Application granted granted Critical
Publication of JP4532313B2 publication Critical patent/JP4532313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉、キューポラなどの竪型炉用装入原料として用いることができる炭材内装塊成化物の製造方法に関し、詳しくは炭材内装塊成化物の成形時に発生する篩下粉の処理方法に関する。   The present invention relates to a method for producing an agglomerated carbonaceous material agglomerated material that can be used as a raw material for vertical furnaces such as blast furnaces and cupolas. Regarding the method.

本発明者らは、高炉、キューポラなどの竪型炉用装入原料として用いることを目的として、粉鉱石と軟化溶融性を有する炭材の混合物を熱間成形することにより、従来の炭材内装コールドペレット等のようにセメントなどのバインダを添加せずとも高強度が得られる炭材内装塊成化物を開発した。   For the purpose of using as a raw material for vertical furnaces such as blast furnaces and cupolas, the present inventors have formed a conventional carbon material interior by hot forming a mixture of fine ore and a soft and meltable carbon material. We have developed an agglomerate of carbonaceous materials that can provide high strength without adding a binder such as cement, such as cold pellets.

このような炭材内装塊成化物は、例えば図2に示すような工程で製造できる。すなわち、粉状鉄鉱石Bをロータリキルン2で400〜800℃に加熱するとともに、軟化溶融性を有する粉状炭材Aを別途ロータリドライヤ1で軟化溶融が起こらない250℃未満の温度で乾燥したのち、この粉状炭材Aと粉状鉄鉱石Bとを二軸型のミキサ3で混合して粉状炭材Aが軟化溶融する温度である250〜550℃の混合物Cとする。そして、この混合物Cを双ロール型成形機4で熱間成形してブリケット化し、このブリケット(成形物)Dを篩(スクリーン)8で篩って、篩下の粉Fは再びミキサ3に戻して原料として有効利用しつつ、篩上の塊状物Eを目的とする炭材内装塊成化物として回収する(特許文献1,2参照)。   Such a carbonaceous material agglomerated material can be produced, for example, by a process as shown in FIG. That is, the powdered iron ore B was heated to 400 to 800 ° C. with the rotary kiln 2 and the powdered carbon material A having soft melting property was separately dried with the rotary dryer 1 at a temperature of less than 250 ° C. at which softening and melting did not occur. After that, the powdered carbon material A and the powdered iron ore B are mixed with a biaxial mixer 3 to obtain a mixture C of 250 to 550 ° C., which is a temperature at which the powdered carbon material A is softened and melted. Then, the mixture C is hot-molded by a twin-roll molding machine 4 to form a briquette, the briquette (molded product) D is sieved by a sieve (screen) 8, and the powder F under the sieve is returned to the mixer 3 again. In this way, the mass E on the sieve is recovered as an agglomerated carbonaceous material agglomerated for the purpose of effective utilization as a raw material (see Patent Documents 1 and 2).

上記方法では、熱間成形後の篩下粉Fは再びミキサ3に戻して原料として有効利用するとしたが、その後の発明者らの検討により以下の問題が生じることがわかった。   In the above method, the under-sieving powder F after hot forming is returned to the mixer 3 and effectively used as a raw material. However, it has been found that the following problems occur due to the subsequent studies by the inventors.

すなわち、混合物Cを双ロール型成形機4で熱間成形した場合には、正規の成形物Dの他、双ロールの端からこぼれ落ちた未成形の粉や成形機4の起動・停止など非定常時に成形された規格外れの成形品が発生する。また、正規の成形物D自身も、いわゆるバリを有しているため、搬送過程などでバリに由来する粉が発生する。これら規格外れの成形品や粉を総称して以下では「規格外品」と呼ぶ。この規格外品は、上記篩下粉Fと同様、再度ミキサ3に戻し混合物Cに混ぜ込んで有効利用することが考えられるが以下の問題がある。つまり、規格外品はミキサ3内での軟化した炭材との混合や成形機4での成形処理などにより粉状鉄鉱石Bと比較して粗粒化が進行している。そのため、粉状炭材Aの種類や流動性および混合量にも依存するが、このような規格外品を混合物Cと混合した場合には、粉同士の密着性が低下し、結果的に成形により得られる成形物Dの強度低下を引き起こす。成形物Dの強度が低下すると、粉の発生量がさらに増大し、製品としての炭材内装塊成化物Eの回収歩留が低下するとともに、炭材内装塊成化物E自体の強度も低下し、縦型炉の装入原料として適さなくなってしまう。また、このような成形物Dの強度低下を補償するために、混合物Cへの軟化溶融性を有する粉状炭材Aの配合量を増加させることも、コストが上昇するうえ、炭材内装塊成化物E中の炭材量が還元所要量より過剰となり無駄である。
特許3502011号公報 特許3502008号公報
That is, when the mixture C is hot-formed by the twin roll molding machine 4, in addition to the regular molding D, unmolded powder spilled from the ends of the twin rolls and unsteady starting / stopping of the molding machine 4. Occasionally, a molded product out of specification is generated. In addition, since the regular molded product D itself has so-called burrs, powder derived from the burrs is generated during the conveyance process. These out-of-standard molded products and powders are collectively referred to as “non-standard products” below. This non-standard product can be returned to the mixer 3 again and mixed into the mixture C for effective use, as in the case of the sieve powder F, but has the following problems. That is, the non-standard product has been coarsened as compared with the powdered iron ore B by mixing with the softened carbonaceous material in the mixer 3 or the molding process in the molding machine 4. Therefore, depending on the type, fluidity and mixing amount of the powdered carbonaceous material A, when such a non-standard product is mixed with the mixture C, the adhesion between the powders decreases, resulting in molding. This causes a decrease in strength of the molded product D obtained. When the strength of the molded product D decreases, the amount of powder generated further increases, the recovery yield of the carbonaceous material agglomerated product E as a product decreases, and the strength of the carbonaceous material agglomerated product E itself also decreases. It becomes unsuitable as a charging material for a vertical furnace. Further, in order to compensate for such a decrease in strength of the molded product D, increasing the blending amount of the powdered carbonaceous material A having the softening and melting property into the mixture C increases the cost and increases the carbonaceous material interior lump. The amount of the carbonaceous material in the chemical E is excessive than the amount required for reduction, which is useless.
Japanese Patent No. 3502011 Japanese Patent No. 3502008

そこで、本発明は、熱間成形後の篩下粉を有効利用しつつ、篩上塊状物の回収歩留および強度を確保しうる炭材内装塊成化物の製造方法を提供することを目的とする。   Then, this invention aims at providing the manufacturing method of the carbonaceous material agglomerated material which can ensure the collection | recovery yield and intensity | strength of a lump top mass thing while utilizing effectively the undersieving powder after hot forming. To do.

請求項1に記載の発明は、軟化溶融性を有する粉状炭材を350℃以下で乾燥・加熱する炭材乾燥加熱工程と、粉状鉄含有原料を400〜800℃に加熱する原料加熱工程と、前記乾燥後の粉状炭材と前記加熱後の粉状鉄鉱石とを混合して250〜550℃の混合物とする混合工程と、前記混合物を熱間成形して成形物となす熱間成形工程と、前記成形物を篩って篩上塊状物と篩下粉とに分級し、前記篩上塊状物を炭材内装塊成化物として回収する整粒工程と、前記篩下粉からなる固体粉の全部または一部を前記原料加熱工程に戻し、前記粉状鉄含有原料を加熱する加熱燃料の一部として使用する固体粉循環工程と、を備えたことを特徴とする炭材内装塊成化物の製造方法である。   The invention according to claim 1 is a carbon material drying and heating step of drying and heating a powdered carbon material having softening and melting properties at 350 ° C. or less, and a raw material heating step of heating the powdered iron-containing material to 400 to 800 ° C. And a mixing step of mixing the dried powdered carbonaceous material and the heated powdered iron ore into a mixture of 250 to 550 ° C, and hot forming the mixture into a molded product A molding step, a sieve process for classifying the molded product into a sieved lump and a sieved powder, and collecting the sieved lump as a carbonaceous material agglomerated product, and the sieved powder. A solid powder circulation step for returning all or part of the solid powder to the raw material heating step, and using the solid powder circulation step as part of the heated fuel for heating the powdered iron-containing raw material. It is a manufacturing method of a chemical compound.

請求項2に記載の発明は、軟化溶融性を有する粉状炭材を350℃以下で乾燥・加熱する炭材乾燥加熱工程と、粉状鉄含有原料を400〜800℃に加熱する原料加熱工程と、前記乾燥後の粉状炭材と前記加熱後の粉状鉄鉱石とを混合して250〜550℃の混合物とする混合工程と、前記混合物を熱間成形して成形物となす熱間成形工程と、前記成形物を前記熱間成形温度以上800℃以下の温度に保持して成形物中に残存する揮発分およびタール分を除去する熱処理工程と、前記成形物を篩って篩上塊状物と篩下粉とに分級し、前記篩上塊状物を炭材内装塊成化物として回収する整粒工程と、前記篩下粉からなる固体粉の全部または一部を前記原料加熱工程に戻し、前記粉状鉄含有原料を加熱する加熱燃料の一部として使用する固体粉循環工程と、を備えたことを特徴とする炭材内装塊成化物の製造方法である。   Invention of Claim 2 is a raw material heating process which heats the powdery iron containing raw material to 400-800 degreeC, and the carbonaceous material drying heating process which dries and heats the powdered carbonaceous material which has soft melting property at 350 degrees C or less And a mixing step of mixing the dried powdered carbonaceous material and the heated powdered iron ore into a mixture of 250 to 550 ° C, and hot forming the mixture into a molded product A molding step, a heat treatment step of maintaining the molded product at a temperature of the hot molding temperature to 800 ° C. to remove volatile components and tars remaining in the molded product, and sieving the molded product to sieve Classifying into lump and under sieve powder, recovering the above lump mass as a carbonaceous material agglomerated material, and all or part of the solid powder consisting of under sieve powder into the raw material heating process The solid powder used as part of the heating fuel for heating the powdered iron-containing raw material. A step, a carbonaceous material decorated agglomerate manufacturing method, characterized by comprising a.

請求項3に記載の発明は、軟化溶融性を有する粉状炭材を350℃以下で乾燥・加熱する炭材乾燥加熱工程と、粉状鉄含有原料を400〜800℃に加熱する原料加熱工程と、前記乾燥後の粉状炭材と前記加熱後の粉状鉄鉱石とを混合して250〜550℃の混合物とする混合工程と、前記混合物を熱間成形して成形物となす熱間成形工程と、前記熱間成形工程で発生した規格外品を前記成形物から除去する規格外品除去工程と、前記規格外品を除去した後の成形物を前記熱間成形温度以上800℃以下の温度に保持して成形物中に残存する揮発分およびタール分を除去する熱処理工程と、前記成形物を篩って篩上塊状物と篩下粉とに分級し、前記篩上塊状物を炭材内装塊成化物として回収する整粒工程と、前記規格外品と前記篩下粉とからなる固体粉の全部または一部を前記原料加熱工程に戻し、前記粉状鉄含有原料を加熱する加熱燃料の一部として使用する固体粉循環工程と、を備えたことを特徴とする炭材内装塊成化物の製造方法である。   Invention of Claim 3 is a raw material heating process which heats a powdery iron containing raw material to 400-800 degreeC, and the carbonaceous material drying heating process which dries and heats the powdered carbonaceous material which has soft melting property at 350 degrees C or less And a mixing step of mixing the dried powdered carbonaceous material and the heated powdered iron ore into a mixture of 250 to 550 ° C, and hot forming the mixture into a molded product A molding step, a non-standard product removing step for removing a non-standard product generated in the hot molding step from the molded product, and a molded product after the non-standard product is removed from the hot molding temperature to 800 ° C. A heat treatment step for removing volatile and tar components remaining in the molded product while maintaining the temperature of the molded product, and sieving the molded product to classify it into a sieved lump and a sieved powder, From the sizing process to collect as an agglomerated carbonaceous material agglomerated material, the non-standard product and the under sieve powder A solid powder circulation step for returning all or part of the solid powder to the raw material heating step and using it as part of the heated fuel for heating the powdered iron-containing raw material. It is a manufacturing method of an agglomerated material.

なお、「軟化溶融性を有する粉状炭材」とは、logMF(ここに、MFはギーセラ最高流動度である。)が1.0以上の石炭、SRC、タイヤチップ、プラスチック、アスファルト、タールなど軟化溶融性を有する炭素質物質を少なくとも1種含むものであって、粉状のものの総称である。なお、この「軟化溶融性を有する粉状炭材」は、上記軟化溶融性を有する炭素質物質に加えて、さらにコークス、一般炭、無煙炭、オイルコークスなど軟化溶融性を実質的に有しない炭素質物質を1種以上混合したものであってもよい。また、「粉状鉄含有原料」とは、鉄鉱石、製鉄ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケールなど)など主として酸化鉄を含有する原料、またはこれらの原料の2種以上の混合物であって、粉状のものの総称である。   “Powdered carbon material having soft melting property” means coal, SRC, tire chip, plastic, asphalt, tar, etc. whose log MF (where MF is Giesera maximum fluidity) is 1.0 or more. It is a generic term for powders that contain at least one carbonaceous material having soft melting properties. This “powdered carbonaceous material having softening and melting properties” includes carbon having substantially no softening and melting properties, such as coke, steaming coal, anthracite, and oil coke, in addition to the carbonaceous material having softening and melting properties. It may be a mixture of one or more substances. “Powdered iron-containing raw material” means a raw material mainly containing iron oxide such as iron ore and iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.), or two or more of these raw materials It is a general term for a mixture of powders.

本発明によれば、乾留後の炭材分と鉄含有原料分とからなる固体粉を原料加熱工程に戻して燃料の一部として使用することにより、固体粉中の前記炭材分は燃焼して粉状鉄含有原料を加熱しつつ消失するので、残分である鉄含有原料分のみが、原料加熱工程で加熱される新規の粉状鉄含有原料に加えられ再利用される。なお、炭材分が完全に燃焼し切らずに一部残存しても、成形物の構成材料として使用できるので問題はない。   According to the present invention, the carbon material in the solid powder is combusted by returning the solid powder composed of the carbon material after dry distillation and the iron-containing raw material to the raw material heating step and using it as part of the fuel. Thus, the powdered iron-containing raw material disappears while heating, so that only the remaining iron-containing raw material is added to the new powdered iron-containing raw material heated in the raw material heating step and reused. In addition, even if the carbonaceous material is not completely burned out and remains partially, there is no problem because it can be used as a constituent material of a molded product.

よって、固体粉中の炭材分は燃焼エネルギとして有効に利用され、加熱燃料を低減する効果が得られるとともに、固体粉中の鉄含有原料分は新規の粉状鉄含有原料の一部と置換して有効に利用される。さらに、上記従来技術と異なり、固体粉中の軽量でかつ軟化溶融性を失った炭材分が混合物に混入することが防止され、密充填の状態で成形が行え、炭材内装塊成化物の強度を確保できる。   Therefore, the carbonaceous material content in the solid powder is effectively used as combustion energy, and the effect of reducing the heated fuel is obtained, and the iron-containing raw material content in the solid powder is replaced with a part of the new powdered iron-containing raw material. And effectively used. Furthermore, unlike the above prior art, the carbonaceous material that is light in solid powder and has lost its softening and melting property can be prevented from being mixed into the mixture, and can be molded in a tightly packed state. Strength can be secured.

(実施形態)
図1に本発明の一実施形態に係る炭材内装塊成化物の製造フローの概念図を示す。なお、上記従来技術で説明した図2と共通する装置および物質には同じ符号を用いた。以下、粉状鉄含有原料として粉状鉄鉱石を代表例として説明する。炭材のうち軟化溶融性を有する炭材(例えば、粘結炭、SRC等)は、粉状鉄鉱石および軟化溶融性を実質的に有しない炭材との混合状態を良好に保つために1mm以下程度に粉砕するのが望ましい。また、上記軟化溶融性を有する炭材との充填性を上げるため、鉄鉱石と、炭材のうち軟化溶融性を実質的に有しない炭材(例えば、コークス粉、一般炭、無煙炭、オイルコークス等)は、必要な場合には粉砕して使用する。粉砕粒度は、その上限は成形が可能な粒度であるが、下限は特に限定されないものの、軟化溶融性を有する炭材と同程度が望ましい。
(Embodiment)
The conceptual diagram of the manufacture flow of the carbonaceous material interior agglomerate which concerns on FIG. 1 at one Embodiment of this invention is shown. In addition, the same code | symbol was used for the apparatus and substance which are common in FIG. 2 demonstrated by the said prior art. Hereinafter, powdered iron ore will be described as a representative example as a powdered iron-containing raw material. Among the carbon materials, a carbon material having soft melting property (for example, caking coal, SRC, etc.) is 1 mm in order to maintain a good mixed state with the powdered iron ore and the carbon material substantially not having soft melting property. It is desirable to grind to the following extent. Moreover, in order to improve the filling property with the above-mentioned softening and melting carbonaceous material, iron ore and a carbonaceous material that does not substantially have softening and melting property (for example, coke powder, general coal, anthracite, oil coke). Etc.) should be crushed and used if necessary. Although the upper limit of the pulverized particle size is a particle size that can be molded, the lower limit is not particularly limited, but it is preferably about the same as that of a carbon material having softening and melting properties.

〔炭材乾燥加熱工程〕
このようにして粒度調整された粉状炭材Aは、炭材乾燥加熱設備(例えば、ロータリドライヤ)1で、炭材Aが実質的に軟化溶融しない350℃以下の温度で乾燥・加熱し、付着水分を除去する。ここで、粉状炭材の乾燥加熱温度は、従来技術(特許文献1,2参照)では炭材が軟化溶融しない「250℃未満」としていたが、発明者らのその後の検討により「350℃」まで乾燥加熱温度を上昇させても炭材は実質上軟化溶融しないことが判明したため、「350℃以下」とした。
[Carbon dry drying process]
The powdery carbonaceous material A thus adjusted in particle size is dried and heated at a temperature of 350 ° C. or less at which the carbonaceous material A is not substantially softened and melted in the carbonaceous material drying heating facility (for example, a rotary dryer) 1. Remove adhering moisture. Here, the drying heating temperature of the powdered carbon material was “less than 250 ° C.” in which the carbon material is not softened and melted in the conventional technology (see Patent Documents 1 and 2). It was found that the carbonaceous material was not substantially softened and melted even when the drying heating temperature was increased to “350 ° C. or lower”.

〔原料加熱工程〕
一方、粉状鉄鉱石Bは、粉状炭材Aと混合したときに目標温度の250〜550℃となるように、原料加熱設備(例えば、ロータリキルン)2で400〜800℃に予熱する。ロータリキルン2のバーナから吹き込む燃料としては固体燃料である微粉炭、液体燃料である重油、気体燃料である天然ガス、COG等いずれも使用できる。この燃料中に、後述する熱間成形の際に発生する規格外品Gと熱処理後のブリケットの篩下粉F(以下、これらを併せて「固体粉H」と総称する。)を添加しバーナを介してロータリキルン2内に吹き込む。固体粉H中にブリケットD由来のバリなど大きな粒径のものがそのまま存在する場合は固体粉H中の炭材分の燃焼性向上およびバーナ保護の観点から、新規の粉状鉄鉱石Bの粒度と同程度まで解砕ないし粉砕して用いるのが好ましい。このようにして、燃料とともにロータリキルン2内に吹き込まれた固体粉Hは、その炭材分が燃焼し粉状鉄鉱石Bの加熱に寄与しつつガス化し消失した後、燃え残った残部の鉄鉱石分のみが新規の粉状鉄鉱石Bに混合される。
[Raw material heating process]
On the other hand, the powdered iron ore B is preheated to 400 to 800 ° C. with the raw material heating equipment (for example, rotary kiln) 2 so that the target temperature becomes 250 to 550 ° C. when mixed with the powdered carbon material A. As fuel injected from the burner of the rotary kiln 2, pulverized coal that is solid fuel, heavy oil that is liquid fuel, natural gas that is gaseous fuel, COG, or the like can be used. A non-standard product G generated during hot forming, which will be described later, and a briquette underfloor powder F after heat treatment (hereinafter collectively referred to as “solid powder H”) are added to the fuel. Is blown into the rotary kiln 2. In the case where a large particle size such as burrs derived from briquette D is present as it is in the solid powder H, the particle size of the new powdered iron ore B from the viewpoint of improving the combustibility of the carbonaceous material in the solid powder H and protecting the burner It is preferable to use after pulverizing or pulverizing to the same extent. In this way, the solid powder H blown into the rotary kiln 2 together with the fuel burns the carbonaceous material and contributes to the heating of the powdered iron ore B. Only stones are mixed into the new powdered iron ore B.

〔混合工程〕
乾燥した粉状炭材Aと予熱した粉状鉄鉱石Bとの混合には、混合設備として、粉状炭材Aの無機化および/または炭材軟化による不要な造粒を抑制するために短時間で混合できるこの業種で常用されている、例えば竪形混合槽3を用いる。また、この竪形混合槽3は成形温度を確保するために断熱および/または保温する。粉状鉄鉱石B中には固体粉Hが混合されているが、上述したように固体粉H中の炭材分はロータリキルン2内で完全にあるいはほとんど燃焼して消失しているので(厳密にいえば、炭材の灰分が固体粉H中に残存しうるが、その量は微量であり実質上問題とならない。)、混合物Cのかさ密度の低下が防止され、成形物Dの強度が維持される。またその結果、後述する熱処理後の炭材内装塊成化物(以下、単に「塊成化物」ともいう。)Eの強度も高く維持される。
[Mixing process]
The mixing of the dried powdered carbon material A and the preheated powdered iron ore B is short as a mixing facility in order to suppress unnecessary granulation due to mineralization and / or softening of the carbonaceous material. For example, a bowl-shaped mixing tank 3 that is commonly used in this type of industry that can be mixed with time is used. In addition, this bowl-shaped mixing tank 3 is insulated and / or kept warm in order to ensure the molding temperature. Although solid powder H is mixed in the powdered iron ore B, as described above, the carbonaceous material in the solid powder H is completely or almost burned and disappeared in the rotary kiln 2 (strictly In other words, the ash content of the carbonaceous material can remain in the solid powder H, but the amount thereof is very small and does not substantially cause a problem.) Maintained. As a result, the strength of the carbonaceous material agglomerated material (hereinafter also simply referred to as “agglomerated material”) E after heat treatment, which will be described later, is maintained high.

〔熱間成形工程〕
粉状炭材Aと粉状鉄鉱石Bからなる混合物Cは、成形設備として例えば熱間成形用の双ロール型成形機4を用いて加圧成形し、成形物Dとなす。加圧成形は、成形物Dを熱処理して得られた塊成化物Eが成形機4から竪型炉(例えば、高炉)への装入までのハンドリングに耐え得るに十分な強度である0.5kN/個以上が得られるよう、成形加圧力を10kN/cm以上とする。
[Hot forming process]
The mixture C composed of the powdered carbon material A and the powdered iron ore B is pressure-molded by using, for example, a hot-rolling twin-roll molding machine 4 as a molding facility to obtain a molded product D. The pressure molding has a strength sufficient to allow the agglomerate E obtained by heat-treating the molded product D to withstand handling from the molding machine 4 to charging into a vertical furnace (for example, a blast furnace). The molding pressure is set to 10 kN / cm or more so that 5 kN / piece or more is obtained.

このようにして成形された成形物Dは、粉状鉄鉱石Bの空隙に、溶融した軟化溶融性を有する炭材Aが浸入し、この炭材Aが潤滑剤として作用して、成形物Dの表面に加えられた成形加圧力が成形物Dの内部にまでほぼ均一に及ぶため、表面近傍のみが圧密されることが防止され、成形物D内の気孔率分布が平均化され、加熱時に爆裂が起こらない塊成化物Eが得られる。   In the molded product D thus molded, the melted softening and melting carbon material A enters the voids of the powdered iron ore B, and this carbon material A acts as a lubricant to form the molded product D. Since the molding pressure applied to the surface of the material extends almost uniformly to the inside of the molded product D, it is prevented that only the vicinity of the surface is consolidated, the porosity distribution in the molded product D is averaged, and during heating, An agglomerate E in which no explosion occurs is obtained.

また、固化後の炭材Aは、粉状鉄鉱石Bの粒子同士を強固に連結するとともに、粉状鉄鉱石Bとの接触面積も大きくなっており、このようにして得られた塊成化物Eは、高強度で、かつ被還元性に優れたものとなる。   In addition, the carbonized material A after solidification firmly connects the particles of the powdered iron ore B and has a large contact area with the powdered iron ore B, and the agglomerates obtained in this way. E has high strength and excellent reducibility.

〔規格外品除去工程〕
このようにして形成された成形物Dから規格外品(規格外れの成形品、粉など)Gを例えばスクリーン8’を用いて除去し、成形物Dを回収する。
[Non-standard product removal process]
The non-standard product (non-standard molded product, powder, etc.) G is removed from the molded product D thus formed using, for example, the screen 8 ', and the molded product D is recovered.

〔熱処理工程〕
この成形物Dを上記熱間成形温度(250〜550℃)以上800℃以下の温度に調整した熱処理設備(例えば、シャフト炉)5内に装入し、成形物D中に残存する揮発分およびタール分を除去し、炭材を固化させる。これにより、成形物Dが熱処理されて得られた塊成化物Eが竪型炉に装入されて加熱された際に、もはや炭材が軟化することがなく塊成化物Eの強度が維持されるとともに、タール分が多量に発生することがなく竪型炉の排ガス系統にタールが固着する等のトラブルの発生を防止できる。シャフト炉5内温度の下限を成形温度としたのは成形温度を下回ると揮発分やタール分の除去は非常に困難となるためであり、上限を800℃としたのは成形物D中の鉄分がシャフト炉5内で不必要に還元されて塊成化物Hの強度が低下してしまうのを防止するためである。また、揮発分やタール分の除去を促進するために、シャフト炉5内を負圧に制御することも有効な手段の一つである。
[Heat treatment process]
The molded product D was charged into a heat treatment facility (for example, a shaft furnace) 5 adjusted to a temperature of the hot molding temperature (250 to 550 ° C.) or higher and 800 ° C. or lower, and the volatile matter remaining in the molded product D and Remove tar and solidify charcoal. Thereby, when the agglomerated product E obtained by heat-treating the molded product D is charged in the vertical furnace and heated, the carbonaceous material is no longer softened and the strength of the agglomerated product E is maintained. In addition, a large amount of tar is not generated, and trouble such as tar sticking to the exhaust gas system of the vertical furnace can be prevented. The lower limit of the temperature in the shaft furnace 5 is set as the molding temperature because if the temperature is lower than the molding temperature, it is very difficult to remove volatile components and tar components, and the upper limit is set to 800 ° C. This is to prevent the strength of the agglomerated material H from being reduced unnecessarily in the shaft furnace 5. In order to promote the removal of volatile matter and tar, it is one of effective means to control the inside of the shaft furnace 5 to a negative pressure.

