JP5411615B2 - Manufacturing method of carbonized material agglomerates - Google Patents

Manufacturing method of carbonized material agglomerates Download PDF

Info

Publication number
JP5411615B2
JP5411615B2 JP2009179557A JP2009179557A JP5411615B2 JP 5411615 B2 JP5411615 B2 JP 5411615B2 JP 2009179557 A JP2009179557 A JP 2009179557A JP 2009179557 A JP2009179557 A JP 2009179557A JP 5411615 B2 JP5411615 B2 JP 5411615B2
Authority
JP
Japan
Prior art keywords
agglomerated
pellet
carbonaceous material
powdered
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009179557A
Other languages
Japanese (ja)
Other versions
JP2010236081A (en
Inventor
人志 豊田
剛司 牧
昭人 笠井
耕一朗 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009179557A priority Critical patent/JP5411615B2/en
Publication of JP2010236081A publication Critical patent/JP2010236081A/en
Application granted granted Critical
Publication of JP5411615B2 publication Critical patent/JP5411615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉、キューポラなどの竪型炉用装入原料として用いることができる、熱間成形による炭材内装塊成化物の製造方法に関し、該炭材内装塊成化物の強度をさらに向上しうる改良技術に関する。   The present invention relates to a method for producing an agglomerated carbonaceous material agglomerated by hot forming, which can be used as a raw material for vertical furnaces such as blast furnaces and cupolas, and further improves the strength of the agglomerated carbonaceous material agglomerated material. It relates to an improved technology.

本出願人は、高炉、キューポラなどの竪型炉用装入原料として用いることを目的として、粉鉱石と軟化溶融性を有する炭材の混合物を熱間成形することにより、従来の炭材内装コールドペレット等のようにセメントなどのバインダを添加せずとも高強度が得られる炭材内装塊成化物を開発した。   The applicant of the present invention is a conventional carbonaceous material-internal cold by hot-forming a mixture of fine ore and softening-melting carbonaceous material for the purpose of using as raw materials for vertical furnaces such as blast furnaces and cupolas. We have developed an agglomerate of carbonaceous material that can provide high strength without adding a binder such as cement, such as pellets.

このような炭材内装塊成化物(以下、単に「塊成化物」ともいう。)は、例えば図2に示すような工程で製造できる。すなわち、粉状鉄鉱石Bをロータリキルン(原料加熱手段)12で400〜800℃に加熱するとともに、軟化溶融性を有する粉状石炭Aを別途ロータリドライヤ(炭材加熱手段)11で軟化溶融が起らない250℃未満の温度で乾燥したのち、これらの加熱された粉状石炭A(以下、単に「石炭」ともいう。)と粉状鉄鉱石B(以下、単に「鉄鉱石」ともいう。)とからなる加熱原料を混合機13で混合して粉状石炭Aが軟化溶融する温度である250〜550℃の加熱混合物C’とする。そして、この加熱混合物C’を双ロール型成形機(成形手段)4で熱間成形してブリケット化し、必要により脱ガス槽(熱処理手段)5にて残留タール分を除去することにより塊成化物Eが得られる(特許文献1,2参照)。   Such a carbonaceous material-incorporated agglomerated material (hereinafter also simply referred to as “agglomerated material”) can be produced, for example, by a process as shown in FIG. That is, the powdered iron ore B is heated to 400 to 800 ° C. by a rotary kiln (raw material heating means) 12 and softened and melted powdered coal A is separately softened and melted by a rotary dryer (carbon material heating means) 11. After drying at a temperature of less than 250 ° C. that does not occur, these heated pulverized coal A (hereinafter also simply referred to as “coal”) and pulverized iron ore B (hereinafter also simply referred to as “iron ore”). ) Is mixed with the mixer 13 to obtain a heated mixture C ′ at 250 to 550 ° C., which is a temperature at which the powdered coal A is softened and melted. Then, this heated mixture C ′ is hot-formed by a twin roll type molding machine (molding means) 4 to be briquetted, and if necessary, agglomerated by removing residual tar in a degassing tank (heat treatment means) 5. E is obtained (see Patent Documents 1 and 2).

ここで、上記特許文献1,2に記載の製造方法は、高温の粉状鉄鉱石Bと低温の粉状石炭Aを混合して、粉状石炭Aを軟化溶融する温度に昇温するものであるが、工業規模の混合機13では、粉状鉄鉱石Bと粉状石炭Aとを短時間で均一に混合することは容易でない。このため、混合が不均一となりやすく、粉状鉄鉱石Bの量に対して粉状石炭Aの量が過少のところでは、この粉状石炭Aの温度が上がりすぎて軟化溶融状態に留まらずさらにコークス化状態にまで至ってしまう一方、粉状鉄鉱石Bの量に対して粉状石炭Aの量が過多のところでは、この粉状石炭Bの温度が軟化開始温度にも至らず、いずれもバインダとしての効果が発揮されないため、全体としてバインダの効果が減殺される。この結果、実験室規模の製造装置では得られた、炭材内装塊成化物Eの強度が、工業規模の製造装置になると十分に得られなくなるという問題があった。   Here, the manufacturing method described in Patent Documents 1 and 2 is a method in which high-temperature powdered iron ore B and low-temperature powdered coal A are mixed and heated to a temperature at which powdered coal A is softened and melted. However, it is not easy to mix the powdered iron ore B and the powdered coal A uniformly in a short time with the industrial-scale mixer 13. For this reason, mixing is likely to be uneven, and when the amount of the powdered coal A is too small relative to the amount of the powdered iron ore B, the temperature of the powdered coal A is excessively increased and does not remain in the softened and melted state. On the other hand, when the amount of powdered coal A is excessive with respect to the amount of powdered iron ore B, the temperature of the powdered coal B does not reach the softening start temperature. As a result, the effect of the binder is reduced as a whole. As a result, there was a problem that the strength of the carbonized material agglomerated product E obtained in the laboratory scale manufacturing apparatus could not be sufficiently obtained when it became an industrial scale manufacturing apparatus.

工業規模の製造装置において炭材内装塊成化物Eの強度を改善しようとして、例えば、粉状鉄鉱石Bの加熱温度を高めて加熱混合物C’の温度を上昇させると、粉状鉄鉱石Bの量に対して粉状石炭Aの量が過多のところでは、この粉状石炭Bの温度が軟化開始温度に達しバインダとしての効果が発揮されるようになるものの、粉状鉄鉱石Bの量に対して粉状石炭Aの量が過少のところでは、この粉状石炭Aの温度が上がりすぎて軟化溶融状態に留まらずさらにコークス化状態にまで至ってしまう割合が増加するので、粉状鉄鉱石Bの加熱温度を高めるための消費エネルギの増加に見合った、炭材内装塊成化物E強度の改善効果が十分に得られない。   In an attempt to improve the strength of the carbonaceous agglomerate E in an industrial scale manufacturing apparatus, for example, when the heating temperature of the powdered iron ore B is increased to raise the temperature of the heated mixture C ′, Where the amount of pulverized coal A is excessive with respect to the amount, the temperature of the pulverized coal B reaches the softening start temperature and the effect as a binder is exhibited. On the other hand, when the amount of pulverized coal A is too small, the temperature of the pulverized coal A increases too much, and the ratio of not reaching the softened and molten state but further reaching the coke state increases. The effect of improving the strength of the carbonized material agglomerated material E corresponding to the increase in energy consumption for increasing the heating temperature of the steel cannot be sufficiently obtained.

また、工業規模の製造装置において炭材内装塊成化物Eの強度を改善しようとして、例えば、粉状鉄鉱石Bに対する粉状石炭Aの配合割合を高めると、石炭の軟化溶融量は増加し炭材内装塊成化物Eの冷間強度は改善されるものの、炭材内装塊成化物E中の炭素含有量が多くなりすぎるため、竪型炉に装入したとき炉内高温部での熱間強度が低下する問題が生じる。   In addition, when trying to improve the strength of the carbonaceous material agglomerate E in an industrial scale manufacturing apparatus, for example, when the blending ratio of the powdered coal A to the powdered iron ore B is increased, the softening and melting amount of the coal increases and the coal Although the cold strength of the material-incorporated agglomerated material E is improved, the carbon content in the carbonized material-incorporated agglomerated material E increases too much, so when it is inserted into a vertical furnace, There arises a problem that the strength decreases.

このため、工業規模の製造装置においても炭材内装塊成化物Eの強度を確保しうる、炭材内装塊成化物Eの製造技術の確立が要請されていた。   For this reason, establishment of the manufacturing technique of the carbonaceous material internal agglomerated material E which can ensure the intensity | strength of the carbonaceous material internal material agglomerated material E was requested | required also in the manufacturing apparatus of the industrial scale.

ここで、特許文献3には、粉状鉄鉱石とフラックスとを混練して擬似粒子(ペレットに相当)とし、この擬似粒子(ペレット)と石炭とを混合して原料混合粉とし、この原料混合粉を石炭の軟化温度以上に加熱して前記石炭を軟化または溶融した後、前記原料混合粉を塊成化して炭材内装塊成化物を製造する方法が開示されている。   Here, in Patent Document 3, powdered iron ore and flux are kneaded to form pseudo particles (corresponding to pellets), and the pseudo particles (pellets) and coal are mixed to form a raw material mixed powder. A method is disclosed in which a powder is heated above the softening temperature of coal to soften or melt the coal, and then the raw material mixed powder is agglomerated to produce an agglomerated carbonaceous material.

しかしながら、上記特許文献3に記載の技術は、竪型炉内における炭材内装塊成化物の溶融滴下の促進を目的とするものであり、石炭は、ペレット(擬似粒子)中には含有させず、ペレット(擬似粒子)に外装して加熱し熱間成形するものである。このため、ペレット(擬似粒子)中心部まで石炭の軟化溶融物が十分に浸透しないことが想定され、炭材内装塊成化物の強度が十分に得られない可能性が高い。   However, the technique described in Patent Document 3 is intended to promote melting and dropping of the carbonaceous material agglomerated material in the vertical furnace, and coal is not contained in the pellets (pseudo particles). The material is packaged in a pellet (pseudoparticle), heated and hot-formed. For this reason, it is assumed that the softened melt of coal does not sufficiently penetrate to the center of the pellet (pseudoparticle), and there is a high possibility that the strength of the carbonaceous material agglomerated material cannot be sufficiently obtained.

これに対し、本発明は粉状炭材を初めからペレット中に含有させて(内装させて)加熱し熱間成形するので、粉状鉄含有原料と粉状炭材とが予め均一に接触した状態からこの粉状炭材を軟化溶融することになり、炭材内装塊成化物の強度が確実に改善されるものである。   On the other hand, since the present invention contains the powdered carbonaceous material in the pellet from the beginning (internally) and heat-forms it by heating, the powdered iron-containing raw material and the powdered carbonaceous material are uniformly contacted in advance. The powdered carbon material is softened and melted from the state, and the strength of the carbonaceous material agglomerated material is reliably improved.

特許3502011号公報Japanese Patent No. 3502011 特開2001−294944号公報JP 2001-294944 A 特開2005−325412号公報JP-A-2005-325412

そこで、本発明は、工業規模の製造装置においても、消費エネルギを増加させることなく、確実に炭材内装塊成化物の強度を確保しうる炭材内装塊成化物の製造方法を提供することを目的とする。   Therefore, the present invention provides a method for producing an agglomerated carbonaceous material agglomerated material that can ensure the strength of the agglomerated carbonaceous material agglomerated material without increasing energy consumption even in an industrial scale production apparatus. Objective.

請求項1に記載の発明は、軟化溶融性を有する粉状炭材と、粉状鉄含有原料とからなる混合原料を造粒してペレットとなす造粒工程と、このペレットを、前記粉状炭材の軟化開始温度以上で最高流動度温度+50℃以下に加熱するペレット加熱工程と、この加熱されたペレットを熱間成形して炭材内装塊成化物となす熱間成形工程と、を備えたことを特徴とする炭材内装塊成化物の製造方法である。   The invention according to claim 1 is a granulating step of granulating a mixed raw material comprising a powdered carbonaceous material having softening and melting properties and a powdered iron-containing raw material into a pellet, A pellet heating step of heating to a maximum fluidity temperature + 50 ° C. or less above the softening start temperature of the carbonaceous material, and a hot molding step of hot-molding the heated pellet to form a carbonized material agglomerated product. This is a method for producing an agglomerated carbonaceous material.

請求項2に記載の発明は、前記混合原料が、さらに粉状フラックスを含む請求項1に記載の炭材内装塊成化物の製造方法である。   Invention of Claim 2 is a manufacturing method of the carbon material interior agglomerated product of Claim 1 in which the said mixed raw material contains a powdery flux further.

請求項3に記載の発明は、前記ペレットの平均粒径を1〜15mmとする請求項1または2に記載の炭材内装塊成化物の製造方法である。   Invention of Claim 3 is a manufacturing method of the carbon material interior agglomerate of Claim 1 or 2 which makes the average particle diameter of the said pellet 1-15 mm.

請求項4に記載の発明は、前記熱間成形工程で用いる成形機を双ロール型成形機とし、前記ペレットの平均粒径を該双ロール型成形機のロールギャップより大きく、かつ、該双ロール型成形機のポケット深さより小さくする請求項3に記載の炭材内装塊成化物の製造方法である。   According to a fourth aspect of the present invention, the molding machine used in the hot molding step is a twin-roll molding machine, the average particle size of the pellets is larger than the roll gap of the twin-roll molding machine, and the twin roll It is a manufacturing method of the carbon material interior agglomerated material of Claim 3 made smaller than the pocket depth of a molding machine.

請求項5に記載の発明は、前記ペレット加熱工程において、未造粒の、粉状炭材、粉状鉄含有原料および粉状フラックスの少なくとも1種を、前記ペレットに添加して一緒に加熱する請求項1〜4のいずれか1項に記載の炭材内装塊成化物の製造方法である。 According to a fifth aspect of the present invention, in the pellet heating step, at least one of ungranulated powdered carbonaceous material, powdered iron-containing raw material and powdered flux is added to the pellet and heated together. a method for producing a carbonaceous material furnished agglomerate according to any one of that請 Motomeko 1-4.

請求項6に記載の発明は、ペレット加熱工程と前記熱間成形工程との間に、前記加熱されたペレットの一部を解砕するペレット解砕工程を設けた請求項1〜5のいずれか1項に記載の炭材内装塊成化物の製造方法である。 The invention according to claim 6, between the front Symbol pellet heating step and the hot-forming process, of claims 1-5 in which a pellet crushing step of crushing a portion of said heated pellets It is a manufacturing method of the carbonaceous material agglomerate of any one of Claims 1.

請求項7に記載の発明は、前記ペレット加熱工程において、酸素含有ガスの雰囲気下で加熱する請求項1〜6のいずれか1項に記載の炭材内装塊成化物の製造方法である。   Invention of Claim 7 is a manufacturing method of the carbonaceous material agglomerate of any one of Claims 1-6 heated in the atmosphere of oxygen-containing gas in the said pellet heating process.

本発明によれば、軟化溶融性を有する粉状炭材と、粉状鉄含有原料とからなる混合原料をペレット化してから、前記粉状炭材が軟化ないし溶融する温度に加熱した後、熱間成形することで、前記粉状炭材と粉状鉄含有原料とが予め均一に接触した状態で前記粉状炭材が軟化ないし溶融するので、バインダとしての効果が最大限発揮され、工業規模の製造装置においても、消費エネルギを増加させることなく、炭材内装塊成化物の強度が確実に改善される。   According to the present invention, after pelletizing a mixed raw material composed of a powdered carbon material having softening and melting properties and a powdered iron-containing raw material, the mixture is heated to a temperature at which the powdered carbon material is softened or melted, and then heated. By compacting, the powdered carbonaceous material and the powdered iron-containing raw material are softened or melted in a state in which the powdered carbonaceous material and the powdered iron-containing raw material are in contact with each other in advance. Even in this manufacturing apparatus, the strength of the carbonized material agglomerated material is reliably improved without increasing the energy consumption.

本発明の一実施形態に係る、炭材内装塊成化物の製造装置の概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the manufacturing apparatus of the carbonaceous material interior agglomerate based on one Embodiment of this invention. 従来技術における、炭材内装塊成化物の製造装置の概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the manufacturing apparatus of the carbonaceous material agglomerated material in a prior art.

(実施形態)
図1に本発明の一実施形態に係る炭材内装塊成化物の製造装置の概略構成を示す。なお、上記従来技術で説明した図2と共通する装置および物質には同じ符号を用いた。以下、粉状鉄含有原料として粉状鉄鉱石を代表例に挙げて説明する。鉄鉱石と、炭材のうち軟化溶融性を実質的に有しない炭材(例えば、コークス粉、一般炭、無煙炭、オイルコークス等)は、必要な場合には粉砕して、74μm以下の粒子が70%程度の粉状にする。炭材のうち軟化溶融性を有する炭材(例えば、粘結炭、非微粘結炭、SRC等)も、上記の軟化溶融性を実質的に有しない炭材ほどは細かくする必要はないが、粉状鉄鉱石および軟化溶融性を実質的に有しない炭材と均一に混合し、ペレット化を容易にするために1mm以下、望ましくは500μm以下、さらに望ましくは100μm以下程度に粉砕するのが望ましい。
(Embodiment)
FIG. 1 shows a schematic configuration of an apparatus for producing an agglomerated carbonaceous material according to an embodiment of the present invention. In addition, the same code | symbol was used for the apparatus and substance which are common in FIG. 2 demonstrated by the said prior art. Hereinafter, powder iron ore will be described as a representative example as a powder iron-containing raw material. Iron ore and carbonaceous material (eg, coke powder, general coal, anthracite, oil coke, etc.) that has substantially no softening and melting property are pulverized when necessary to obtain particles of 74 μm or less. 70% powder. Among the carbon materials, the carbon materials having softening and melting properties (for example, caking coal, non-slightly caking coal, SRC, etc.) need not be made as fine as the carbon materials having substantially no softening and melting properties. In order to facilitate the pelletization, the powdered iron ore and the carbonaceous material having substantially no softening and melting properties are uniformly mixed, and pulverized to about 1 μm or less, preferably 500 μm or less, more preferably about 100 μm or less. desirable.

〔造粒工程〕
このようにして粒度調整した粉状炭材Aと粉状鉄鉱石Bとを配合して混合原料とし、この混合原料は造粒機にて適量の水分を添加してペレットCに造粒する。
[Granulation process]
The powdery carbonaceous material A and the powdered iron ore B adjusted in particle size in this way are mixed to form a mixed raw material, and this mixed raw material is granulated into pellets C by adding an appropriate amount of water with a granulator.

ペレットCの平均粒径は1〜15mm、さらには1.5〜10mm、特に2〜5mmとするのが好ましい。ここに、ペレットCの平均粒径とは、粒径分布を有するペレットCを粒径範囲ごとに篩い分け、各粒径範囲の代表径を各粒径範囲に存在するペレットCの質量割合で加重平均して求めた値である。   The average particle size of the pellet C is preferably 1 to 15 mm, more preferably 1.5 to 10 mm, and particularly preferably 2 to 5 mm. Here, the average particle size of the pellets C is obtained by sieving the pellets C having a particle size distribution for each particle size range, and weighting the representative diameter of each particle size range by the mass ratio of the pellets C existing in each particle size range. It is a value obtained by averaging.

ペレットCの粒径が小さすぎると、個々のペレットC中における粉状炭材Aと粉状鉄鉱石Bの質量割合が不均一になりやすく、一方ペレットCの粒径が大きすぎるとペレットCの中心部まで加熱するのに時間を要することに加え、塊成化物Dのサイズにもよるが、成形の際に成形機のポケット内に入るペレットCの総質量にばらつきが出やすくなり、また、加熱時にバースティング(爆裂)が起こりやすくなり、いずれの場合も炭材内装塊成化物Dの強度低下の原因となる可能性が高くなるからである。   If the particle size of the pellet C is too small, the mass ratio of the powdered carbon material A and the powdered iron ore B in each pellet C tends to be non-uniform, while if the particle size of the pellet C is too large, In addition to the time required to heat to the center, depending on the size of the agglomerate D, the total mass of pellets C entering the pocket of the molding machine tends to vary during molding, This is because bursting (explosion) is likely to occur during heating, and in any case, there is a high possibility of causing a decrease in strength of the carbonaceous material agglomerated material D.

後記熱間成形工程で用いる成形機が双ロール型成形機である場合には、前記ペレットの平均粒径は、上記規定を満たしたうえで、さらに、該双ロール型成形機のロールギャップ以上で、かつ、該双ロール型成形機のポケット深さ以下とするのが好ましい。   When the molding machine used in the hot forming step described later is a twin roll molding machine, the average particle size of the pellets satisfies the above-mentioned rule, and further exceeds the roll gap of the twin roll molding machine. And it is preferable to make it below the pocket depth of this twin roll type molding machine.

前記ペレットの平均粒径をロールギャップ以上とすることにより、成形機への噛み込み性が向上し、成形圧力を高くすることができ、また、ポケット深さ以下にすることにより、塊成化物Dの見掛け密度を高くすることができ、塊成化物Dの強度向上に繋がる。   By setting the average particle size of the pellets to be equal to or larger than the roll gap, the biting property to the molding machine is improved, the molding pressure can be increased, and the agglomerated material D is set to be equal to or less than the pocket depth. The apparent density of the agglomerated material D can be increased and the strength of the agglomerated material D can be improved.

造粒機1としては、周知のディスク型ペレタイザやドラム型ペレタイザを用いることができる。   As the granulator 1, a known disk-type pelletizer or drum-type pelletizer can be used.

〔ペレット加熱工程〕
造粒されたペレットCは、ペレット加熱装置(例えば、外部加熱式ロータリキルン)2で300℃以上でギーセラー最高流動度温度+50℃以下、好ましくは粉状炭材の軟化開始温度以上で最高流動度温度+50℃以下、さらに好ましくは軟化開始温度+20℃以上で最高流動度温度+30℃以下に加熱する。ここに軟化開始温度よび最高流動度温度は、石炭の銘柄によって変化するが、一般的には軟化開始温度は350〜400℃程度、最高流動度温度は450℃程度である。
[Pellet heating process]
The granulated pellet C is obtained by a pellet heating device (for example, an externally heated rotary kiln) 2 at 300 ° C. or higher and the highest Geecerer fluidity temperature + 50 ° C. or lower, preferably higher than the softening start temperature of the powdered carbonaceous material. It is heated to a temperature of + 50 ° C. or lower, more preferably a softening start temperature + 20 ° C. or higher and a maximum fluidity temperature + 30 ° C. or lower. Here, the softening start temperature and the maximum fluidity temperature vary depending on the brand of the coal. Generally, the softening start temperature is about 350 to 400 ° C, and the maximum fluidity temperature is about 450 ° C.

加熱温度が低すぎると、粉状炭材Aの軟化が起らず、一方加熱温度が高すぎると、粉状炭材Aが軟化溶融状態に留まらず、さらにコークス化まで進行してしまい、いずれの場合もバインダとしての効果が減少するためである。   If the heating temperature is too low, softening of the powdered carbonaceous material A will not occur. On the other hand, if the heating temperature is too high, the powdered carbonaceous material A will not stay in the softened and melted state and will further progress to coking. In this case, the effect as a binder is reduced.

ペレット加熱装置2として外部加熱式のものを採用するのは、内部加熱式の加熱装置で加熱するとペレットCが急速加熱されてバースティング(爆裂)が発生しやすくなるためである。   The reason why the external heating type is employed as the pellet heating device 2 is that when heated by the internal heating type heating device, the pellet C is rapidly heated and bursting (explosion) is likely to occur.

また、ペレット加熱装置2内に酸素含有ガスとして例えば空気を吹き込み、酸素含有ガスの雰囲気下でペレットCを加熱するのも好ましい。加熱によりペレットC中の粉状炭材Aから発生する揮発分が、同じくペレットC中に存在する粉状鉄鉱石Bの触媒作用により、該揮発分の主要ガス成分であるメタン(CH)と水素(H)の発火温度である540℃と570℃よりも低い300℃以上の温度で燃焼反応が進行し、ペレットCの昇温を促進するからである(特願2008−285280参照)。 Moreover, it is also preferable that air is blown into the pellet heating device 2 as an oxygen-containing gas, for example, and the pellet C is heated in an atmosphere of the oxygen-containing gas. The volatile matter generated from the powdered carbonaceous material A in the pellet C by heating is converted to methane (CH 4 ), which is the main gas component of the volatile matter, by the catalytic action of the powdered iron ore B also present in the pellet C. This is because the combustion reaction proceeds at a temperature of 300 ° C. or higher which is lower than 540 ° C. and 570 ° C., which are the ignition temperatures of hydrogen (H 2 ), and promotes the temperature rise of the pellet C (see Japanese Patent Application No. 2008-285280).

なお、酸素含有ガスGの吹込み量を増減することにより、ペレットCの加熱温度を調節できるが、酸素含有ガスGの吹込み量は、多くしすぎると粉状炭材Aから発生してくる揮発分を完全燃焼したうえ、過剰の酸素ガス成分が燃焼後の雰囲気ガス中に残存するため、粉状炭材A中の固定炭素分が酸化されて消費されることとなる。したがって、加熱装置3に供給する酸素含有ガスG中の酸素量は、粉状炭材Aから発生してくる揮発分が完全燃焼するのに必要な化学当量より少なくする。   In addition, although the heating temperature of the pellet C can be adjusted by increasing / decreasing the blowing amount of the oxygen-containing gas G, the blowing amount of the oxygen-containing gas G is generated from the powdered carbon material A if it is excessively increased. In addition to complete combustion of the volatile matter, the excess oxygen gas component remains in the atmospheric gas after combustion, so that the fixed carbon content in the powdered carbon material A is oxidized and consumed. Therefore, the amount of oxygen in the oxygen-containing gas G supplied to the heating device 3 is made smaller than the chemical equivalent required for complete combustion of the volatile matter generated from the powdered carbon material A.

ペレット加熱装置2から排出された排ガスHは、粉状炭材Aから発生したタール分を含有する場合があり、排ガス系統において凝縮・固着し、配管等を閉塞させるおそれがある。これを防止するため、図示しないが、例えば、ペレット加熱装置2の排ガス排出ダクトに燃焼器を設置してタール分を燃焼分解してガス化させてしまう方法や、同排出ダクトにバーナを設置して排ガス中の揮発分(炭化水素ガス)を部分燃焼してタール分が凝縮しない温度に保持して排ガス処理装置まで搬送する方法などを採用すればよい。   The exhaust gas H discharged from the pellet heating device 2 may contain a tar content generated from the powdered carbon material A, which may condense and adhere in the exhaust gas system and block the piping and the like. To prevent this, although not shown, for example, a method in which a combustor is installed in the exhaust gas discharge duct of the pellet heating device 2 to burn and decompose tar components to gasify, or a burner is installed in the exhaust duct. A method may be employed in which the volatile component (hydrocarbon gas) in the exhaust gas is partially combusted and maintained at a temperature at which the tar component is not condensed and conveyed to the exhaust gas treatment device.

〔熱間成形工程〕
加熱されたペレットCは、熱間成形機(例えば熱間成形用の双ロール型成形機)4を用いて、複数個分のペレットCで1個のブリケット(塊成化物)Dとなるように加圧成形する。個々のペレットCは、その内部に十分に軟化ないし溶融した炭材を均一に含有しているので、成型機4で加圧された際に複数個のペレットCは押し潰され、内部の軟化ないし溶融した炭材が表面に押し出されて一体化し、冷却後に高強度のブリケット(塊成化物)Eが得られる。
[Hot forming process]
The heated pellet C is made into one briquette (agglomerated product) D with a plurality of pellets C using a hot molding machine (for example, a twin roll type molding machine for hot molding) 4. Press molding. Since the individual pellets C contain the softened or melted carbon material uniformly in the inside thereof, the plurality of pellets C are crushed when pressed by the molding machine 4, and the internal pellets are not softened. The molten carbon material is extruded and integrated on the surface, and a high-strength briquette (agglomerated product) E is obtained after cooling.

〔熱処理工程〕
塊成化物Dを上記熱間成形温度以上の温度に調整した熱処理装置(例えば、シャフト炉)5内に装入し、塊成化物D中に残存する揮発分およびタール分を除去し、炭材を固化させる。これにより、塊成化物Dが竪型炉に装入されて加熱された際に、もはや炭材が軟化することがなく塊成化物Eの強度が維持されるとともに、タール分が多量に発生することがなく竪型炉の排ガス系統にタールが固着する等のトラブルの発生を防止できる。
[Heat treatment process]
The agglomerate D is charged into a heat treatment apparatus (for example, a shaft furnace) 5 adjusted to a temperature equal to or higher than the hot forming temperature, and the volatile matter and tar content remaining in the agglomerate D are removed. Solidify. As a result, when the agglomerate D is charged in the vertical furnace and heated, the carbonaceous material is no longer softened, the strength of the agglomerate E is maintained, and a large amount of tar is generated. And troubles such as tar sticking to the exhaust gas system of the vertical furnace can be prevented.

シャフト炉5で熱処理された塊成化物Hは、熱いまま大気中に排出すると発火や燃焼のおそれがあるため、シャフト炉5の下部で窒素ガスなどの不活性ガスにより400℃以下まで冷却してから排出するのが望ましい。   The agglomerate H heat-treated in the shaft furnace 5 may be ignited or burnt if discharged into the atmosphere while being hot. Therefore, the agglomerate H may be cooled to 400 ° C. or lower with an inert gas such as nitrogen gas at the bottom of the shaft furnace 5. It is desirable to discharge from.

脱ガス後の塊成化物Dは、スクリーン6で篩って、篩下粉Fはロータリキルン2や混合機3等へ戻して再利用しつつ、篩上塊状物Eは目的とする高強度の炭材内装塊成化物として回収する。   The agglomerated material D after degassing is sieved with a screen 6, and the under-sieving powder F is returned to the rotary kiln 2, the mixer 3 or the like and reused, while the mass E on the sieve has a desired high strength. Collected as an agglomerated carbonaceous material agglomerate.

(変形例)
上記実施形態では、造粒工程において、混合原料として粉状鉄鉱石と粉状炭材のみを用いる例を示したが、さらに粉状フラックス(石灰石、ドロマイトなど)を含有させてもよい。
(Modification)
In the said embodiment, although the example which uses only a powdered iron ore and a powdered carbon material as a mixed raw material was shown in the granulation process, you may contain powdery flux (limestone, dolomite, etc.) further.

また、上記実施形態では、ペレット加熱工程において、造粒されたペレットのみを加熱する例を示したが、未造粒のペレット化されていない、粉状炭材(軟化溶融性を有するもの、有しないものの両方を含む意である。)、粉状鉄含有原料および粉状フラックスの少なくとも1種を前記ペレットに添加して加熱してもよい。ペレットに粉状のままの原料(軟化溶融性を有する粉状炭材がない場合でも)が混ざっていても熱間成形の際の加圧により、ペレットC内部に存在する軟化ないし溶融した炭材が外に押し出されてくるので、前記粉状のままの原料をも結合し、高強度の塊成化物Dが得られる。むしろ、ペレットCのみの場合は、ペレットCとペレットCの間に隙間が存在するので、加圧成形後の塊成化物D内にも空隙が残りやすいのに対し、ペレットCに粉状のままの原料を添加すると上記隙間が減少ないしなくなるので、塊成化物内に空隙ができにくくなる効果が得られる。ただし、粉状のままの原料の添加量を多くしすぎると、粉状鉄鉱石中への粉状炭材の均一分散の効果が減少し、塊成化物の強度改善効果が減殺される。したがって、粉状のままの原料の添加質量はペレットCの質量の5〜50%、さらには10〜30%とするのが好ましい。   In the above embodiment, an example of heating only the granulated pellets in the pellet heating step has been described. However, the powdered carbonaceous material (having a softening and melting property, having an ungranulated pellet, And at least one of powdered iron-containing raw material and powdered flux may be added to the pellet and heated. Softened or melted carbon material present in the pellet C by pressurization during hot forming even if the raw material in powder form (even if there is no powdered carbon material having softening and melting properties) is mixed in the pellet Is extruded to the outside, so that the powdery raw material is also bonded to obtain a high-strength agglomerated material D. Rather, in the case of only the pellet C, there is a gap between the pellet C and the pellet C, so that voids are likely to remain in the agglomerated material D after pressure molding, whereas the pellet C remains in a powdery state. When the raw material is added, the gap is not reduced or eliminated, so that an effect of making it difficult to form voids in the agglomerated material is obtained. However, if the amount of raw material added in powder form is excessively increased, the effect of uniform dispersion of the powdered carbonaceous material in the powdered iron ore is reduced, and the effect of improving the strength of the agglomerated material is diminished. Therefore, it is preferable that the added mass of the raw material in the form of powder is 5 to 50%, more preferably 10 to 30% of the mass of the pellet C.

あるいは、上記未造粒の粉状物をペレットに添加して加熱することに代えてもしくは加えて、上記ペレット加熱工程の後期または上記ペレット加熱工程と上記熱間成形工程の間に、加熱されたペレットの一部を解砕するペレット解砕工程を設けてもよい。これにより、できるだけ混合性を向上した後、ペレット化した状態で加熱した後にその一部を粉状に戻せるので、塊成化物の強度がさらに向上する。解砕手段としては、常用のクラッシャや高速混合機などを用いることができる。 Alternatively, instead of or in addition to adding the ungranulated powder to the pellet and heating, it was heated at the latter stage of the pellet heating step or between the pellet heating step and the hot forming step You may provide the pellet crushing process which crushes a part of pellet. Thereby, after improving mixing nature as much as possible, since the part can be returned to powder form after heating in the pelletized state, the intensity | strength of an agglomerate further improves. As the crushing means, a conventional crusher, a high speed mixer or the like can be used.

また、上記実施形態では、酸素含有ガスGとして空気を例示したが、空気の代わりに、酸素ガスまたは酸素富化空気を用いてもよい。これにより、空気と同じ酸素量でも燃焼後の雰囲気ガス温度が上昇するので、酸素含有ガスGの混合機3への添加量を減少させることができ、混合機3からの排ガスの量も減少し、排ガス処理設備のコストが低減される。さらに、混合機3からの排ガス中には炭化水素を主成分とする熱分解ガス(揮発分)が含まれることから、これを燃料として利用する場合は、酸素ガスまたは酸素富化空気を用いる方が、単に空気を用いるよりも酸素含有ガスG添加による排ガスカロリの低下が抑制されるので、燃料としての価値が高まる。   In the above embodiment, air is exemplified as the oxygen-containing gas G. However, oxygen gas or oxygen-enriched air may be used instead of air. Thereby, since the atmospheric gas temperature after combustion rises even with the same oxygen amount as air, the amount of oxygen-containing gas G added to the mixer 3 can be reduced, and the amount of exhaust gas from the mixer 3 is also reduced. The cost of the exhaust gas treatment facility is reduced. Further, since the exhaust gas from the mixer 3 contains pyrolysis gas (volatile matter) mainly composed of hydrocarbons, oxygen gas or oxygen-enriched air is used when using this as fuel. However, since the reduction of exhaust gas calories due to the addition of the oxygen-containing gas G is suppressed rather than simply using air, the value as a fuel is increased.

また、上記実施形態では、熱処理工程を設けた例を示したが、竪型炉における炭材内装塊成化物の使用量が少ない場合等は、竪型炉内でのタール発生総量も少なくなるので、熱処理工程を省略してもよい。なお、本発明方法で製造された炭材内装塊成化物は、竪型炉に装入された際、炉内で徐々に昇温されるので、たとえ内部に揮発分が残存していても、揮発分は徐々に除去されるため塊成化物が爆裂するおそれはない。熱処理工程を省略した場合、炭材供給工程、混合工程および熱間成形工程のすべての工程において酸素含有ガス雰囲気中で処理を行ってもよいし、いずれか1つまたは2つの工程において酸素含有ガス雰囲気中で処理を行ってもよい。   Moreover, although the example which provided the heat processing process was shown in the said embodiment, when the usage-amount of the carbonaceous material agglomerated material in a vertical furnace is small, since the total amount of tar generation in a vertical furnace also decreases. The heat treatment step may be omitted. In addition, the carbonaceous material agglomerate produced by the method of the present invention is gradually heated in the furnace when charged into the vertical furnace, so even if volatile matter remains inside, Volatiles are gradually removed, so there is no risk of the agglomerates exploding. When the heat treatment step is omitted, the treatment may be performed in an oxygen-containing gas atmosphere in all steps of the carbonaceous material supply step, the mixing step, and the hot forming step, or the oxygen-containing gas in any one or two steps. You may process in atmosphere.

また、上記実施形態では、熱間成形機として双ロール型成形機を用いる例を示したが、押出し成形機を用いてもよい。   Moreover, in the said embodiment, although the example using a twin roll type molding machine was shown as a hot molding machine, you may use an extrusion molding machine.

本発明の効果を確証するため、以下の試験を実施した。   In order to confirm the effect of the present invention, the following tests were conducted.

粉状鉄含有原料としては、粉状鉄鉱石(銘柄:MBR、粒度:−1mm)を用い、粉状炭材としては、粉状石炭(銘柄:SONOMA、揮発分:28.8質量%,最高流動度[log(DDPM)]:3.94,軟化開始温度:390℃、最高流動度温度:442℃、粒度:−75μm,90質量%)を用いた。そして、ブリケットは、粉状鉄鉱石:粉状炭材=75:25〜85:15(質量比)の配合割合とし、ブリケットの製造速度は1.2t/hとした。   Powdered iron ore (brand: MBR, particle size: -1 mm) is used as the powdered iron-containing raw material, and powdered coal (brand: SONOMA, volatile content: 28.8% by mass, highest) Fluidity [log (DDPM)]: 3.94, softening start temperature: 390 ° C., maximum fluidity temperature: 442 ° C., particle size: −75 μm, 90% by mass) were used. And the briquette was made into the mixture ratio of powdered iron ore: powdered carbonaceous material = 75: 25-85: 15 (mass ratio), and the manufacturing speed of briquette was 1.2 t / h.

〔比較例〕
ペレット化を行わない従来の製造方法(図参照)によるブリケット製造試験を実施した。炭材供給手段(加熱機能付き)および原料加熱手段としては、ともにCOGを燃料として外部加熱を行うスクリュー移送式加熱機を用いた。また、混合手段としては、横型パドル式混合機(容器内径0.44m、容器有効長さ4.5m、空気吹き込み口付き)を用い、空気を吹き込みつつ混合を行った。なお、該混合機は、COGを燃料として外部加熱により保温を行う方式を採用した。また、熱間成形手段としては、双ロール型成形機(ロール径:800mm、ロールギャップ:2mm、ポケット深さ:8mm)を用い、成形圧:800kNにて、長さ:30mm×幅:25.7mm×厚み:20mmの卵形ブリケットに成形した。また、熱処理手段としては、炭材供給手段(加熱機能付き)および原料加熱手段と同様、COGを燃料として外部加熱を行うスクリュー移送式加熱機を用い、処理温度:650℃、滞留時間:6.4minで脱ガス処理を行った。
[Comparative example]
The briquette manufacturing test by the conventional manufacturing method (refer FIG. 2 ) which does not pelletize was implemented. As the carbonaceous material supply means (with heating function) and the raw material heating means, a screw transfer type heater that performs external heating using COG as a fuel was used. Further, as a mixing means, a horizontal paddle type mixer (container inner diameter 0.44 m, container effective length 4.5 m, with air blowing port) was used for mixing while blowing air. The mixer employs a system in which COG is used as fuel and heat is maintained by external heating. Moreover, as a hot forming means, a twin roll type molding machine (roll diameter: 800 mm, roll gap: 2 mm, pocket depth: 8 mm) was used, with a forming pressure: 800 kN, length: 30 mm × width: 25. It was molded into an egg-shaped briquette of 7 mm × thickness: 20 mm. As the heat treatment means, a screw transfer type heater that performs external heating using COG as a fuel is used as in the carbonaceous material supply means (with a heating function) and the raw material heating means, and the processing temperature is 650 ° C. and the residence time is 6. Degassing treatment was performed for 4 minutes.

粉状石炭は炭材供給手段(加熱機能付き)で200〜300℃に予熱する一方、粉状鉄鉱石は原料加熱手段で450〜600℃に加熱し、これらを混合機で混合した後、成形機でブリケットに成形し、熱処理手段で脱ガス処理を行った。その結果、得られたブリケットの圧潰強度は1180〜1470N/個(120〜150kgf/個)であった。   Powdered coal is preheated to 200-300 ° C with carbonaceous material supply means (with heating function), while powdered iron ore is heated to 450-600 ° C with raw material heating means, mixed with a mixer, and then molded. It was molded into briquettes with a machine and degassed with heat treatment means. As a result, the crushing strength of the obtained briquette was 1180 to 1470 N / piece (120 to 150 kgf / piece).

〔発明例〕
ペレット化を行う本発明に係る製造方法(図1参照)によるブリケット製造試験を実施した。なお、本発明例は、上記比較例で用いた製造装置にペレット製造装置を追加して以下のようにして実施した。
[Invention Example]
The briquette manufacturing test by the manufacturing method (refer FIG. 1) based on this invention which pelletizes was implemented. In addition, the example of this invention added the pellet manufacturing apparatus to the manufacturing apparatus used by the said comparative example, and implemented it as follows.

使用する粉状石炭と粉状鉄鉱石全量のうち、粉状石炭の44質量%と粉状鉄鉱石の78質量%を混合し、これにバインダとしてのリグニンと水分を適量添加して、内径3mのディスク型ペレタイザを用い9.5rpmの回転速度で、粒径1〜5mmの生ペレット(生ペレット中の粉状石炭と粉状鉄鉱石の質量比=80:20)を製造した。この生ペレットをドライヤで含有水分量が1質量%以下になるように乾燥し、乾燥ペレットとした。   Of the total amount of powdered coal and powdered iron ore to be used, 44% by weight of powdered coal and 78% by weight of powdered iron ore are mixed, and lignin and water as a binder are added in an appropriate amount. A raw pellet having a particle diameter of 1 to 5 mm (mass ratio of powdered coal to powdered iron ore in the raw pellet = 80: 20) was produced at a rotation speed of 9.5 rpm. The raw pellets were dried with a dryer so that the water content was 1% by mass or less to obtain dried pellets.

そして、残りの粉状炭材は炭材供給手段(加熱機能付き)で200〜300℃に予熱する一方、上記乾燥ペレットは残りの粉状鉄鉱石とともに原料加熱手段で400℃程度に加熱し、これらを一緒に上記外部加熱式の混合機に装入し、さらに300〜400℃で加熱を継続した。そして、この加熱されたペレットおよび粉状原料を成形機でブリケットに成形し、熱処理手段で脱ガス処理を行った。その結果、得られたブリケットの圧潰強度は1670〜1960N/個(170〜200kg/個)であった。   And while the remaining powdered carbonaceous material is preheated to 200-300 ° C. by the carbonaceous material supply means (with heating function), the dried pellet is heated to about 400 ° C. by the raw material heating means together with the remaining powdered iron ore, These were charged together in the external heating type mixer and further heated at 300 to 400 ° C. The heated pellets and powdery raw material were formed into briquettes with a molding machine, and degassed with heat treatment means. As a result, the crushing strength of the obtained briquette was 1670-1960 N / piece (170-200 kg / piece).

1:造粒機
2:ペレット加熱装置(外部加熱式ロータリキルン)
4:熱間成形機(双ロール型成形機)
5:熱処理装置(シャフト炉)
6:スクリーン
A:粉状炭材(粉状石炭)
B:粉状鉄含有原料(粉状鉄鉱石)
C:ペレット
D:炭材内装塊成化物(ブリケット)
E:炭材内装塊成化物(篩上塊状物)
F:篩下粉
G:酸素含有ガス(空気)
H:排ガス
1: Granulator 2: Pellet heating device (external heating rotary kiln)
4: Hot forming machine (double roll type forming machine)
5: Heat treatment equipment (shaft furnace)
6: Screen A: Powdered carbon material (powdered coal)
B: Powdered iron-containing raw material (powdered iron ore)
C: Pellet D: Carbonaceous material agglomerate (briquette)
E: Carbonized material agglomerated material (sieve lump)
F: Sieve powder G: Oxygen-containing gas (air)
H: exhaust gas

Claims (7)

軟化溶融性を有する粉状炭材と、粉状鉄含有原料とからなる混合原料を造粒してペレットとなす造粒工程と、
このペレットを、300℃以上で最高流動度温度+50℃以下に加熱するペレット加熱工程と、
この加熱されたペレットを熱間成形して炭材内装塊成化物となす熱間成形工程と、
を備えたことを特徴とする炭材内装塊成化物の製造方法。
A granulating step of granulating a mixed raw material consisting of a powdered carbon material having softening and melting properties and a powdered iron-containing raw material into pellets;
A pellet heating step of heating the pellet to a maximum fluidity temperature of + 50 ° C. at 300 ° C. or higher;
A hot forming step of hot forming the heated pellets into a carbonaceous material agglomerate;
A method for producing an agglomerated carbonaceous material, comprising:
前記混合原料が、さらに粉状フラックスを含む請求項1に記載の炭材内装塊成化物の製造方法。   The method for producing an agglomerated carbonaceous material agglomerated product according to claim 1, wherein the mixed raw material further contains a powdery flux. 前記ペレットの平均粒径を1〜15mmとする請求項1または2に記載の炭材内装塊成化物の製造方法。   The method for producing an agglomerated carbonaceous material agglomerated product according to claim 1 or 2, wherein the pellets have an average particle size of 1 to 15 mm. 前記熱間成形工程で用いる成形機を双ロール型成形機とし、前記ペレットの平均粒径を該双ロール型成形機のロールギャップより大きく、かつ、該双ロール型成形機のポケット深さより小さくする請求項3に記載の炭材内装塊成化物の製造方法。   The molding machine used in the hot molding process is a twin-roll molding machine, and the average particle size of the pellets is larger than the roll gap of the twin-roll molding machine and smaller than the pocket depth of the twin-roll molding machine. The manufacturing method of the carbonaceous material interior agglomerated material of Claim 3. 前記ペレット加熱工程において、未造粒の、粉状炭材、粉状鉄含有原料および粉状フラックスの少なくとも1種を、前記ペレットに添加して一緒に加熱する請求項1〜4のいずれか1項に記載の炭材内装塊成化物の製造方法。 In the pellet heating step, any non-granulation, powdered carbonaceous material, at least one powdered iron-containing raw material and powdery flux, the Motomeko 1-4 it heated together was added to the pellet A method for producing an agglomerated carbonaceous material agglomerated product according to claim 1. ペレット加熱工程と前記熱間成形工程との間に、前記加熱されたペレットの一部を解砕するペレット解砕工程を設けた請求項1〜5のいずれか1項に記載の炭材内装塊成化物の製造方法。 Between the front Symbol pellet heating step and the hot-forming process, the carbonaceous material according to claim 1 in which a pellet crushing step of crushing a portion of said heated pellets A method for producing an interior agglomerate. 前記ペレット加熱工程において、酸素含有ガスの雰囲気下で加熱する請求項1〜6のいずれか1項に記載の炭材内装塊成化物の製造方法。   In the said pellet heating process, the manufacturing method of the carbon material interior agglomerated material of any one of Claims 1-6 heated in the atmosphere of oxygen-containing gas.
JP2009179557A 2009-03-12 2009-07-31 Manufacturing method of carbonized material agglomerates Expired - Fee Related JP5411615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179557A JP5411615B2 (en) 2009-03-12 2009-07-31 Manufacturing method of carbonized material agglomerates

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009059778 2009-03-12
JP2009059778 2009-03-12
JP2009179557A JP5411615B2 (en) 2009-03-12 2009-07-31 Manufacturing method of carbonized material agglomerates

Publications (2)

Publication Number Publication Date
JP2010236081A JP2010236081A (en) 2010-10-21
JP5411615B2 true JP5411615B2 (en) 2014-02-12

Family

ID=43090679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179557A Expired - Fee Related JP5411615B2 (en) 2009-03-12 2009-07-31 Manufacturing method of carbonized material agglomerates

Country Status (1)

Country Link
JP (1) JP5411615B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624486B2 (en) * 2011-01-26 2014-11-12 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials
JP5588372B2 (en) * 2011-01-26 2014-09-10 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials
JP5588371B2 (en) * 2011-01-26 2014-09-10 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials
CN107435097B (en) * 2017-08-08 2018-12-14 江苏大学 A kind of the multiple physical field simulation experiment system and method for pelletizing drying and preheating process
JP7366832B2 (en) 2019-04-23 2023-10-23 株式会社神戸製鋼所 Method for manufacturing iron ore pellets
WO2020218170A1 (en) * 2019-04-23 2020-10-29 株式会社神戸製鋼所 Method for producing iron ore pellet
JP7419155B2 (en) 2020-05-07 2024-01-22 株式会社神戸製鋼所 Method for manufacturing iron ore pellets

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU82461A1 (en) * 1980-05-19 1982-01-20 Arbed METHOD FOR PRODUCING PRELIMINARY PRESSURE PIECES MADE FROM METAL
JP3754553B2 (en) * 1997-07-22 2006-03-15 株式会社神戸製鋼所 Agglomerated product for reduced iron and method for producing the same
JP4502708B2 (en) * 2004-05-17 2010-07-14 株式会社神戸製鋼所 Method for producing carbon steel interior agglomerates for iron making
JP4843445B2 (en) * 2006-10-05 2011-12-21 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates

Also Published As

Publication number Publication date
JP2010236081A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JP4438297B2 (en) Method for producing reduced metal and agglomerated carbonaceous material agglomerates
US8262766B2 (en) Method for reducing chromium containing raw material
JP4996105B2 (en) Vertical coal interior agglomerates
JP2012017528A (en) Method for operating blast furnace using woody biomass as raw material, and coke production method
WO2012049974A1 (en) Process for production of reduced iron
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
US9534275B2 (en) Methods and systems for reducing chromium containing raw material
JP5588372B2 (en) Method for producing agglomerates for blast furnace raw materials
JP4718241B2 (en) Coke production method
AU2008312903A1 (en) Producing Method of Direct Reduced Iron
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP2006152432A (en) Method for producing molten iron
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP2005053986A (en) Method for producing ferrocoke for blast furnace
JP4843445B2 (en) Manufacturing method of carbonized material agglomerates
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP5588371B2 (en) Method for producing agglomerates for blast furnace raw materials
JP5624486B2 (en) Method for producing agglomerates for blast furnace raw materials
JP5613576B2 (en) Method for producing agglomerates for blast furnace raw materials
JP2011032532A (en) Method for producing agglomerate for blast furnace raw material
JP5613575B2 (en) Method for producing agglomerates for blast furnace raw materials
JP2010209448A (en) Method for manufacturing agglomerate containing carbonaceous material
JP2023019428A (en) Smelting method for nickel oxide ore

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5411615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees