JP4267390B2 - Method for producing ferro-coke for blast furnace - Google Patents

Method for producing ferro-coke for blast furnace Download PDF

Info

Publication number
JP4267390B2
JP4267390B2 JP2003206474A JP2003206474A JP4267390B2 JP 4267390 B2 JP4267390 B2 JP 4267390B2 JP 2003206474 A JP2003206474 A JP 2003206474A JP 2003206474 A JP2003206474 A JP 2003206474A JP 4267390 B2 JP4267390 B2 JP 4267390B2
Authority
JP
Japan
Prior art keywords
coal
coke
pulverized
particle size
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003206474A
Other languages
Japanese (ja)
Other versions
JP2005053982A (en
Inventor
健次 加藤
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003206474A priority Critical patent/JP4267390B2/en
Publication of JP2005053982A publication Critical patent/JP2005053982A/en
Application granted granted Critical
Publication of JP4267390B2 publication Critical patent/JP4267390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コークス原料として低品質炭(非微粘結炭等)を使用し、高炉用の高強度フェロコークスを製造する方法に関する。
【0002】
【従来の技術】
高炉操業においては、従来から、粉状の粘結炭や非微粘結炭を成形、乾留して製造した成形コークスが、室炉コークスに代替する還元材として用いられているが、コークスは、高炉内の通気性を確保するため所要の強度を備えている必要があり、成形コークスの強度向上を図る技術が、これまで数多く開示されている(例えば、特許文献1〜3、参照)。
【0003】
特許文献1には、粘結性の少ない原料炭に、石炭系結合剤を添加して成形した塊成炭を、直立型乾留炉で、塊成炭の炉内滞留時間を制御しながら乾留する成形コークスの方法が開示されている。
【0004】
また、特許文献2には、成形炭を固体熱媒(600℃以上溶融温度以下に加熱された塊状又は塊成化した還元鉄又は酸化鉄)で直接加熱して乾留する成形コークスの製造方法が開示されている。
【0005】
さらに、特許文献3には、非微粘結炭を所定量含有する粉炭にバインダーを添加して塊成化した成形炭を、竪型乾留炉で、羽口から吹き込む熱媒ガスの温度及び流量を調節しながら乾留する成形コークスの製造方法が開示されている。
【0006】
このように、コークス用の高品質炭(強粘結炭)が枯渇傾向にあることを踏まえ、低品質炭(非微粘結炭)を使用する成形コークスの製造技術が開示されているが、低品質炭を原料とするが故、従来技術ではコークス強度の向上に限界があるのが実情である。
【0007】
そこで、本発明者は、低品質粉炭の熱的特性に着目し、予熱後分級、分級微粉炭の急速加熱、急速加熱後の熱間成形、分級粗粒炭との混合乾留を基本工程とする高炉用コークスの製造方法を提案した(特許文献4、参照)。
【0008】
特許文献4の方法は、原料炭の炭種拡大、生産性の向上等の点で効果の大きいものである。
【0009】
また、高炉操業においては還元効率の向上が求められ、この観点から、鉄鉱石等の含鉄原料を含むフェロコークスが製造され使用されてきた(例えば、特許文献5〜8、参照)。
【0010】
例えば、特許文献5には、石炭粉及び粉状鉄源に粘結材を加えて混練、加圧成形してブリケットを製造し、原料石炭粉と混合して乾留するフェロコークスの製造方法が開示されている。
【0011】
また、特許文献6には、粉状鉄源と粉石炭との混合成形物をシャフト炉に装入して成形フェロコークスを製造するに際し、シャフト炉の炉頂ガスをシャフト炉に供給する成形フェロコークスの製造方法が開示されている。
【0012】
また、特許文献7には、溶融還元製鉄法において、粉状含鉄原料と粉状石炭の混合物からなる成形物を乾留して得た成形フェロコークスを用いることが開示されている。
【0013】
さらに、特許文献8には、室式コークス炉に、石炭と粉状鉄源を一定の比率で装入して乾留し、一部被還元された粉状鉄源を内包するフェロコークスを製造する方法が開示されている。
【0014】
しかし、高炉用フェロコークスにおいても、当然に、所要のコークス強度が求められ、コークス用の高品質炭(強粘結炭等)が枯渇状態にある現在、低品質粉炭をコークス原料として使用し、高炉用の高強度フェロコークスを製造する技術の開発が求められている。
【0015】
【特許文献1】
特公昭60−38437号公報
【特許文献2】
特公昭62−45914号公報
【特許文献3】
特開平7−145385号公報
【特許文献4】
特開平8−209150号公報
【特許文献5】
特開昭63−137989号公報
【特許文献6】
特開昭64−81889号公報
【特許文献7】
特開平4−28810号公報
【特許文献8】
特開平10−287883号公報
【0016】
【発明が解決しようとする課題】
本発明は、上記実情・現状に鑑み、コークス原料として低品質炭(非微粘結炭等)の粉炭を使用し、高炉用の高強度フェロコークスを製造することを目的とする。
【0017】
【課題を解決するための手段】
本発明者は、鉄原料を含むフェロコークスの製造においても、非微粘結炭の処理如何がコークス強度を左右するとの前提のもとに、コークス強度の向上を図る非微粘結炭の処理について鋭意検討した。
【0018】
その結果、非微粘結粉炭の熱的特性に立脚する一連の処理(予熱後分級、急速加熱、熱間成形)により、非微粘結微粉炭の粘結性が改善され、コークス強度が向上することを知見した。
【0019】
本発明は、上記知見に基づいてなされたもので、その要旨は、以下のとおりである。
【0020】
(1) 非微粘結炭と鉄原料を混合、成形し、乾留して高炉用フェロコークスを製造する方法において、
(a)前記非微粘結炭の粉炭を250〜350℃に予熱して、粒径0.3mm以下の微粉炭と粒径0.3mm超の粗粒炭に分級し、
(b)上記微粉炭と粒径0.01〜10mmの粉状鉄原料を、微粉炭100質量部に対し、5〜60質量部混合し、
(c)上記混合物を、250℃以上で、かつ、非微粘結炭の軟化開始温度以下の温度に1×10 〜1×10 ℃/分の加熱速度で急速加熱して、5〜1,000kg/cm の圧力で加圧成形し、次いで、
(d-1)上記成形物を単独で、又は、上記粗粒炭及び/又は粘結炭と適宜混合して室炉式コークス炉で乾留する、
ことを特徴とする高炉用フェロコークスの製造方法。
【0021】
(2) 非微粘結炭と鉄原料を混合、成形し、乾留して高炉用フェロコークスを製造する方法において、
(a)前記非微粘結炭の粉炭を250〜350℃に予熱して、粒径0.3mm以下の微粉炭と粒径0.3mm超の粗粒炭に分級し、
(b)上記微粉炭と粒径0.01〜10mmの粉状鉄原料を、微粉炭100質量部に対し、5〜60質量部混合し、
(c)上記混合物を、250℃以上で、かつ、非微粘結炭の軟化開始温度以下の温度に1×10 〜1×10 ℃/分の加熱速度で急速加熱して、5〜1,000kg/cm の圧力で加圧成形し、次いで、
(d-2)上記成形物を上記粗粒炭及び/又は粘結炭と適宜混合してブリケットに成形後、縦型シャフト炉で乾留する、
ことを特徴とする高炉用フェロコークスの製造方法。
【0033】
) 前記粉状鉄原料が、製鉄ダストを含むことを特徴とする前記(1)又は(2)に記載の高炉用フェロコークスの製造方法。
【0036】
) 前記成形物が、円相当径0.3mm以上の柱状物ないし棒状物であることを特徴とする前記(1)〜()のいずれかに記載の高炉用フェロコークスの製造方法。
【0040】
【発明の実施の形態】
本発明について、図面に基づいて詳細に説明する。図1に、本発明の実施態様を示す。
【0041】
配合貯槽1から非微粘結粉炭Aを切り出し、乾燥予熱機2で、好ましくは80〜350℃に加熱して乾燥予熱する。この乾燥予熱は、非微粘結炭の粘結性を改善し、高強度のフェロコークスを製造する処理工程における最初の工程として重要である。
【0042】
加熱温度が80℃未満であると乾燥予熱が充分でなく、石炭中の微粉炭が水分によって凝集して疑似粒子化しているために、後工程における分級に支障をきたし、また、後工程の急速加熱によっても、石炭の粘結性の改善に至らない場合がある。
【0043】
一方、加熱温度が350℃超であると、石炭の熱分解が始まり、そのために、石炭が変質する。
【0044】
乾燥予熱した粉炭を、サイクロンのような分級機3で、微粉炭A1と粗粒炭A2に分級する。石炭は、銘柄や含水量により被粉砕性が異なり、粉砕後の粒度分布も異なるので、本発明で微粉炭として扱う粒径範囲は、特に限定されるものではない。
【0045】
微粉炭と粗粒炭を区分する臨界粒径は、石炭の銘柄や含水量、さらに、所望のコークス強度に応じて適宜設定すればよい。通常、粒径0.3mm以下の石炭を微粉炭として扱っているので、本発明においても、粒径0.3mm以下の石炭を微粉炭として扱うのが好ましい。
【0046】
次に、分級した微粉炭A1と、配合貯槽4から切り出した粉状鉄原料Bを、混合機7で混合する。
【0047】
この場合、微粉炭A1は予熱された状態で混合機7へ送給されるので、粉状鉄原料Bについても、微粉炭A1の予熱状態程度まで加熱して、混合機7へ送給するのが好ましい。
【0048】
粉状鉄原料の混合割合は、高炉用コークスとしての強度を安定的に確保し、かつ、炉内還元効率の一定の向上を確保する点で、微粉炭100質量部に対し、5〜60質量部が好ましい。
【0049】
上記混合割合が5質量部未満であると、炉内還元効率の向上は期待できないし、一方、60質量部を超えると、所望のコークス強度を安定的に確保することが難しくなる。
【0050】
粉状鉄原料としては、主として粉状鉄鉱石を用いるが、基本的には、鉄及び鉄酸化物を所要量含有している粉状の物質であればよく、鉄鉱石以外では、製鉄ダスト等を用いることができる。
【0051】
粉状鉄原料Bと微粉炭A1を混合機7で混合する場合、均一に混合するため、粉状鉄原料の粒径を、微粉炭の粒径に対応して適宜設定する。例えば、粒径0.3mm以下の微粉炭と混合する場合、粉状鉄原料は、粒径0.01〜10mmのものが好ましい。
【0052】
微粉炭A1と粉状鉄原料Bを混合機7で均一に混合した後、この混合物を、急速加熱機8へ送給し、250℃以上石炭の軟化開始温度以下の温度まで急速加熱する。この急速加熱が、非微粘結微粉炭の粘結性を改善するうえで、乾燥予熱と相俟って重要な処理である。
【0053】
加熱速度は1×102〜1×105℃/分が好ましい。加熱速度が1×102℃/分未満であると、粘結性改善効果が充分に発現せず、この限りで、加熱速度は1×102℃/分以上であればよいが、実現可能な加熱速度として、上限値を1×105℃/分に設定した。
【0054】
非微粘結粉炭の乾燥予熱に続き、微粉炭と粗粒炭に分級し、分級した微粉炭を、250℃以上で、かつ、石炭の軟化開始温度以下の温度に急速加熱すれば、非微粘結微粉炭自体の粘結性が向上することは、本発明者が、既に、特許文献4で開示したことであるが、本発明は、非粘結性の粉状鉄原料を所要量含むフェロコークスの製造であるから、非微粘結微粉炭自体の粘結性を高めても、それがコークス強度の向上に直結しないことが予想される。
【0055】
そこで、本発明者は、粒径0.3mm以下の微粉炭と粒径0.01〜10mmの粉状鉄鉱石を、混合割合を変えて混合し、成形、乾留し、該微粉炭の急速加熱温度とコークス強度の関係を調査した。
【0056】
その結果、非粘結性の粉状鉄鉱石との混合状態においても、基本的には、非微粘結微粉炭自体の粘結性の向上が、コークス強度の向上をもたらすことが判明した。
【0057】
次に、急速加熱機8で、250℃以上で、かつ、石炭の軟化開始温度以下の温度に急速加熱した“粉状鉄原料と微粉炭の混合物”を加圧成形機9に送給し、コークス炉に装入した時、できるだけ嵩密度を高め得る形状の成形物に加圧成形する。
【0058】
加圧成形においては、上記混合物を、5〜1,000kg/cm2の圧力で、円相当径0.3mm以上の柱状物ないし棒状物に成形することが好ましい。
【0059】
