JP5470855B2 - Manufacturing method of ferro-coke for metallurgy - Google Patents

Manufacturing method of ferro-coke for metallurgy Download PDF

Info

Publication number
JP5470855B2
JP5470855B2 JP2009000574A JP2009000574A JP5470855B2 JP 5470855 B2 JP5470855 B2 JP 5470855B2 JP 2009000574 A JP2009000574 A JP 2009000574A JP 2009000574 A JP2009000574 A JP 2009000574A JP 5470855 B2 JP5470855 B2 JP 5470855B2
Authority
JP
Japan
Prior art keywords
inert
coal
iron ore
coke
ferro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009000574A
Other languages
Japanese (ja)
Other versions
JP2010159315A (en
Inventor
英和 藤本
泉 下山
孝思 庵屋敷
喜代志 深田
広行 角
勇介 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009000574A priority Critical patent/JP5470855B2/en
Publication of JP2010159315A publication Critical patent/JP2010159315A/en
Application granted granted Critical
Publication of JP5470855B2 publication Critical patent/JP5470855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、石炭と鉄鉱石との混合物を成型して乾留して製造する冶金用フェロコークスの製造方法に関する。   The present invention relates to a method for producing ferro-coke for metallurgy, in which a mixture of coal and iron ore is molded and subjected to dry distillation.

原料石炭に粉鉄鉱石を配合し、この混合物を通常の室炉式コークス炉で乾留してフェロコークスを製造する技術としては、(a)石炭と粉鉄鉱石との粉混合物を室炉式コークス炉に装入する方法、(b)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法などが検討されてきた(例えば、非特許文献1参照。)。しかし通常の室炉式コークス炉は珪石煉瓦で構成されているので、鉄鉱石を装入した場合に鉄鉱石が珪石煉瓦の主成分であるシリカと反応し、低融点のファイヤライト(2FeO・SiO2)が生成して珪石煉瓦の損傷を招く。このため室炉式コークス炉でフェロコークスを製造する技術は、工業的には実施されていない。 The technology for producing ferro-coke by blending powdered iron ore with raw coal and producing this ferro-coke by dry-distilling this mixture in a normal chamber-type coke oven is as follows. A method of charging into a furnace, (b) a method of forming coal and iron ore cold, that is, at room temperature, and charging the molded product into a chamber-type coke oven have been studied (for example, non-patent literature). 1). However, since ordinary furnace-type coke ovens are composed of silica brick, when iron ore is charged, iron ore reacts with silica, which is the main component of silica brick, and low melting point firelite (2FeO · SiO 2 ) is generated and causes damage to the quartz brick. For this reason, the technique which manufactures ferro-coke with a chamber-type coke oven is not implemented industrially.

上記問題を回避するため、乾留後のコークスに鉄含有物質を含浸させて高反応性コークス(フェロコークス)を製造する方法が提案されている(例えば、特許文献1参照。)。この方法では、コークス中に鉄含有物質を含浸させるのが困難であり、内部まで鉄の濃度を上昇させるには時間がかかり、生産性を大幅に低下させてしまう。またハンドリング時の衝撃で含浸させた鉄含有物がはがれ落ちてしまい、効果が低下する等の問題が残されている。   In order to avoid the above problem, a method has been proposed in which coke after dry distillation is impregnated with an iron-containing substance to produce highly reactive coke (ferro coke) (see, for example, Patent Document 1). In this method, it is difficult to impregnate the coke with the iron-containing substance, and it takes time to increase the iron concentration to the inside, and the productivity is greatly reduced. Moreover, the iron-containing material impregnated by the impact at the time of handling peels off, and the problem that an effect falls, etc. remains.

近年、室炉式コークス製造法に替わるコークス製造方法として、連続式成型コークス製造法が開発されている。連続式成型コークス法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。資源埋蔵量が豊富で安価な非微粘結炭を多量に使用しても、通常の室炉式コークス炉と同等の強度を有するコークスが製造可能なことが確認されているが、使用する石炭の粘結性が高い場合にはシャフト炉内で成型炭が軟化融着し、シャフト炉操業が困難になると共に変形や割れ等のコークス品質低下を招く。   In recent years, a continuous molding coke manufacturing method has been developed as a coke manufacturing method replacing the chamber furnace type coke manufacturing method. In the continuous molding coke method, a vertical shaft furnace composed of chamotte bricks instead of silica bricks is used as the carbonization furnace, and coal is molded into a predetermined size in the cold, and then charged into the shaft furnace for circulation. The coal is carbonized by heating with a heat medium gas to produce a molded coke. It has been confirmed that even if a large amount of non-slightly caking coal that is abundant in resource reserves and inexpensive is used, it is possible to produce coke that has the same strength as a normal chamber-type coke oven. When the caking property is high, the coal is softened and fused in the shaft furnace, which makes it difficult to operate the shaft furnace and causes deterioration of coke quality such as deformation and cracking.

連続式コークス製造法でのシャフト炉内での融着抑制のために、石炭に鉄鉱石を全体量の15〜40%となるように添加し、冷間で成型物を製造し、シャフト炉に装入する方法が提案されている(例えば、特許文献2参照。)。この方法では、鉄鉱石には粘結性がないので、冷間の状態で成型物を製造するために高価なバインダーを添加する必要がある。そこで、原料としての石炭と鉄鉱石あるいは鉄原料を、加熱した熱間の状態で塊成型物に成型する方法も提案されている(例えば、特許文献3、特許文献4参照。)。   In order to suppress fusion in the shaft furnace in the continuous coke production method, iron ore is added to the coal so as to be 15 to 40% of the total amount, and a molded product is produced coldly. A method of charging has been proposed (see, for example, Patent Document 2). In this method, since iron ore has no caking property, it is necessary to add an expensive binder to produce a molded product in a cold state. Then, the method of shape | molding the coal as a raw material and iron ore, or an iron raw material to a lump molding in the state between the heated heat | fever is proposed (for example, refer patent document 3 and patent document 4).

特開2004−315664号公報JP 2004-315664 A 特開平6−65579号公報JP-A-6-65579 特開2004−217914号公報JP 2004-217914 A 特開2005−53982号公報JP 2005-53982 A

燃料協会 「コークス技術年報」1958年、p.38Fuel Association "Coke Technology Annual Report" 1958, p. 38

しかしながら、上記特許文献2〜4において、石炭と、鉄鉱石あるいは鉄原料とでは、乾留時における熱的挙動が異なることから、乾留後の強度低下が大きいという問題が残されている。   However, in the said patent documents 2-4, since the thermal behavior at the time of dry distillation differs between coal and an iron ore or an iron raw material, the problem that the strength fall after dry distillation is large remains.

鉄鉱石と炭材との成型物を乾留してフェロコークスを製造する際、還元率の上昇とともに炭材が鉱石の還元に使用されるため、フェロコークス中に欠陥構造が発生し強度低下が顕著となる。また、成型物の乾留中に成型物同士の融着を抑制する必要があるので、鉱石比率が50mass%以下のフェロコークスを製造する場合には炭材として難溶融性炭材を配合する必要が生じる。難溶融性炭材はフェロコークスの強度向上に寄与しないため、難溶融性炭材を用いる場合は特に、高い還元率を維持しながらフェロコークスの強度を確保するのは困難である。   When ferro-coke is produced by dry distillation of iron ore and carbonaceous material, the carbonaceous material is used to reduce the ore as the reduction rate increases, so a defect structure is generated in the ferro-coke and the strength is significantly reduced. It becomes. Moreover, since it is necessary to suppress fusion | bonding of molded products during dry distillation of a molded product, when manufacturing ferro-coke whose ore ratio is 50 mass% or less, it is necessary to mix | blend a hardly-melting carbon material as a carbon material. Arise. Since the hardly fusible carbon material does not contribute to improving the strength of the ferro coke, it is difficult to ensure the strength of the ferro coke while maintaining a high reduction rate, particularly when the hardly fusible carbon material is used.