シャフト炉5で熱処理された塊成化物Hは、熱いまま大気中に排出すると発火や燃焼のおそれがあるため、シャフト炉5の下部で窒素ガスなどの不活性ガスにより400℃以下まで冷却してから排出するのが望ましい。   The agglomerate H heat-treated in the shaft furnace 5 may be ignited or burnt if discharged into the atmosphere while being hot. Therefore, the agglomerate H may be cooled to 400 ° C. or lower with an inert gas such as nitrogen gas at the bottom of the shaft furnace 5. It is desirable to discharge from.

なお、ロータリドライヤ1、竪形混合槽3、成形機4およびシャフト炉5は外部からの大気(酸素)の侵入を防止する構造とし、これらの設備で発生する炭材Aの熱分解ガス(揮発分)は炭化水素が主成分であるので、このガスをエジェクタ等を用いて吸引回収し、回収したガスはロータリキルン2等の加熱燃料として利用する。なお、このガス中には粉塵や高沸点タールなどの有害成分も含有されるため、排ガス処理設備(例えば、安水スクラバ)9により除塵・清浄後に用いるのが望ましい。   The rotary dryer 1, the vertical mixing tank 3, the molding machine 4 and the shaft furnace 5 have a structure that prevents the entry of air (oxygen) from the outside, and the pyrolytic gas (volatilization) of the carbonaceous material A generated in these facilities. Since the main component is hydrocarbon, the gas is sucked and recovered using an ejector or the like, and the recovered gas is used as a heating fuel for the rotary kiln 2 or the like. In addition, since harmful components such as dust and high boiling point tar are contained in this gas, it is desirable to use it after dust removal and cleaning by an exhaust gas treatment facility (for example, a water-resistant scrubber) 9.

〔整粒工程〕
シャフト炉5から排出された成形物Dは、必要に応じ整粒設備(例えば、回転ドラム)7に装入して所定時間転動させ、成形時にできたバリを除去する。その後、回転ドラム7から排出してスクリーン8で篩って篩上塊状物Eと篩下粉Fとに分級し、篩上塊状物Eは目的とする高強度の炭材内装塊成化物として回収する。
[Sizing process]
The molded product D discharged from the shaft furnace 5 is loaded into a sizing apparatus (for example, a rotating drum) 7 as necessary and rolled for a predetermined time to remove burrs formed during molding. After that, it is discharged from the rotary drum 7 and sieved with a screen 8 and classified into a sieved lump E and a sieved powder F, and the sieved lump E is recovered as the intended high-strength carbonaceous agglomerate. To do.

〔固体粉循環工程〕
固体粉H(規格外品Gおよび篩下粉F)は、前述したように、必要に応じて新規の粉状鉄鉱石Bの粒度と同程度まで解砕ないし粉砕した後、固体粉搬送配管10を介してキャリアガスを用いて原料加熱工程に戻し、ロータリキルン2のバーナ用燃料の供給配管に添加して燃料として利用する。
[Solid powder circulation process]
As described above, the solid powder H (non-standard product G and unsieved powder F) is crushed or pulverized to the same particle size as that of the new powdered iron ore B as necessary, and then the solid powder carrying pipe 10 Then, the carrier gas is used to return to the raw material heating step, and is added to the burner fuel supply pipe of the rotary kiln 2 to be used as fuel.

(変形例)
上記実施形態では、炭材乾燥加熱工程にロータリドライヤを用いる例を示したが、流動層式ドライヤ、チューブドライヤ、外熱式多筒型ロータリドライヤ、気流式ドライヤ、流動層式ドライヤなどを用いてもよく、これらを複数組み合わせて用いてもよい。
(Modification)
In the above embodiment, an example in which a rotary dryer is used for the carbonaceous material drying and heating process has been shown, but a fluidized bed dryer, a tube dryer, an externally heated multi-cylinder rotary dryer, an airflow dryer, a fluidized bed dryer, etc. Alternatively, a combination of these may be used.

また、上記実施形態では、原料加熱工程にロータリキルンを用いる例を示したが、流動層式加熱炉、チューブ式加熱炉、外熱式多筒型キルン、加熱固体による間接加熱炉などを用いてもよく、これらを複数組み合わせて用いてもよい。   Moreover, in the said embodiment, although the example which uses a rotary kiln for the raw material heating process was shown, using a fluidized bed type heating furnace, a tube type heating furnace, an external heating type multi-cylinder kiln, an indirect heating furnace by heating solid, etc. Alternatively, a combination of these may be used.

また、上記実施形態では、混合工程に竪型混合槽を用いる例を示したが、容器回転型混合槽や横型混合槽などを用いてもよく、これらを複数組み合わせて用いてもよい。また、連続式の混合方式だけでなく、混合槽の前段にホッパを設置し断続的に稼動させるバッチ式の混合形方式を採用してもよく、さらに連続式とバッチ式とを組み合わせて用いてもよい。   Moreover, although the example which uses a vertical mixing tank for a mixing process was shown in the said embodiment, a container rotation type mixing tank, a horizontal type mixing tank, etc. may be used and you may use combining these two or more. In addition to the continuous mixing method, a batch type mixing method in which a hopper is installed upstream of the mixing tank and operated intermittently may be adopted. Also good.

また、上記実施形態では、熱間成形工程に双ロール型成形機を用いる例を示したが、押出し成形機や打錠機などを用いてもよい。   Moreover, although the example which uses a twin roll type | mold molding machine for the hot forming process was shown in the said embodiment, you may use an extrusion molding machine, a tableting machine, etc.

また、上記実施形態では、規格外品除去工程および整粒工程を両方とも設け、規格外品を規格外品除去工程で除去するようにした例を示したが、規格外品除去工程を省略して、規格外品を除去せずに成形物と一緒に熱処理工程で熱処理した後、整粒工程で篩下粉として除去するようにしてもよい。 In the above embodiment, both the non-standard product removal process and the sizing process are provided, and the non-standard product is removed in the non-standard product removal process. However, the non-standard product removal process is omitted. Then, after removing the non-standard product from the heat treatment step in the heat treatment step together with the molded product, it may be removed as a sieve powder in the granulation step.

また、上記実施形態では、熱処理工程にシャフト炉を用いる例を示したが、ロータリキルン、回転炉床炉、外熱式多筒型キルン、バッチ炉などを用いてもよく、これらを複数組み合わせて用いてもよい。   Moreover, in the said embodiment, although the example which uses a shaft furnace for the heat treatment process was shown, you may use a rotary kiln, a rotary hearth furnace, an external heating type multi-cylinder kiln, a batch furnace, etc., combining these two or more. It may be used.