加圧力が5kg/cm2未満であると、成形時の圧力が小さ過ぎ、成形物の歩留りが低下し、一方、1,000kg/cm2を超えると、成形機で加圧成形する際に成形物内に亀裂が入り割れてしまうことがある。
【0060】
上記圧力範囲にある圧力で成形することにより、成形後のハンドリングが容易で、かつ、所要のコークス強度を安定的に確保できる成形物を、歩留りよく得ることができる。
【0061】
成形物の形状は柱状ないし棒状が好ましい。成形物が柱状物ないし棒状物であれば、成形物を単独で、又は、粗粒炭及び/又は粘結炭と混合してコークス炉内に装入した場合でも、コークス原料の嵩密度を高めることができ、コークス強度の向上に貢献する。
【0062】
加圧成形機9で成形した成形物は、コークス炉へ装入する前、一旦、配合貯槽12に貯蔵してもよい。この時、分級機3で分級した粗粒炭A2、及び/又は、配合貯槽5から切り出して乾燥予熱機6で乾燥予熱した粘結炭Cと混合して、配合貯槽12に貯蔵してもよい。
【0063】
本発明においては、加圧成形機9で成形した成形物を、単独で、又は、粗粒炭A2及び/又は粘結炭Cと適宜混合して、乾留炉で乾留する。
【0064】
コークス炉として、通常、室炉式コークス炉13又は縦型シャフト炉15を用いるが、本発明においては、所要の乾留を実施できればよいから、その限りで、他の形式の炉を用いてもよい。
【0065】
乾留炉として室炉式コークス炉13を用いる場合には、上記成形物、又は、該成形物と粗粒炭A2及び/又は粘結炭Cとの混合物を配合貯槽12から切り出して、室炉式コークス炉13に装入する。
【0066】
ただし、乾留炉として縦型シャフト炉15を用いる場合には、配合貯槽12から切り出した上記成形物と粗粒炭A2及び/又は粘結炭Cとの混合物を、ブリケット成形機14でブリケットに成形して、縦型シャフト炉15に装入する。
【0067】
このように、配合貯槽12から切り出した混合物をブリケットに成形して乾留することにより、高強度の成形コークスを製造することができる。
【0068】
なお、乾留温度は、いずれの炉を用いる場合でも、通常の950〜1200℃でよい。
【0069】
成形物と粗粒炭及び/又は粘結炭との混合割合は、特に、限定されるものではない。選択する炉や、所望のコークス強度を考慮して、適宜設定すればよい。
【0070】
本発明によれば、このようにして、高炉用の高強度フェロコークスを、安定的に歩留りよく製造することができる。
【0071】
図2に、本発明の別の実施態様を示す。なお、図2中、図1に示すものと同じものについては、図1中の数字、記号と同じ数字、記号で示した。
【0072】
図2に示す実施態様は、
(i)微粉炭A1だけを、急速加熱機8で、250℃以上で、かつ、石炭の軟化開始温度以下の温度に急速加熱する点、及び、
(ii)急速加熱後、微粉炭A1と粉状鉄原料Bを混合機7で混合する点、
で、図1に示す実施態様と異なる。
【0073】
なお、混合機7による混合に際しては、粉状鉄原料Bを、微粉炭A1の温度に近い温度まで予熱することが、混合機7で両者の均一な混合を図るうえで好ましい。
【0074】
本発明者は、本発明において、上記(i)及び(ii)の工程を採用する実施態様においても、高炉用の高強度フェロコークスを、安定的に歩留りよく製造できることを実験的に確認した。
【0075】
図3に、本発明のさらに別の実施態様を示す。なお、図3中、図1及び図2に示すものと同じものについては、図1及び図2中の数字、記号と同じ数字、記号で示した。
【0076】
図3に示す実施態様は、
(i)微粉炭A1を、急速加熱後、造粒機10で造粒する点、及び、
(ii)造粒炭と粉状鉄原料Bを、混合加圧成形機11で混合し、加圧成形する点、
で、図2に示す実施態様と異なる。
【0077】
造粒炭の形状は、造粒直後の粉状鉄原料との均一な混合を図るうえで、粒径0.3mm未満の球状又は枕型が好ましい。造粒機10は、どのような種類の造粒機でもよいが、球状又は枕型に造粒し得る造粒機又は塊成機として、例えば、ダブルロールプレス型の成形機、又は、ロールコンパクターなどが好ましい。
【0078】
上記(ii)の混合加圧成形は、造粒炭と粉状鉄原料Bを、250℃以上で、かつ、石炭の軟化開始温度以下の温度に加熱して行う。この加熱により、混合加圧成形機11において、均一な混合をなし、円滑な加圧成形を行うことができる。
【0079】
本発明者は、上記(i)及び(ii)の工程を採用する実施態様においても、高炉用の高強度フェロコークスを、安定的に歩留りよく製造できることを実験的に確認した。
【0080】
なお、本発明において、コークス強度とは、JIS K 2151に従って、ドラム試験機でコークスサンプルに対して150回転の衝撃を与えた後に、15mmの篩の上に残存する割合で表わす指標(DI150 15)で示す。
【0081】
【実施例】
次に、本発明の実施例について説明するが、実施例における条件は、本発明の実施可能性及び効果を実証するために採用した一条件例であり、本発明は、該条件例に限定されるものではない。
【0082】
本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、適宜、条件を設定し得るものである。
【0083】
(実施例1)
粉炭を80℃に予熱して、粒径0.3mm以下の微粉炭と粒径0.3mm超の粗粒炭に分級した。上記微粉炭と、粒径0.01〜1.0mmの鉄鉱石、及び/又は、粒径0.01〜0.5mmの製鉄ダスト等の粉状鉄原料を、表1に示す割合で混合して、混合物(a)(微粉炭90mass%、鉄鉱石10mass%の割合で混合)、及び、混合物(b)(微粉炭85mass%、鉄鉱石10mass%、製鉄ダスト5mass%の割合で混合)を調製した。
【0084】
これらの混合物(a)及び混合物(b)を、加熱速度150℃/分で280℃(250℃以上で、かつ、石炭の軟化開始温度以下の温度)に急速加熱し、ダブルロールプレス型の成形機を用い、500kg/cm2の圧力で、直径15mmの柱状に加圧成形した。
【0085】
次いで、上記柱状成形物を単独で、又は、粒径0.3mm超の粗粒炭及び/又は粒径0.01〜5.0mmの粘結炭と、表2に示す混合割合で適宜混合して室炉式コークス炉に装入し、1050〜1100℃で乾留した。
【0086】
得られたフェロコークスの性状を表3に示す。表3から、得られたコークスのドラム強度(DI150 15)は82.3〜83.4であり、高炉用コークスとして充分に使用し得るコークスが得られていることが解かる。
【0087】
【表1】

