JP5421685B2 - Production method of coal-type agglomerated ore for vertical furnace - Google Patents
Production method of coal-type agglomerated ore for vertical furnace Download PDFInfo
- Publication number
- JP5421685B2 JP5421685B2 JP2009179560A JP2009179560A JP5421685B2 JP 5421685 B2 JP5421685 B2 JP 5421685B2 JP 2009179560 A JP2009179560 A JP 2009179560A JP 2009179560 A JP2009179560 A JP 2009179560A JP 5421685 B2 JP5421685 B2 JP 5421685B2
- Authority
- JP
- Japan
- Prior art keywords
- molded product
- heat treatment
- temperature
- carbonaceous material
- hot forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Description
本発明は、高炉、キューポラなどの竪型炉用装入原料として用いることができる、ハンドリング強度に優れた竪型炉用炭材内装塊成鉱の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a vertical furnace carbonaceous material-containing agglomerated mineral having excellent handling strength that can be used as a raw material for vertical furnaces such as blast furnaces and cupolas.
本発明者らは、高炉、キューポラなどの竪型炉用装入原料として用いることを目的として、粉鉱石と軟化溶融性を有する炭材の混合物を熱間成形することにより、従来の炭材内装コールドペレット等のようにセメントなどのバインダを添加せずとも高強度が得られる炭材内装塊成鉱を開発した(例えば、特許文献1〜3参照)。 For the purpose of using as a raw material for vertical furnaces such as blast furnaces and cupolas, the present inventors have formed a conventional carbon material interior by hot forming a mixture of fine ore and a soft and meltable carbon material. A carbonaceous material agglomerated ore has been developed that can obtain high strength without adding a binder such as cement such as cold pellets (see, for example, Patent Documents 1 to 3).
この炭材内装塊成鉱は、内装炭材由来のタール分を含有している。竪型炉の一例である高炉に、装入物の一部としてこの炭材内装塊成鉱を使用した場合のタールの挙動を図5を用いて説明する。炉頂から装入された炭材内装塊成鉱が炉内を降下していくにつれて、その温度が上昇し、成形時における熱履歴より高い温度になった時点で内装炭材の熱分解反応が再開し、その生成物として気化したタールが炭材内装塊成鉱から放出される。このタールはタール蒸気として炉頂ガスとともに炉外に排出される。一般に高炉は湿式集塵設備を有しているため、タール蒸気は該湿式集塵設備の集塵処理水中に凝縮し、捕集される。したがって、この凝縮したタールは水処理装置での回収が必要となるが、炉内でのタール発生を想定していない高炉では、水処理装置において処理水中からのタール回収機能を有しないため、事前のタール除去が必要となる。 This carbon material agglomerated ore contains tar content derived from the interior carbon material. The behavior of tar when this carbonaceous material-containing agglomerated mineral is used as a part of the charge in a blast furnace, which is an example of a vertical furnace, will be described with reference to FIG. As the carbon material agglomerated ore charged from the top of the furnace descends in the furnace, its temperature rises, and when the temperature rises above the thermal history at the time of molding, the pyrolysis reaction of the interior carbon material begins. It restarts, and the vaporized tar as its product is released from the carbonaceous agglomerate. This tar is discharged out of the furnace together with the top gas as tar vapor. In general, since a blast furnace has a wet dust collection facility, tar steam is condensed and collected in the dust-collected water of the wet dust collection facility. Therefore, this condensed tar needs to be recovered by a water treatment device, but in a blast furnace that does not assume the generation of tar in the furnace, the water treatment device does not have a tar recovery function from treated water. It is necessary to remove the tar.
そこで、本出願人は、炭材内装塊成鉱中の残留タール分について種々検討の結果、粉状鉄含有原料と軟化溶融性を有する粉状炭材との混合物を250〜550℃で熱間成形して作製した成形物を、さらに不活性ガス(非酸化性ガス)雰囲気下にて500〜800℃、5〜60minの範囲で処理温度および/または処理時間を調節して熱処理を行うことで、炭材に含有されるタール分がほとんど除去され、高炉などの竪型炉の装入原料により適した、さらに高強度でかつよりタール分の少ない炭材内装塊成鉱が得られることを見出し、既に特許出願を行った(特許文献4参照)。 Therefore, the present applicant, as a result of various studies on the residual tar content in the carbonaceous material agglomerated ore, as a result of hot mixing a mixture of the powdered iron-containing raw material and the powdered carbonaceous material having a soft melting property at 250 to 550 ° C. A molded product produced by molding is further subjected to heat treatment in an inert gas (non-oxidizing gas) atmosphere by adjusting the treatment temperature and / or treatment time in the range of 500 to 800 ° C. and 5 to 60 minutes. , Found that the tar content in the carbon material is almost eliminated, and that the carbon material agglomerate with higher strength and less tar content, which is more suitable for the raw materials of vertical furnaces such as blast furnaces, can be obtained. A patent application has already been filed (see Patent Document 4).
しかしながら、上記熱処理によりタールを除去して得られた炭材内装塊成鉱の強度確保の観点から、上記のように処理温度や処理時間に制約があり、熱処理の効率を向上させるのに限度があったため、熱処理設備のコンパクト化が十分に図れない状況にあった。 However, from the viewpoint of securing the strength of the carbonaceous material agglomerated mineral obtained by removing tar by the heat treatment, the treatment temperature and treatment time are limited as described above, and there is a limit to improving the efficiency of the heat treatment. As a result, the heat treatment equipment could not be made compact enough.
そこで、本発明は、熱処理によりタールを除去して得られた炭材内装塊成鉱の強度を確保しつつ、熱処理の効率をさらに向上しうる竪型炉用炭材内装塊成鉱の製造方法を提供することを目的とする。 Therefore, the present invention provides a method for producing a vertical furnace carbonaceous material agglomerated ore that can further improve the efficiency of heat treatment while ensuring the strength of the carbonaceous material agglomerated mineral obtained by removing tar by heat treatment. The purpose is to provide.
請求項1に記載の発明は、粉状鉄含有原料と軟化溶融性を有する粉状炭材との混合物を熱間成形温度:250〜500℃で熱間成形して作製した体積6〜12cm3の成形物を、さらに、前記成形物に対し、10〜20質量%の外装炭材を添加したうえで、酸化性ガス雰囲気下にて、雰囲気温度T(単位:℃)が800℃超1300℃以下で、処理時間t(単位:min)が1200/T〜2400/Tの条件で熱処理を行って前記成形物中のタール分を除去することにより炭材内装塊成鉱を得ることを特徴とする竪型炉用炭材内装塊成鉱の製造方法である。 The invention according to claim 1 is a volume of 6-12 cm 3 produced by hot forming a mixture of powdered iron-containing raw material and powdered carbon material having soft melting property at a hot forming temperature: 250-500 ° C. Furthermore , after adding 10-20 mass% exterior carbonaceous material with respect to the said molded object, atmospheric temperature T (unit: degreeC) is over 800 degreeC over 1300 degreeC in oxidizing gas atmosphere. In the following, a carbonaceous material agglomerated ore is obtained by performing a heat treatment under the condition of a treatment time t (unit: min) of 1200 / T to 2400 / T to remove a tar content in the molded product. It is a manufacturing method of the carbon material interior agglomerate for vertical furnaces.
請求項2に記載の発明は、前記熱処理を非酸化性ガス雰囲気下で行う請求項2に記載の竪型炉用炭材内装塊成鉱の製造方法である。 Invention of Claim 2 is a manufacturing method of the carbonaceous material interior agglomerated for vertical furnace of Claim 2 which performs the said heat processing in non-oxidizing gas atmosphere.
請求項3に記載の発明は、前記熱処理を非酸化性ガス雰囲気下で行う請求項2に記載の竪型炉用炭材内装塊成鉱の製造方法である。 Invention of Claim 3 is a manufacturing method of the carbon material interior agglomerated for vertical furnace of Claim 2 which performs the said heat processing in non-oxidizing gas atmosphere .
請求項4に記載の発明は、前記熱処理を酸化性ガス雰囲気下で行うにあたり、前記成形物に対し、10〜20質量%の外装炭材を添加する請求項2に記載の竪型炉用炭材内装塊成鉱の製造方法である。 According to a fourth aspect of the present invention, when the heat treatment is performed in an oxidizing gas atmosphere, 10-20% by mass of an exterior carbonaceous material is added to the molded product. It is a manufacturing method of a material interior agglomerated mineral.
請求項5に記載の発明は、前記熱処理の際における成形物の前記最低温度〜550℃の間の平均昇温速度が5〜200℃/minである請求項2〜4のいずれか1項に記載の竪型炉用炭材内装塊成鉱の製造方法である。 The invention according to claim 5 is the invention according to any one of claims 2 to 4, wherein an average temperature rising rate between the lowest temperature and 550 ° C. of the molded product in the heat treatment is 5 to 200 ° C./min. It is a manufacturing method of the carbon material interior agglomerate for vertical furnaces of description.
なお、「軟化溶融性を有する粉状炭材」とは、logMF(ここに、MFはギーセラ最高流動度である。)が1.0以上の石炭、SRC、タイヤチップ、プラスチック、アスファルト、タール、ASP、ハイパーコールなど軟化溶融性を有する炭素質物質を少なくとも1種含むものであって、粉状のものの総称である。なお、この「軟化溶融性を有する粉状炭材」は、上記軟化溶融性を有する炭素質物質に加えて、さらにコークス、一般炭、無煙炭、オイルコークスなど軟化溶融性を実質的に有しない炭素質物質を1種以上混合したものであってもよい。また、「粉状鉄含有原料」とは、鉄鉱石、製鉄ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケールなど)、雑鉱、ペレット篩下など主として酸化鉄を含有する原料、またはこれらの原料の2種以上の混合物であって、粉状のものの総称である。 The “powdered carbon material having softening and melting properties” means coal, SRC, tire chips, plastics, asphalt, tar, log MF (where MF is Giesera maximum fluidity) of 1.0 or more. It is a generic term for powdery substances containing at least one kind of carbonaceous material having softening and melting properties such as ASP and hypercoal. This “powdered carbonaceous material having softening and melting properties” includes carbon having substantially no softening and melting properties such as coke, steaming coal, anthracite, and oil coke, in addition to the carbonaceous material having softening and melting properties. It may be a mixture of one or more substances. “Powdered iron-containing raw material” is a raw material mainly containing iron oxide such as iron ore, iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.), miscellaneous or pellet sieving, or It is a mixture of two or more of these raw materials, and is a generic term for powdered materials.
本発明によれば、所定サイズの成形物を、従来より高い雰囲気温度(処理温度)にて、該雰囲気温度に応じた、従来より短い処理時間で熱処理することで、該熱処理により得られた炭材内装塊成鉱のタール除去率および強度を確保しつつ、熱処理の効率をさらに向上できるようになった。この結果、熱処理設備のさらなるコンパクト化が実現できるようになった。 According to the present invention, a charcoal obtained by the heat treatment is obtained by heat-treating a molded product of a predetermined size at a higher atmosphere temperature (treatment temperature) than in the past, and in a shorter treatment time than in the past according to the atmosphere temperature. The heat treatment efficiency can be further improved while securing the tar removal rate and strength of the material-incorporated agglomerated minerals. As a result, the heat treatment equipment can be made more compact.
(実施形態)
図1に本発明の一実施形態に係る竪型炉用炭材内装塊成鉱の製造フローの概念図を示す。以下、粉状鉄含有原料として粉状鉄鉱石を代表例として説明する。炭材のうち軟化溶融性を有する炭材(例えば、粘結炭、SRC等)は、粉状鉄鉱石および軟化溶融性を実質的に有しない炭材との混合状態を良好に保つために1mm以下程度に粉砕するのが望ましい。また、上記軟化溶融性を有する炭材との充填性を上げるため、鉄鉱石と、炭材のうち軟化溶融性を実質的に有しない炭材(例えば、コークス粉、一般炭、無煙炭、オイルコークス等)は、必要な場合には粉砕して使用する。粉砕粒度は、その上限は成形が可能な粒度であるが、下限は特に限定されないものの、軟化溶融性を有する炭材と同程度が望ましい。
(Embodiment)
The conceptual diagram of the manufacturing flow of the carbonaceous material interior agglomerated for vertical furnace which concerns on FIG. 1 at one Embodiment of this invention is shown. Hereinafter, powdered iron ore will be described as a representative example as a powdered iron-containing raw material. Among the carbon materials, a carbon material having soft melting property (for example, caking coal, SRC, etc.) is 1 mm in order to maintain a good mixed state with the powdered iron ore and the carbon material substantially not having soft melting property. It is desirable to grind to the following extent. Moreover, in order to improve the filling property with the above-mentioned softening and melting carbonaceous material, iron ore and a carbonaceous material that does not substantially have softening and melting property (for example, coke powder, general coal, anthracite, oil coke). Etc.) should be crushed and used if necessary. Although the upper limit of the pulverized particle size is a particle size that can be molded, the lower limit is not particularly limited, but it is preferably about the same as that of a carbon material having softening and melting properties.
〔炭材乾燥加熱工程〕
このようにして粒度調整された粉状炭材Aは、炭材乾燥加熱設備(例えば、ロータリドライヤ)1で、炭材Aが実質的に軟化溶融しない例えば350℃以下の温度で乾燥・加熱し、付着水分を除去する。
[Carbon dry drying process]
The powdery carbon material A thus adjusted in particle size is dried and heated at a temperature of, for example, 350 ° C. or less at which the carbon material A does not substantially soften and melt in the carbon material drying and heating equipment (for example, rotary dryer) 1. , Remove adhering moisture.
〔原料加熱工程〕
一方、粉状鉄鉱石Bは、粉状炭材Aと混合したときに目標温度(熱間成形温度)の250〜500℃となるように、原料加熱設備(例えば、ロータリキルン)2で400〜800℃の範囲の適当な温度に予熱する。ロータリキルン2のバーナから吹き込む燃料としては固体燃料である微粉炭、液体燃料である重油、気体燃料である天然ガス、COG等いずれも使用できる。
[Raw material heating process]
On the other hand, the powdered iron ore B has a raw material heating facility (for example, a rotary kiln) 2 of 400 to 400 ° C. so that the target temperature (hot forming temperature) is 250 to 500 ° C. when mixed with the powdered carbonaceous material A. Preheat to a suitable temperature in the range of 800 ° C. As fuel injected from the burner of the rotary kiln 2, pulverized coal that is solid fuel, heavy oil that is liquid fuel, natural gas that is gaseous fuel, COG, or the like can be used.
〔混合工程〕
乾燥した粉状炭材Aと予熱した粉状鉄鉱石Bとの混合には、混合設備として、粉状炭材Aの無機化および/または炭材軟化による不要な造粒を抑制するために短時間で混合できるこの業種で常用されている、例えば竪形混合槽3を用いる。また、この竪形混合槽3は成形温度を確保するために断熱および/または保温する。
[Mixing process]
The mixing of the dried powdered carbon material A and the preheated powdered iron ore B is short as a mixing facility in order to suppress unnecessary granulation due to mineralization and / or softening of the carbonaceous material. For example, a bowl-shaped mixing tank 3 that is commonly used in this type of industry that can be mixed with time is used. In addition, this bowl-shaped mixing tank 3 is insulated and / or kept warm in order to ensure the molding temperature.
〔熱間成形工程〕
粉状炭材Aと粉状鉄鉱石Bからなる混合物Cは、成形設備として例えば熱間成形用の双ロール型成形機4を用いて加圧成形し、体積6〜12cm3(球相当径23〜29mm)の成形物Dとなす。成形物Dの体積を6〜12cm3としたのは、成形物Dのサイズを小さくしすぎると、成形機4による成形物Dの製造速度が低下するとともに、成形物D1個当りのバリの質量割合が増加して成形物D、ひいては炭材内装塊成鉱Eの製造歩留を低下させる一方、成形物Dのサイズを大きくしすぎると、次工程の熱処理工程でのタール除去に時間がかかり、処理効率が低下するためである。
[Hot forming process]
The mixture C composed of the powdered carbon material A and the powdered iron ore B is pressure-molded by using, for example, a hot-roll twin roll molding machine 4 as a molding facility, and has a volume of 6 to 12 cm 3 (sphere equivalent diameter 23 To 29 mm). The reason why the volume of the molded product D is 6 to 12 cm 3 is that if the size of the molded product D is made too small, the production speed of the molded product D by the molding machine 4 decreases, and the mass of burrs per molded product D When the ratio is increased and the production yield of the molded product D, and hence the carbonaceous material agglomerated ore E is reduced, if the size of the molded product D is made too large, it takes time to remove tar in the next heat treatment step. This is because the processing efficiency decreases.
加圧成形は、成形物Dを熱処理して得られた炭材内装塊成鉱Eが成形機4から竪型炉(例えば、高炉)への装入までのハンドリングに耐え得るに十分な強度である0.5kN/個以上が得られるよう、成形加圧力を10kN/cm以上とする。 The pressure molding is of sufficient strength that the carbonaceous agglomerated ore E obtained by heat-treating the molded product D can withstand handling from the molding machine 4 to the vertical furnace (eg, blast furnace). The molding pressure is set to 10 kN / cm or more so that a certain 0.5 kN / piece or more is obtained.
このようにして成形された成形物Dは、粉状鉄鉱石Bの空隙に、溶融した軟化溶融性を有する炭材Aが浸入し、この炭材Aが潤滑剤として作用して、成形物Dの表面に加えられた成形加圧力が成形物Dの内部にまでほぼ均一に及ぶため、表面近傍のみが圧密されることが防止され、成形物D内の気孔率分布が平均化され、加熱時に爆裂が起こらない炭材内装塊成鉱Eが得られる。 In the molded product D thus molded, the melted softening and melting carbon material A enters the voids of the powdered iron ore B, and this carbon material A acts as a lubricant to form the molded product D. Since the molding pressure applied to the surface of the material extends almost uniformly to the inside of the molded product D, it is prevented that only the vicinity of the surface is consolidated, the porosity distribution in the molded product D is averaged, and during heating, Carbonaceous material agglomerated ore E without explosion is obtained.
また、固化後の炭材Aは、粉状鉄鉱石Bの粒子同士を強固に連結するとともに、粉状鉄鉱石Bとの接触面積も大きくなっており、このようにして得られた炭材内装塊成鉱Eは、高強度で、かつ被還元性に優れたものとなる。 In addition, the carbonized material A after solidification firmly connects the particles of the powdered iron ore B and has a large contact area with the powdered iron ore B. Agglomerate E has high strength and excellent reducibility.
〔熱処理工程〕
この成形物Dを熱処理設備(例えば、シャフト炉)5内に装入し、雰囲気温度T(単位:℃)が800℃超1300℃以下で、処理時間t(単位:min)が1200/T〜2400/Tの条件で熱処理を行う。これにより、成形物D中のタール分が十分に除去され、竪型炉に装入しても排ガス系統へのタールの固着等のトラブル発生のおそれのない炭材内装塊成鉱Eが得られる。
[Heat treatment process]
This molded product D is charged into a heat treatment facility (for example, a shaft furnace) 5, the atmospheric temperature T (unit: ° C.) is over 800 ° C. and not more than 1300 ° C., and the processing time t (unit: min) is 1200 / T˜. Heat treatment is performed under the condition of 2400 / T. As a result, the tar content in the molded product D is sufficiently removed, and a carbonaceous material-containing agglomerated mineral E that does not cause troubles such as sticking of tar to the exhaust gas system even when charged in a vertical furnace is obtained. .
このように、雰囲気温度T(単位:℃)を800℃超1300℃以下としたのは、従来と同様の800℃以下では、処理時間を十分に短縮できないことから熱処理設備5のコンパクト化が不十分となるためであり、一方、1300℃超になると、成形物D中で炭材Aによる粉状鉄鉱石Bの還元が過度に進行して鉄鉱石が海綿状金属鉄となり、成形物Dが多孔質化するとともに軟化し、得られた炭材内装塊成鉱Eの強度が低下するためである。雰囲気温度Tの好ましい範囲は900〜1200℃、さらに好ましい範囲は1000〜1100℃である。 As described above, the atmospheric temperature T (unit: ° C.) is set to be higher than 800 ° C. and not higher than 1300 ° C. If the temperature is 800 ° C. or lower as in the prior art, the processing time cannot be shortened sufficiently, so that the heat treatment equipment 5 is not compact. On the other hand, when the temperature exceeds 1300 ° C., the reduction of the powdered iron ore B by the carbonaceous material A excessively proceeds in the molded product D, and the iron ore becomes spongy metallic iron. This is because the strength of the resulting carbonaceous material-containing agglomerated mineral E decreases as it becomes porous. A preferable range of the atmospheric temperature T is 900 to 1200 ° C, and a more preferable range is 1000 to 1100 ° C.
また、処理時間t(単位:min)を1200/T〜2400/Tとしたのは、以下の理由による。すなわち、処理時間tを短くすると、成形物Dからのタール除去が不十分となり竪型炉の排ガス系統にタールが固着する等のトラブル発生の原因になりやすい。一方、処理時間tを長くすると、成形物Dからのタール除去の面からは好ましいが、処理効率が低下することに加え、成形物D中で炭材による粉状鉄鉱石の還元反応が過度に進行して(下記参照)鉄鉱石が海綿状金属鉄となり、成形物Dが多孔質化し、得られた炭材内装塊成鉱Eの強度が低下する。 The reason for setting the processing time t (unit: min) to 1200 / T to 2400 / T is as follows. That is, if the processing time t is shortened, tar removal from the molded product D is insufficient, and troubles such as sticking of tar to the exhaust gas system of the vertical furnace are likely to occur. On the other hand, if the treatment time t is lengthened, it is preferable from the viewpoint of tar removal from the molded product D, but in addition to the reduction of the treatment efficiency, the reduction reaction of the powdered iron ore by the carbonaceous material in the molded product D is excessive. Proceeding (see below), the iron ore becomes spongy metallic iron, the molded product D becomes porous, and the strength of the obtained carbonaceous material agglomerated ore E decreases.
ここで、図2に示すように、600℃の雰囲気温度下で成形物(体積:6〜8cm3)を加熱した場合は、成形物の中心温度は昇温完了後表面温度にほぼ一致するのに対し、800℃の雰囲気温度下で成形物を加熱した場合は、成形物の中心温度は昇温完了後も表面温度より一定温度(30℃程度)低い温度で推移している。このことは、800℃以上になると、成形物中で、先ず、還元ガスの供給を必要としない直接還元反応:FexOy+yC→xFe+yCO…式(1)が起こり、次いで上記式(1)で生成したCOによるガス還元反応:FexOy+yCO→Fe+yCO2…式(2)が進行し、さらに上記式(2)で生成したCO2が、炭材によるガス化反応:CO2+C→2CO2…式(2)によりCOに再生され、上記式(2)と式(3)の反応サイクルが繰り返されることで、総括反応として吸熱を伴う還元が進行することを示している。したがって、上述したように、800℃を超える雰囲気温度下にて処理時間tを長くしすぎると過度に還元が進行することがわかる。 Here, as shown in FIG. 2, when the molded product (volume: 6 to 8 cm 3 ) is heated at an ambient temperature of 600 ° C., the center temperature of the molded product substantially matches the surface temperature after completion of the temperature increase. On the other hand, when the molded product is heated at an ambient temperature of 800 ° C., the center temperature of the molded product remains at a constant temperature (about 30 ° C.) lower than the surface temperature even after the temperature rise is completed. This is because, when the temperature is 800 ° C. or higher, in the molded product, first, a direct reduction reaction that does not require the supply of a reducing gas: FexOy + yC → xFe + yCO: Formula (1) occurs, and then CO generated by Formula (1) above Gas reduction reaction by: FexOy + yCO → Fe + yCO 2 Formula (2) proceeds, and further, CO 2 generated by Formula (2) above is converted into a gasification reaction by carbonaceous material: CO 2 + C → 2CO 2 Formula (2) It is shown that the reduction with endotherm proceeds as an overall reaction by regenerating to CO and repeating the reaction cycle of the above formulas (2) and (3). Therefore, as described above, it can be seen that the reduction proceeds excessively if the treatment time t is too long at an atmospheric temperature exceeding 800 ° C.
そこで、これらのことを考慮して、図3を用い、各雰囲気温度において、竪型炉に装入しても問題のない程度にタールが除去されたとみなせる脱タール率50〜90%が得られる処理時間tの範囲を求めた。ここで、図3は、鉄鉱石80質量部にタール発生量4質量%の石炭を20質量部配合して熱間成形した成形物(体積:6〜8cm3)を、小型加熱炉を用いて窒素ガス雰囲気下で雰囲気温度を種々変更して熱処理実験を行い、成形物からのタール除去の挙動を調査した結果を示すものである。ここに、脱タール率とは、熱処理前における成形物中のタール含有量のうち、どれだけのタール分が除去されたかを示す指標である。
Therefore, in consideration of these matters, a detarring rate of 50 to 90% can be obtained at which the tar is removed to such an extent that there is no problem even if it is charged into the vertical furnace at each atmospheric temperature using FIG. The range of the processing time t was obtained. Here, FIG. 3 shows that a compact (volume: 6-8 cm 3 ) obtained by hot-
上記熱処理実験の結果、雰囲気温度T=800℃の場合、脱タール率50〜90%が得られる処理時間tの範囲は1.5〜3.0minであり、雰囲気温度T=1000℃の場合、脱タール率50〜90%が得られる処理時間tの範囲は1.2〜2.4minであった。この結果から、雰囲気温度Tが800℃超1300℃の範囲では、雰囲気温度T(単位:℃)と、脱タール率50〜90%が得られる処理時間t(単位:min)とは、逆比例の関係にあると考え、雰囲気温度T(単位:℃)に対して、脱タール率50〜90%が得られる処理時間t(単位:min)は1200/T〜2400/Tの関係にあるとした。脱タール率をより確実に高くするために、処理時間tの下限は、1600/T、さらに2000/Tとするのが好ましい。 As a result of the heat treatment experiment, when the ambient temperature T = 800 ° C., the range of the treatment time t at which a detarring rate of 50 to 90% is obtained is 1.5 to 3.0 min, and when the ambient temperature T = 1000 ° C. The range of the treatment time t at which a detarring rate of 50 to 90% was obtained was 1.2 to 2.4 min. From this result, when the atmospheric temperature T is in the range of more than 800 ° C. and 1300 ° C., the atmospheric temperature T (unit: ° C.) and the processing time t (unit: min) at which a detarring rate of 50 to 90% is obtained are inversely proportional. The processing time t (unit: min) at which a detarring rate of 50 to 90% is obtained with respect to the atmospheric temperature T (unit: ° C.) is 1200 / T to 2400 / T. did. In order to increase the detarring rate more reliably, the lower limit of the processing time t is preferably 1600 / T, and more preferably 2000 / T.
このように、熱間成形後に、さらに熱処理を施すことによりタール分が十分に除去された炭材内装塊成鉱Eは、竪型炉に装入されて加熱された際において、タール分の発生が非常に少なくなり竪型炉の排ガス系統にタールが固着する等のトラブルの発生をより確実に防止できる。 In this way, after the hot forming, the carbonaceous agglomerated mineral E from which the tar content has been sufficiently removed by further heat treatment is charged into the vertical furnace and heated. The occurrence of troubles such as sticking of tar to the vertical furnace exhaust gas system can be prevented more reliably.
また、熱処理時に成形物Dの表面近傍に存在する内装炭材Bが空気や燃焼ガスなどの酸化性ガス(O2、CO2、H2O等を含有するガス)により消費されるとバインダとしての効果が失われて炭材内装塊成鉱Eの強度が低下してしまうため、上記熱処理は、従来と同様、窒素ガス等を用いて非酸化性ガス雰囲気下で行うことが好ましい。 Further, when the interior carbon material B existing in the vicinity of the surface of the molded product D during the heat treatment is consumed by an oxidizing gas (gas containing O 2 , CO 2 , H 2 O, etc.) such as air or combustion gas, it becomes a binder. Therefore, the heat treatment is preferably performed in a non-oxidizing gas atmosphere using nitrogen gas or the like, as in the conventional case.
しかしながら、成形物Dを非酸化性ガス雰囲気下で熱処理するためには、例えば、非酸化性ガスを燃焼ガスの顕熱を用いて熱交換器で昇温してから熱処理装置に導入することや、熱処理装置を外熱式にすること等が考えられるが、装置が複雑化し設備コストが高くなることが想定される。 However, in order to heat-treat the molding D in a non-oxidizing gas atmosphere, for example, the temperature of the non-oxidizing gas is increased in a heat exchanger using the sensible heat of the combustion gas and then introduced into a heat treatment apparatus. However, it is conceivable that the heat treatment apparatus is of an external heating type, but the apparatus becomes complicated and the equipment cost increases.
そこで、本発明者は、熱処理装置の設備コストをさらに低減しうる方法として、燃焼ガスなど高温の酸化性ガス雰囲気中で直接、成形物を加熱する方法について種々検討を行った結果、成形物Dに所定量の外装炭材Fを添加することで、酸化性ガス雰囲気下で加熱しても、非酸化性ガス雰囲気下で加熱した場合と同等の効果が得られることを見出した。 Therefore, the present inventor conducted various studies on methods for directly heating a molded product in a high-temperature oxidizing gas atmosphere such as combustion gas as a method that can further reduce the equipment cost of the heat treatment apparatus. It was found that by adding a predetermined amount of the exterior carbonaceous material F to the case, even when heated in an oxidizing gas atmosphere, the same effect as that obtained when heated in a non-oxidizing gas atmosphere can be obtained.
図4は、小型加熱炉内の雰囲気温度を800℃とし、雰囲気ガスとして酸化性ガス(O2:5容量%、CO2:20容量%、N2:75容量%)を流通させつつ、成形物(体積: 6〜8cm3)に外装炭材の添加率を順次変化させて処理時間3minで熱処理し、熱処理後の成形物(炭材内装塊成鉱)中の炭素含有量を測定した結果を示すものである。同図には、雰囲気温度と処理時間は上記と同じにして、雰囲気ガスとして非酸化性ガスである窒素ガスを用い、成形物のみ(炭材外装なし)を熱処理した場合における、熱処理後の成形物(炭材内装塊成鉱)中の炭素含有量も併記した。ここに、外装炭材の添加率は、成形物の質量に対する外装炭材の質量の比率で定義される。 FIG. 4 shows that molding is performed while the atmospheric temperature in the small heating furnace is 800 ° C. and an oxidizing gas (O 2 : 5% by volume, CO 2 : 20% by volume, N 2 : 75% by volume) is circulated as the atmospheric gas. The result of measuring the carbon content in the molded product (carbonaceous material agglomerated minerals) after heat treatment by sequentially changing the addition rate of the exterior carbonaceous material to the product (volume: 6-8 cm 3 ) and treating for 3 minutes. Is shown. In the figure, the atmosphere temperature and the treatment time are the same as described above, and the molding after heat treatment is performed in the case where the non-oxidizing gas nitrogen gas is used as the atmosphere gas and only the molded product (without the carbonaceous material exterior) is heat treated. The carbon content in the product (carbon material interior agglomerated minerals) is also shown. Here, the addition rate of the exterior carbon material is defined by the ratio of the mass of the exterior carbon material to the mass of the molded product.
同図より、酸化性ガス雰囲気下で加熱すると、外装炭材を全く添加しない場合は、非活性ガス雰囲気下で加熱する場合に比べて、熱処理後の成形物(炭材内装塊成鉱)中の炭素含有量が3質量%も低下することがわかる。そして、外装炭材の添加率を上昇させて行くにつれて、熱処理後の成形物(炭材内装塊成鉱)中の炭素含有量は、非活性ガス雰囲気下で加熱する場合に近づいていき、外装炭材の添加率が10質量%以上で、非活性ガス雰囲気下での加熱とほぼ同等の炭素含有量が得られることがわかる。なお、外装炭材の添加率20質量%超で、非活性ガス雰囲気下での加熱より炭素含有量が少し高くなる傾向を示すのは、外装炭材からの揮発分の除去が優先され、内装炭材からの揮発分の除去が遅れ、その分炭素残留量が多くなったためと考えられる。 From the figure, when heated in an oxidizing gas atmosphere, when no external carbon material is added, compared to heating in an inert gas atmosphere, in the molded product (carbon material interior agglomerate) after heat treatment It can be seen that the carbon content of the product decreases by 3% by mass. And as the addition rate of the exterior carbon material is increased, the carbon content in the molded product (carbon material interior agglomerated mineral) after the heat treatment approaches when heating in an inert gas atmosphere. It can be seen that the carbon content is 10% by mass or more, and a carbon content almost equivalent to that of heating in an inert gas atmosphere can be obtained. In addition, when the addition rate of the outer carbon material exceeds 20% by mass, the tendency for the carbon content to be slightly higher than the heating in the inert gas atmosphere is given priority to the removal of volatile matter from the outer carbon material. This is thought to be because the removal of volatiles from the charcoal material was delayed and the carbon residue increased accordingly.
この結果から、雰囲気温度800℃において酸化性雰囲気下で熱処理する場合は、成形物に10質量%以上の炭材を外装するのが好ましいことがわかった。 From this result, it was found that when the heat treatment was performed in an oxidizing atmosphere at an atmospheric temperature of 800 ° C., it is preferable to coat the molded product with 10% by mass or more of carbonaceous material.
ここで、成形物(見掛け密度2.6g/cm3)を球と仮定し、この球と同じ直径の円筒状の空間に成形物を充填した状態を想定したとき、成形物の周りの空隙は上記円筒状の空間の1/3となる。この空隙を外装炭材(かさ密度0.6g/cm3)で埋めるためには約11質量%([0.6×1/3]÷[2.6×2/3])≒0.11)の外装炭材が必要となる。したがって、上記外装炭材添加率10質量%以上は、成形物表面が外装炭材によりほぼ完全に覆われた状態に相当する。 Here, assuming that the molded product (apparent density 2.6 g / cm 3 ) is a sphere, and assuming a state where a cylindrical space having the same diameter as the sphere is filled with the molded product, the void around the molded product is One third of the cylindrical space. About 11% by mass ([0.6 × 1/3] ÷ [2.6 × 2/3]) ≈0.11 in order to fill the voids with the outer carbon material (bulk density 0.6 g / cm 3 ) ) Is required. Therefore, the exterior carbon material addition rate of 10% by mass or more corresponds to a state in which the surface of the molded product is almost completely covered with the exterior carbon material.
したがって、雰囲気温度800℃超(1300℃以下)の場合においても、成形物に10質量%以上の炭材を外装することで、上記雰囲気温度800℃の場合と同様の効果が得られると想定できる。 Therefore, even when the atmospheric temperature is higher than 800 ° C. (1300 ° C. or lower), it can be assumed that the same effect as that obtained when the atmospheric temperature is 800 ° C. can be obtained by covering the molded product with 10% by mass or more of carbonaceous material. .
ただし、外装炭材を過度に添加すると、成形物への伝熱が遅れ、タール除去が不十分になるので、20質量%以下の添加に留めるのが好ましい。外装炭材の種類は、特に限定されないが、熱処理後、成形物(炭材内装塊成鉱)と容易に分離し、再利用できるように、流動性の低い非粘結炭やコークスなどを用いるのが推奨される。また、外装炭材の粒度は、内装炭材より優先的に酸化性ガスと反応することに加え、雰囲気ガス流で飛散せず、さらに成形物(炭材内装塊成鉱)と容易に分級できるように、平均粒径で0.2〜6mm程度、さらには0.5〜3mm程度の粒度とするのが望ましい。 However, if the exterior carbonaceous material is added excessively, heat transfer to the molded product is delayed and tar removal becomes insufficient, so it is preferable to keep the addition to 20% by mass or less. The type of exterior carbon material is not particularly limited, but non-caking coal or coke with low fluidity is used so that it can be easily separated from the molded product (carbon material agglomerated mineral) after heat treatment and reused. Is recommended. In addition to preferentially reacting with the oxidizing gas over the interior carbon material, the exterior carbon material does not scatter with the atmospheric gas flow, and can be easily classified as a molded product (carbon material interior agglomerate). Thus, the average particle size is preferably about 0.2 to 6 mm, and more preferably about 0.5 to 3 mm.
ここで、上記熱間成形工程にて成形機4で加圧成形された成形物Dは、次工程である上記熱処理工程の熱処理設備5に装入されるが、その間の搬送過程において成形物Dの温度は所定温度まで低下する。そして、成形物Dが熱処理設備5に装入され、前記所定温度から熱処理設備5内の雰囲気温度Tまで加熱される。前記所定温度が低くなりすぎると、上記温度低下過程および/または雰囲気温度Tまでの昇温過程で成形物D内部に過大な熱応力が生じて成形物Dに亀裂が発生しやすくなり、熱処理後の炭材内装塊成鉱Eの強度が低下する。 Here, the molded product D that has been pressure-molded by the molding machine 4 in the hot molding process is charged into the heat treatment equipment 5 of the heat treatment process, which is the next process, and the molded product D is transported during that time. The temperature decreases to a predetermined temperature. Then, the molded product D is charged into the heat treatment facility 5 and heated from the predetermined temperature to the ambient temperature T in the heat treatment facility 5. If the predetermined temperature is too low, excessive thermal stress is generated inside the molded product D during the temperature lowering process and / or the temperature raising process up to the ambient temperature T, and cracks are likely to occur in the molded product D. The strength of the carbonaceous material-incorporated agglomerate E decreases.
したがって、上記熱間成形後から前記熱処理前までにおける成形物の温度は、前記熱間成形温度−100℃以上で、かつ、250℃以上とするのが好ましい。 Therefore, it is preferable that the temperature of the molded product after the hot forming to before the heat treatment is the hot forming temperature −100 ° C. or higher and 250 ° C. or higher.
これを実現するため、例えば、成形機4から熱処理設備5までの搬送配管を、できるだけ短くする、および/または、保温するとよい。あるいは、成形機4と熱処理設備5の間に保温機能を備えたサージホッパを設け、これに成形物Dを一時的に保持して、上記最低温度を下回らないようにしてもよい。 In order to realize this, for example, the conveying pipe from the molding machine 4 to the heat treatment equipment 5 may be as short as possible and / or kept warm. Alternatively, a surge hopper having a heat retaining function may be provided between the molding machine 4 and the heat treatment equipment 5, and the molded product D may be temporarily held in the surge hopper so as not to fall below the minimum temperature.
上記に加えて、熱処理設備5内における(すなわち、前記熱処理の際における)成形物Dの前記最低温度〜550℃の間の平均昇温速度を5〜200℃/minとするのが好ましい。ここで、成形物Dの平均昇温速度として前記最低温度〜550℃の間の平均昇温速度を規定したのは、前記最低温度までの温度低下により炭材の粘結性が減少し、その後550℃までの加熱過程における熱応力により最も亀裂が発生しやすい温度範囲と推定されるためである。また、平均昇温速度を5〜200℃/minとしたのは、5℃/min未満では、熱処理に要する時間が長くなりすぎて生産性が低下するためであり、一方、200℃/min超では、成形物Dの表面と内部との温度差が拡大して熱応力が過大となり、成形物Dに亀裂が発生しやすくなるためである。 In addition to the above, it is preferable that the average rate of temperature increase between the minimum temperature and 550 ° C. of the molded product D in the heat treatment equipment 5 (that is, during the heat treatment) is 5 to 200 ° C./min. Here, the average temperature rising rate between the lowest temperature and 550 ° C. was defined as the average temperature rising rate of the molded product D because the caking property of the carbonaceous material decreased due to the temperature drop to the minimum temperature, and thereafter This is because it is estimated that the temperature range is most likely to cause cracks due to thermal stress in the heating process up to 550 ° C. Moreover, the reason for setting the average rate of temperature rise to 5 to 200 ° C./min is that if the temperature is less than 5 ° C./min, the time required for the heat treatment becomes too long and the productivity is lowered, whereas it exceeds 200 ° C./min. Then, the temperature difference between the surface and the inside of the molded product D is enlarged, the thermal stress becomes excessive, and the molded product D is likely to be cracked.
これを実現するため、例えば、熱処理設備5内の雰囲気温度を一気にTにするのでなく、徐々にTまで高めるようにするとよい。 In order to realize this, for example, the ambient temperature in the heat treatment equipment 5 may be gradually increased to T instead of T at once.
(変形例)
上記実施形態では、熱処理工程にシャフト炉を用いる例を示したが、ロータリキルン、回転炉床炉、外熱式多筒型キルン、バッチ炉などを用いてもよく、これらを複数組み合わせて用いてもよい。
(Modification)
In the above embodiment, an example in which a shaft furnace is used for the heat treatment process has been shown. However, a rotary kiln, a rotary hearth furnace, an external heating multi-cylinder kiln, a batch furnace, or the like may be used, and a plurality of these may be used in combination. Also good.
本発明の効果を確証するため、下記実施例1、2に示すような成形物の熱処理実験を行った。 In order to confirm the effect of the present invention, heat treatment experiments were performed on the molded products as shown in Examples 1 and 2 below.
[実施例1]
原料として、表1に示す粉状石炭および表2に示す粉状鉄鉱石を用いた。なお、粉状石炭の粒度は74μm以下、60〜80質量%程度、粉状鉄鉱石の粒度は−3mm、100質量%とした。
As raw materials, powdered coal shown in Table 1 and powdered iron ore shown in Table 2 were used. In addition, the particle size of the powdered coal was 74 μm or less and about 60 to 80% by mass, and the particle size of the powdered iron ore was −3 mm and 100% by mass.
そして、粉状石炭と粉状鉄鉱石を20:80の質量割合で混合し、この混合物を400〜450℃の温度で双ロール型成形機に供給し、ロール回転速度4〜8rpm、成形圧力10〜50kN/cmの条件で30mm×25mm×17〜20mmのアーモンド形のブリケット(成形物)に成形した。ブリケット1個の体積は6〜8cm3であり、そのタール含有量は0.8質量%である。 Then, powdered coal and powdered iron ore are mixed at a mass ratio of 20:80, and this mixture is supplied to a twin roll molding machine at a temperature of 400 to 450 ° C., and a roll rotation speed of 4 to 8 rpm and a molding pressure of 10 are used. Molded into 30 mm × 25 mm × 17-20 mm almond-shaped briquettes (molded product) under the condition of ˜50 kN / cm. The volume of one briquette is 6-8 cm 3 and its tar content is 0.8% by mass.
なお、成形物中のタール含有量は、粉状石炭からのタール発生量と、成形物中の粉状石炭の配合割合から算出した。ここで、粉状石炭からのタール発生量は、5℃/minで1000℃まで昇温し、120min乾留させた時の発生ガスを約30℃まで冷却して回収した凝集物をベンゼン抽出して求めた。 The tar content in the molded product was calculated from the amount of tar generated from the powdered coal and the blending ratio of the powdered coal in the molded product. Here, the amount of tar generated from powdered coal is raised to 1000 ° C. at 5 ° C./min, the generated gas when 120 min dry distillation is cooled to about 30 ° C., and the recovered aggregate is benzene extracted. Asked.
熱処理炉は加熱室と燃焼室が隔壁で分離された構造であり、加熱炉に装入された成形物に対して隔壁からの伝導および輻射によって熱供給がなされる。 The heat treatment furnace has a structure in which a heating chamber and a combustion chamber are separated by a partition wall, and heat is supplied to the molded product charged in the heating furnace by conduction and radiation from the partition wall.
〔ケース1:非酸化性ガス、600℃、外装炭材なし〕
加熱室内に非酸化性ガスである窒素ガスを流通した状態で、加熱室内の雰囲気温度600℃の条件にて、外装炭材を添加することなく、加熱室内における成形物の滞留時間(処理時間)5、10、15minで熱処理した場合、それぞれ、62、82、90%の脱タール率が得られた。また、熱処理後の成形物(炭材内装塊成鉱)の圧潰強度は、熱処理前の150〜200kgf/個(平均170kgf/個)に対して160〜210kgf/個(平均180kgf/個)と同等ないし若干上昇した。ここに、1kgf=9.80665Nである。
[Case 1: Non-oxidizing gas, 600 ° C, no external carbon]
The residence time (processing time) of the molded product in the heating chamber without adding exterior carbonaceous material under the condition of an atmospheric temperature of 600 ° C. in a state where nitrogen gas, which is a non-oxidizing gas, is circulated in the heating chamber. When heat treatment was performed at 5, 10, and 15 minutes, 62, 82, and 90% detarring rates were obtained, respectively. Moreover, the crushing strength of the molded product (carbonaceous material agglomerated mineral) after heat treatment is equivalent to 160-210 kgf / piece (average 180 kgf / piece) with respect to 150-200 kgf / piece (average 170 kgf / piece) before heat treatment. It rose slightly. Here, 1 kgf = 9.80665N.
〔ケース2:非酸化性ガス、800℃、外装炭材なし〕
同じく加熱室内に非酸化性ガスである窒素ガスを流通した状態で、加熱室内の雰囲気温度800℃の条件にて、外装炭材を添加することなく、加熱室内における成形物の滞留時間(処理時間)1、3、5minで熱処理した場合、それぞれ、28、90、94%の脱タール率が得られた。また、熱処理後の成形物(炭材内装塊成鉱)の圧潰強度は、処理時間1、3minでは、上記ケース1の雰囲気温度600℃の場合と同様に熱処理前と同等であったが、処理時間5minでは120〜180kgf/個(平均140kgf/個)となり、熱処理前より低下する傾向が認められた。
[Case 2: Non-oxidizing gas, 800 ° C., no exterior carbonaceous material]
Similarly, in a state where nitrogen gas, which is a non-oxidizing gas, is circulated in the heating chamber, the residence time (treatment time) of the molded product in the heating chamber without adding outer carbon material under the condition of an atmospheric temperature of 800 ° C. in the heating chamber. ) When the heat treatment was performed at 1, 3, 5 min, 28, 90, and 94% detarring rates were obtained, respectively. Further, the crushing strength of the molded product (carbonaceous material agglomerated mineral) after the heat treatment was the same as that before the heat treatment in the treatment time of 1 and 3 min, as in the case of the ambient temperature of 600 ° C. In 5 minutes, it became 120-180 kgf / piece (average 140 kgf / piece), and the tendency to fall from before heat processing was recognized.
〔ケース3:酸化性ガス、800℃、外装炭材なし〕
加熱室内に酸化性ガス(O2:5容量%、CO2:20容量%、N2:75容量%)を流通した状態で、加熱室内の雰囲気温度800℃の条件において、外装炭材を添加することなく、加熱室内における成形物の滞留時間(処理時間)1、3、5minで熱処理した場合、脱タール率は、それぞれ、28、90、94%となり、上記ケース2の非酸化性ガス雰囲気の場合と同等であったが、熱処理後の成形物(炭材内装塊成鉱)の圧潰強度は、処理時間1minでは熱処理前と同等、処理時間3minでは120〜180kgf/個(平均140kgf/個)、処理時間5minでは100〜140kgf/個(平均120kgf/個)となり、処理時間が長くなるほど熱処理前からの低下幅が大きくなる傾向が認められた。
[Case 3: Oxidizing gas, 800 ° C., no exterior carbonaceous material]
Addition of exterior carbon material under conditions of atmospheric temperature of 800 ° C. in the heating chamber with oxidizing gas (O 2 : 5 vol%, CO 2 : 20 vol%, N 2 : 75 vol%) in the heating chamber When the heat treatment is performed at a residence time (treatment time) of 1, 3 and 5 minutes in the heating chamber without deteriorating, the detarring rates are 28, 90 and 94%, respectively, and the non-oxidizing gas atmosphere of case 2 is obtained. However, the crushing strength of the molded product (carbonaceous material agglomerated mineral) after the heat treatment is equivalent to that before the heat treatment at the treatment time of 1 min, and 120 to 180 kgf / piece (average of 140 kgf / piece) at the treatment time of 3 min. ), A treatment time of 5 min was 100 to 140 kgf / piece (average of 120 kgf / piece), and the tendency for the decrease from before the heat treatment to increase as the treatment time increased was observed.
〔ケース4:酸化性ガス、800℃、外装炭材使用〕
上記ケース3において、成形物に外装炭材を15質量%添加して、その他の条件はケース3と同様の条件で熱処理した場合、脱タール率は上記ケース2の非酸化性ガス雰囲気の場合と同等に維持されつつ、熱処理後の成形物(炭材内装塊成鉱)の圧潰強度は、150〜200kgf/個(平均170kg/個)と熱処理前と同等の強度が得られ、強度低下が抑制できた。なお、外装に用いた炭材は、質量%で揮発分0.0%、灰分12.0%、固定炭素88.0%のコークス粉である。
[Case 4: Oxidizing gas, 800 ° C., using exterior carbon]
In the case 3, when 15% by mass of the outer carbon material is added to the molded product and the other conditions are heat-treated under the same conditions as in the case 3, the detarring rate is the case of the non-oxidizing gas atmosphere of the case 2 While maintaining the same, the crushing strength of the molded product (carbon material agglomerated ore) after heat treatment is 150-200 kgf / piece (average 170 kg / piece), which is the same strength as before the heat treatment and suppresses strength reduction. did it. In addition, the carbonaceous material used for the exterior is a coke powder having a volatile content of 0.0%, an ash content of 12.0%, and fixed carbon of 88.0% by mass%.
[実施例2]
本実施例では、熱処理装置として回転炉床炉を用い、上記実施例1と同じ成形物の熱処理を行った。この回転炉床炉は、炉内にバーナを有し、その燃焼熱で被処理物を輻射加熱するものであり、炉内は酸化性ガス雰囲気である。成形物に外装炭材15質量%を添加して、雰囲気温度800〜900℃の炉内に装入し、滞留時間(処理時間)2minで熱処理したところ、熱処理後の成形物(炭材内装塊成鉱)は、熱処理前と同等の圧潰強度を確保しつつ、脱タール率90%が得られた。
[Example 2]
In this example, a rotary hearth furnace was used as a heat treatment apparatus, and the same molded product as that in Example 1 was heat-treated. This rotary hearth furnace has a burner in the furnace and radiates and heats an object to be processed with the combustion heat, and the inside of the furnace is an oxidizing gas atmosphere. When 15% by mass of the outer carbonaceous material is added to the molded product, it is placed in a furnace having an atmospheric temperature of 800 to 900 ° C., and heat-treated with a residence time (processing time) of 2 min. As for the (mineralization), a detarring rate of 90% was obtained while ensuring the same crushing strength as before the heat treatment.
[実施例3]
本実施例では、熱間成形後、熱処理までの置き時間を種々変化させて、熱間成形後から熱処理前までにおける成形物の最低温度、および、前記熱処理の際における成形物の前記最低温度〜550℃の間の平均昇温速度を変化させて、熱処理前の成形物と、熱処理後の成形物(炭材内装塊成鉱)の圧潰強度を測定し、熱処理による成形物の圧潰強度の変化を調査した。
[Example 3]
In this example, after the hot forming, various setting times until the heat treatment were changed, and the minimum temperature of the molded product after the hot forming and before the heat treatment, and the minimum temperature of the molded product during the heat treatment, Varying the average heating rate between 550 ° C and measuring the crushing strength of the molded product before heat treatment and the molded product after heat treatment (carbonized material agglomerate), change in crushing strength of the molded product by heat treatment investigated.
調査結果を下記表3および表4に示す。なお、表3において、最低温度はいずれも250℃以上であった。 The survey results are shown in Tables 3 and 4 below. In Table 3, the lowest temperature was 250 ° C. or higher.
表3に示す調査結果から、熱間成形後から熱処理前までにおける成形物の最低温度は、熱間成形温度−100℃以上で、かつ、250℃以上とすることが推奨されることがわかる。 From the investigation results shown in Table 3, it can be seen that the minimum temperature of the molded product after hot forming to before heat treatment is recommended to be hot forming temperature −100 ° C. or higher and 250 ° C. or higher.
また、表4に示す調査結果から、さらに、熱処理の際における成形物の最低温度〜550℃の間の平均昇温速度は、5〜200℃/minとすることが推奨されることがわかる。
1:炭材乾燥加熱設備(ロータリドライヤ)
2:原料加熱設備(ロータリキルン)
3:混合設備(竪形混合槽)
4:成形設備(双ロール型成形機)
5:熱処理設備(シャフト炉)
A:粉状炭材(粉状石炭)
B:粉状鉄含有原料(粉状鉄鉱石)
C:混合物
D:成形物(熱処理前のブリケット)
E:炭材内装塊成鉱(熱処理後のブリケット)
F:外装炭材
1: Carbon material drying and heating equipment (rotary dryer)
2: Raw material heating equipment (rotary kiln)
3: Mixing equipment (vertical mixing tank)
4: Molding equipment (twin roll molding machine)
5: Heat treatment equipment (shaft furnace)
A: Powdered carbon material (powdered coal)
B: Powdered iron-containing raw material (powdered iron ore)
C: Mixture D: Molded product (briquet before heat treatment)
E: Carbonaceous agglomerate (briquet after heat treatment)
F: Exterior carbon material
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009179560A JP5421685B2 (en) | 2009-05-14 | 2009-07-31 | Production method of coal-type agglomerated ore for vertical furnace |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009117694 | 2009-05-14 | ||
JP2009117694 | 2009-05-14 | ||
JP2009179560A JP5421685B2 (en) | 2009-05-14 | 2009-07-31 | Production method of coal-type agglomerated ore for vertical furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010285684A JP2010285684A (en) | 2010-12-24 |
JP5421685B2 true JP5421685B2 (en) | 2014-02-19 |
Family
ID=43541602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009179560A Expired - Fee Related JP5421685B2 (en) | 2009-05-14 | 2009-07-31 | Production method of coal-type agglomerated ore for vertical furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5421685B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103173669A (en) * | 2013-03-19 | 2013-06-26 | 杨树桐 | Method for melting diamond steel |
JP2015063740A (en) * | 2013-09-25 | 2015-04-09 | 株式会社神戸製鋼所 | Method for producing granular iron |
KR101918363B1 (en) * | 2016-11-30 | 2018-11-14 | 인하대학교 산학협력단 | Carbon composite iron oxide briquette comprising the carbon composite comprising volatile matter, and reduction method thereof at oxidation atmosphere |
CN113736932A (en) | 2020-05-29 | 2021-12-03 | 宝山钢铁股份有限公司 | Preparation method of carbon-iron composite furnace charge |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3863052B2 (en) * | 2002-04-11 | 2006-12-27 | 株式会社神戸製鋼所 | Blast furnace raw material charging method |
JP4996105B2 (en) * | 2006-02-09 | 2012-08-08 | 株式会社神戸製鋼所 | Vertical coal interior agglomerates |
-
2009
- 2009-07-31 JP JP2009179560A patent/JP5421685B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010285684A (en) | 2010-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4996105B2 (en) | Vertical coal interior agglomerates | |
US6334883B1 (en) | Pellets incorporated with carbonaceous material and method of producing reduced iron | |
JP4627236B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP5411615B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP5421685B2 (en) | Production method of coal-type agglomerated ore for vertical furnace | |
KR101739858B1 (en) | Coal briquettes, method and apparatus for manufacturing the same | |
JPH1192833A (en) | Agglomerate for reduced iron and its production | |
JP4532313B2 (en) | Manufacturing method of carbonized material agglomerates | |
KR101752909B1 (en) | Method and apparatus for manufacturing partially-carbonized coal briquettes, and apparatus for manufacturing molten irons | |
JP5336018B1 (en) | Method for producing coke for gasification melting furnace, and method for using coke | |
JPH05334B2 (en) | ||
JP2001181720A (en) | Method of manufacturing reduce iron with rotary hearth furnace | |
JP4267390B2 (en) | Method for producing ferro-coke for blast furnace | |
JP2001303143A (en) | Method for producing agglomerate including carbonaceous material | |
JP3502008B2 (en) | Manufacturing method of carbonized interior agglomerates | |
KR101969110B1 (en) | Method for manufacturing coal briquettes and apparatus for manufacturing the same | |
JP2007063605A (en) | Method for manufacturing carbonaceous-material-containing agglomerate | |
JP4996103B2 (en) | Manufacturing method of carbonized material agglomerates | |
EP2980232B1 (en) | Method for recycling iron-containing by-products discharged from coal-based ironmaking process, system used therefor, and direct-reduced iron agglomeration system | |
US3196000A (en) | Process for the direct reduction of iron ores in rotating cylindrical furnaces | |
JP4843445B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP3863104B2 (en) | Blast furnace operation method | |
JP2005053986A (en) | Method for producing ferrocoke for blast furnace | |
WO2009078662A2 (en) | Method for manufacturing binderless briquettes and apparatus for manufacturing the same | |
US3433859A (en) | Process for the preparation of hardened,dense heat transfer medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110414 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110414 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131022 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131122 |
|
LAPS | Cancellation because of no payment of annual fees |