したがって本発明の目的は、このような従来技術の課題を解決し、炭材と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する際に、鉄鉱石の還元が進行してもフェロコークス強度の低下が抑制される、冶金用フェロコークスの製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and to produce ferro-coke by dry distillation of a molded product made of carbonaceous material and iron ore, even if the reduction of iron ore proceeds. An object of the present invention is to provide a method for producing metallurgical ferro-coke in which a reduction in coke strength is suppressed.

本発明はかかる事情に鑑みてなされたものであって、炭材中の高イナート炭材(イナート濃縮炭材)を分離し、この高イナート炭材に鉄鉱石を含浸させることにより、高イナート炭材周辺に鉄鉱石還元に伴う欠陥構造を発生させる。そして、高イナート炭材を分離した残りの低イナート炭材(軟化溶融しやすい炭材)に対する鉄鉱石の含有率を相対的に下げることにより、鉄鉱石の還元に伴う欠陥構造を発生させないことで高強度の冶金用フェロコークスを得るものである。   The present invention has been made in view of such circumstances, and by separating a high inert carbon material (inert concentrated carbon material) in the carbon material and impregnating the high inert carbon material with iron ore, the high inert carbon material is obtained. The defect structure accompanying iron ore reduction is generated around the material. And by reducing the content of iron ore relative to the remaining low inert carbon material (carbon material that is easily softened and melted) from which the high inert carbon material is separated, the defect structure associated with the reduction of iron ore is not generated. High strength ferro-coke for metallurgy is obtained.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)炭材と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する方法であって、前記炭材をイナート含有量40mass%以上の高イナート炭材と、該高イナート炭材よりもイナート含有量の低い低イナート炭材とに分離し、該分離した前記高イナート炭材と前記鉄鉱石の少なくとも一部とを混合して前記高イナート炭材に前記鉄鉱石を含浸させた後に、前記低イナート炭材と前記鉄鉱石の残部とを混合して成型物を製造することを特徴とする冶金用フェロコークスの製造方法。
(2)炭材を粒径により、高イナート炭材と低イナート炭材とに分離することを特徴とする(1)に記載の冶金用フェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing ferro-coke by dry distillation of a molded product comprising a carbon material and iron ore, wherein the carbon material is a high inert carbon material having an inert content of 40 mass% or more, and the high inert carbon material. Is separated into a low inert carbonaceous material having a low inert content, and the high inert carbonaceous material is impregnated with the iron ore by mixing the separated high inert carbonaceous material and at least a part of the iron ore. A method for producing metallurgical ferro-coke, characterized in that the low inert carbonaceous material and the remainder of the iron ore are mixed to produce a molded product.
(2) The method for producing ferro-coke for metallurgy according to (1), wherein the carbon material is separated into a high inert carbon material and a low inert carbon material according to a particle size.

本発明によれば、難溶融性炭材を用いてフェロコークスを製造する場合であっても、高強度のフェロコークスが得られる。   According to the present invention, even when ferrocoke is produced using a hardly fusible carbon material, high strength ferrocoke can be obtained.

これにより、フェロコークスを高炉で使用した場合に、CO2ガスとの反応より発生する粉の発生を抑制し、フェロコークス使用による圧力損失の上昇を抑制しつつ、フェロコークスとCO2ガスとの反応速度の増大により熱保存帯温度を低下させることができ、高炉の還元材比を低減することが可能となる。 As a result, when ferro-coke is used in a blast furnace, the generation of powder generated by reaction with CO 2 gas is suppressed, and the increase in pressure loss due to the use of ferro-coke is suppressed, while ferro-coke and CO 2 gas are The heat storage zone temperature can be lowered by increasing the reaction rate, and the reducing material ratio of the blast furnace can be reduced.

鉄鉱石の高イナート炭材への分配率と、フェロコークス強度との関係を示すグラフ。The graph which shows the relationship between the distribution rate of iron ore to the high inert carbonaceous material, and ferro-coke strength. 鉄鉱石の高イナート炭材への分配率と、成型フェロコークス強度との関係を示すグラフ。The graph which shows the relationship between the distribution rate of iron ore to the high inert carbonaceous material, and molding ferro-coke strength.

本発明は、炭材と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する方法であって、炭材をイナート含有量が40mass%以上の高イナート炭材と、該高イナート炭材よりもイナート含有量の低い低イナート炭材とに分離し、鉄鉱石が高イナート炭材に含浸された状態で低イナート炭材と混合して成型物を成型して乾留して冶金用フェロコークスを製造する。鉄鉱石がイナート含有量40mass%以上の高イナート炭材に含浸された状態とすることにより、鉄鉱石の還元により生成する欠陥構造は高イナート炭材の内部に発生し、フェロコークス強度を発現させる軟化溶融を示す低イナート炭材内部には欠陥構造を発生させないフェロコークスとなる。これによりフェロコークス内の鉄鉱石の還元が進行してもフェロコークスの強度低下が抑制可能である。   The present invention is a method for producing ferro-coke by dry distillation of a molded product comprising a carbon material and iron ore, wherein the carbon material is a high inert carbon material having an inert content of 40 mass% or more, and the high inert carbon material Ferro-coke for metallurgy by separating into low-inert carbon material with lower inert content and mixing with low-inert carbon material with iron ore impregnated in high-inert carbon material, molding and dry distillation Manufacturing. By making iron ore impregnated in a high inert carbonaceous material with an inert content of 40 mass% or more, the defect structure generated by the reduction of iron ore occurs inside the high inert carbonaceous material and develops ferro-coke strength. The ferro-coke does not generate a defect structure inside the low inert carbonaceous material showing softening and melting. Thereby, even if the reduction | restoration of the iron ore in ferro coke advances, the intensity | strength fall of ferro coke can be suppressed.

なお、高イナート炭材とはイナート含有量が40mass%以上のイナート含有量の高い難溶融性の炭材であり、低イナート炭材とは、前記高イナート炭材に比較してイナート含有量が40mass%未満のイナート含有量の低い軟化溶融しやすい炭材をさす。   The high inert carbon material is a hardly fusible carbon material having a high inert content with an inert content of 40 mass% or more, and the low inert carbon material has an inert content as compared with the high inert carbon material. Carbon material with a low inert content of less than 40 mass% and easy to soften and melt.

炭材のイナート含有量を測定して高イナート炭材と低イナート炭材とに分離することも可能であるが、炭材を粒径により、高イナート炭材と低イナート炭材とに分離することが好ましい。コークスとして使用される石炭のイナートの含有量は、通常20〜40mass%である。イナートとはセミフジニット、フジニットなどの加熱中に軟化溶融しにくい成分のことを指す。一般に石炭を粉砕したとき、イナートは粗い粒子に濃縮されやすいという性質がある。そこでこの性質を利用し、複数種類の石炭が混合されている配合炭を用いて、粒径10mm以下に粉砕後の石炭を篩い分けすることにより高イナート炭材の分離を試みた。平均最大反射率1.0%、最高流動度300ddpm、イナート含有量(トータルイナート)32mass%の配合炭を篩目6mmの篩で分級し、粒径6mm以上と以下の石炭粒子の質量割合とイナート含有量を測定した。粒径6mm以上の石炭の質量割合は約20mass%でイナート含有量は40mass%以上であった。一方、粒径6mm未満では質量割合が約80mass%でイナート含有量は30mass%だった。これにより粒径6mm以上の石炭にイナートが濃縮され、粒径により配合炭を高イナート炭材と低イナート炭材とに分離できることが分かり、また、粒径6mm未満では低イナート炭材が混じり易いことが分かった。   It is possible to measure the inert content of the charcoal and separate it into high inert charcoal and low inert charcoal, but separate the charcoal into high inert charcoal and low inert charcoal according to the particle size. It is preferable. The content of coal inert used as coke is usually 20 to 40 mass%. Inert refers to a component that is difficult to soften and melt during heating, such as semi-fuji knit and fuji knit. Generally, when coal is pulverized, inert has a property of being easily concentrated into coarse particles. Therefore, using this property, an attempt was made to separate the high inert carbonaceous material by sieving the pulverized coal to a particle size of 10 mm or less using a blended coal in which a plurality of types of coal are mixed. A blended coal with an average maximum reflectance of 1.0%, a maximum fluidity of 300 ddpm, and an inert content (total inert) of 32 mass% is classified with a sieve having a mesh size of 6 mm. The content was measured. The mass ratio of coal having a particle size of 6 mm or more was about 20 mass%, and the inert content was 40 mass% or more. On the other hand, when the particle size was less than 6 mm, the mass ratio was about 80 mass% and the inert content was 30 mass%. As a result, it is understood that the inert is concentrated in the coal having a particle size of 6 mm or more, and the blended coal can be separated into the high inert carbon material and the low inert carbon material depending on the particle size. I understood that.

以上のように、炭材を篩い分けして、粒径の大きいものをイナート含有量40mass%以上の高イナート炭材、粒径の小さいものを低イナート炭材として分離することが可能である。篩い分けの際の篩目は、6mm〜8mm程度とすることが好ましい。   As described above, the carbonaceous material can be sieved to separate a large particle size as a high inert carbon material having an inert content of 40 mass% or more and a small particle size as a low inert carbon material. It is preferable that the sieve mesh in sieving is about 6 mm to 8 mm.

イナート含有量40mass%以上の高イナート炭材に鉄鉱石を含浸させてフェロコークスを製造するには、押し出し成型機を用いる方法や、ボールミルを用いて高イナート炭材と鉄鉱石とを混合する方法等を用いることができる。押し出し成型機を用いる場合は、高イナート炭材と鉄鉱石と少量のバインダーとを押し出し成型機に投入して混練しながら押し出し機のシリンダー内を通して、その間に鉄鉱石を高イナート炭材内部に強制的に含浸させる。この鉄鉱石が含浸された高イナート炭材の粒子群を適当なサイズにせん断して低イナート炭材とバインダーとともにミキサーに投入し、ダブルロール成型機のような成型機を用いて成型し、成型物を製造する。得られた成型物を乾留してフェロコークスを製造する。   In order to produce ferro-coke by impregnating iron ore into a high inert carbon material having an inert content of 40 mass% or more, a method using an extrusion molding machine, or a method of mixing a high inert carbon material and iron ore using a ball mill Etc. can be used. When using an extrusion molding machine, high inert carbonaceous material, iron ore, and a small amount of binder are put into the extrusion molding machine and passed through the cylinder of the extrusion machine while kneading, while iron ore is forced into the high inert carbonaceous material. Impregnate. This high-inert carbon material particle impregnated with iron ore is sheared to an appropriate size, put into a mixer together with the low-inert carbon material and a binder, and then molded using a molding machine such as a double roll molding machine. Manufacturing things. Ferro-coke is produced by dry distillation of the obtained molded product.

鉄鉱石の一部が高イナート炭材に混合されて含浸されれば、フェロコークス強度向上の効果があり、必ずしも鉄鉱石の全量を高イナート炭材に混合して含浸させる必要はない。鉄鉱石の一部を高イナート炭材に混合する場合には、鉄鉱石の残部は低イナート炭材とともに、鉄鉱石の一部と混合した高イナート炭材と混合して成型すればよい。鉄鉱石の全量を高イナート炭材と混合した場合は、残部の鉄鉱石は存在しないので、高イナート炭材と鉄鉱石とを混合して高イナート炭材に前記鉄鉱石を含浸させた後に、低イナート炭材を混合して成型物を製造することになる。   If a portion of the iron ore is mixed and impregnated with the high inert carbon material, there is an effect of improving the ferro-coke strength, and it is not always necessary to mix and impregnate the entire amount of the iron ore with the high inert carbon material. When a part of the iron ore is mixed with the high inert carbon material, the remainder of the iron ore may be mixed with the low inert carbon material and mixed with the high inert carbon material mixed with a part of the iron ore. When the total amount of iron ore is mixed with high inert coal, the remaining iron ore does not exist, so after mixing high inert coal and iron ore and impregnating the iron ore into high inert coal, A molded product is produced by mixing low inert carbonaceous materials.

高イナート炭材に鉄鉱石を含浸させる効果を確認するため、粉砕して篩い分けして得られた粒径6mm以上の石炭を高イナート炭材として、全量が粒径3mm以下となるように粉砕し、微粉鉄鉱石とともにボールミルに投入し15分間粉砕した。なお、粒径6mm以上の石炭のイナート含有量は平均で40mass%以上であった。また、前記高イナート炭材である石炭は粒径0.3mm以下まで粉砕され、鉄鉱石は石炭に含浸された。一方、粒径6mm以下の石炭を低イナート炭材として、粒径3mm以下に粉砕した。鉄鉱石を含浸させた高イナート炭材と低イナート炭材とを混合し、16kg乾留炉にて乾留した。石炭かさ密度は750kg/m3で水分は全体で5mass%とした。石炭質量に対し微粉鉄鉱石を5mass%とした。鉄鉱石全量に対する、高イナート炭材と混合して含浸させた鉄鉱石量の割合(鉄鉱石の高イナート炭材への分配率)とコークス強度の関係を図1に示す。鉄鉱石全量を高イナート炭材と混合した場合は分配率100mass%となる。図1によれば、鉄鉱石の少なくとも一部を高イナート炭材に混合して含浸させればコークス強度向上の効果があり、鉄鉱石を高イナート炭材に混合する割合が大きいほどコークス強度は向上することが分かる。ただし、分配率80mass%と100mass%ではコークス強度にほとんど違いは見られなかった。これは、鉄鉱石を全量高イナート炭材に混合すると低イナート石炭が加熱中に発泡しコークスが多孔質化したためではないかと推察される。鉄鉱石の高イナート炭材および低イナート炭材への分配率を調整すれば、鉄鉱石の添加に伴うコークス強度の低下を抑制することが可能なことが分かった。 In order to confirm the effect of impregnating high ore charcoal with iron ore, pulverizing and sieving coal with a particle size of 6 mm or more as high inert charcoal and pulverizing so that the total amount is 3 mm or less Then, it was put into a ball mill together with fine iron ore and pulverized for 15 minutes. In addition, the inert content of coal having a particle size of 6 mm or more was 40 mass% or more on average. In addition, the high inert coal material was pulverized to a particle size of 0.3 mm or less, and the iron ore was impregnated in the coal. On the other hand, coal having a particle size of 6 mm or less was pulverized to a particle size of 3 mm or less as a low inert carbonaceous material. A high inert carbon material impregnated with iron ore and a low inert carbon material were mixed and subjected to carbonization in a 16 kg carbonization furnace. The coal bulk density was 750 kg / m 3 and the water content was 5 mass% as a whole. The fine iron ore was 5 mass% with respect to the coal mass. FIG. 1 shows the relationship between the ratio of the amount of iron ore impregnated with the high inert carbonaceous material and the amount of iron ore (the distribution ratio of iron ore to the high inert carbonaceous material) and the coke strength with respect to the total amount of iron ore. When the total amount of iron ore is mixed with high inert charcoal, the distribution rate is 100 mass%. According to FIG. 1, coke strength can be improved by mixing and impregnating at least part of iron ore with high inert coal, and the greater the proportion of iron ore mixed with high inert coal, the greater the coke strength. It turns out that it improves. However, there was almost no difference in coke strength between the distribution ratio of 80 mass% and 100 mass%. This is presumably because the low-inert coal foamed during heating and the coke became porous when all the iron ore was mixed with the high-inert coal. It was found that by adjusting the distribution ratio of iron ore to high inert coal and low inert coal, it is possible to suppress the reduction of coke strength due to the addition of iron ore.

成型フェロコークスの場合について検討した。用いた石炭は、平均最大反射率0.7%、最高流動度3ddpm、トータルイナート35mass%の石炭で、この石炭に対して篩目6mmの篩で分級し、篩い上を高イナート炭材、篩い下を低イナート炭に分離した。篩い上の石炭はイナート含有量が平均40mass%以上の高イナート炭材であった。実施例1と同様に石炭質量に対し微粉鉄鉱石を5mass%とし、微粉鉄鉱石を高イナート炭材および低イナート炭へ分配させた。すなわち、微粉鉄鉱石の高イナート炭材への分配率を0〜100mass%として混合して微粉鉄鉱石を高イナート炭材に含浸させた後、残部の微粉鉄鉱石と低イナート炭と混合して、成型物を製造した。成型にはバインダーを用い、カップサイズ6ccの卵形ブリケットをダブルロール成型機で製造した後、乾留した。結果を図2に示す。   The case of molded ferro-coke was examined. The coal used is a coal with an average maximum reflectance of 0.7%, a maximum fluidity of 3 ddpm, and a total inert of 35 mass%. The bottom was separated into low inert charcoal. The coal on the sieve was a high inert carbonaceous material having an average inert content of 40 mass% or more. As in Example 1, the fine iron ore was 5 mass% with respect to the coal mass, and the fine iron ore was distributed to the high inert coal and the low inert coal. That is, the distribution ratio of fine iron ore to high inert coal is mixed at 0 to 100 mass%, and the fine iron ore is impregnated into high inert coal, and then the remaining fine iron ore and low inert coal are mixed. A molded product was produced. A binder was used for molding, and an egg-shaped briquette having a cup size of 6 cc was produced by a double roll molding machine and then subjected to dry distillation. The results are shown in FIG.

図2によれば、鉄鉱石の高イナート炭材への分配率が高いほど成型フェロコークス強度は向上し、鉄鉱石を高イナート炭材に含浸させる効果は非常に大きいことが分かる。したがって、実施例1の場合と同様に、鉄鉱石を高イナート炭材部分へ分配させてフェロコークスを製造すればよいことがわかった。   According to FIG. 2, it can be seen that the higher the distribution ratio of iron ore to the high inert carbon material, the stronger the ferro-coke strength, and the greater the effect of impregnating the iron ore into the high inert carbon material. Therefore, as in the case of Example 1, it was found that ferrous coke may be produced by distributing iron ore to the high inert carbonaceous material portion.

Claims (2)

イナートを含有する石炭と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する方法であって、
前記石炭篩目6〜8mmの篩で分級して、イナート含有量40mass%以上の高イナート石炭とイナート含有量40mass%未満の低イナート石炭とに分離し、
該分離した前記高イナート石炭と前記鉄鉱石の少なくとも一部とを混合して前記高イナート石炭に前記鉄鉱石を含浸させた後に、前記低イナート石炭と前記鉄鉱石の残部とを混合して成型物を製造することを特徴とする冶金用フェロコークスの製造方法。
A method for producing ferro-coke by dry distillation of a molding composed of coal containing iron and iron ore,
The coal was classified with a sieve of sieve 6-8 mm, it is separated into a low inert coal under inert content 40 mass% or more high inert coal and inert content 40 mass%,
The separated high inert coal and at least a part of the iron ore are mixed and impregnated with the iron ore in the high inert coal , and then the low inert coal and the remainder of the iron ore are mixed and molded. A method for producing metallurgical ferro-coke, characterized by producing a product.
イナートを含有する石炭と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する方法であって、
前記石炭を篩目6〜8mmの篩で分級して、篩い上の石炭篩い下の石炭とに分離し、
前記篩いの上の石炭と前記鉄鉱石の少なくとも一部とを混合して前記篩い上の石炭に前記鉄鉱石を含浸させた後に、前記篩い下の石炭と前記鉄鉱石の残部とを混合して成形物を製造することを特徴とする冶金用フェロコークスの製造方法。
A method for producing ferro-coke by dry distillation of a molding composed of coal containing iron and iron ore,
The coal was classified with a sieve of sieve 6-8 mm, is separated into a coal under the sieve coal on the sieve,
After impregnated with the iron ore to coal on the sieve the by mixing at least a portion of the iron ore and coal on the sieve, was mixed with the remainder of the iron ore and coal under sieve the A method for producing metallurgical ferro-coke, characterized by producing a molded product.
JP2009000574A 2009-01-06 2009-01-06 Manufacturing method of ferro-coke for metallurgy Active JP5470855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000574A JP5470855B2 (en) 2009-01-06 2009-01-06 Manufacturing method of ferro-coke for metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000574A JP5470855B2 (en) 2009-01-06 2009-01-06 Manufacturing method of ferro-coke for metallurgy

Publications (2)

Publication Number Publication Date
JP2010159315A JP2010159315A (en) 2010-07-22
JP5470855B2 true JP5470855B2 (en) 2014-04-16

Family

ID=42576727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000574A Active JP5470855B2 (en) 2009-01-06 2009-01-06 Manufacturing method of ferro-coke for metallurgy

Country Status (1)

Country Link
JP (1) JP5470855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6145503B2 (en) 2013-02-21 2017-06-14 Jfeスチール株式会社 Method for producing metallurgical coke

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053986A (en) * 2003-08-07 2005-03-03 Nippon Steel Corp Method for producing ferrocoke for blast furnace
JP4267390B2 (en) * 2003-08-07 2009-05-27 新日本製鐵株式会社 Method for producing ferro-coke for blast furnace
JP5386838B2 (en) * 2008-03-21 2014-01-15 Jfeスチール株式会社 Ferro-coke for metallurgy
JP5386839B2 (en) * 2008-03-21 2014-01-15 Jfeスチール株式会社 Manufacturing method of ferro-coke for metallurgy
JP5386840B2 (en) * 2008-03-21 2014-01-15 Jfeスチール株式会社 Manufacturing method of ferro-coke for metallurgy

Also Published As

Publication number Publication date
JP2010159315A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2011034195A1 (en) Process for producing ferro coke
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP2006028594A (en) Method for operating blast furnace
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP5017966B2 (en) Ferro-coke manufacturing method
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JP5386838B2 (en) Ferro-coke for metallurgy
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
CN105645970B (en) The fettling sand and its production method of a kind of environment-friendly type high life
JP5017969B2 (en) Ferro-coke raw material molding and method for producing ferro-coke
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5386839B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5365043B2 (en) Ferro-coke manufacturing method
JP4892928B2 (en) Ferro-coke manufacturing method
KR20090116377A (en) The making method of granule coke using coke dust and sludge and the granule coke
JP5386840B2 (en) Manufacturing method of ferro-coke for metallurgy
JP5386988B2 (en) Manufacturing method of ferro-coke for metallurgy
CN102295944A (en) Foundry coke brick and production method thereof
JP2007119601A (en) Method for producing ferrocoke
JP2005344181A (en) Agglomerate including carbonaceous material and its manufacturing method
JP5028946B2 (en) Ferro-coke raw material molding and method for producing ferro-coke
JP5386835B2 (en) Ferro-coke manufacturing method
JP2011037963A (en) Manufacturing method for ferro-coke
KR101246330B1 (en) METHOD FOR MANUFACTURING Fe-Cr
KR101246331B1 (en) APPARATUS FOR MANUFACTURING Fe-Cr

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5470855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250