また、上記実施形態では、熱処理工程を設けた例を示したが、竪型炉における炭材内装塊成化物の使用量が少ない場合等は、竪型炉内でのタール発生総量も少なくなるので、熱処理工程を省略してもよい。なお、本発明方法で製造された炭材内装塊成化物は、竪型炉に装入された際、炉内で徐々に昇温されるので、たとえ内部に揮発分が残存していても、揮発分は徐々に除去されるため塊成化物が爆裂するおそれはない。なお、熱処理工程を省略する場合は、その前段の規格外品除去工程をも省略し、熱処理工程の後段の整粒工程にて規格外品を除去するようにすればよい。   Moreover, although the example which provided the heat processing process was shown in the said embodiment, when the usage-amount of the carbonaceous material agglomerated material in a vertical furnace is small, since the total amount of tar generation in a vertical furnace also decreases. The heat treatment step may be omitted. In addition, the carbonaceous material agglomerate produced by the method of the present invention is gradually heated in the furnace when charged into the vertical furnace, so even if volatile matter remains inside, Volatiles are gradually removed, so there is no risk of the agglomerates exploding. When the heat treatment step is omitted, the nonstandard product removal step in the preceding stage may be omitted, and the nonstandard product may be removed in the granulation step in the subsequent stage of the heat treatment step.

また、上記実施形態では、シャフト炉の下部に冷却部を設けた例を示したが、シャフト炉と別に冷却設備を設けてもよい。   Moreover, although the example which provided the cooling part in the lower part of the shaft furnace was shown in the said embodiment, you may provide cooling equipment separately from a shaft furnace.

また、上記実施形態では、整粒工程にバリ除去用の回転ドラムと篩い分け用のスクリーン8とを用いる例を示したが、振動スクリーンのみを用いて、バリ除去と篩い分けとを同時に行うようにしてもよい。   Moreover, in the said embodiment, although the rotating drum for burr | flash removal and the screen 8 for sieving were shown in the granulation process, the burr removal and sieving were performed simultaneously using only a vibration screen. It may be.

また、上記実施形態では、固体粉循環工程に固体粉搬送配管とキャリアガスを用いる例を示したが、例えばロータリキルンのバーナ用燃料に微粉炭を用いる場合は、固体粉をコンベア等により微粉炭ホッパに搬送し装入するようにしてもよい。   Moreover, in the said embodiment, although the example which uses solid powder conveyance piping and carrier gas for the solid powder circulation process was shown, for example, when using pulverized coal for the fuel for burners of a rotary kiln, solid powder is pulverized coal by a conveyor etc. It may be transferred to the hopper and charged.

また、上記実施形態では、固体粉を原料加熱工程にのみ戻す例を示したが、成形物(塊成化物)の強度に影響を与えない程度に一部を混合工程に戻し、残部を原料加熱工程に戻すようにしてもよい。また、原料加熱工程に代えてまたは加えて、炭材乾燥加熱工程、熱処理工程などの加熱燃料の一部として用いてもよい。ただし、原料加熱工程以外で加熱燃料の一部として用いる場合は、燃焼後の鉱石分を主成分とする残材を回収して原料加熱工程に戻す等の処置を必要とする。   Moreover, in the said embodiment, although the example which returns solid powder only to a raw material heating process was shown, a part is returned to a mixing process to such an extent that it does not affect the intensity | strength of a molded object (agglomerated material), and the remainder is heated to raw material. You may make it return to a process. Further, instead of or in addition to the raw material heating step, it may be used as a part of heating fuel such as a carbonaceous material drying heating step and a heat treatment step. However, when using it as a part of heating fuel other than a raw material heating process, measures, such as collect | recovering the residual materials which have the ore part after combustion as a main component and returning to a raw material heating process, are required.

〔固体粉の燃焼性〕
固体粉(規格外品および篩下粉)のうち篩下粉の燃焼性を調査することを目的として、まず、篩下粉を調製するため、以下のような熱間成形実験およびバリ除去実験を行った。
[Flammability of solid powder]
For the purpose of investigating the flammability of sieving powder among solid powders (non-standard products and sieving powder), first, the following hot forming experiments and deburring experiments were conducted to prepare the sieving powder. went.

図3に本熱間成形実験で用いた熱間成形機の概要を示す。表1に示す粉状石炭および表2に示す粉状鉄鉱石を、22:78の質量割合で、粉状鉄鉱石のみを図示しない電気炉で600〜700℃に予熱した後、オイルヒータで200℃に保温されたミキサに装入し混合して400〜550℃とし、この混合物を熱いまま双ロール型成形機に供給し、ロール回転速度4〜6rpm、成形圧力10〜50kN/cmの条件で30mm×25mm×15mm(約6cm3)の卵形のブリケット(成形物)に成形した。そして、このブリケットの一部を窒素雰囲気下、600〜800℃で数分〜1時間の条件で熱処理を行った。

Figure 0004532313
Figure 0004532313
FIG. 3 shows an outline of the hot forming machine used in this hot forming experiment. After preheating the pulverized coal shown in Table 1 and the pulverized iron ore shown in Table 2 at a mass ratio of 22:78 to only 600-700 ° C. in an electric furnace not shown, The mixture was charged in a mixer kept at a temperature of 400 ° C. and mixed to 400 to 550 ° C., and the mixture was supplied hot to a twin roll type molding machine under conditions of a roll rotation speed of 4 to 6 rpm and a molding pressure of 10 to 50 kN / cm. 30 mm × 25 mm × 15 mm (about 6 cm 3 ) egg-shaped briquette (molded product). And a part of this briquette was heat-treated under conditions of 600 to 800 ° C. for several minutes to 1 hour in a nitrogen atmosphere.
Figure 0004532313
Figure 0004532313

つぎに、以下のようなバリ除去実験を行った。すなわち、熱処理前のブリケットと熱処理後のブリケットをそれぞれ室温まで冷却した後、5kgを篩い目5mmのスクリーン上で60min間振動を加えて篩上塊状物と篩下粉とに分級した。その結果、熱処理の前後に関わらず、得られた篩上塊状物には目視上バリが残存しておらず、その圧潰強度は0.5〜2kN/個が得られ、塊歩留(=篩上塊状物の質量/ブリケット総質量[5kg]×100%)は85〜95%であった。   Next, the following burr removal experiment was performed. That is, the briquette before heat treatment and the briquette after heat treatment were each cooled to room temperature, and then 5 kg was subjected to vibration for 60 minutes on a screen having a sieve size of 5 mm, and classified into a lump-like mass and a sieve powder. As a result, regardless of before and after the heat treatment, no burrs were visually left in the obtained mass on the sieve, and a crushing strength of 0.5 to 2 kN / piece was obtained. The mass of the upper lump / total briquette mass [5 kg] × 100%) was 85 to 95%.

次に、熱処理後のブリケットの篩下粉をバーナの火炎に曝して10分間燃焼させた。燃焼前後のサンプル質量を測定した結果、20〜25質量%の質量減少が認められた。また、燃焼前後のサンプルを元素分析した結果、炭素量は、燃焼前には17〜20質量%であったのが、燃焼後には5質量%以下となり、篩下粉中の炭素のほとんどが燃焼できていた。   Next, the briquette sieving powder after heat treatment was exposed to a burner flame and burned for 10 minutes. As a result of measuring the mass of the sample before and after combustion, a mass decrease of 20 to 25 mass% was observed. Moreover, as a result of elemental analysis of the samples before and after combustion, the carbon content was 17 to 20% by mass before combustion, but it became 5% by mass or less after combustion, and most of the carbon in the under-sieve powder was combusted. It was done.

さらに確認のために、熱処理後のブリケットの篩下粉と、比較材としてのコークス粉とを、それぞれ示差熱分析することにより篩下粉の燃焼性評価を行った。   For further confirmation, the flammability evaluation of the sieving powder was performed by differential thermal analysis of the briquette sieving powder after heat treatment and the coke powder as a comparative material.

示差熱分析は、示差熱分析装置(リガク社製、TG8110)を用い、ヒートパターン:室温〜1000℃、昇温速度:10℃/min、雰囲気:Airの条件下で実施した。測定結果の一例を表3に示す。表3より、篩下粉の重量減少率(21.8%)は、篩下粉中の炭材分(=固定炭素+揮発分=100%−灰分量=21.6%)にほぼ一致し、実質上完全に燃焼できること、およびコークス粉よりも格段に燃焼性が高いことが分かった。以上の結果より、熱処理後のブリケットの篩下粉は、その粒度も細かいことから、バーナ燃料と混合して用いることにより、十分に燃焼しうる。

Figure 0004532313
The differential thermal analysis was performed using a differential thermal analyzer (TG8110, manufactured by Rigaku Corporation) under the conditions of heat pattern: room temperature to 1000 ° C., heating rate: 10 ° C./min, and atmosphere: Air. An example of the measurement result is shown in Table 3. From Table 3, the weight reduction rate (21.8%) of the sieving powder almost coincides with the carbon content in the sieving powder (= fixed carbon + volatile content = 100% −ash content = 21.6%). It has been found that it can burn substantially completely and is much more flammable than coke powder. From the above results, the briquette underpowder powder after the heat treatment has a fine particle size and can be sufficiently combusted by being mixed with the burner fuel.
Figure 0004532313

上記燃焼性評価試験は、熱処理後のブリケットの篩下粉についてのみ行い、熱処理前のブリケットの篩下粉(規格外品)については行わなかったが、熱処理前のブリケットの篩下粉(規格外品)は、熱処理後のブリケットの篩下粉に比べて揮発分を多く含んでいるため、燃焼性もさらに優れていることが自明である。   The above flammability evaluation test was carried out only for the briquette under-sieving powder after heat treatment and not for the briquette under-sieving powder (non-standard product) before the heat treatment. It is obvious that the product is superior in combustibility because it contains a larger amount of volatile matter than the briquette powder after heat treatment.

したがって、固体粉(規格外品および篩下粉)を原料加熱工程に戻して燃料として使用してもその燃焼性に問題はない。   Therefore, there is no problem in combustibility even when solid powder (non-standard product and under-sieving powder) is returned to the raw material heating step and used as fuel.

本発明の実施に係る炭材内装塊成化物の製造フローの概念図である。It is a conceptual diagram of the manufacture flow of the carbonaceous material interior agglomerate which concerns on implementation of this invention. 従来法による炭材内装塊成化物の製造フローの概念図である。It is a conceptual diagram of the manufacture flow of the carbonaceous material agglomerate by the conventional method. 実施例で用いた熱間成形機の概要を示すフロー図である。It is a flowchart which shows the outline | summary of the hot forming machine used in the Example.

符号の説明Explanation of symbols

1:炭材乾燥加熱設備(ロータリドライヤ)
2:原料加熱設備(ロータリキルン)
3:混合設備(竪形混合槽)
4:成形設備(双ロール型成形機)
5:熱処理設備(シャフト炉)
7:整粒設備(回転ドラム)
8,8’:スクリーン
9:排ガス処理設備(安水スクラバ)
10:固体粉搬送配管
A:粉状炭材(粉状石炭)
B:粉状鉄含有原料(粉状鉄鉱石)
C:混合物
D:成形物(ブリケット)
E:篩上塊状物(炭材内装塊成化物)
F:篩下粉
G:規格外品
H:固体粉
1: Carbon material drying and heating equipment (rotary dryer)
2: Raw material heating equipment (rotary kiln)
3: Mixing equipment (vertical mixing tank)
4: Molding equipment (twin roll molding machine)
5: Heat treatment equipment (shaft furnace)
7: Sizing equipment (rotating drum)
8, 8 ': Screen 9: Exhaust gas treatment facility (Ansui scrubber)
10: Solid powder transfer piping A: Powdered carbon material (powdered coal)
B: Powdered iron-containing raw material (powdered iron ore)
C: Mixture D: Molded product (briquette)
E: Mass on sieve (carbon material interior agglomerated material)
F: Sieve powder G: Non-standard product H: Solid powder

Claims (3)

軟化溶融性を有する粉状炭材を350℃以下で乾燥・加熱する炭材乾燥加熱工程と、
粉状鉄含有原料を400〜800℃に加熱する原料加熱工程と、
前記乾燥後の粉状炭材と前記加熱後の粉状鉄鉱石とを混合して250〜550℃の混合物とする混合工程と、
前記混合物を熱間成形して成形物となす熱間成形工程と、
前記成形物を篩って篩上塊状物と篩下粉とに分級し、前記篩上塊状物を炭材内装塊成化物として回収する整粒工程と、
前記篩下粉からなる固体粉の全部または一部を前記原料加熱工程に戻し、前記粉状鉄含有原料を加熱する加熱燃料の一部として使用する固体粉循環工程と、
を備えたことを特徴とする炭材内装塊成化物の製造方法。
A carbonaceous material drying and heating step of drying and heating a powdered carbonaceous material having softening and melting properties at 350 ° C. or lower;
A raw material heating step of heating the powdered iron-containing raw material to 400 to 800 ° C;
A mixing step of mixing the powdered carbonaceous material after drying and the powdered iron ore after heating into a mixture of 250 to 550 ° C;
A hot forming step of hot forming the mixture to form a molded product;
Sieving the molded product and classifying it into a sieving lump and under-sieving powder, and collecting the sieving lump as a carbonaceous material agglomerated product,
A solid powder circulation step in which all or part of the solid powder composed of the under-sieving powder is returned to the raw material heating step, and used as part of the heated fuel for heating the powdered iron-containing raw material,
A method for producing an agglomerated carbonaceous material, comprising:
軟化溶融性を有する粉状炭材を350℃以下で乾燥・加熱する炭材乾燥加熱工程と、
粉状鉄含有原料を400〜800℃に加熱する原料加熱工程と、
前記乾燥後の粉状炭材と前記加熱後の粉状鉄鉱石とを混合して250〜550℃の混合物とする混合工程と、
前記混合物を熱間成形して成形物となす熱間成形工程と、
前記成形物を前記熱間成形温度以上800℃以下の温度に保持して成形物中に残存する揮発分およびタール分を除去する熱処理工程と、
前記成形物を篩って篩上塊状物と篩下粉とに分級し、前記篩上塊状物を炭材内装塊成化物として回収する整粒工程と、
前記篩下粉からなる固体粉の全部または一部を前記原料加熱工程に戻し、前記粉状鉄含有原料を加熱する加熱燃料の一部として使用する固体粉循環工程と、
を備えたことを特徴とする炭材内装塊成化物の製造方法。
A carbonaceous material drying and heating step of drying and heating a powdered carbonaceous material having softening and melting properties at 350 ° C. or lower;
A raw material heating step of heating the powdered iron-containing raw material to 400 to 800 ° C;
A mixing step of mixing the powdered carbonaceous material after drying and the powdered iron ore after heating into a mixture of 250 to 550 ° C;
A hot forming step of hot forming the mixture to form a molded product;
A heat treatment step of removing the volatile component and tar component remaining in the molded product while maintaining the molded product at a temperature of the hot molding temperature or higher and 800 ° C. or lower;
Sieving the molded product and classifying it into a sieving lump and under-sieving powder, and collecting the sieving lump as a carbonaceous material agglomerated product,
A solid powder circulation step in which all or part of the solid powder made of the under-sieving powder is returned to the raw material heating step and used as a part of the heating fuel for heating the powdered iron-containing raw material,
A method for producing an agglomerated carbonaceous material, comprising:
軟化溶融性を有する粉状炭材を350℃以下で乾燥・加熱する炭材乾燥加熱工程と、
粉状鉄含有原料を400〜800℃に加熱する原料加熱工程と、
前記乾燥後の粉状炭材と前記加熱後の粉状鉄鉱石とを混合して250〜550℃の混合物とする混合工程と、
前記混合物を熱間成形して成形物となす熱間成形工程と、
前記熱間成形工程で発生した規格外品を前記成形物から除去する規格外品除去工程と、
前記規格外品を除去した後の成形物を前記熱間成形温度以上800℃以下の温度に保持して成形物中に残存する揮発分およびタール分を除去する熱処理工程と、
前記成形物を篩って篩上塊状物と篩下粉とに分級し、前記篩上塊状物を炭材内装塊成化物として回収する整粒工程と、
前記規格外品と前記篩下粉とからなる固体粉の全部または一部を前記原料加熱工程に戻し、前記粉状鉄含有原料を加熱する加熱燃料の一部として使用する固体粉循環工程と、
を備えたことを特徴とする炭材内装塊成化物の製造方法。
A carbonaceous material drying and heating step of drying and heating a powdered carbonaceous material having softening and melting properties at 350 ° C. or lower;
A raw material heating step of heating the powdered iron-containing raw material to 400 to 800 ° C;
A mixing step of mixing the powdered carbonaceous material after drying and the powdered iron ore after heating into a mixture of 250 to 550 ° C;
A hot forming step of hot forming the mixture to form a molded product;
A non-standard product removal step of removing a non-standard product generated in the hot molding process from the molded product;
A heat treatment step for removing a volatile component and a tar component remaining in the molded product by holding the molded product after removing the non-standard product at a temperature of the hot molding temperature or higher and 800 ° C. or lower;
Sieving the molded product and classifying it into a sieving lump and under-sieving powder, and collecting the sieving lump as a carbonaceous material agglomerated product,
A solid powder circulation step in which all or part of the solid powder composed of the non-standard product and the under sieve powder is returned to the raw material heating step, and used as part of the heated fuel for heating the powdered iron-containing raw material,
A method for producing an agglomerated carbonaceous material, comprising:
JP2005062705A 2005-03-07 2005-03-07 Manufacturing method of carbonized material agglomerates Expired - Fee Related JP4532313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062705A JP4532313B2 (en) 2005-03-07 2005-03-07 Manufacturing method of carbonized material agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062705A JP4532313B2 (en) 2005-03-07 2005-03-07 Manufacturing method of carbonized material agglomerates

Publications (2)

Publication Number Publication Date
JP2006241577A JP2006241577A (en) 2006-09-14
JP4532313B2 true JP4532313B2 (en) 2010-08-25

Family

ID=37048269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062705A Expired - Fee Related JP4532313B2 (en) 2005-03-07 2005-03-07 Manufacturing method of carbonized material agglomerates

Country Status (1)

Country Link
JP (1) JP4532313B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843445B2 (en) * 2006-10-05 2011-12-21 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
EP2615185A1 (en) * 2007-05-28 2013-07-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Production method for carbonaceous material-containing metal oxide briquettes
JP5624486B2 (en) * 2011-01-26 2014-11-12 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials
JP5588372B2 (en) * 2011-01-26 2014-09-10 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials
JP5588371B2 (en) * 2011-01-26 2014-09-10 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294944A (en) * 2000-04-07 2001-10-26 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2001303143A (en) * 2000-04-24 2001-10-31 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2002146444A (en) * 2000-08-30 2002-05-22 Kobe Steel Ltd Method for producing agglomerated product of raw material for iron making

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754553B2 (en) * 1997-07-22 2006-03-15 株式会社神戸製鋼所 Agglomerated product for reduced iron and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294944A (en) * 2000-04-07 2001-10-26 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2001303143A (en) * 2000-04-24 2001-10-31 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2002146444A (en) * 2000-08-30 2002-05-22 Kobe Steel Ltd Method for producing agglomerated product of raw material for iron making

Also Published As

Publication number Publication date
JP2006241577A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4996105B2 (en) Vertical coal interior agglomerates
JP4893136B2 (en) Blast furnace operation method using woody biomass
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
JP2009052141A (en) Method for reducing electric furnace dust
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP3304872B2 (en) Method and apparatus for rapid reduction of iron oxide in rotary hearth heating furnace
JP4441461B2 (en) Manufacturing method of carbonized material agglomerates
KR101220596B1 (en) Process for production of solid fuel for use in sintering, solid fuel for use in sintering, and process for manufacturing sintered ore using same
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP4048734B2 (en) Method for producing sintered ore
JP2015196896A (en) Method of regenerating oil-containing waste to useful material
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
EP2980232B1 (en) Method for recycling iron-containing by-products discharged from coal-based ironmaking process, system used therefor, and direct-reduced iron agglomeration system
JPH1112619A (en) Production of reduced iron
US3196000A (en) Process for the direct reduction of iron ores in rotating cylindrical furnaces
US3433859A (en) Process for the preparation of hardened,dense heat transfer medium
JP4843445B2 (en) Manufacturing method of carbonized material agglomerates
JP5394695B2 (en) Method for reforming non-caking coal with low coalification degree, molding for modifying non-caking coal, and method for producing coke
JP3515831B2 (en) Manufacturing method of heated charging coal for coke oven
JP7407224B2 (en) Iron-making equipment operating method and related operating equipment
JP2005344181A (en) Agglomerate including carbonaceous material and its manufacturing method
JPH09227874A (en) Production of heated feed coal for coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees