JP4438297B2 - Method for producing reduced metal and agglomerated carbonaceous material agglomerates - Google Patents

Method for producing reduced metal and agglomerated carbonaceous material agglomerates Download PDF

Info

Publication number
JP4438297B2
JP4438297B2 JP2003063516A JP2003063516A JP4438297B2 JP 4438297 B2 JP4438297 B2 JP 4438297B2 JP 2003063516 A JP2003063516 A JP 2003063516A JP 2003063516 A JP2003063516 A JP 2003063516A JP 4438297 B2 JP4438297 B2 JP 4438297B2
Authority
JP
Japan
Prior art keywords
reduced
carbonaceous material
metal
iron
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003063516A
Other languages
Japanese (ja)
Other versions
JP2004269978A (en
Inventor
孝夫 原田
英年 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003063516A priority Critical patent/JP4438297B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to AU2004219806A priority patent/AU2004219806B2/en
Priority to KR1020057016771A priority patent/KR20050107504A/en
Priority to KR1020077007730A priority patent/KR20070044507A/en
Priority to CA2519229A priority patent/CA2519229C/en
Priority to PCT/JP2004/001337 priority patent/WO2004081238A1/en
Priority to RU2005131192/02A priority patent/RU2303071C2/en
Priority to CNB2004800066959A priority patent/CN100567510C/en
Priority to EP04709375A priority patent/EP1602737A4/en
Priority to TW093103741A priority patent/TW200424320A/en
Priority to US10/548,519 priority patent/US7674314B2/en
Publication of JP2004269978A publication Critical patent/JP2004269978A/en
Application granted granted Critical
Publication of JP4438297B2 publication Critical patent/JP4438297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • C21B7/103Detection of leakages of the cooling liquid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄鉱石などの酸化金属と石炭との粉体状混合物を塊成化した炭材内装塊成物を用いた還元金属の製造方法に係り、詳しくは、高揮発分(volatile matter)を含有する高VM炭を用いた、還元後の圧潰強度に優れた還元金属の製造方法とそれに用いる炭材内装塊成物に関する。
【0002】
【従来の技術】
還元鉄の製造方法としては、向流シャフト炉を用いて、天然ガスを変成させた還元性ガスにより、粉鉱や塊鉱を固相のまま還元して還元鉄を得るミドレックス法がよく知られている。この方法は、還元剤としてコストの高い天然ガスを大量に供給する必要があり、また、通常、プラントの立地が天然ガスの産地に限られるなどの制約がある。
【0003】
このため、近年、還元剤を天然ガスから、比較的安価で、プラント立地の地理的制約も緩和される石炭に代替する還元鉄の製造プロセスが注目されている。この石炭を還元剤として使用する方法については、例えば、酸化鉄を含む金属酸化物を有する原料を炭質材料、即ち炭材と混合して、乾燥混合物を形成し、この乾燥混合物を、揮発物を発生させるに充分な条件で固まりにして、前記揮発物をバインダーとして機能させて乾燥混合物を結合させて圧粉体を形成する。そして、この圧粉体を回転炉床炉内に充填して、2150〜2350°F(1177℃〜1288℃)の温度域に、5〜12分間加熱して圧粉体を還元して還元鉄を製造する方法が開示されている(例えば、特許文献1参照)。
【0004】
この方法では、石炭中の揮発物はバインダーの機能があり、揮発物の含有量が20%よりも少ない場合には有機バインダーの添加が必要であり、揮発物が20%〜30%の範囲では、10,000Lb/in2(703kg/cm2)を超える加圧と800°F(427℃)の加熱が必要であり、揮発物が30%以上の場合には、10,000Lb/in2(703kg/cm2)を超える加圧のみでよいことが記載されている。また、前記炭質材料としては、固定炭素が多く、約20%以上の揮発物を有する瀝青炭のような石炭が望ましいことが記載されている。
【0005】
そして、前記回転炉床炉から排出される還元鉄圧分体が2〜10%の過剰炭素を含み、この過剰炭素は、還元反応速度を向上し、還元の完全性を促進し、電気炉製綱で使用する炭素を提供することの利点があることが記載されている。
【0006】
一方、前記炭材内装塊成物は多孔質であり、炭材と鉄鉱石などの酸化金属との接触は充分に大きくないため、塊成物内での熱伝導性がわるく、還元速度が低い。このため、炭材内装塊成物に使用する炭材の、回転炉床炉内での軟化溶融時の最高流動度が小さくなる程、酸化金属、即ち鉄鉱石中の10μm以下の酸化鉄粒子の割合を多くして酸化鉄粒子間の接点数を増加させる方法が開示されている(例えば、特許文献2参照)。この方法によれば、炭材の軟化溶融時の最高流動度が小さくても酸化鉄粒子同士の接触面積を増大し、炭材内装塊成物内の熱伝導性が向上し、加熱還元により金属化した粒子同士の結合接点数が増加し、焼結化が促進されて強度に優れた還元鉄が得られる。
【0007】
【特許文献1】
特表平11−511511(第2頁〜第4頁)
【特許文献2】
特許第3004265号([0007]〜[0029])
【0008】
【発明が解決しようとする課題】
しかし、10,000Lb/in2(703kg/cm2)程度の加圧力で、2〜10%程度の残留炭素を含む還元鉄を製造する場合、充分な還元鉄強度を確保するためには、通常、固定炭素分の高い炭材を使用して金属鉄との比率を高める必要があることから、特表平11−511511号公報に開示された還元鉄の製造方法では、揮発物の含有量が35%までの、固定炭素分の高い高度瀝青炭を主として対象としていると考えられる。
【0009】
前記高度瀝青炭は、固定炭素分が高く、高品質であるが、埋蔵量が少ない原料炭で産地も限られるため、高価であるという問題を有する。一方、固定炭素分の少ない石炭、即ち亜瀝青炭以下の炭化度の低い石炭は埋蔵量が多く、産地の制約がなく安価であるために、製鉄への利用に対する要望は高い。しかし、鉄酸化物など金属酸化物の還元には固定炭素が寄与するために、固定炭素分が少ない亜瀝青炭や、さらに炭化度が低い褐炭を使用すると、鉄酸化物、即ち粉鉱に対する配合比率を高める必要がある。
【0010】
このように、炭化度の低い石炭の配合比率を高めると、相対的に、圧粉体中に占める金属鉄の割合が下がり、還元による焼結化等の結合力が弱くなるために、還元鉄の強度が低下する。この強度低下により、回転炉床炉から排出される際の排出機等から受ける衝撃で、還元鉄が粉々になって比表面積が増大し、回転炉床炉内に存在する二酸化炭素や水蒸気などの酸化性ガスとの接触により、還元鉄は再酸化し、次工程への半製品としての価値を失い、かつ、粉体となるためにハンドリングが困難となる。また、粉々になった還元鉄を溶解炉で溶解する場合、粉体は密度が低いため、溶解炉内のスラグ層上に浮いてしまい、溶解できないという問題も発生する。
【0011】
これに対し、固定炭素分が少ない炭材の配合比率を下げると、還元鉄の強度は上昇するが、還元反応に寄与する固定炭素量が不足するため、鉄酸化物などの酸化金属を充分に還元できない。また、還元鉄を溶解して溶銑を製造する際に、溶銑中に所要の炭素量を含有させるため、還元鉄中の残留炭素分が少ない場合には、炭材を添加する必要がある。この溶銑中への加炭は、歩留がわるく、炭材の消費量が増加するだけでなく、目標炭素濃度にまで加炭できない場合もある。
【0012】
一方、特許第3004265号に記載された還元鉄の製造方法では、炭材の最高流動度に応じた、10μm以下の酸化鉄などの酸化金属粒子の配合が必要であり、工程が増加し、また、10μmを超える粗粒の酸化鉄粒子だけを配合した場合には、強度に優れた還元鉄を製造することはできない。
【0013】
そこで、この発明の課題は、埋蔵量が豊富で、広く産出する安価な高VM炭を用い、酸化金属の微粒化を必要としない、還元後の強度に優れた炭材内装塊成物とそれを用いた還元金属の製造方法を提供することである。
【0014】
【課題を解決するための手段】
前記の課題を解決するために、この発明では以下の構成を採用したのである。
【0015】
即ち、揮発成分を35%以上含有する高VM炭からなる炭材と金属酸化物を含有する被還元原料とを、前記炭材の一部または全部が加熱処理されない状態で混合し、2t/cm以上の加圧力で成形して炭材内装塊成物とし、この炭材内装塊成物を回転炉床炉で加熱し、高温還元して還元金属を製造するようにしたのである。
【0016】
前記揮発成分を35%以上含有する炭化度が比較的低い石炭は、世界的に広範囲に分布して埋蔵量も多いため、安価であり、炭材内装塊成物の製造コストを低減することができ、かつ、プラントの立地条件の制約がなくなる。また、揮発成分は、設置面積が小さく、被処理品の装入および取出しが容易にできるなどの特徴を有する回転炉床炉での炭材内装塊成物の加熱に燃料として利用できるため、バーナへ供給する燃料を節減できる。このような炭化度の比較的低い石炭を用いた炭材内装塊成物を、少なくとも2t/cm以上の加圧力で塊成化すれば、前記塊成物内の気孔率を有効に低減することができるため、塊成物中の伝熱が促進され、塊成物内の全域で還元金属間の焼結化が進行し、強度の高い還元金属の製造が可能となる。それにより、回転炉床炉から排出される際の排出機等から受ける衝撃で、還元鉄が粉々にならず、前記の再酸化や溶解炉内でスラグ層上に浮いて溶解できないなどの問題が解消される。また、上記加熱処理は、400〜1000℃程度の、乾留状態とする高温加熱処理を意味し、このような加熱処理を施さない場合には、炭材が硬化していない状態で塊成化できるため、気孔率が有効に低減して密度が増加し、所要の強度を有する炭材内装塊成物が得られる。なお、前記加熱処理は、炭材の粉砕工程や乾燥工程で、炭材の種類によって温度条件は異なるが、約200℃以下で加熱する処理は含んでおらず、このような単なる乾燥程度の加熱であれば、実質的に乾留、硬化の影響は受けなく、許容される。
【0017】
揮発成分を35%以上含有する高VM炭からなる炭材と金属酸化物を含有する被還元原料とを、前記炭材の一部または全部が加熱処理されない状態で混合し、加圧ロール単位幅(cm)あたり2t/cm以上の加圧力でブリケット状の炭材内装塊成物とし、この炭材内装塊成物を回転炉床炉で加熱し、高温還元して還元金属を製造することもできる。
【0018】
例えば、高圧ロールプレスを用いた場合に、ロール単位幅(cm)あたり2ton以上の加圧力でブリケット状に塊成化すれば、気孔率がより有効に低減し、密度が大きく、粒形状が揃い、高温還元後に所要の強度を有する炭材内装塊成物が得られる。また、アーモンド形状やピロー形状など、溶解工程に適したブリケット形状に塊状化することができる。なお、厳密にはロールの回転速度が変われば各ブリケットに加わる圧力は変化するが、通常のブリケットマシン運転のロール回転速度(2〜30rpm)では、ブリケットに加わる圧力はロール単位幅あたりの加圧力で代表できる。また、上記加熱処理は、400〜1000℃程度の、乾留状態とする高温加熱処理を意味し、このような加熱処理を施さない場合には、炭材が硬化していない状態で塊成化できるため、気孔率が有効に低減して密度が増加し、所要の強度を有する炭材内装塊成物が得られる。なお、前記加熱処理は、炭材の粉砕工程や乾燥工程で、炭材の種類によって温度条件は異なるが、約200℃以下で加熱する処理は含んでおらず、このような単なる乾燥程度の加熱であれば、実質的に乾留、硬化の影響は受けなく、許容される。
【0019】
前記被還元原料が、酸化鉄、酸化ニッケル、酸化クロム、酸化マンガンおよび酸化チタンよりなる群から選ばれた1種または2種以上の金属酸化物を含むようにすることもできる。
【0020】
このようにすれば、高炉ダストや転炉ダストなどの鉄・ニッケル等を含有する製鉄ダスト類を炭材内装塊成物に塊成化できるため、資源リサイクルが可能となる。なお、酸化チタンを含有する原料においては、不純物として混入している鉄などの酸化物は還元によって金属鉄などの還元金属となる。この還元金属を溶解炉等に供給すると、還元されない酸化チタンはスラグとなって、還元金属と分離するため、高濃度の酸化チタンと還元金属とを分離回収できるようになる。なお、酸化チタンと還元金属中の金属鉄の分離は必ずしも溶解炉で行なうだけでなく、後述の加熱溶融処理や凝集粒状化処理を行なうと還元鉄中の金属鉄は粒状になるため、この還元金属を粉砕することにより、金属鉄と酸化チタンとを分離することができる。
【0021】
前記還元金属が1%以上の残留炭素を含むようにすることが望ましい。
【0022】
前記回転炉床炉から排出された高温還元後の還元金属には、未還元の酸化金属も存在するため、下流工程の溶解炉で、還元金属中に存在する残留炭素によって、この未還元の酸化金属が還元される。そして、この残留炭素が、通常1%よりも少なくなると、未還元の酸化金属の還元が不充分となる。なお、残留炭素量は、炭材の揮発分の程度、即ち固定炭素量に基づき、酸化金属と炭材との混合比率を変化させることにより、調節が可能である。
【0025】
上記のいずれかの方法により製造された還元金属に、さらに加熱溶融処理を施すことが望ましい。
【0026】
前記還元金属を加熱溶融させることにより、原料である炭材や被還元材料に含まれるスラグ成分と金属成分とを分離することができ、不要なスラグ成分を極力含まない還元金属を得ることが可能となる。この加熱溶融処理は、前記回転炉床炉内で、高温還元に引き続いて加熱することにより行うことができる。
【0027】
上記の加熱溶融処理により溶融状態にある還元金属を、凝集させて粒状化することもできる。
【0028】
前記還元金属は、粉砕した炭材と金属酸化物とを混合した原料を使用しているため、塊成物中に小さな還元金属粒子が分散した状態になっている。溶融状態にある還元金属は、冷却過程で表面張力の作用によりその還元金属粒子が凝集し、粒状の還元金属となる。このように粒状の還元金属とすることにより、搬送や溶解炉への装入などハンドリングが容易となる。なお、溶融還元金属の冷却は、回転炉床炉内での、単にバーナなどの加熱をしていない排出装置側域への移動による炉冷、または、炉天井に水冷ジャケットなどの冷却手段を設けた冷却域での炉冷、などにより行なうことができる。
【0029】
炭材と金属酸化物を含有する被還元原料とからなる炭材内装塊成物であって、前記炭材が35%以上の揮発成分を含有する高VM炭であり、前記炭材の一部または全部が加熱処理されない状態で前記被還元原料と混合され、加圧下での塊成化により、気孔率を35%以下に減少するように形成することができる。
【0030】
このように、加圧下での塊成化により、揮発成分を35%以上含有する高VM炭を用いた炭材内装塊成物の気孔率をおよそ35%以下に減少させれば、高温還元過程で塊成物中の伝熱が促進され、塊成物内の全域で還元金属間の焼結化が進行し、圧潰強度の高い還元金属の製造が可能となる。また、上記加熱処理は、400〜1000℃程度の、乾留状態とする高温加熱処理を意味し、このような加熱処理を施さない場合には、炭材が硬化していない状態で塊成化できるため、気孔率が有効に低減して密度が増加し、所要の強度を有する炭材内装塊成物が得られる。なお、前記加熱処理は、炭材の粉砕工程や乾燥工程で、炭材の種類によって温度条件は異なるが、約200℃以下で加熱する処理は含んでおらず、このような単なる乾燥程度の加熱であれば、実質的に乾留、硬化の影響は受けなく、許容される。
【0031】
【発明の実施の形態】
まず、炭材として揮発分を35%以上含有する高VM炭を用い、この高VM炭と酸化金属である鉄鉱石とを粉砕機で粉砕し、これらを還元後の残留炭素量が1%以上、望ましくは2%以上となるように予め配合し、ミキサーにより混合した後、この混合物が高圧ロールプレスの一対のロール間に供給される。前記一対のロールの表面には、塊成物の母型であるポケットがそれぞれ刻まれている。そして、前記鉄鉱石と高VM炭の混合物は、高圧ロールプレスのロール単位幅(cm)あたり、2t/cm以上、望ましくは3t/cm以上の所要の加圧力が付加されて、気孔率がおよそ35%以下に有効に低減され、ブリケットに成形される。
【0032】
前記炭材内装塊成物は、通常、バーナにより加熱される回転炉床炉に装入され、1300℃程度の高温域に加熱されて、還元反応が進行し、還元鉄となって回転炉床炉から排出される。そして、この還元鉄は電気炉や化石燃料を利用した溶解炉で溶解され、銑鉄が得られる。
【0033】
また、高温還元により還元鉄となった状態では、粉砕した炭材と鉄鉱石とを混合した原料を使用しているため、ブリケット中に小さな還元鉄粒子が分散した状態になっている。この高温還元終了後、回転炉床炉内で引き続いて加熱することにより、得られた還元鉄を溶融させることができる。この溶融によって、原料である炭材や被還元原料である鉄鉱石に含まれるスラグ成分と金属成分とを分離することができ、不要なスラグ成分を極力含まない還元鉄を得ることが可能となる。
【0034】
さらに、この溶融した還元鉄を回転炉床炉内で、バーナなどの加熱をしていない排出装置側域、または炉天井に水冷ジャケットなどの冷却手段を設けた冷却域で炉冷することにより、冷却過程での表面張力の作用で、溶融した還元鉄粒子を凝集させて粒状の還元鉄を得ることができる。
【0035】
前記炭材内装塊成物は、前述の高圧成形によって高温還元前に気孔率が低下しており、上述の加熱溶融処理や凝集粒状化処理によっても還元鉄の気孔率は低くなる。この金属化した還元鉄は電気炉等で溶解されるが、気孔率が小さいため、還元鉄粒子は周辺の還元鉄粒子と容易に結合して凝集しやすく、大きな粒鉄を形成しやすくなる。この形成された粒鉄が大きいと、スラグ中に分散して回収が困難になる還元鉄粒子や、回転炉床炉から排出した後に、小さいために回収しにくい還元鉄粒子が少なくなるため、金属鉄とスラグとの分離が容易になり、かつ、鉄分の損失が減って歩留が高くなる。
【0036】
前記炭材に流動性がある場合、前記高圧成形により炭材内装塊成物の気孔率を下げることにより、高温還元過程で炭材が鉄鉱石粒子間の結合がより密になるため、この塊成物内部の伝熱速度が上昇し、還元速度が速まり、かつ、固相状態でも焼結による還元鉄粒子の凝集が生じ、上述の加熱溶融後の凝集粒状化を促進することができる。
【0037】
なお、還元鉄製品としては、通常のスポンジ状の還元鉄に限らず、粉状、粒状、板状の形態をとることができる。また、溶融金属の形態や溶解後固化させる固体金属の形態をとることができる。また、前記酸化金属は必ずしも鉄鉱石に限らず、従って、前記還元金属も還元鉄に限定するものではない。
【0038】
また、酸化チタンを含有する原料においては、不純物として混入している鉄などの酸化物は還元によって金属鉄などの還元金属となる。この還元金属を溶解炉等に供給すると、還元されない酸化チタンはスラグとなって、還元金属と分離するため、高濃度の酸化チタンと還元金属とを分離回収できるようになる。なお、酸化チタンと金属鉄の分離は必ずしも溶解炉で行なうだけでなく、上述の加熱溶融処理や凝集粒状化処理を行なうと還元金属中の金属鉄は粒状になるため、この還元金属を粉砕することにより、金属鉄と酸化チタンに分離することができる。
【0039】
さらに、前記炭材は揮発分の含有量が高いため、過剰に発生する揮発分を回収して、この回転炉床炉の必要な炉床部位に燃料としてリサイクルすることができ、本来の燃料が不要になるほどに節約することも可能である。
【0040】
以下に、実施例について説明する。
【0041】
【実施例1】
表1に組成を示す炭材の、高VM炭A、高VM炭B、瀝青炭Cをそれぞれ200メッシュ以下のものが80%以上を占めるように粉砕し、また、鉄鉱石を、Blaine Index1500cm2/g程度の粒度になるように粉砕し、還元鉄中の残留炭素量、即ちDRI残留炭素量を変化させるために、各炭材と鉄鉱石との配合比率を変化させて混合し、この混合物を、ピロー型のポケットが刻まれたロール径228mm、ロール幅(胴長)70mmの試験用ブリケットマシンを用いて、加圧力2.5t/cm(ロール単位幅)で、縦35mm×横25mm×最大厚み13mmの、断面が楕円形状をした体積6cm3のピロー型の炭材内装ブリケットを形成した。
【0042】
【表1】

Figure 0004438297
【0043】
図1は、この炭材内装ブリケットを、窒素雰囲気下の炉内温度約1300℃の回転炉床炉で高温還元して得られた即ちDRI残留炭素量(%)と還元鉄(縦28mm×横20mm×最大厚み11mm)の圧潰強度、即ちDRI圧潰強度(kg/ブリケット)との関係を示したものである。
【0044】
図1から、いずれの炭材でも、炭材配合比率を下げてDRI残留炭素量を少なくすると、DRI圧潰強度は上昇するが、同一DRI残留炭素量の場合、高VM炭、即ち高VM炭A、高VM炭Bのいずれについても、瀝青炭Cに比べてDRI圧潰強度は低い。また、高VM炭でも、固定炭素量が少ない高VM炭Aの方が、同一DRI残留炭素量にするには配合比率を高める必要があるため、DRI圧潰強度は低くなる。このように、高VM炭を使用したDRIの圧潰強度は低く、例えば、40kg/ブリケットの所要のDRI圧潰強度を得るためには、高VM炭では、瀝青炭よりもDRI残留炭素量を低減する必要がある。しかし、前述のように、DRI残留炭素量が少なくなると、下流工程の溶解炉での未還元の酸化金属、即ち酸化鉄の還元が不充分となるため、高VM炭の場合でも所要の残留炭素量が必要である。
【0045】
次に、表1に組成を示した炭材の、高VM炭B、乾留炭Dおよび鉄鉱石をそれぞれ、全体の80%程度がおよそ200メッシュ以下になるように粉砕し、各炭材と鉄鉱石との配合比率を変化させて混合し、この混合物5グラムを内径20mmのシリンダ内に装入し、ピストンで加圧して、直径が20mmで高さが6.7〜8.8mmの円筒形のタブレットに成形した。なお、タブレットの高さは成形圧により異なる。
【0046】
図2は、前記円筒体への成形加圧力、即ちタブレット成形圧と、このタブレットを窒素雰囲気下の炉内温度約1300℃の回転炉床炉に9分間在炉させ、高温還元して得られた還元鉄(直径16〜17mm、高さ5.5〜7.5mm)の圧潰強度、即ちDRI圧潰強度(kg/タブレット)との関係を示したものである。また、図3は、前記の高VM炭Bおよび乾留炭Dを用いた円筒形タブレットの成形圧とその気孔率との関係示したもので、図4は、タブレット成形圧とタブレット見掛け密度(kg/cm3)との関係を示したものである。なお、DRI残留炭素量は約2%である。
【0047】
図2、図3および図4から、高VM炭Bでは、タブレット成形圧を高めることによって気孔率が減少し、見掛け密度が増加するため、DRI圧潰強度は上昇する。そして、気孔率および見掛け密度は、タブレット成形圧が5〜6t/cm2(490MPa〜588MPa)で、略一定となる。図3から分かるように、タブレット成形圧を1t/cm2(98MPa)程度にまで高めると、気孔率は35%程度に減少する。このように、1t/cm2(98MPa)程度の加圧力を付与すると、加圧力が50kg/cm2(4.9MPa)と加圧力が殆んど付与されない場合の気孔率約45%から、加圧力を高めて低減させ得る、最小の気孔率約25%との差、即ち低減可能な気孔率のおよそ1/2が減少し、35%程度の気孔率となる。
【0048】
また、図2から分かるように、タブレット成形圧が1t/cm2(98MPa)以上では、DRI圧潰強度は使用可能な10kg/タブレットを超え、タブレット成形圧が2t/cm2(196MPa)以上では、気孔率は半減以下となって、より望ましい圧潰強度15kg/タブレットを超えることがわかる。このように、前記気孔率の減少が有効に作用し、塊成物中の伝熱が促進され、塊成物内の全域で還元金属間の焼結化が進行し、強度の高い還元鉄金属の製造が可能となる。
【0049】
一方、瀝青炭Cでは、揮発分が少ないため気孔率が低く、タブレット成形圧が1t/cm2(98MPa)以下でも、DRI圧潰強度は15kg/タブレットを超える。これに対し、高VM炭Bを約450℃で乾留した石炭である乾留炭Dの場合には、乾留によって石炭の硬度が上昇するため、タブレット成形圧を高めても、気孔率を効果的に減少せず、見掛け密度が効果的に増加しないため、DRI圧潰強度を高めることはできない。
【0050】
なお、円筒形状のタブレットの圧潰強度は、ISO4700によれば、その側面に荷重をかけるため、円筒の長さによって、圧潰強度は異なる。タブレットの原料重量、即ち前記炭材と鉄鉱石の混合物の重量を5グラムと一定にしたため、前記炭材の種類によってタブレットの体積、即ちその円筒の長さは若干異なるものの、5グラムの原料で製造したタブレットの成形圧1t/cm2あたりのDRI圧潰強度の増加は、前記体積6cm3のブリケットの成形圧1t/cmあたりのDRI圧潰強度の増加にほぼ一致することを、実試験により確認した。それにより、図2の横軸のタブレット成形圧(kg/cm2)は、ブリケット成形圧(kg/cm)と見なすことができる。
【0051】
従って、2は、ブリケット成形圧(kg/cm)とDRI圧潰強度(kg/タブレット)と見なすことができ、ブリケットマシンでタブレットを成形する場合には、ブリケット成形圧が2t/cm以上で、より望ましいDRI圧潰強度15kg/タブレットを超えると見なすことができる。また、成形圧が3t/cm以上では、DRI圧潰強度は20kg/タブレットを超えると見なせるが、この強度域に達すると、還元鉄搬送時に受ける衝撃による粉化が大きく改善されるため、さらに望ましい成形圧力域である。
【0052】
【実施例2】
実施例1に記した高VM炭Bおよび乾留炭Dを用い、高VM炭Bについては成形圧2.5t/cmおよび成形圧6.5t/cmで、それぞれ体積が6cm3の炭材内装ブリケットを形成した。図5は、この炭材内装ブリケットをそれぞれ、窒素雰囲気下の炉内温度約1300℃の回転炉床炉に約9分在炉させて高温還元し、得られたDRI残留炭素量(%)とDRI圧潰強度(kg/ブリケット)との関係を示したものである。図5から、下流工程の溶解炉での未還元の酸化金属、即ち酸化鉄の還元に寄与する残留炭素量が同一でも、ブリケット成形圧が6.5t/cmと高い方がDRI圧潰強度も高いことがわかる。このことは、所要のDRI残留炭素量を確保するために、高VM炭を使用する場合に、その配合率を高めても、ブリケット化時の成形圧を上昇させることにより、圧潰強度の高い還元鉄が得られることを示している。例えば、表1に示した揮発分約41%、固定炭素約50%の高VM炭Bを使用して炭材内装ブリケットを作製した場合、6.5t/cmのブリケット成形圧を付与すれば、DRI残留炭素量が5%の還元鉄で、所要のDRI圧潰強度40kg/ブリケット程度のDRI圧潰強度が得られる。
【0053】
なお、成形圧を高くすると、前記ロールプレスのロール摩耗量が多くなり、メインテナンス費用が高くなることから、最適な成形圧は、要求されるDRI圧潰強度レベルと製造コストの双方を考慮して設定することが重要で、2.5〜10t/cmの範囲で設定することが望ましい。
【0054】
【比較例】
表1に組成を示した炭材の、高VM炭B、瀝青炭Cおよび鉄鉱石をそれぞれ、全体の80%程度がおよそ200メッシュ以下になるように粉砕し、各炭材と鉄鉱石とを混合し、この混合物をペレタイザ(造粒機)によって、直径17mmのペレットに造粒した後、窒素雰囲気下の炉内温度約1300℃の回転炉床炉で高温還元して還元鉄を得た。図6は、この還元鉄のDRI残留炭素量(%)とDRI圧潰強度(kg/ペレット)との関係を示したものである。揮発分の少ない瀝青炭Cでは、DRI残留炭素量を少なくすると、DRI圧潰強度は顕著に上昇し、所要の圧潰強度15kg/ペレットを上回るが、揮発分の多い高VM炭Bでは、DRI残留炭素量を少なくすると、DRI圧潰強度は上昇する傾向にはあるが、造粒時の加圧力が小さく、気孔率の減少が少ないため、所要のDRI圧潰強度15kg/ペレットは達成できていない。
【0055】
【実施例3】
表2は、流動度が無い炭材を用いて炭材内装ブリケットを作製した場合の、酸化鉄中の10μm以下の酸化粒子の割合と還元鉄の圧潰強度および還元鉄中の6mm以下の粉率を示したもので、同表には、用いた炭材の種類(表1参照)、炭材および鉄鉱石の配合率、還元鉄中の金属化率および残留炭素量も記した。なお、この炭材内装ブリケットの回転炉床炉での還元条件は、実施例1および2の場合と同様に、窒素雰囲気下の炉内温度約1300℃で在炉時間が約9分であり、炭材はいずれも流動度が零である。
【0056】
【表2】
Figure 0004438297
【0057】
前述のように、従来技術では流動度の無い石炭を使用する場合、還元鉄の6mm以下の粉率を実用上許容できる10%以下にするためには、10μm以下の酸化鉄微粒子が15%以上必要であった。ブリケット成形圧が2.5t/cmの本実施例では、いずれの場合にも、10μm以下の酸化鉄微粒子が15%未満で、前記粉率は10%以下であり、また、気孔率は35%以下であり、DRI圧潰強度も所要の40kg/ブリケットを充分満たしている。これに対し、ブリケット成形圧が0.2t/cmと小さい比較例では、10μm以下の酸化鉄微粒子が15%未満であるため、前記粉率は約68%と極めて高く、また、気孔率は40%を超えており、圧潰強度も約34kg/ブリケットと所要の40kg/ブリケットに到達していない。
【0058】
なお、前記被還元材料として、酸化ニッケルや酸化クロム、酸化マンガンを使用することもできる。また、被還元材料が酸化亜鉛や酸化鉛のような重金属を含有する場合にも、還元が可能であるが、亜鉛や鉛は還元すると揮発するため、バグフィルタ等で、高濃度の酸化亜鉛や酸化鉛として回収可能となる。
【0059】
【発明の効果】
以上のように、この発明では、炭材内装塊成物を35%以上の揮発成分を含有する高VM炭を用い、炭材の一部または全部が加熱処理されない状態で前記被還元原料と混合し、少なくとも2t/cm以上の加圧力で塊成化し、前記塊成物内の気孔率が有効に低減するようにしたので、回転炉床炉での高温還元過程で、塊成物中の伝熱が促進されて塊成物内の全域で還元金属間の焼結化が進行し、圧潰強度の高い還元金属の製造が可能となる。また、流動性の無い炭材を用いた場合や、所要の残留炭素量を確保するために、高VM炭の配合率を高めた場合でも、圧潰強度の高い還元鉄が得られる。それにより、回転炉床炉から排出過程で、還元鉄が粉々にならず、再酸化や溶解炉内でスラグ層上へ浮いて溶解できないなどの問題が解消される。
【0060】
このように、地球上に広く分布し、埋蔵量も多く安価な揮発分の多い高VM炭を用いた炭材内装塊成物から、強度に優れた還元鉄を製造でき、この還元鉄は製鋼用および合金鉄製造用の銑鉄として、または合金鉄製造時にスクラップとともに装入する予備還元材として使用することができる。
【図面の簡単な説明】
【図1】この発明の実施例の還元鉄中の残留炭素量と圧潰強度との関係に及ぼす炭材の種類の影響を示す説明図
【図2】同上の塊成物の成形圧と還元鉄の圧潰強度との関係に及ぼす炭材の種類の影響を示す説明図
【図3】同上の塊成物の成形圧と気孔率との関係に及ぼす炭材の種類の影響を示す説明図
【図4】同上の塊成物の成形圧と見掛け密度との関係に及ぼす炭材の種類の影響を示す説明図
【図5】同上の還元鉄中の残留炭素量と圧潰強度との関係に及ぼす成形圧の影響を示す説明図
【図6】従来技術の還元鉄中の残留炭素量と圧潰強度に及ぼす炭材の種類の影響を示す説明図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a reduced metal using a carbonaceous material-containing agglomerate obtained by agglomerating a powdery mixture of a metal oxide such as iron ore and coal, and more specifically, high volatile matter. The present invention relates to a method for producing a reduced metal excellent in crushing strength after reduction using high-VM charcoal containing a carbonaceous material and an agglomerate containing a carbonaceous material used therein.
[0002]
[Prior art]
A well-known method for producing reduced iron is the Midrex method, which uses a counter-current shaft furnace to reduce reduced ore or agglomerate in the solid phase by reducing gas that has been converted from natural gas to obtain reduced iron. It has been. In this method, it is necessary to supply a large amount of high-cost natural gas as a reducing agent, and there is usually a restriction that the location of the plant is limited to the production area of natural gas.
[0003]
For this reason, in recent years, attention has been paid to a process for producing reduced iron that substitutes coal for reducing agent from natural gas, which is relatively inexpensive and relaxes the geographical constraints on plant location. Regarding the method of using this coal as a reducing agent, for example, a raw material having a metal oxide containing iron oxide is mixed with a carbonaceous material, that is, a carbonaceous material to form a dry mixture, and this dry mixture is converted into volatile matter. It is hardened under conditions sufficient for generation, and the volatiles function as a binder to combine the dry mixture to form a green compact. Then, the green compact is filled in a rotary hearth furnace and heated to a temperature range of 2150 to 2350 ° F. (1177 ° C. to 1288 ° C.) for 5 to 12 minutes to reduce the green compact to reduce reduced iron. Has been disclosed (for example, see Patent Document 1).
[0004]
In this method, the volatile matter in the coal has a binder function, and when the content of the volatile matter is less than 20%, the addition of an organic binder is necessary, and the volatile matter is in the range of 20% to 30%. 10,000Lb / in2(703 kg / cm2) And over 800 ° F. (427 ° C.) are required, and if the volatiles are 30% or more, 10,000 Lb / in2(703 kg / cm2It is described that only pressurization exceeding) is required. In addition, as the carbonaceous material, it is described that coal such as bituminous coal having a large amount of fixed carbon and about 20% or more volatiles is desirable.
[0005]
The reduced iron pressure fraction discharged from the rotary hearth furnace contains 2 to 10% excess carbon. This excess carbon improves the reduction reaction rate, promotes the integrity of reduction, and is manufactured by an electric furnace. It is stated that there is an advantage of providing carbon for use in the rope.
[0006]
On the other hand, the carbonaceous material-incorporated agglomerate is porous, and the contact between the carbonaceous material and the metal oxide such as iron ore is not sufficiently large, resulting in poor thermal conductivity in the agglomerate and a low reduction rate. . For this reason, the smaller the maximum fluidity of the carbonaceous material used for the carbonized material agglomerate during softening and melting in the rotary hearth furnace, the smaller the amount of metal oxide, that is, iron oxide particles of 10 μm or less in iron ore. A method for increasing the number of contacts between iron oxide particles by increasing the ratio is disclosed (for example, see Patent Document 2). According to this method, even if the maximum fluidity at the time of softening and melting of the carbon material is small, the contact area between the iron oxide particles is increased, the thermal conductivity in the carbon material interior agglomerate is improved, and the metal is reduced by heat reduction. The number of bonded contacts between the formed particles is increased, and sintering is promoted to obtain reduced iron having excellent strength.
[0007]
[Patent Document 1]
11-511511 (2nd to 4th pages)
[Patent Document 2]
Japanese Patent No. 3004265 ([0007] to [0029])
[0008]
[Problems to be solved by the invention]
However, 10,000 Lb / in2(703 kg / cm2) When producing reduced iron containing about 2 to 10% of residual carbon with a moderate pressure, in order to ensure sufficient reduced iron strength, usually use a carbon material with a high fixed carbon content. Since it is necessary to increase the ratio with iron, in the method for producing reduced iron disclosed in JP 11-511511 A, high bituminous coal with a high fixed carbon content with a volatile content up to 35% is used. It is thought that it is mainly targeted.
[0009]
The high-grade bituminous coal has a high fixed carbon content and high quality, but has a problem that it is expensive because it is a raw coal with a small reserve and its production area is limited. On the other hand, coal with a low fixed carbon content, that is, coal with low carbonization below sub-bituminous coal has a large reserve and is inexpensive because it is free from restrictions on the production area. However, because fixed carbon contributes to the reduction of metal oxides such as iron oxide, if sub-bituminous coal with a low fixed carbon content or lignite with a low carbonization degree is used, the blending ratio with respect to iron oxide, that is, fine ore Need to be increased.
[0010]
In this way, when the blending ratio of coal with a low carbonization degree is increased, the ratio of metallic iron in the green compact is relatively reduced, and the binding force such as sintering by reduction becomes weak. The strength of is reduced. Due to this decrease in strength, the impact received from the discharger when discharged from the rotary hearth furnace, the reduced iron becomes shattered and the specific surface area increases, such as carbon dioxide and water vapor existing in the rotary hearth furnace Due to the contact with the oxidizing gas, the reduced iron is reoxidized, loses its value as a semi-finished product for the next process, and becomes difficult to handle because it becomes powder. In addition, when powdered reduced iron is melted in a melting furnace, the powder has a low density, so that it floats on the slag layer in the melting furnace and cannot be melted.
[0011]
On the other hand, if the blending ratio of the carbon material with a small amount of fixed carbon is lowered, the strength of reduced iron increases, but the amount of fixed carbon that contributes to the reduction reaction is insufficient. It cannot be reduced. Further, when the molten iron is produced by dissolving the reduced iron, the required amount of carbon is contained in the molten iron. Therefore, when the residual carbon content in the reduced iron is small, it is necessary to add a carbonaceous material. Carburizing into the hot metal not only increases the yield and increases the consumption of charcoal, but also may not allow the target carbon concentration to be carburized.
[0012]
On the other hand, in the method for producing reduced iron described in Japanese Patent No. 3004265, it is necessary to add metal oxide particles such as iron oxide of 10 μm or less in accordance with the maximum fluidity of the carbonaceous material, which increases the number of steps. When only coarse iron oxide particles exceeding 10 μm are blended, reduced iron excellent in strength cannot be produced.
[0013]
Therefore, an object of the present invention is to provide an agglomerate of carbon material with an excellent strength after reduction using an inexpensive high VM charcoal that is rich in reserves and does not require atomization of metal oxide. It is providing the manufacturing method of the reduced metal using this.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration.
[0015]
  That is, a carbon material made of high VM charcoal containing 35% or more of volatile components and a reduced raw material containing a metal oxideIn a state where a part or all of the carbonaceous material is not heat-treated.Mixed, 2t / cm2The carbon material-containing agglomerate was molded with the above-mentioned pressure, and this carbon-material-incorporated agglomerate was heated in a rotary hearth furnace and reduced to a high temperature to produce a reduced metal.
[0016]
  Coal containing 35% or more of the volatile component and having a relatively low degree of carbonization is widely distributed worldwide and has a large reserve, so it is inexpensive and can reduce the production cost of carbonaceous agglomerates. And there are no restrictions on the location of the plant. In addition, the volatile component has a small installation area and can be used as a fuel for heating carbonaceous agglomerates in a rotary hearth furnace, which has features such as easy loading and unloading of processed products. The fuel supplied to can be saved. Such a carbonaceous material agglomerate using coal with a relatively low carbonization degree is at least 2 t / cm.2If the agglomeration is performed with the above pressure, the porosity in the agglomerate can be effectively reduced, so that heat transfer in the agglomerate is promoted, and the reduced metal is reduced in the entire area within the agglomerate. As a result, the reduction of the strength of the metal becomes possible. As a result, there is a problem that the reduced iron is not shattered by the impact received from the discharger when discharged from the rotary hearth furnace, and cannot be dissolved by floating on the slag layer in the reoxidation or melting furnace. It will be resolved.Moreover, the said heat processing means the high temperature heat processing made into a dry distillation state of about 400-1000 degreeC, and when not performing such heat processing, it can agglomerate in the state which the carbonaceous material has not hardened. Therefore, the porosity is effectively reduced, the density is increased, and a carbonaceous material agglomerate having a required strength can be obtained. The heat treatment is a pulverization process or a drying process of the carbon material, and the temperature condition varies depending on the type of the carbon material, but does not include a process of heating at about 200 ° C. or less. If so, it is substantially not affected by dry distillation and curing, and is allowed.
[0017]
  A carbonaceous material made of high VM charcoal containing 35% or more of volatile components, and a reduced raw material containing a metal oxide;In a state where a part or all of the carbonaceous material is not heat-treated.Mix and make briquette-like carbon material agglomerates with a pressure of 2 t / cm or more per pressure roll unit width (cm), and heat this carbon material agglomerate in a rotary hearth furnace and reduce it to high temperature. Thus, a reduced metal can be produced.
[0018]
  For example, when a high-pressure roll press is used, if the agglomeration is performed in a briquette shape with a pressing force of 2 tons or more per roll unit width (cm), the porosity is more effectively reduced, the density is large, and the grain shape is uniform. A carbonaceous material-incorporated agglomerate having the required strength after high-temperature reduction is obtained. Moreover, it can be agglomerated into briquette shapes suitable for the melting process, such as almond shapes and pillow shapes. Strictly speaking, the pressure applied to each briquette changes as the roll rotation speed changes, but at the roll rotation speed (2 to 30 rpm) of normal briquetting machine operation, the pressure applied to the briquette is the applied pressure per roll unit width. Can be represented.Moreover, the said heat processing means the high temperature heat processing made into a dry distillation state of about 400-1000 degreeC, and when not performing such heat processing, it can agglomerate in the state which the carbonaceous material has not hardened. Therefore, the porosity is effectively reduced, the density is increased, and a carbonaceous material agglomerate having a required strength can be obtained. The heat treatment is a pulverization process or a drying process of the carbon material, and the temperature condition varies depending on the type of the carbon material, but does not include a process of heating at about 200 ° C. or less. If so, it is substantially not affected by dry distillation and curing, and is allowed.
[0019]
  The raw material to be reduced is iron oxide, nickel oxide, chromium oxide, manganese oxideandTitanium oxideOne or more selected from the group consisting ofThe metal oxide can also be included.
[0020]
In this way, iron-making dusts containing iron, nickel, etc., such as blast furnace dust and converter dust, can be agglomerated into carbonaceous material agglomerates, thus enabling resource recycling. In addition, in the raw material containing titanium oxide, oxides such as iron mixed as impurities become reduced metals such as metallic iron by reduction. When this reduced metal is supplied to a melting furnace or the like, unreduced titanium oxide becomes slag and is separated from the reduced metal, so that high concentration titanium oxide and reduced metal can be separated and recovered. In addition, separation of metallic iron in titanium oxide and reduced metal is not necessarily performed in a melting furnace, but metal iron in reduced iron becomes granular when heat melting treatment and agglomeration granulation treatment described later are performed. Metallic iron and titanium oxide can be separated by grinding the metal.
[0021]
It is desirable that the reduced metal contains 1% or more of residual carbon.
[0022]
Since the reduced metal after high-temperature reduction discharged from the rotary hearth furnace also contains unreduced metal oxide, this unreduced oxidation is caused by residual carbon present in the reduced metal in the melting furnace in the downstream process. The metal is reduced. And if this residual carbon is usually less than 1%, the reduction of the unreduced metal oxide becomes insufficient. The amount of residual carbon can be adjusted by changing the mixing ratio of the metal oxide and the carbonaceous material based on the volatile content of the carbonaceous material, that is, the amount of fixed carbon.
[0025]
It is desirable to subject the reduced metal produced by any of the above methods to a heat melting treatment.
[0026]
By heating and melting the reduced metal, it is possible to separate the slag component and the metal component contained in the raw material carbonaceous material and the material to be reduced, and obtain a reduced metal that contains as little unnecessary slag component as possible. It becomes. This heat melting treatment can be performed by heating in the rotary hearth furnace following the high temperature reduction.
[0027]
The reduced metal in a molten state can be aggregated and granulated by the heat melting treatment.
[0028]
Since the reduced metal uses a raw material in which a pulverized carbon material and a metal oxide are mixed, small reduced metal particles are dispersed in the agglomerate. The reduced metal in the molten state aggregates due to the action of surface tension during the cooling process, and becomes a granular reduced metal. By using such a granular reduced metal, handling such as transportation and charging into a melting furnace becomes easy. In addition, cooling of the smelting reduction metal is performed by furnace cooling by simply moving to a discharger side area that is not heated, such as a burner, or a cooling means such as a water cooling jacket on the furnace ceiling. It can be performed by furnace cooling in a cooling zone.
[0029]
  A carbonaceous material-incorporated agglomerate comprising a carbonaceous material and a reduced raw material containing a metal oxide, wherein the carbonaceous material is high VM charcoal containing 35% or more volatile components;A part or all of the carbonaceous material is mixed with the material to be reduced in a state where it is not heat-treated,By agglomeration under pressure, the porosity can be reduced to 35% or less.
[0030]
  Thus, if the porosity of the carbonaceous material agglomerates using high-VM coal containing 35% or more of volatile components is reduced to about 35% or less by agglomeration under pressure, the high-temperature reduction process As a result, heat transfer in the agglomerate is promoted, and sintering between the reduced metals proceeds throughout the agglomerate, making it possible to produce reduced metal with high crushing strength.Moreover, the said heat processing means the high temperature heat processing made into a dry distillation state of about 400-1000 degreeC, and when not performing such heat processing, it can agglomerate in the state which the carbonaceous material has not hardened. Therefore, the porosity is effectively reduced, the density is increased, and a carbonaceous material agglomerate having a required strength can be obtained. The heat treatment is a pulverization process or a drying process of the carbon material, and the temperature condition varies depending on the type of the carbon material, but does not include a process of heating at about 200 ° C. or less. If so, it is substantially not affected by dry distillation and curing, and is allowed.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
First, high VM charcoal containing 35% or more of volatile matter is used as a charcoal material, and this high VM charcoal and iron ore which is a metal oxide are pulverized with a pulverizer, and the residual carbon amount after reduction is 1% or more. The mixture is preferably blended in advance so as to be 2% or more, mixed by a mixer, and then the mixture is supplied between a pair of rolls of a high-pressure roll press. On the surfaces of the pair of rolls, pockets which are the matrix of the agglomerate are engraved. The mixture of iron ore and high VM charcoal is applied with a required pressing force of 2 t / cm or more, preferably 3 t / cm or more per roll unit width (cm) of the high-pressure roll press, and has a porosity of approximately Effectively reduced to 35% or less and formed into briquettes.
[0032]
The carbonaceous material agglomerates are usually charged in a rotary hearth furnace heated by a burner, heated to a high temperature range of about 1300 ° C., and a reduction reaction proceeds to form reduced iron. Discharged from the furnace. And this reduced iron is melt | dissolved in the melting furnace using an electric furnace or a fossil fuel, and pig iron is obtained.
[0033]
Moreover, in the state which became reduced iron by high temperature reduction, since the raw material which mixed the pulverized carbonaceous material and iron ore is used, it is in the state which the small reduced iron particle was disperse | distributing in briquette. After the completion of this high temperature reduction, the obtained reduced iron can be melted by subsequent heating in the rotary hearth furnace. By this melting, it is possible to separate the slag component and the metal component contained in the raw carbon material and the iron ore that is the reduced raw material, and it is possible to obtain reduced iron that contains as little unnecessary slag component as possible. .
[0034]
Furthermore, the molten reduced iron is cooled in a rotary hearth furnace in a discharge area that is not heated, such as a burner, or in a cooling area in which a cooling means such as a water cooling jacket is provided on the furnace ceiling, Granular reduced iron can be obtained by aggregating molten reduced iron particles by the action of surface tension during the cooling process.
[0035]
The carbonaceous material agglomerates have a reduced porosity before high-temperature reduction by the above-described high-pressure molding, and the reduced iron has a reduced porosity even by the above-described heat-melting treatment and agglomeration granulation treatment. Although this metallized reduced iron is melted in an electric furnace or the like, since the porosity is small, the reduced iron particles are easily combined with the surrounding reduced iron particles and easily agglomerated, so that large granular iron is easily formed. If the formed granular iron is large, the reduced iron particles that are dispersed in the slag and are difficult to recover, and the reduced iron particles that are small and difficult to recover after being discharged from the rotary hearth furnace are reduced. Separation of iron and slag is facilitated, and iron yield is reduced and yield is increased.
[0036]
When the carbonaceous material has fluidity, the carbonaceous material becomes more densely bound between iron ore particles in the high-temperature reduction process by lowering the porosity of the carbonaceous material-incorporated agglomerate by the high-pressure molding. The heat transfer rate inside the product is increased, the reduction rate is increased, and reduction iron particles are agglomerated by sintering even in the solid state, and the above-described aggregation granulation after heating and melting can be promoted.
[0037]
The reduced iron product is not limited to ordinary sponge-like reduced iron, but may be in the form of powder, granules, or plates. Moreover, the form of a molten metal and the form of the solid metal solidified after melt | dissolution can be taken. Further, the metal oxide is not necessarily limited to iron ore, and therefore the reduced metal is not limited to reduced iron.
[0038]
In the raw material containing titanium oxide, oxides such as iron mixed as impurities become reduced metals such as metallic iron by reduction. When this reduced metal is supplied to a melting furnace or the like, unreduced titanium oxide becomes slag and is separated from the reduced metal, so that high concentration titanium oxide and reduced metal can be separated and recovered. The separation of titanium oxide and metallic iron is not necessarily performed in a melting furnace, but the metallic iron in the reduced metal becomes granular when the above-described heat-melting treatment or agglomeration granulating treatment is performed, so the reduced metal is pulverized. Thus, it can be separated into metallic iron and titanium oxide.
[0039]
Furthermore, since the carbonaceous material has a high content of volatile matter, the excessively generated volatile matter can be recovered and recycled as fuel to the necessary hearth part of the rotary hearth furnace. It is possible to save as much as is unnecessary.
[0040]
Examples will be described below.
[0041]
[Example 1]
High VM coal A, high VM coal B, and bituminous coal C, whose composition is shown in Table 1, are pulverized so that 80% or more of each is 200 mesh or less, and the iron ore is Blaine Index 1500cm2Crushed so as to have a particle size of about / g, and in order to change the residual carbon amount in the reduced iron, that is, the DRI residual carbon amount, the mixing ratio of each carbonaceous material and iron ore is changed and mixed. Using a test briquette machine having a roll diameter of 228 mm and a roll width (body length) of 70 mm, in which pillow-shaped pockets are engraved, the pressure is 2.5 t / cm (roll unit width), and the length is 35 mm × width 25 mm × 6cm volume with a maximum thickness of 13mm and an elliptical cross sectionThreeA pillow-shaped charcoal interior briquette was formed.
[0042]
[Table 1]
Figure 0004438297
[0043]
FIG. 1 shows that this carbonaceous material-containing briquette is obtained by high-temperature reduction in a rotary hearth furnace with a furnace temperature of about 1300 ° C. in a nitrogen atmosphere, that is, DRI residual carbon amount (%) and reduced iron (length 28 mm × width The relationship between the crushing strength of 20 mm × maximum thickness 11 mm), that is, the DRI crushing strength (kg / briquette) is shown.
[0044]
From FIG. 1, in any carbon material, if the DRI residual carbon amount is decreased by lowering the carbonaceous material mixture ratio, the DRI crushing strength increases, but in the case of the same DRI residual carbon amount, high VM coal, that is, high VM coal A In both of the high VM coal B, the DRI crushing strength is lower than that of the bituminous coal C. In addition, even with high VM coal, high VM coal A with a small amount of fixed carbon needs to increase the blending ratio in order to achieve the same DRI residual carbon amount, so the DRI crushing strength is low. Thus, the crushing strength of DRI using high VM coal is low. For example, in order to obtain the required DRI crushing strength of 40 kg / briquette, it is necessary to reduce the amount of DRI residual carbon in high VM coal compared to bituminous coal. There is. However, as described above, if the amount of DRI residual carbon decreases, the reduction of unreduced metal oxide, that is, iron oxide, in the melting furnace in the downstream process becomes insufficient. A quantity is needed.
[0045]
Next, high VM coal B, carbonized carbon D, and iron ore of the carbon materials whose compositions are shown in Table 1 are pulverized so that about 80% of the total is about 200 mesh or less, and each carbon material and iron ore are pulverized. The mixing ratio with stone was changed, and 5 grams of this mixture was charged into a cylinder with an inner diameter of 20 mm, pressurized with a piston, and cylindrical with a diameter of 20 mm and a height of 6.7 to 8.8 mm. Molded into tablets. The height of the tablet varies depending on the molding pressure.
[0046]
FIG. 2 shows the pressure applied to the cylindrical body, that is, the tablet molding pressure, and the tablet is placed in a rotary hearth furnace at a furnace temperature of about 1300 ° C. in a nitrogen atmosphere for 9 minutes and obtained by high temperature reduction. The relationship between the crushing strength of reduced iron (diameter: 16 to 17 mm, height: 5.5 to 7.5 mm), that is, the DRI crushing strength (kg / tablet) is shown. FIG. 3 shows the relationship between the molding pressure of the cylindrical tablet using the high VM coal B and the dry distillation coal D and the porosity, and FIG. 4 shows the tablet molding pressure and the tablet apparent density (kg). / CmThree). The DRI residual carbon amount is about 2%.
[0047]
2, 3, and 4, in the high VM charcoal B, the porosity is decreased and the apparent density is increased by increasing the tablet molding pressure, so that the DRI crushing strength is increased. The porosity and the apparent density are 5-6 t / cm when the tablet molding pressure is 5-6 t / cm.2(490 MPa to 588 MPa), which is substantially constant. As can be seen from FIG. 3, the tablet molding pressure is 1 t / cm.2When increased to about (98 MPa), the porosity decreases to about 35%. Thus, 1t / cm2When a pressing force of about 98 MPa is applied, the pressing force is 50 kg / cm.2(4.9 MPa) and a porosity of about 45% when almost no applied pressure is applied, and a minimum porosity of about 25% that can be reduced by increasing the applied pressure, that is, a porosity that can be reduced Approximately 1/2 is reduced to a porosity of about 35%.
[0048]
Moreover, as can be seen from FIG. 2, the tablet molding pressure is 1 t / cm.2Above (98 MPa), the DRI crushing strength exceeds the usable 10 kg / tablet, and the tablet molding pressure is 2 t / cm.2It can be seen that at (196 MPa) or more, the porosity is halved or less, and exceeds the more desirable crushing strength of 15 kg / tablet. In this way, the reduction of the porosity works effectively, the heat transfer in the agglomerate is promoted, the sintering between the reduced metals proceeds throughout the agglomerate, and the reduced iron metal having high strength Can be manufactured.
[0049]
On the other hand, bituminous coal C has a low porosity due to its low volatile content, and the tablet molding pressure is 1 t / cm.2Even below (98 MPa), the DRI crushing strength exceeds 15 kg / tablet. On the other hand, in the case of dry distillation coal D, which is a coal obtained by dry distillation of high VM coal B at about 450 ° C., the hardness of the coal is increased by dry distillation, so even if the tablet molding pressure is increased, the porosity is effectively increased. Since it does not decrease and the apparent density does not increase effectively, the DRI crushing strength cannot be increased.
[0050]
According to ISO 4700, the crushing strength of the cylindrical tablet varies depending on the length of the cylinder because a load is applied to the side surface. Since the weight of the tablet material, that is, the weight of the mixture of the carbonaceous material and iron ore was fixed to 5 grams, the volume of the tablet, that is, the length of the cylinder slightly differs depending on the kind of the carbonaceous material, Molding pressure of the manufactured tablet 1t / cm2The increase in the DRI crushing strength per unit is 6 cm in the volumeThreeIt was confirmed by actual tests that it almost coincided with the increase in DRI crushing strength per 1 t / cm of molding pressure of briquettes. Thereby, the tablet forming pressure (kg / cm on the horizontal axis in FIG.2) Can be regarded as briquetting pressure (kg / cm).
[0051]
Therefore,Figure2 can be regarded as briquette forming pressure (kg / cm) and DRI crushing strength (kg / tablet). When a tablet is formed by a briquette machine, the briquette forming pressure is 2 t / cm or more, and a more desirable DRI. It can be considered that the crushing strength exceeds 15 kg / tablet. In addition, when the molding pressure is 3 t / cm or more, the DRI crushing strength can be considered to exceed 20 kg / tablet. However, when reaching this strength range, pulverization due to the impact received during transport of reduced iron is greatly improved. It is a pressure range.
[0052]
[Example 2]
Using the high VM coal B and dry distillation coal D described in Example 1, the high VM coal B had a molding pressure of 2.5 t / cm and a molding pressure of 6.5 t / cm, and the volume was 6 cm.ThreeThe charcoal interior briquette was formed. FIG. 5 shows that the carbonaceous material-containing briquettes were placed in a rotary hearth furnace with a furnace temperature of about 1300 ° C. in a nitrogen atmosphere for about 9 minutes and reduced to a high temperature. The relationship with DRI crushing strength (kg / briquette) is shown. FIG. 5 shows that the DRI crushing strength is higher when the briquette forming pressure is as high as 6.5 t / cm even if the amount of residual carbon that contributes to the reduction of the unreduced metal oxide, that is, iron oxide, in the melting furnace in the downstream process is the same. I understand that. This means that when high VM charcoal is used in order to secure the required amount of DRI residual carbon, even if the blending ratio is increased, by reducing the molding pressure during briquetting, reduction with high crushing strength is achieved. It shows that iron can be obtained. For example, when a carbonaceous material-incorporated briquette is produced using high VM coal B having a volatile content of about 41% and fixed carbon of about 50% shown in Table 1, if a briquette forming pressure of 6.5 t / cm is applied, With reduced iron having a DRI residual carbon content of 5%, a required DRI crushing strength of 40 kg / briquette can be obtained.
[0053]
Note that when the molding pressure is increased, the roll wear amount of the roll press increases and maintenance costs increase. Therefore, the optimum molding pressure is set in consideration of both the required DRI crushing strength level and the manufacturing cost. It is important to set it in the range of 2.5 to 10 t / cm.
[0054]
[Comparative example]
High VM Coal B, Bituminous Coal C and Iron Ore, whose composition is shown in Table 1, are pulverized so that about 80% of the total is approximately 200 mesh or less, and each carbon material and iron ore are mixed. The mixture was granulated into pellets having a diameter of 17 mm with a pelletizer (granulator), and then reduced to a high temperature in a rotary hearth furnace at a furnace temperature of about 1300 ° C. in a nitrogen atmosphere to obtain reduced iron. FIG. 6 shows the relationship between the DRI residual carbon content (%) of this reduced iron and the DRI crushing strength (kg / pellet). For bituminous coal C with low volatile content, reducing the DRI residual carbon content significantly increases the DRI crushing strength and exceeds the required crushing strength of 15 kg / pellet. However, the required DRI crushing strength of 15 kg / pellet cannot be achieved because the pressure applied during granulation is small and the porosity is less decreased.
[0055]
[Example 3]
Table 2 shows the ratio of oxidized particles of 10 μm or less in iron oxide, the crushing strength of reduced iron, and the powder rate of 6 mm or less in reduced iron when a carbonaceous material-containing briquette is produced using a carbon material having no fluidity. In the table, the type of the carbonaceous material used (see Table 1), the blending ratio of the carbonaceous material and iron ore, the metallization rate in the reduced iron, and the amount of residual carbon are also shown. In addition, the reduction conditions in the rotary hearth furnace of this charcoal-incorporated briquette are the furnace temperature in a nitrogen atmosphere at about 1300 ° C. and the in-furnace time is about 9 minutes, as in the case of Examples 1 and 2. All the carbonaceous materials have zero fluidity.
[0056]
[Table 2]
Figure 0004438297
[0057]
As described above, in the case of using coal having no fluidity in the prior art, in order to reduce the powder ratio of 6 mm or less of reduced iron to 10% or less which is practically acceptable, 10 μm or less of iron oxide fine particles is 15% or more. It was necessary. In this example where the briquette forming pressure is 2.5 t / cm, in any case, the iron oxide fine particles of 10 μm or less are less than 15%, the powder ratio is 10% or less, and the porosity is 35%. The DRI crushing strength is sufficiently below the required 40 kg / briquette. On the other hand, in the comparative example where the briquette molding pressure is as small as 0.2 t / cm, since the iron oxide fine particles of 10 μm or less are less than 15%, the powder ratio is extremely high as about 68%, and the porosity is 40%. %, And the crushing strength does not reach the required 40 kg / briquette of about 34 kg / briquette.
[0058]
In addition, nickel oxide, chromium oxide, or manganese oxide can be used as the material to be reduced. In addition, when the material to be reduced contains heavy metals such as zinc oxide and lead oxide, reduction is possible. However, zinc and lead volatilize when reduced, so a high concentration of zinc oxide or It can be recovered as lead oxide.
[0059]
【The invention's effect】
  As described above, in the present invention, high VM charcoal containing 35% or more of volatile components is used as the carbonaceous material agglomerate,A part or all of the carbonaceous material is mixed with the material to be reduced in a state where it is not heat treated,At least 2 t / cm2Since the agglomeration is effected by the above pressure and the porosity in the agglomerate is effectively reduced, heat transfer in the agglomerate is promoted during the high-temperature reduction process in the rotary hearth furnace. Sintering between the reduced metals proceeds in the entire region of the composition, and it becomes possible to produce reduced metals with high crushing strength. Moreover, reduced iron with high crushing strength can be obtained even when a charcoal material having no fluidity is used or when the blending ratio of high VM charcoal is increased in order to secure a required amount of residual carbon. As a result, in the discharge process from the rotary hearth furnace, the reduced iron is not shattered, and problems such as re-oxidation and floating on the slag layer in the melting furnace cannot be solved.
[0060]
In this way, reduced iron with excellent strength can be produced from a carbonaceous material agglomerate using high VM coal, which is widely distributed on the earth, has a large reserve and is cheap and has a high volatile content.For steel makingFurther, it can be used as pig iron for producing alloy iron or as a pre-reducing material charged together with scrap when producing alloy iron.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the effect of the type of carbonaceous material on the relationship between the amount of residual carbon in reduced iron and the crushing strength of an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing the influence of the type of carbonaceous material on the relationship between the compacting pressure of the agglomerate and the crushing strength of reduced iron.
FIG. 3 is an explanatory diagram showing the effect of the type of carbonaceous material on the relationship between the molding pressure and the porosity of the agglomerates same as above.
FIG. 4 is an explanatory diagram showing the influence of the type of carbonaceous material on the relationship between the molding pressure and the apparent density of the agglomerates same as above.
FIG. 5 is an explanatory diagram showing the influence of molding pressure on the relationship between the amount of residual carbon in reduced iron and the crushing strength.
FIG. 6 is an explanatory diagram showing the effect of the type of carbonaceous material on the amount of residual carbon and crushing strength in reduced iron according to the prior art.

Claims (7)

揮発成分を35%以上含有する高VM炭からなる炭材と金属酸化物を含有する被還元原料とを、前記炭材の一部または全部が加熱処理されない状態で混合し、2t/cm以上の加圧力で成形して炭材内装塊成物とし、この炭材内装塊成物を回転炉床炉で加熱し、高温還元する還元金属の製造方法。A carbon material composed of high VM charcoal containing 35% or more of a volatile component and a reducible raw material containing a metal oxide are mixed in a state where a part or all of the carbon material is not heat-treated, and 2 t / cm 2 or more. A reduced metal production method in which a carbonaceous material-incorporated agglomerate is molded with a pressing force of, and this carbonaceous material-incorporated agglomerate is heated in a rotary hearth furnace and reduced at high temperature. 揮発成分を35%以上含有する高VM炭からなる炭材と金属酸化物を含有する被還元原料とを、前記炭材の一部または全部が加熱処理されない状態で混合し、加圧ロール単位幅(cm)あたり2t/cm以上の加圧力でブリケット状の炭材内装塊成物とし、この炭材内装塊成物を回転炉床炉で加熱し、高温還元する還元金属の製造方法。  Mixing a carbon material composed of high VM charcoal containing 35% or more of volatile components and a material to be reduced containing a metal oxide in a state where a part or all of the carbon material is not heat-treated, and a pressure roll unit width A method for producing a reduced metal in which a briquette-shaped carbonaceous material agglomerate is formed at a pressure of 2 t / cm or more per (cm), the carbonaceous material agglomerate is heated in a rotary hearth furnace, and reduced at high temperature. 前記被還元原料が、酸化鉄、酸化ニッケル、酸化クロム、酸化マンガンおよび酸化チタンよりなる群から選ばれた1種または2種以上の金属酸化物を含むことを特徴とする請求項1または2に記載の還元金属の製造方法。The reducible raw material, iron oxide, nickel oxide, chromium oxide, comprise one or more metal oxide selected from the group consisting of manganese oxide and titanium oxide to claim 1 or 2, characterized in A method for producing the reduced metal as described. 前記還元金属が1%以上の残留炭素を含むことを特徴とする請求項1から3のいずれかに記載の還元金属の製造方法。  The method for producing a reduced metal according to any one of claims 1 to 3, wherein the reduced metal contains 1% or more of residual carbon. 請求項1から4のいずれかに記載の方法により製造された還元金属に、さらに加熱溶融処理を施す還元金属の製造方法。  The manufacturing method of the reduced metal which heat-melts the reduced metal manufactured by the method in any one of Claim 1 to 4 further. 請求項5に記載の加熱溶融処理により溶融状態にある還元金属を、凝集させて粒状化する還元金属の製造方法。  The manufacturing method of the reduced metal which aggregates and granulates the reduced metal in a molten state by the heat-melting process of Claim 5. 炭材と金属酸化物を含有する被還元原料とからなる炭材内装塊成物であって、前記炭材が35%以上の揮発成分を含有する高VM炭であり、前記炭材の一部または全部が加熱処理されない状態で前記被還元原料と混合され、加圧下での塊成化により、気孔率を35%以下に減少させたことを特徴とする炭材内装塊成物 A carbonaceous material-incorporated agglomerate comprising a carbonaceous material and a reduced raw material containing a metal oxide, wherein the carbonaceous material is high VM charcoal containing 35% or more of volatile components, and part of the carbonaceous material Alternatively, the carbonaceous material-incorporated agglomerate is mixed with the material to be reduced in a state where the whole is not heat-treated, and the porosity is reduced to 35% or less by agglomeration under pressure .
JP2003063516A 2003-03-10 2003-03-10 Method for producing reduced metal and agglomerated carbonaceous material agglomerates Expired - Lifetime JP4438297B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2003063516A JP4438297B2 (en) 2003-03-10 2003-03-10 Method for producing reduced metal and agglomerated carbonaceous material agglomerates
EP04709375A EP1602737A4 (en) 2003-03-10 2004-02-09 Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
KR1020077007730A KR20070044507A (en) 2003-03-10 2004-02-09 Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
CA2519229A CA2519229C (en) 2003-03-10 2004-02-09 Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
PCT/JP2004/001337 WO2004081238A1 (en) 2003-03-10 2004-02-09 Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
RU2005131192/02A RU2303071C2 (en) 2003-03-10 2004-02-09 Method of production of reduced metal and compact containing carbon-bearing material
AU2004219806A AU2004219806B2 (en) 2003-03-10 2004-02-09 Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
KR1020057016771A KR20050107504A (en) 2003-03-10 2004-02-09 Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
CNB2004800066959A CN100567510C (en) 2003-03-10 2004-02-09 Be used for the production reducing metal and wherein be mixed with the method for the agglomerate of carbonaceous material
TW093103741A TW200424320A (en) 2003-03-10 2004-02-17 Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
US10/548,519 US7674314B2 (en) 2003-03-10 2004-03-09 Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063516A JP4438297B2 (en) 2003-03-10 2003-03-10 Method for producing reduced metal and agglomerated carbonaceous material agglomerates

Publications (2)

Publication Number Publication Date
JP2004269978A JP2004269978A (en) 2004-09-30
JP4438297B2 true JP4438297B2 (en) 2010-03-24

Family

ID=32984433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063516A Expired - Lifetime JP4438297B2 (en) 2003-03-10 2003-03-10 Method for producing reduced metal and agglomerated carbonaceous material agglomerates

Country Status (9)

Country Link
US (1) US7674314B2 (en)
EP (1) EP1602737A4 (en)
JP (1) JP4438297B2 (en)
KR (2) KR20050107504A (en)
CN (1) CN100567510C (en)
CA (1) CA2519229C (en)
RU (1) RU2303071C2 (en)
TW (1) TW200424320A (en)
WO (1) WO2004081238A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007006785A (en) * 2004-12-07 2007-10-08 Nu Iron Technology Llc Method and system for producing metallic iron nuggets.
JP4707407B2 (en) * 2005-02-18 2011-06-22 Ntn株式会社 Steelmaking dust solidified product and method for producing the same
DE602006018967D1 (en) * 2005-08-30 2011-01-27 Du Pont RESTRICTED METHOD AND TITANIUM OXIDE AND IRON METALLIZATION PRODUCT
JP5059472B2 (en) * 2007-04-10 2012-10-24 株式会社神戸製鋼所 Production method of carbonized metal oxide briquette
WO2008146734A1 (en) 2007-05-28 2008-12-04 Kabushiki Kaisha Kobe Seiko Sho Method for production of carbon composite metal oxide briquette
JP5123571B2 (en) * 2007-06-04 2013-01-23 住友重機械工業株式会社 Reduction processing apparatus and reduction processing method
WO2009017059A1 (en) 2007-07-27 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Process for producing carbonaceous-material-including metal oxide briquet
WO2009017019A1 (en) * 2007-07-31 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Method for reducing electric furnace dust
JP5160848B2 (en) 2007-09-18 2013-03-13 株式会社神戸製鋼所 Manufacturing method of briquette with carbonaceous materials using oil-containing steelworks dust
WO2009052066A1 (en) 2007-10-15 2009-04-23 E. I. Du Pont De Nemours And Company Ore reduction process using carbon based materials having a low sulfur content and titanium oxide and iron metallization product therefrom
CN102089448A (en) 2008-07-11 2011-06-08 株式会社神户制钢所 Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method
CN101638730B (en) * 2008-07-31 2015-03-25 塔塔钢铁有限公司 Method for producing sponge chromium from metallurgical-grade chromite concentrate fine powder
KR101296887B1 (en) * 2009-02-02 2013-08-14 신닛테츠스미킨 카부시키카이샤 Carbonaceous material for sintering iron ore
JP2010261101A (en) * 2009-04-07 2010-11-18 Mitsutaka Hino Method for producing metallic iron
KR100935133B1 (en) * 2009-05-19 2010-01-06 주식회사 에너텍 Reduction method of nickel oxide and nickel manufactured of the same
JP5466590B2 (en) * 2009-07-21 2014-04-09 株式会社神戸製鋼所 Reduced iron manufacturing method using carbonized material agglomerates
KR101444562B1 (en) * 2009-08-21 2014-09-24 신닛테츠스미킨 카부시키카이샤 Unfired carbon-containing agglomerate and production method therefor
CN103025900B (en) * 2010-06-30 2016-08-03 K·H·伽达 A kind of method extracting metallic element from ferro-aluminum Ore, titanium iron ore and residue
JP5503472B2 (en) * 2010-09-07 2014-05-28 株式会社神戸製鋼所 Method for producing reduced iron
US8999033B2 (en) * 2010-12-15 2015-04-07 Midrex Technologies, Inc. Method and system for producing direct reduced iron and/or hot metal using brown coal
CA3085848C (en) 2011-04-15 2022-08-30 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
KR101311958B1 (en) * 2011-07-13 2013-09-26 주식회사 포스코 Process for producing pellet with carbonaceous material incorporated therein
KR101311954B1 (en) * 2011-07-13 2013-09-26 주식회사 포스코 Process for producing ore agglomerates with carbonaceous material incorporated therein
KR101311953B1 (en) * 2011-07-13 2013-09-26 주식회사 포스코 Process for producing briquet with carbonaceous material incorporated therein
JP2013209748A (en) * 2012-02-28 2013-10-10 Kobe Steel Ltd Method of manufacturing reduced iron agglomerate
JP6323284B2 (en) * 2014-09-29 2018-05-16 日立金属株式会社 Recovery method of rare earth elements
CN106244754A (en) * 2016-08-01 2016-12-21 江苏省冶金设计院有限公司 Process the method and system of red mud
RU2626371C1 (en) * 2016-09-05 2017-07-26 Общество с ограниченной ответственностью "Урал - рециклинг" Method of processing metallurgical production waste
CZ2017815A3 (en) * 2017-12-19 2019-10-16 Martin Gajdzica Briquette or pellet for charging into metallurgical aggregates
JP7077498B2 (en) * 2018-02-01 2022-05-31 株式会社神戸製鋼所 Metal recovery method
US11753698B2 (en) * 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
EP4407054A1 (en) * 2021-09-24 2024-07-31 Nippon Steel Corporation Agglomerated ore and method for producing same
CA3237226A1 (en) 2021-11-12 2023-05-19 Carbon Technology Holdings, LLC Biocarbon compositions with optimized compositional parameters, and processes for producing the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473987A (en) * 1945-10-23 1949-06-21 Allied Chem & Dye Corp Process of coking high volatile coal involving incorporation therein of a limited amount of blast furnace flue dust
BE646000A (en) * 1963-04-10
US3503735A (en) * 1966-05-19 1970-03-31 Hanna Mining Co Process of recovering metallic nickel from nickeliferous lateritic ores
US3383199A (en) * 1967-08-23 1968-05-14 Allied Chem Processing of iron oxide values
JPS5379B2 (en) * 1972-05-25 1978-01-05
JPS52119403A (en) * 1976-03-03 1977-10-06 Kobe Steel Ltd Sintered pellets of iron ore and its production method
JPS5852445A (en) * 1981-09-24 1983-03-28 Sumitomo Metal Ind Ltd Manufacture of unfired lump ore
JPS60162717A (en) * 1984-02-04 1985-08-24 Nippon Kokan Kk <Nkk> Treatment of molten iron
US5601631A (en) * 1995-08-25 1997-02-11 Maumee Research & Engineering Inc. Process for treating metal oxide fines
CA2251339A1 (en) * 1997-10-30 1999-04-30 Hidetoshi Tanaka Method of producing iron oxide pellets
JP3081581B2 (en) * 1998-03-23 2000-08-28 株式会社神戸製鋼所 Method of producing reduced iron agglomerates with high metallization rate
EP0952230A1 (en) * 1998-03-24 1999-10-27 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method of producing reduced iron agglomerates
JP2997459B1 (en) * 1998-11-04 2000-01-11 株式会社神戸製鋼所 Method for producing reduced iron agglomerates
TW502066B (en) * 1998-08-27 2002-09-11 Kobe Steel Ltd Method for operating moving hearth reducing furnace
JP3004265B1 (en) * 1998-11-24 2000-01-31 株式会社神戸製鋼所 Carbon material interior pellet and reduced iron production method
JP3404309B2 (en) * 1999-01-18 2003-05-06 株式会社神戸製鋼所 Method and apparatus for producing reduced iron agglomerates
US6126718A (en) * 1999-02-03 2000-10-03 Kawasaki Steel Corporation Method of producing a reduced metal, and traveling hearth furnace for producing same
JP3502008B2 (en) * 2000-04-07 2004-03-02 株式会社神戸製鋼所 Manufacturing method of carbonized interior agglomerates
TW562860B (en) * 2000-04-10 2003-11-21 Kobe Steel Ltd Method for producing reduced iron
US6648942B2 (en) * 2001-01-26 2003-11-18 Midrex International B.V. Rotterdam, Zurich Branch Method of direct iron-making / steel-making via gas or coal-based direct reduction and apparatus
JP4654542B2 (en) * 2001-06-25 2011-03-23 株式会社神戸製鋼所 Granular metallic iron and its manufacturing method
JP4153281B2 (en) * 2002-10-08 2008-09-24 株式会社神戸製鋼所 Method for producing titanium oxide-containing slag
JP3679084B2 (en) * 2002-10-09 2005-08-03 株式会社神戸製鋼所 Method for producing molten metal raw material and method for producing molten metal
RU2313595C2 (en) * 2002-10-18 2007-12-27 Кабусики Кайся Кобе Сейко Се Ferronickel producing method and method for producing initial material used for producing ferronickel
US6921427B2 (en) * 2002-12-02 2005-07-26 Council Of Scientific & Industrial Research Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JP4490640B2 (en) * 2003-02-26 2010-06-30 株式会社神戸製鋼所 Method for producing reduced metal

Also Published As

Publication number Publication date
CA2519229A1 (en) 2004-09-23
RU2303071C2 (en) 2007-07-20
KR20050107504A (en) 2005-11-11
AU2004219806A1 (en) 2004-09-23
RU2005131192A (en) 2006-02-20
US7674314B2 (en) 2010-03-09
TW200424320A (en) 2004-11-16
CA2519229C (en) 2013-05-21
US20060278040A1 (en) 2006-12-14
KR20070044507A (en) 2007-04-27
CN100567510C (en) 2009-12-09
EP1602737A1 (en) 2005-12-07
CN1759192A (en) 2006-04-12
EP1602737A4 (en) 2007-11-21
WO2004081238A1 (en) 2004-09-23
JP2004269978A (en) 2004-09-30
TWI311156B (en) 2009-06-21

Similar Documents

Publication Publication Date Title
JP4438297B2 (en) Method for producing reduced metal and agglomerated carbonaceous material agglomerates
JP4348152B2 (en) Method for producing ferronickel and ferronickel refining raw material
CA2736535C (en) Process for producing agglomerates of finely particulate iron carriers
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
RU2435868C1 (en) Procedure for production of pelleted reduced iron and procedure for production of cast iron
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
AU2009270230B2 (en) Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
JP4600102B2 (en) Method for producing reduced iron
AU2003202538B2 (en) Method for making reduced iron
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP2010255075A (en) Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
JPH0364571B2 (en)
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
TW201446971A (en) Iron and niobium containing agglomerates
JP5554481B2 (en) Method for producing briquette, method for producing reduced iron, and method for separating zinc or lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4438297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

EXPY Cancellation because of completion of term