Figure 0004267390
【0088】
【表2】
Figure 0004267390
【0089】
【表3】
Figure 0004267390
【0090】
(実施例2)
実施例1で得た成形物(混合物(a)及び混合物(b)を、加熱速度150℃/分で280℃[250℃以上で、かつ、石炭の軟化開始温度以下の温度]に急速加熱し、ダブルロールプレス型の成形機を用い、500kg/cm2の圧力で、直径15mmの柱状に加圧成形して得た成形物)と、粒径0.3mm超の粗粒炭及び/又は粒径0.01〜5.0mmの粘結炭を、表4に示す割合で混合して、容量が62cm3のブリケットに成形した。
【0091】
このブリケットを縦型シャフト炉に装入して、1050〜1100℃で乾留した。
【0092】
得られたフェロコークスの性状を表5に示す。表5から、得られたコークスのドラム強度(DI150 15)は83.0〜83.9であり、高炉用コークスとして充分に使用し得るコークスが得られていることが解かる。
【0093】
【表4】
Figure 0004267390
【0094】
【表5】
Figure 0004267390
【0095】
【発明の効果】
本発明によれば、非微粘結炭を用いて高強度のフェロコークスを、低コストで歩留りよく製造することができる。
【0096】
したがって、本発明は、高炉の安定操業、生産性の向上に大きく貢献する。
【図面の簡単な説明】
【図1】本発明の実施態様を示す図である。
【図2】本発明の別の実施態様を示す図である。
【図3】本発明のさらに別の実施態様を示す図である。
【符号の説明】
1、4、5、12…配合貯槽
2、6…乾燥予熱機
3…分級機
7…混合機
8…急速加熱機
9…加圧成形機
10…造粒機
11…混合加圧成形機
13…室炉式コークス炉
14…ブリケット成形機
15…縦型シャフト炉
A…非微粘結粉炭
A1…微粉炭
A2…粗粒炭
B…粉状鉄原料
C…粘結炭[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-strength ferro-coke for a blast furnace using low-quality coal (such as non-coking coal) as a coke raw material.
[0002]
[Prior art]
In blast furnace operation, molded coke produced by molding and dry distillation of powdered caking coal or non-slightly caking coal has been used as a reducing material to replace blast furnace coke. In order to ensure air permeability in the blast furnace, it is necessary to have a required strength, and many techniques for improving the strength of the formed coke have been disclosed so far (see, for example, Patent Documents 1 to 3).
[0003]
In Patent Document 1, agglomerated coal formed by adding a coal-based binder to coking coal with less caking property is subjected to carbonization in an upright dry distillation furnace while controlling the residence time of the agglomerated coal in the furnace. A method of forming coke is disclosed.
[0004]
Patent Document 2 discloses a method for producing formed coke, in which formed coal is directly heated with a solid heating medium (agglomerated or agglomerated reduced iron or iron oxide heated to a melting temperature of 600 ° C. or higher) and dry-distilled. It is disclosed.
[0005]
Furthermore, in Patent Document 3, the temperature and flow rate of the heat transfer medium gas blown from the tuyere in a vertical carbonization furnace is obtained by adding a binder to a coal powder containing a predetermined amount of non-slightly caking coal and agglomerating the coal. Disclosed is a method for producing molded coke that is carbonized while adjusting the temperature.
[0006]
Thus, based on the tendency of exhausting high-quality coal for coke (strongly caking coal), the production technology of molded coke using low-quality coal (non-caking coal) has been disclosed. Since low quality charcoal is used as a raw material, there is a limit to the improvement of coke strength in the prior art.
[0007]
Therefore, the present inventor pays attention to the thermal characteristics of low-quality pulverized coal, and the basic processes are classification after preheating, rapid heating of classified pulverized coal, hot forming after rapid heating, and mixed dry distillation with classified coarse coal. A method for producing coke for blast furnace was proposed (see Patent Document 4).
[0008]
The method of Patent Document 4 is highly effective in terms of expanding the coal type of the raw coal and improving productivity.
[0009]
Further, in blast furnace operation, improvement in reduction efficiency is required. From this viewpoint, ferro-coke containing iron-containing raw materials such as iron ore has been manufactured and used (see, for example, Patent Documents 5 to 8).
[0010]
For example, Patent Document 5 discloses a ferro-coke manufacturing method in which a caking additive is added to coal powder and powdered iron source, kneaded and pressure-molded to produce briquettes, mixed with raw material coal powder and dry-distilled. Has been.
[0011]
Further, in Patent Document 6, when a molded ferro-coke is produced by charging a molded product of a powdered iron source and pulverized coal into a shaft furnace, a molding ferro that supplies the top gas of the shaft furnace to the shaft furnace. A method for producing coke is disclosed.
[0012]
Patent Document 7 discloses the use of molded ferro-coke obtained by dry distillation of a molded product composed of a mixture of powdered iron-containing raw material and powdered coal in a smelting reduction ironmaking process.
[0013]
Furthermore, in Patent Document 8, a ferro-coke containing a partly reduced powder iron source is manufactured by charging coal and a powder iron source in a certain ratio into a chamber coke oven and dry-distilling them. A method is disclosed.
[0014]
However, ferro-coke for blast furnaces is naturally required to have the required coke strength. Currently, low-quality pulverized coal is used as a raw material for coke. Development of technology for producing high-strength ferrocoke for blast furnaces is required.
[0015]
[Patent Document 1]
Japanese Patent Publication No. 60-38437 [Patent Document 2]
Japanese Patent Publication No. 62-45914 [Patent Document 3]
JP 7-145385 A [Patent Document 4]
JP-A-8-209150 [Patent Document 5]
JP 63-137989 A [Patent Document 6]
Japanese Patent Laid-Open No. 64-81889 [Patent Document 7]
JP-A-4-28810 [Patent Document 8]
JP-A-10-287883 [0016]
[Problems to be solved by the invention]
In view of the above circumstances and present situation, the present invention aims to produce high-strength ferro-coke for blast furnaces using low-quality coal (non-slightly caking coal, etc.) as a coke raw material.
[0017]
[Means for Solving the Problems]
The present inventor, in the production of ferro-coke containing iron raw material, the treatment of non-slightly caking coal to improve the coke strength on the premise that the treatment of non-slightly caking coal affects the coke strength We studied earnestly.
[0018]
As a result, a series of treatments (classification after preheating, rapid heating, hot forming) based on the thermal characteristics of non-slightly caking coal improves the caking property of non-slightly caking coal and improves coke strength. I found out that
[0019]
This invention was made | formed based on the said knowledge, The summary is as follows.
[0020]
(1) In a method for producing ferro-coke for blast furnace by mixing, molding and dry-distilling non-slightly caking coal and iron raw material,
(A) Preheating the non-slightly caking coal pulverized coal to 250 to 350 ° C., and classifying it into pulverized coal having a particle size of 0.3 mm or less and coarse coal having a particle size of more than 0.3 mm ,
(B) 5-60 parts by mass of the pulverized coal and pulverized iron raw material having a particle size of 0.01 to 10 mm are mixed with respect to 100 parts by mass of pulverized coal .
(C) a above mixture at 250 ° C. or higher, and is rapidly heated at 1 × 10 of 2 ~1 × 10 5 ℃ / min heating rate in the initial softening temperature below the temperature of the non- or slightly caking coal, 5 Pressure molding at a pressure of 1,000 kg / cm 2 , then
(D-1) The above molded product alone, or appropriately mixed with the coarse coal and / or caking coal and dry-distilled in a chamber-type coke oven ,
A method for producing ferro-coke for blast furnaces.
[0021]
(2) In a method for producing ferro-coke for blast furnace by mixing, molding, and dry-distilling non-slightly caking coal and iron raw material,
(A) Preheating the non-slightly caking coal pulverized coal to 250 to 350 ° C., and classifying it into pulverized coal having a particle size of 0.3 mm or less and coarse coal having a particle size of more than 0.3 mm ,
(B) 5-60 parts by mass of the pulverized coal and pulverized iron raw material having a particle size of 0.01 to 10 mm are mixed with respect to 100 parts by mass of pulverized coal .
(C) a above mixture at 250 ° C. or higher, and is rapidly heated at 1 × 10 of 2 ~1 × 10 5 ℃ / min heating rate in the initial softening temperature below the temperature of the non- or slightly caking coal, 5 Pressure molding at a pressure of 1,000 kg / cm 2 , then
(D-2) The molded product is appropriately mixed with the coarse coal and / or caking coal and formed into a briquette, followed by dry distillation in a vertical shaft furnace .
A method for producing ferro-coke for blast furnaces.
[0033]
( 3 ) The method for producing ferro-coke for blast furnace according to (1) or (2) , wherein the powdered iron raw material contains iron-making dust.
[0036]
( 4 ) The method for producing ferro-coke for blast furnace according to any one of (1) to ( 3 ), wherein the molded product is a columnar or rod-shaped object having an equivalent circle diameter of 0.3 mm or more.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention.
[0041]
The non-sintered caking coal A is cut out from the blending storage tank 1 and dried and preheated by the drying preheater 2, preferably at 80 to 350 ° C. This drying preheating is important as the first step in the process of improving the caking properties of non-slightly caking coal and producing high strength ferrocoke.
[0042]
When the heating temperature is less than 80 ° C., the drying preheating is not sufficient, and the pulverized coal in the coal is agglomerated by moisture to form pseudo particles. Heating may not lead to an improvement in coal caking properties.
[0043]
On the other hand, when the heating temperature is higher than 350 ° C., the pyrolysis of coal starts, and therefore, the coal is altered.
[0044]
The dry and preheated pulverized coal is classified into pulverized coal A1 and coarse coal A2 by a classifier 3 such as a cyclone. Coal has different pulverization properties depending on the brand and water content, and the particle size distribution after pulverization also varies. Therefore, the particle size range handled as pulverized coal in the present invention is not particularly limited.
[0045]
What is necessary is just to set the critical particle size which classifies pulverized coal and coarse-grained coal suitably according to the brand and water content of coal, and also desired coke strength. Normally, coal having a particle size of 0.3 mm or less is handled as pulverized coal, and therefore, in the present invention, it is preferable to treat coal having a particle size of 0.3 mm or less as pulverized coal.
[0046]
Next, the classified pulverized coal A1 and the pulverized iron raw material B cut out from the blending storage tank 4 are mixed by the mixer 7.
[0047]
In this case, since the pulverized coal A1 is fed to the mixer 7 in a preheated state, the pulverized iron raw material B is also heated to about the preheated state of the pulverized coal A1 and fed to the mixer 7. Is preferred.
[0048]
The mixing ratio of the powdered iron raw material is 5 to 60 masses with respect to 100 parts by mass of pulverized coal in terms of stably securing the strength as coke for blast furnace and ensuring a certain improvement in the reduction efficiency in the furnace. Part is preferred.
[0049]
If the mixing ratio is less than 5 parts by mass, the reduction efficiency in the furnace cannot be expected. On the other hand, if it exceeds 60 parts by mass, it is difficult to stably secure a desired coke strength.
[0050]
As powdered iron raw material, powdered iron ore is mainly used, but basically, any powdery substance containing a required amount of iron and iron oxide may be used. Can be used.
[0051]
When mixing the pulverized iron raw material B and the pulverized coal A1 with the mixer 7, in order to mix uniformly, the particle size of the pulverized iron raw material is appropriately set corresponding to the particle size of the pulverized coal. For example, when mixing with pulverized coal having a particle size of 0.3 mm or less, the powdered iron material preferably has a particle size of 0.01 to 10 mm.
[0052]
After the pulverized coal A1 and the pulverized iron raw material B are uniformly mixed by the mixer 7, the mixture is fed to the rapid heating device 8 and rapidly heated to a temperature not lower than 250 ° C. and not higher than the softening start temperature of the coal. This rapid heating is an important treatment in combination with drying preheating in order to improve the caking property of non-minor caking pulverized coal.
[0053]
The heating rate is preferably 1 × 10 2 to 1 × 10 5 ° C / min. When the heating rate is less than 1 × 10 2 ° C./min, the caking improvement effect is not sufficiently exhibited, and as long as the heating rate is 1 × 10 2 ° C./min or more, it can be realized. As an appropriate heating rate, the upper limit was set to 1 × 10 5 ° C./min.
[0054]
Subsequent to drying preheating of non-finely caking coal, it is classified into pulverized coal and coarse coal, and if the classified pulverized coal is rapidly heated to a temperature of 250 ° C or higher and below the softening start temperature of coal, The fact that the caking property of the caking pulverized coal itself is improved is that the inventor has already disclosed it in Patent Document 4, but the present invention includes a required amount of non-caking powdered iron raw material. Since it is a production of ferro-coke, it is expected that even if the caking property of non-minor caking pulverized coal itself is increased, it does not directly lead to an improvement in coke strength.
[0055]
Therefore, the present inventor mixed pulverized coal with a particle size of 0.3 mm or less and pulverized iron ore with a particle size of 0.01 to 10 mm at different mixing ratios, formed, dry-distilled, and rapidly heated the pulverized coal. The relationship between temperature and coke strength was investigated.
[0056]
As a result, it has been found that even in a mixed state with non-caking pulverized iron ore, basically, an improvement in caking property of non-caking pulverized coal itself leads to an improvement in coke strength.
[0057]
Next, the “mixture of powdered iron raw material and pulverized coal” rapidly heated to a temperature not lower than 250 ° C. and not higher than the softening start temperature of coal by the rapid heating machine 8 is fed to the pressure molding machine 9. When charged in a coke oven, it is pressure-molded into a shaped product that can increase the bulk density as much as possible.
[0058]
In the pressure molding, the above mixture is preferably molded into a columnar or rod-shaped article having an equivalent circle diameter of 0.3 mm or more at a pressure of 5 to 1,000 kg / cm 2 .
[0059]
When the applied pressure is less than 5 kg / cm 2 , the pressure during molding is too small, and the yield of the molded product is reduced. On the other hand, when the applied pressure exceeds 1,000 kg / cm 2 , molding is performed during pressure molding with a molding machine. A crack may enter the object and break.
[0060]
By molding at a pressure within the above pressure range, a molded product that can be easily handled after molding and can stably secure a required coke strength can be obtained with high yield.
[0061]
The shape of the molded product is preferably a columnar shape or a rod shape. If the molded product is a columnar product or a rod-shaped product, the bulk density of the coke raw material is increased even when the molded product is used alone or mixed with coarse coal and / or caking coal and charged in a coke oven. Can contribute to the improvement of coke strength.
[0062]
The molded product molded by the pressure molding machine 9 may be temporarily stored in the compounding storage tank 12 before being charged into the coke oven. At this time, the coarse coal A2 classified by the classifier 3 and / or the caking coal C cut out from the blended storage tank 5 and dried and preheated by the dry preheater 6 may be mixed and stored in the blended storage tank 12. .
[0063]
In the present invention, the molded product formed by the pressure molding machine 9 is singly or appropriately mixed with coarse coal A2 and / or caking coal C, and subjected to dry distillation in a dry distillation furnace.
[0064]
As the coke oven, a chamber-type coke oven 13 or a vertical shaft furnace 15 is usually used. However, in the present invention, it is only necessary to carry out a required dry distillation, so that other types of ovens may be used. .
[0065]
When using a furnace type coke oven 13 as a dry distillation furnace, the above molded product or a mixture of the molded product and coarse coal A2 and / or caking coal C is cut out from the blending storage tank 12, and the chamber type The coke oven 13 is charged.
[0066]
However, when the vertical shaft furnace 15 is used as a dry distillation furnace, a mixture of the molded product cut out from the blending storage tank 12 and the coarse coal A2 and / or caking coal C is formed into briquettes by the briquette molding machine 14. Then, it is charged into the vertical shaft furnace 15.
[0067]
Thus, a high-strength molded coke can be manufactured by shape | molding the mixture cut out from the mixing | blending storage tank 12 to a briquette, and carrying out dry distillation.
[0068]
The dry distillation temperature may be a normal 950 to 1200 ° C., regardless of which furnace is used.
[0069]
The mixing ratio of the molded product and the coarse coal and / or caking coal is not particularly limited. What is necessary is just to set suitably in consideration of the furnace to select and desired coke intensity | strength.
[0070]
According to the present invention, high-strength ferrocoke for blast furnaces can be produced stably and with high yield in this way.
[0071]
FIG. 2 shows another embodiment of the present invention. 2 that are the same as those shown in FIG. 1 are indicated by the same numbers and symbols as those shown in FIG.
[0072]
The embodiment shown in FIG.
(I) Only the pulverized coal A1 is rapidly heated by the rapid heating machine 8 to a temperature not lower than 250 ° C. and not higher than the softening start temperature of the coal, and
(Ii) The point which mixes pulverized coal A1 and pulverized iron raw material B with the mixer 7 after rapid heating,
This is different from the embodiment shown in FIG.
[0073]
In mixing with the mixer 7, it is preferable to preheat the pulverized iron raw material B to a temperature close to the temperature of the pulverized coal A 1 in order to achieve uniform mixing of both in the mixer 7.
[0074]
The inventor of the present invention experimentally confirmed that high strength ferro-coke for blast furnaces can be produced stably and with high yield even in the embodiment employing the steps (i) and (ii).
[0075]
FIG. 3 shows still another embodiment of the present invention. In FIG. 3, the same components as those shown in FIGS. 1 and 2 are indicated by the same numerals and symbols as those shown in FIGS.
[0076]
The embodiment shown in FIG.
(I) pulverized coal A1 is granulated with a granulator 10 after rapid heating, and
(Ii) The granulated charcoal and the powdered iron raw material B are mixed by the mixed pressure molding machine 11 and pressure molded.
This is different from the embodiment shown in FIG.
[0077]
The shape of the granulated coal is preferably a spherical or pillow type with a particle size of less than 0.3 mm in order to achieve uniform mixing with the powdered iron raw material immediately after granulation. The granulator 10 may be any type of granulator, but as a granulator or agglomerator capable of granulating into a spherical or pillow shape, for example, a double roll press type molding machine or a roll compactor. Etc. are preferable.
[0078]
The mixed pressure molding of the above (ii) is performed by heating the granulated coal and the powdered iron raw material B to a temperature not lower than 250 ° C. and not higher than the softening start temperature of the coal. By this heating, the mixed pressure molding machine 11 can perform uniform pressure mixing and smooth pressure molding.
[0079]
The present inventor has experimentally confirmed that high-strength ferrocoke for blast furnaces can be produced stably and with high yield even in the embodiment employing the steps (i) and (ii).
[0080]
In the present invention, the coke strength is an index (DI 150 15) expressed on a 15 mm sieve after an impact of 150 revolutions is applied to a coke sample with a drum tester in accordance with JIS K 2151. ).
[0081]
【Example】
Next, examples of the present invention will be described. The conditions in the examples are one example of conditions adopted for demonstrating the feasibility and effects of the present invention, and the present invention is limited to the examples of conditions. It is not something.
[0082]
The present invention can appropriately set conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
[0083]
Example 1
The pulverized coal was preheated to 80 ° C. and classified into pulverized coal having a particle size of 0.3 mm or less and coarse coal having a particle size of more than 0.3 mm. The above pulverized coal and iron ore having a particle size of 0.01 to 1.0 mm and / or powdered iron raw materials such as iron making dust having a particle size of 0.01 to 0.5 mm are mixed at a ratio shown in Table 1. To prepare a mixture (a) (mixed at a ratio of 90 mass% pulverized coal and 10 mass% iron ore) and a mixture (b) (mixed at a ratio of 85 mass% pulverized coal, 10 mass% iron ore and 5 mass% iron dust) did.
[0084]
The mixture (a) and the mixture (b) are rapidly heated to 280 ° C. (a temperature not lower than 250 ° C. and not higher than the softening start temperature of coal) at a heating rate of 150 ° C./min to form a double roll press mold. Using a machine, it was pressure-molded into a columnar shape having a diameter of 15 mm at a pressure of 500 kg / cm 2 .
[0085]
Next, the above columnar molded product is mixed as appropriate alone or with coarse coal having a particle size of more than 0.3 mm and / or caking coal having a particle size of 0.01 to 5.0 mm at a mixing ratio shown in Table 2. Was charged into a chamber-type coke oven and subjected to dry distillation at 1050 to 1100 ° C.
[0086]
Table 3 shows the properties of the obtained ferrocoke. From Table 3, it is understood that the drum strength (DI 150 15 ) of the obtained coke is 82.3 to 83.4, and coke that can be sufficiently used as blast furnace coke is obtained.
[0087]
[Table 1]
Figure 0004267390
[0088]
[Table 2]
Figure 0004267390
[0089]
[Table 3]
Figure 0004267390
[0090]
(Example 2)
The molded product obtained in Example 1 (the mixture (a) and the mixture (b) was rapidly heated to 280 ° C. [a temperature not lower than 250 ° C. and not higher than the softening start temperature of coal] at a heating rate of 150 ° C./min]. , A molded product obtained by pressure-molding into a columnar shape having a diameter of 15 mm at a pressure of 500 kg / cm 2 using a double roll press-type molding machine), and coarse coal and / or grains having a particle size of more than 0.3 mm Coking coal having a diameter of 0.01 to 5.0 mm was mixed at a ratio shown in Table 4 to form a briquette having a capacity of 62 cm 3 .
[0091]
The briquette was charged into a vertical shaft furnace and subjected to dry distillation at 1050 to 1100 ° C.
[0092]
Table 5 shows the properties of the obtained ferrocoke. From Table 5, it is understood that the drum strength (DI 150 15 ) of the obtained coke is 83.0 to 83.9, and coke that can be sufficiently used as blast furnace coke is obtained.
[0093]
[Table 4]
Figure 0004267390
[0094]
[Table 5]
Figure 0004267390
[0095]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a high intensity | strength ferro coke can be manufactured at low cost and with a sufficient yield using non-slightly caking coal.
[0096]
Therefore, the present invention greatly contributes to the stable operation and productivity improvement of the blast furnace.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 shows another embodiment of the present invention.
FIG. 3 shows yet another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 4, 5, 12 ... Compound storage tank 2, 6 ... Drying preheating machine 3 ... Classifier 7 ... Mixer 8 ... Rapid heating machine 9 ... Pressure molding machine 10 ... Granulator 11 ... Mixing pressure molding machine 13 ... Chamber furnace coke oven 14 ... Briquette molding machine 15 ... Vertical shaft furnace A ... Non-fine caking coal A1 ... Fine coal A2 ... Coarse coal B ... Powdered iron raw material C ... Caking coal

Claims (4)

非微粘結炭と鉄原料を混合、成形し、乾留して高炉用フェロコークスを製造する方法において、
(a)前記非微粘結炭の粉炭を250〜350℃に予熱して、粒径0.3mm以下の微粉炭と粒径0.3mm超の粗粒炭に分級し、
(b)上記微粉炭と粒径0.01〜10mmの粉状鉄原料を、微粉炭100質量部に対し、5〜60質量部混合し、
(c)上記混合物を、250℃以上で、かつ、非微粘結炭の軟化開始温度以下の温度に1×10 〜1×10 ℃/分の加熱速度で急速加熱して、5〜1,000kg/cm の圧力で加圧成形し、次いで、
(d-1)上記成形物を単独で、又は、上記粗粒炭及び/又は粘結炭と適宜混合して室炉式コークス炉で乾留する、
ことを特徴とする高炉用フェロコークスの製造方法。
In a method for producing ferro-coke for blast furnace by mixing, molding and dry distillation of non-slightly caking coal and iron raw material,
(A) Preheating the non-slightly caking coal pulverized coal to 250 to 350 ° C., and classifying it into pulverized coal having a particle size of 0.3 mm or less and coarse coal having a particle size of more than 0.3 mm ,
(B) 5-60 parts by mass of the pulverized coal and pulverized iron raw material having a particle size of 0.01 to 10 mm are mixed with respect to 100 parts by mass of pulverized coal .
(C) a above mixture at 250 ° C. or higher, and is rapidly heated at 1 × 10 of 2 ~1 × 10 5 ℃ / min heating rate in the initial softening temperature below the temperature of the non- or slightly caking coal, 5 Pressure molding at a pressure of 1,000 kg / cm 2 , then
(D-1) The above molded product alone, or appropriately mixed with the coarse coal and / or caking coal and dry-distilled in a chamber-type coke oven ,
A method for producing ferro-coke for blast furnaces.
非微粘結炭と鉄原料を混合、成形し、乾留して高炉用フェロコークスを製造する方法において、
(a)前記非微粘結炭の粉炭を250〜350℃に予熱して、粒径0.3mm以下の微粉炭と粒径0.3mm超の粗粒炭に分級し、
(b)上記微粉炭と粒径0.01〜10mmの粉状鉄原料を、微粉炭100質量部に対し、5〜60質量部混合し、
(c)上記混合物を、250℃以上で、かつ、非微粘結炭の軟化開始温度以下の温度に1×10 〜1×10 ℃/分の加熱速度で急速加熱して、5〜1,000kg/cm の圧力で加圧成形し、次いで、
(d-2)上記成形物を上記粗粒炭及び/又は粘結炭と適宜混合してブリケットに成形後、縦型シャフト炉で乾留する、
ことを特徴とする高炉用フェロコークスの製造方法。
In a method for producing ferro-coke for blast furnace by mixing, molding and dry distillation of non-slightly caking coal and iron raw material,
(A) Preheating the non-slightly caking coal pulverized coal to 250 to 350 ° C., and classifying it into pulverized coal having a particle size of 0.3 mm or less and coarse coal having a particle size of more than 0.3 mm ,
(B) 5-60 parts by mass of the pulverized coal and pulverized iron raw material having a particle size of 0.01 to 10 mm are mixed with respect to 100 parts by mass of pulverized coal .
(C) a above mixture at 250 ° C. or higher, and is rapidly heated at 1 × 10 of 2 ~1 × 10 5 ℃ / min heating rate in the initial softening temperature below the temperature of the non- or slightly caking coal, 5 Pressure molding at a pressure of 1,000 kg / cm 2 , then
(D-2) The molded product is appropriately mixed with the coarse coal and / or caking coal and formed into a briquette, followed by dry distillation in a vertical shaft furnace .
A method for producing ferro-coke for blast furnaces.
前記粉状鉄原料が、製鉄ダストを含むことを特徴とする請求項1又は2に記載の高炉用フェロコークスの製造方法。The method for producing ferro-coke for blast furnace according to claim 1 or 2 , wherein the powdered iron raw material contains iron-making dust. 前記成形物が、円相当径0.3mm以上の柱状物ないし棒状物であることを特徴とする請求項1〜のいずれか1項に記載の高炉用フェロコークスの製造方法。The method for producing ferro-coke for blast furnace according to any one of claims 1 to 3 , wherein the molded product is a columnar or rod-shaped object having an equivalent circle diameter of 0.3 mm or more.
JP2003206474A 2003-08-07 2003-08-07 Method for producing ferro-coke for blast furnace Expired - Fee Related JP4267390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206474A JP4267390B2 (en) 2003-08-07 2003-08-07 Method for producing ferro-coke for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206474A JP4267390B2 (en) 2003-08-07 2003-08-07 Method for producing ferro-coke for blast furnace

Publications (2)

Publication Number Publication Date
JP2005053982A JP2005053982A (en) 2005-03-03
JP4267390B2 true JP4267390B2 (en) 2009-05-27

Family

ID=34363324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206474A Expired - Fee Related JP4267390B2 (en) 2003-08-07 2003-08-07 Method for producing ferro-coke for blast furnace

Country Status (1)

Country Link
JP (1) JP4267390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635105A (en) * 2016-12-07 2017-05-10 神华集团有限责任公司 Active coke preparation device and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910364B (en) 2007-12-26 2014-05-14 杰富意钢铁株式会社 Method of producing ferro-coke
JP5470855B2 (en) * 2009-01-06 2014-04-16 Jfeスチール株式会社 Manufacturing method of ferro-coke for metallurgy
JP5386988B2 (en) * 2009-01-06 2014-01-15 Jfeスチール株式会社 Manufacturing method of ferro-coke for metallurgy
JP5491795B2 (en) * 2009-07-31 2014-05-14 株式会社神戸製鋼所 Method for producing massive shaped body for iron making raw material and iron ore-containing coke
CN104164244A (en) * 2014-08-19 2014-11-26 安徽乾海环保科技有限公司 Coal full-grain size grading pyrolysis and active coke preparation coupling process and system in coal gas circulating
KR101910405B1 (en) 2015-02-06 2018-10-22 제이에프이 스틸 가부시키가이샤 Ferrocoke manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635105A (en) * 2016-12-07 2017-05-10 神华集团有限责任公司 Active coke preparation device and method
CN106635105B (en) * 2016-12-07 2019-07-23 神华集团有限责任公司 Activated coke preparation facilities and method

Also Published As

Publication number Publication date
JP2005053982A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
KR101644785B1 (en) Process for producing agglomerates of finely particulate iron carriers
US6605130B2 (en) Pellets incorporated with carbonaceous material
JP4996105B2 (en) Vertical coal interior agglomerates
JP5571345B2 (en) Method for producing briquettes, method for producing reduced metals, and method for separating zinc or lead
US8419824B2 (en) Method for producing briquette, method for producing reduced metal, and method for separating zinc or lead
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
CN101649391B (en) Pellet preparation method
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
WO2012049974A1 (en) Process for production of reduced iron
JP2004211179A (en) Method of reducing chromium-containing raw material
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP2005053986A (en) Method for producing ferrocoke for blast furnace
JP2006328236A (en) Manufacturing process of coke and manufacturing process of molded coal used for it
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JPH1112619A (en) Production of reduced iron
JP2011032532A (en) Method for producing agglomerate for blast furnace raw material
JPH0948977A (en) Production of blast furnace coke
JP2023019428A (en) Smelting method for nickel oxide ore
JP2009132895A (en) Method for reforming non or slightly caking coal with low coalification degree, molded product for reforming non or slightly caking coal, and method for producing coke
JPH09118883A (en) Production of coke for blast furnace
JP2015074809A (en) Method for producing granular metal iron
JPH09194847A (en) Production of coke
KR101246330B1 (en) METHOD FOR MANUFACTURING Fe-Cr

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees