JP3502008B2 - Manufacturing method of carbonized interior agglomerates - Google Patents

Manufacturing method of carbonized interior agglomerates

Info

Publication number
JP3502008B2
JP3502008B2 JP2000106469A JP2000106469A JP3502008B2 JP 3502008 B2 JP3502008 B2 JP 3502008B2 JP 2000106469 A JP2000106469 A JP 2000106469A JP 2000106469 A JP2000106469 A JP 2000106469A JP 3502008 B2 JP3502008 B2 JP 3502008B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
iron ore
volume
agglomerate
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000106469A
Other languages
Japanese (ja)
Other versions
JP2001294944A (en
Inventor
昭人 笠井
良行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000106469A priority Critical patent/JP3502008B2/en
Publication of JP2001294944A publication Critical patent/JP2001294944A/en
Application granted granted Critical
Publication of JP3502008B2 publication Critical patent/JP3502008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉、キューポラ
などの竪型炉用装入原料としての炭材内装塊成化物の製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a carbonaceous material-containing agglomerate as a charging material for a vertical furnace such as a blast furnace and a cupola.

【0002】[0002]

【従来の技術】高炉原料として、従来より用いられてき
た焼結鉱、ペレット、塊鉱石のほかに、固体炭材(例え
ば、石炭粉、コークス粉等)と粉鉱石または製鉄ダスト
(炭素、酸化鉄等の混合物)にバインダーを加えて冷間
成形された炭材内装コールドペレットあるいはブリケッ
ト(以下、炭材内装コールドペレット等)と称するもの
がある。そして炭材内装コールドペレット等は高炉に装
入するとガス利用率が向上することが報告〔井上ら:鉄
と鋼(1986)S885〕されており、高炉の生産性
の向上、燃料比の低減に寄与することが期待され、さら
には従来の焼結鉱やペレットの製造と異なり焼成燃料が
不要で排ガス処理も不要となるなどメリットは大きい。
また、炭材内装コールドペレット等をコークスとともに
キューポラなどの竪型炉に装入して還元・溶解して溶銑
を製造する提案もなされている。
2. Description of the Related Art In addition to sinter, pellets and lump ores that have been conventionally used as blast furnace raw materials, solid carbonaceous materials (for example, coal powder, coke powder, etc.) and powdered ores or ironmaking dust (carbon, oxidation) There is a so-called carbonaceous material-containing cold pellet or briquette (hereinafter referred to as carbonaceous material-containing cold pellet) cold-formed by adding a binder to a mixture of iron or the like). It has been reported that the use of carbonaceous materials such as cold pellets in a blast furnace improves the gas utilization rate [Inoue et al .: Iron and Steel (1986) S885], which improves the productivity of the blast furnace and reduces the fuel ratio. It is expected to contribute, and unlike the conventional production of sinter or pellets, it does not require burning fuel and exhaust gas treatment, which is a great advantage.
Further, it has been proposed that carbonaceous material-containing cold pellets and the like, together with coke, are charged into a vertical furnace such as a cupola to be reduced and melted to produce hot metal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、炭材内
装コールドペレット等が搬送中や高炉、キューポラなど
の竪型炉への装入の際に粉化しないよう一定以上の強度
(圧潰強度で約500N/個以上)を確保する必要があ
り、通常、冷間成型に際してセメント類をバインダーと
して添加する方法が用いられている。この方法では、炭
材内装コールドペレット等が強度を発現するまで数日か
かるため広大な養生スペースを必要とし、さらには高炉
内等でスラグ比が上昇し通液性が悪化すること、セメン
ト類の結晶水が分解する際の吸熱による昇温遅れに伴い
還元が遅延すること等の問題が懸念される。一方、これ
らを改善するためセメント類以外のバインダーを用いた
場合には費用が高くコストメリットがなくなる。
However, a strength above a certain level (a crushing strength of about 500 N is obtained) so that the carbonaceous material-containing cold pellets, etc., will not be pulverized during transportation or when they are charged into a vertical furnace such as a blast furnace or a cupola. / Units or more), and a method of adding cements as a binder during cold forming is usually used. This method requires a vast curing space because it takes several days until the strength of the cold pellets containing carbonaceous materials develops, and further, the slag ratio rises in the blast furnace and the liquid permeability deteriorates. There is a concern that the reduction may be delayed due to the delay in temperature rise due to the endotherm when the crystal water is decomposed. On the other hand, when a binder other than cement is used to improve these, the cost is high and the cost merit is lost.

【0004】一方、本願出願人は、特開平11−092
833号において粉鉱石と粘結炭の混合物を熱間成型
後、脱ガスすることによりバインダーを添加せずとも高
強度の炭材内装塊成化物(ブリケット)を製造できる方
法を提案した。しかしながら、この方法では、粘結炭の
費用が高いため、たとえバインダーの費用が削減できて
も、コスト低減効果は小さいという問題点が残ってい
る。
On the other hand, the applicant of the present application has filed Japanese Patent Application Laid-Open No.
No. 833 proposes a method capable of producing a high-strength carbonaceous material-containing agglomerate (briquettes) without adding a binder by hot-forming a mixture of powdered ore and caking coal and then degassing. However, in this method, since the cost of caking coal is high, the cost reduction effect remains small even if the cost of the binder can be reduced.

【0005】そこで、本発明は上記の問題を解決するた
めになされたもので、バインダーを添加することなく、
粘結炭の使用量を低減しても、高強度の炭材内装塊成化
物が製造できる方法を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned problems, and it is possible to add a binder without adding
It is an object of the present invention to provide a method capable of producing a high-strength carbonaceous material-containing agglomerate even if the amount of coking coal is reduced.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、粉状の
鉄鉱石、製鉄ダストおよび粉状の炭材との混合物を25
0〜550℃で熱間成型して行う炭材内装塊成化物の製
造方法であって、前記製鉄ダストの体積が前記混合物の
体積の20%以下であり、前記炭材が1種類または2種
類以上の炭材で構成され、そのうちの少なくとも1種類
の炭材がギーセラー最高流動度MFがlogMF>1.
5の軟化溶融性を有する炭材であり、かつその軟化溶融
性を有する炭材の合計体積が前記混合物の体積の30%
以上であることを特徴とする炭材内装塊成化物の製造方
である。
The gist of the present invention is to provide a powder
Twenty-five mixtures of iron ore, iron dust and powdered carbonaceous material
Manufacture of carbonaceous material agglomerates by hot forming at 0-550 ° C
A manufacturing method, wherein the volume of the iron-making dust is
20% or less of the volume, one or two kinds of the carbonaceous material
Composed of more than one kind of carbon material, at least one of which
The highest fluidity MF of the Gieseler is logMF> 1.
A carbonaceous material having a softening and melting property of 5, and its softening and melting
The total volume of the carbonaceous material having the property is 30% of the volume of the mixture.
A method for producing a carbonaceous material-containing agglomerate characterized by the above
Is the law .

【0007】[0007]

【0008】 軟化溶融性を有する炭材は約250℃を
超えると熱分解反応が始まり軟化溶融し、約550℃を
超えると固化する。したがって、この温度域で粉状鉄鉱
および製鉄ダスト(以下、「粉状鉄鉱石等」とい
う。)に軟化溶融性を有する炭材を混合し加圧成型する
と、粉状鉄鉱石の粒子間の空隙に溶融した炭材が浸
し、粉状鉄鉱石同士を強固に連結する。粉状鉄鉱石
の他に軟化溶融しない炭材が混合されても、軟化溶融性
を有する炭材を混合し加圧成型すれば同様に強固な連結
が形成される。このため、バインダーが不要となり高炉
内でのスラグ量の増加を防止することができる。
A carbonaceous material having a softening and melting property starts a thermal decomposition reaction when it exceeds about 250 ° C., and softens and melts, and solidifies when it exceeds about 550 ° C. Therefore, in this temperature range, powdered iron ore and ironmaking dust (hereinafter referred to as "powdered iron ore, etc."
U ) To the thermal plasticity and mixing pressure molding a carbonaceous material having, to input carbonaceous material which is melted into the voids between the particles of the powdery iron ore and the like immersion, firmly connected powdery iron ore and the like with each other. Even in addition to softening and melting non carbonaceous material powdery iron ore and the like <br/> are mixed, as well as firm connection is formed by mixing and compression molding the carbon material having thermal plasticity. Therefore, the binder is not required, and the increase in the amount of slag in the blast furnace can be prevented.

【0009】また、炭材中に含まれている揮発分やター
ル分は、熱間成型時に大部分が脱揮および脱タールして
おり、塊成化物を高炉に装入してもタール分が揮発し、
ガス処理設備へ付着する問題は起こらない。
Most of the volatile components and tar components contained in the carbonaceous material are devolatilized and detarred during hot forming, and even if the agglomerates are charged into the blast furnace, the tar components will remain. Volatilize,
There is no problem of sticking to gas treatment equipment.

【0010】[0010]

【0011】[0011]

【0012】 だし、製鉄ダストは粉状鉄鉱石に比べ
非常に粒度が小さく、製鉄ダスト粒子間の隙間には溶
融した炭材は浸入し難いので、製鉄ダストの配合率は体
積割合で20%以下に制限し、軟化溶融性を有する炭材
としては、溶融時の粘性の低いギーセラー最高流動度MF
がlogMF>1.5、好ましくはlogMF>3の炭
材を体積割合で30%以上とする必要がある。また、炭
材内装塊成化物の圧潰強度を高炉への装入時のハンドリ
ングに耐える500N/個以上とするためには、熱間成
型における成型圧力は29〜38kN/cmとすること
が望ましい。
[0012] was issued, steel dust compared to the powdery iron ore
Since the carbonaceous material that is melted is difficult to penetrate into the gaps between the ironmaking dust particles, the mixing ratio of the ironmaking dust is limited to 20% or less by volume, and as a carbonaceous material having softening and melting properties, , Low viscosity when melted Gieseler maximum fluidity MF
It is necessary to set the carbonaceous material having log MF> 1.5, preferably log MF> 3 to 30% or more by volume. Also charcoal
The crushing strength of agglomerates containing wood interior is handled at the time of charging into the blast furnace.
In order to withstand 500 N / piece or more,
Molding pressure in the mold should be 29-38 kN / cm
Is desirable.

【0013】 なお、炭材の体積は、炭材粒子内の気孔
を含む見掛けの体積をいい、質量を見掛け比重で割って
求めることができる。鉄鉱石についても同様である。
The volume of the carbonaceous material is an apparent volume including pores in the carbonaceous material particles, and can be obtained by dividing the mass by the apparent specific gravity. The same applies to iron ore and the like .

【0014】 また、塊成化物中の固化した炭材は粉状
鉄鉱石に密着し、固化した炭材と粉状鉄鉱石との接
触面積が大きくなる。そのため、塊成化物を、焼結鉱、
ペレット、塊鉱石等の従来の高炉原料とともに高炉に装
入すると、従来の高炉原料のみを装入した場合には反応
が起こらなかった低温域(700〜800℃程度)か
ら、塊成化物中の炭材と酸化鉄が見かけ上直接還元反応
(FeO+C→Fe+CO等)を開始する。直接還元反
応により発生するCOガスは、塊成化物の間にある焼結
鉱、ペレット、塊鉱石等の原料の還元に利用され、ガス
利用率が向上し、燃料比が低下する。また、還元により
生じたCO2ガスは、塊成化物中に内装した炭材と優先
して反応するため炉頂から装入した塊コークスとは反応
が抑制される結果、コークスの粉発生量が低下し、高炉
内の通気性が向上する。
Further, solidified carbonaceous material in the agglomerates is in close contact with the powdery iron ore and the like, the contact area between the solidified carbonaceous material and powdery iron ore or the like is increased. Therefore, agglomerates are
When the blast furnace is charged together with the conventional blast furnace raw materials such as pellets and agglomerated ores, the reaction in the low temperature range (about 700 to 800 ° C.) in which the reaction does not occur when only the conventional blast furnace raw materials are charged is The carbonaceous material and iron oxide apparently start a direct reduction reaction (FeO + C → Fe + CO etc.). The CO gas generated by the direct reduction reaction is used for reducing raw materials such as sinter, pellets, and lump ores among agglomerates, which improves the gas utilization rate and reduces the fuel ratio. Further, the CO 2 gas generated by the reduction preferentially reacts with the carbonaceous material contained in the agglomerate, so that the reaction with the agglomerated coke charged from the furnace top is suppressed, and as a result, the amount of coke powder generated is reduced. And the air permeability in the blast furnace is improved.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0016】図1に本発明の実施に係わる炭材内装塊成
化物の製造フローの概念図を示す。鉄鉱石(および製鉄
ダスト)と、炭材のうち軟化溶融しない炭材(例えば、
コークス粉、一般炭、無煙炭、オイルコークス等)は、
必要な場合には粉砕して、74μm以下の粒子が70%
程度の粉状にする。炭材のうち、軟化溶融性を有する炭
材(例えば、粘結炭、SRC等)も上記の軟化溶融しな
い炭材ほど細かくする必要はないが、粉状鉄鉱石(およ
び製鉄ダスト)および軟化溶融しない炭材との混合状態
を良好に保つために1mm以下程度に粉砕するのが望ま
しい。
FIG. 1 shows a conceptual diagram of the production flow of a carbonaceous material-containing agglomerate according to the present invention. Iron ore (and ironmaking dust) and carbon materials that do not soften and melt (for example,
Coke powder, steam coal, anthracite, oil coke, etc.)
If necessary, pulverize to 70% of particles of 74 μm or less.
Make a powder. Of the carbonaceous materials, carbonaceous materials having softening and melting properties (for example, coking coal, SRC, etc.) do not have to be as fine as the above-mentioned carbonaceous materials that do not soften and melt, but powdery iron ore (and iron-making dust) and softening and melting In order to maintain a good mixed state with the carbonaceous material, it is desirable to pulverize it into about 1 mm or less.

【0017】粉状の鉄鉱石と炭材の乾燥・予熱に関して
は、炭材はロータリードライヤー等で200℃以下の温
度で乾燥し、付着水分を除去する。一方、鉄鉱石は、炭
材と混合したときに目標温度の250〜550℃となる
ように、ロータリーキルン等で400〜800℃程度に
予熱する。ただし、鉄鉱石の一部を置き換えて製鉄ダス
ト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケ
ール等)を用いる場合には、製鉄ダストは炭素や金属鉄
を含むため予熱すると燃焼するので、製鉄ダストは予熱
せずにそのまま混合して用いる。
Regarding the drying and preheating of the powdery iron ore and the carbonaceous material, the carbonaceous material is dried with a rotary dryer or the like at a temperature of 200 ° C. or lower to remove the attached water. On the other hand, the iron ore is preheated to about 400 to 800 ° C. in a rotary kiln or the like so that the target temperature is 250 to 550 ° C. when mixed with the carbonaceous material. However, if iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.) is used by replacing a part of the iron ore, the iron-making dust contains carbon and metallic iron and therefore burns when preheated. Ironmaking dust is used as it is without being preheated.

【0018】乾燥・予熱した炭材と鉄鉱石(および予熱
しない製鉄ダスト)との混合には、炭材の一部の過熱を
防止するために短時間で混合できるこの業種で常用され
ている、例えば二軸型のミキサーを用いる。また、ミキ
サーは成型温度を確保するために保温する。混合後の炭
材と鉄鉱石(および製鉄ダスト)は、例えば熱間成型用
の双ロール型成型機を用いて塊成化物(ブリケット)に
加圧成型する。加圧成型は塊成化物が成型機から高炉炉
頂装入までのハンドリングに耐え得るに十分な強度約5
00N/個(30mm×25mm×15mm程度の大き
さに対して)が得られるよう、成型加圧力を10kN/
cm以上、好ましくは20kN/cm以上とする。この
ようにして成型した塊成化物は、鉄鉱石(および製鉄ダ
スト)および軟化溶融しない炭材粒子間の空隙に、溶融
した軟化溶融性を有する炭材が浸入し、鉄鉱石(および
製鉄ダスト)および軟化溶融しない炭材の粒子同士を強
固に連結し、さらに、鉄鉱石(および製鉄ダスト)と溶
融・固化後の炭材との接触面積も大きくなっている。ま
た、ミキサーと成型機は密閉構造とし、ミキサーおよび
成型機で発生する炭材の熱分解ガスは炭化水素が主成分
であるので、このガスをエジェクター等を用いて吸引回
収し、回収したガスはロータリーキルン等の加熱燃料と
して利用する。
Mixing dried and preheated carbonaceous material with iron ore (and iron dust that is not preheated) is commonly used in this industry because it can be mixed in a short time to prevent overheating of a part of the carbonaceous material. For example, a biaxial mixer is used. Also, the mixer is kept warm to secure the molding temperature. The mixed carbonaceous material and iron ore (and iron-making dust) are pressure-molded into an agglomerate (briquette) using, for example, a twin roll type molding machine for hot molding. The pressure molding has a strength of about 5 which is sufficient for the agglomerate to withstand handling from the molding machine to the top loading of the blast furnace.
The molding pressure is 10 kN / so that 00 N / piece (for a size of about 30 mm × 25 mm × 15 mm) can be obtained.
cm or more, preferably 20 kN / cm or more. The agglomerate molded in this way is such that the molten softening and melting carbonaceous material penetrates into the voids between the iron ore (and ironmaking dust) and the carbonaceous material particles that do not soften and melt, and the iron ore (and ironmaking dust) Further, the particles of the carbonaceous material that do not soften and melt are strongly connected to each other, and further, the contact area between the iron ore (and the iron-making dust) and the carbonized material after melting and solidifying is large. Also, the mixer and the molding machine have a closed structure, and the pyrolysis gas of the carbonaceous material generated in the mixer and the molding machine is mainly composed of hydrocarbons, so this gas is suctioned and collected using an ejector or the like, and the collected gas is Used as heating fuel for rotary kilns.

【0019】成型後の塊成化物は、バンカー内で不活性
ガスにより冷却した後、バンカーから排出して篩い、篩
下の粉は再びミキサーに戻して原料として利用し、篩上
は目的とする高強度の高炉原料となる。
The agglomerated product after molding is cooled with an inert gas in a bunker, then discharged from the bunker and sieved, and the powder under the sieve is returned to the mixer again to be used as a raw material, and the sieve is intended. It becomes a high-strength blast furnace raw material.

【0020】なお、特開平11−92833の発明で
は、成型後の塊成化物に残存する揮発分を減少するため
に脱ガス工程を設けているが、本発明においては必ずし
も脱ガス工程を必要としない。特開平11−92833
の発明の塊成化物は1200〜1400℃の高温雰囲気
の還元炉に装入されるため、残存する揮発分の急激な発
生による塊成化物の粉化を防止する目的で脱ガス工程を
設けたものであるのに対して、本発明の方法で製造され
た塊成化物は、高炉に装入され、高炉内で徐々に昇温さ
れるため、残存する揮発分も徐々に除去されるので塊成
化物の粉化は問題とならない。
In the invention of JP-A-11-92833, a degassing step is provided to reduce the volatile content remaining in the agglomerate after molding, but the present invention does not necessarily require the degassing step. do not do. Japanese Patent Laid-Open No. 11-92833
Since the agglomerate of the present invention is charged into a reducing furnace in a high temperature atmosphere of 1200 to 1400 ° C., a degassing step is provided for the purpose of preventing agglomeration of the agglomerate due to rapid generation of residual volatile components. On the other hand, the agglomerate produced by the method of the present invention is charged into the blast furnace and gradually heated up in the blast furnace, so that the remaining volatile components are gradually removed. The pulverization of the product is not a problem.

【0021】なお、鉄鉱石の一部を置き換えてZnを高
濃度に含有する製鉄ダストを用いる場合には、高炉内で
のZn循環による炉壁耐火物への付着等の問題が生じな
いよう使用量を制限する必要がある。
When ironmaking dust containing a high concentration of Zn is used in place of part of the iron ore, it is used so that problems such as adhesion to the furnace wall refractory due to Zn circulation in the blast furnace do not occur. You need to limit the amount.

【0022】[0022]

【実施例】以下の説明において、「粘結炭」とは、ギー
セラー最高流動度MF>10ddpm(logMF>
1)である石炭をいい、「一般炭」とは、MF<1dd
pmである石炭をいう。
[Examples] In the following description, "caking charcoal" means the Gieseler maximum fluidity MF> 10 ddpm (logMF>
1) refers to coal, and “steam coal” means MF <1dd
pm refers to coal.

【0023】(実施例1)図2に本実施例に用いられた
熱間成型機の概要を示す。表1に示す一般炭Bおよび表
2に示す鉄鉱石Cに、ギーセラー最高流動度(MF)が
異なる粘結炭を、粘結炭30%、一般炭B20%、鉄鉱
石C50%の体積割合で、鉄鉱石Cのみを図示しない電
気炉で600〜700℃に予熱した後、オイルヒーター
で400〜500℃に保温されたミキサーに装入し混合
して440〜450℃とし、双ロール型成型機を用いて
ロール回転速度6rpm、成型圧力20〜28kN/c
mで30mm×25mm×15mmの卵形のブリケット
(塊成化物)に成型し、圧潰強度の変化を調べた。その
結果を図3に示す。なお、ギーセラー最高流動度はJI
S−M8801に基づいて測定した。また、各炭材と鉄
鉱石の体積は、それぞれの質量を、予めJIS−K21
51またはJIS−M8716の方法に準じて測定した
それぞれの見掛け密度で割ることにより求めた。
(Embodiment 1) FIG. 2 shows an outline of the hot molding machine used in this embodiment. Caking coal with different Gieseler maximum fluidity (MF) is added to steam coal B shown in Table 1 and iron ore C shown in Table 2 in a volume ratio of 30% coking coal, 20% steam coal B, and 50% iron ore C. After preheating only iron ore C to 600 to 700 ° C. in an electric furnace (not shown), it is charged into a mixer kept at 400 to 500 ° C. by an oil heater and mixed to obtain 440 to 450 ° C., a twin roll type molding machine. Roll speed 6 rpm, molding pressure 20-28 kN / c
It was molded into an egg-shaped briquette (agglomerate) having a size of 30 mm × 25 mm × 15 mm, and the change in crush strength was examined. The result is shown in FIG. The maximum fluidity of the Gisler is JI
It was measured based on S-M8801. In addition, the volume of each carbonaceous material and iron ore is determined by JIS-K21 in advance.
51 or the apparent density measured according to the method of JIS-M8716.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】図3に示すように、最高流動度(MF)が
高くなるにしたがって圧潰強度が高くなり、logMF
が約1以上で圧潰強度500N/個以上が得られること
を確認した。また、logMFが1.5以上になると圧
潰強度はほぼ一定となることも分かった。
As shown in FIG. 3, the crushing strength increases as the maximum fluidity (MF) increases, and the log MF increases.
It was confirmed that a crushing strength of 500 N / piece or more can be obtained at about 1 or more. It was also found that the crush strength becomes almost constant when the logMF is 1.5 or more.

【0027】(実施例2)実施例1と同じく図2に示し
た熱間成型機を用いた。表1に示す粘結炭A、一般炭B
および表2に示す鉄鉱石Cを、鉄鉱石C50%、粘結炭
Aと一般炭Bの合計を50%の体積割合とし、粘結炭A
の体積割合を変更して、実施例1と同様の成型条件でブ
リケット(塊成化物)に成型し、圧潰強度の変化を調べ
た。その結果を図4に示す。なお、成型圧力については
20〜28kN/cmの他に29〜38kN/cmにつ
いても実施した。
Example 2 The hot molding machine shown in FIG. 2 was used as in Example 1. Caking coal A and steam coal B shown in Table 1
And the iron ore C shown in Table 2 is 50% iron ore C, and the total volume of coking coal A and steam coal B is 50%.
The volume ratio was changed to form a briquette (agglomerate) under the same forming conditions as in Example 1, and the change in crush strength was examined. The result is shown in FIG. The molding pressure was 20 to 28 kN / cm as well as 29 to 38 kN / cm.

【0028】図4に示すように、粘結炭の体積割合を増
加するにしたがってブリケット(塊成化物)の圧潰強度
は上昇し、logMFが3以上の粘結炭(粘結炭A)を
体積割合で約20%以上混合することにより圧潰強度約
500N/個以上が得られることを確認した。なお、実
施例1で述べたように、logMFが1.5以上では圧
潰強度がほぼ一定となることから、logMFは必ずし
も3以上を必要とするものではなく、1.5以上あれば
よい。
As shown in FIG. 4, the crushing strength of briquette (agglomerate) increases as the volume ratio of coking coal increases, and the volume of coking coal (caking coal A) having a logMF of 3 or more is increased. It was confirmed that a crushing strength of about 500 N / piece or more was obtained by mixing at a ratio of about 20% or more. As described in Example 1, when the log MF is 1.5 or more, the crush strength is almost constant. Therefore, the log MF does not necessarily need to be 3 or more, and may be 1.5 or more.

【0029】(実施例3)実施例1、2と同じく図2に
示した熱間成型機を用いた。表1に示す粘結炭A、表2
に示す鉄鉱石Cおよび表3に示す高炉乾ダストDを、混
合後の全Fe/C=3.2(一定)となるように粘結炭
Aの体積割合を変更し(それに応じて鉄鉱石Cと高炉乾
ダストDの体積割合を調整し)、実施例2と同様の成型
条件でブリケット(塊成化物)に成型し、圧潰強度の変
化を調べた。その結果を図5に示す。
Example 3 The hot molding machine shown in FIG. 2 was used as in Examples 1 and 2. Caking coal A shown in Table 1, Table 2
The iron ore C shown in Fig. 3 and the blast furnace dry dust D shown in Table 3 were changed in the volume ratio of the coking coal A so that the total Fe / C after mixing was 3.2 (constant). The volume ratio of C and blast furnace dry dust D was adjusted) and molded into a briquette (agglomerate) under the same molding conditions as in Example 2, and the change in crush strength was examined. The result is shown in FIG.

【0030】[0030]

【表3】 [Table 3]

【0031】図5に示すように、鉄鉱石の一部を置き換
えて製鉄ダスト(高炉乾ダストD)を用いたとき、製鉄
ダスト(高炉乾ダストD)の配合率が体積割合で約20
%以下であれば、logMFが3以上の粘結炭(粘結炭
A)を体積割合で約30%以上混合することにより、適
正な加圧力29〜38kN/cmで成型すれば圧潰強度
500N/個が得られることを確認した。なお、実施例
2と同様に、粘結炭のlogMFは必ずしも3以上を必
要とするものではなく1.5以上あればよい。
As shown in FIG. 5, when ironmaking dust (blast furnace dry dust D) is used by replacing a part of iron ore, the mixing ratio of the ironmaking dust (blast furnace dry dust D) is about 20 by volume.
%, The coking coal with a log MF of 3 or more (caking coal
It was confirmed that a crushing strength of 500 N / piece can be obtained by mixing A) in a volume ratio of about 30% or more and molding at an appropriate applied pressure of 29 to 38 kN / cm. In addition, as in Example 2, the logMF of caking coal does not necessarily need to be 3 or more, and may be 1.5 or more.

【0032】さらに、以上の実施例1〜3において製造
したブリケット(塊成化物)をJIS−M8712に基
づくタンブラー回転強度試験を行い、その試験時の−1
mm粉率と圧潰強度との関係を図6に示す。図6に示す
ように、圧潰強度が500N/個以上になると、−1m
m粉率は15質量%以下と少なくなり、高炉への装入時
のハンドリングに十分耐えることを確認した。
Further, the briquettes (agglomerates) produced in the above Examples 1 to 3 were subjected to a tumbler rotational strength test based on JIS-M8712, and -1 at the time of the test was conducted.
The relationship between the mm powder ratio and the crush strength is shown in FIG. As shown in FIG. 6, when the crush strength is 500 N / piece or more, -1 m
It was confirmed that the m powder ratio was as small as 15% by mass or less, and that it could withstand handling during charging into the blast furnace.

【0033】[0033]

【発明の効果】以上より、本発明によれば、バインダー
を用いることなく、高価な粘結炭を低減しても高炉やキ
ューポラなどの竪型炉に装入しうる強度を確保できる炭
材内装塊成化物の製造方法を確立できた。これにより炭
材内装塊成化物の製造コストの低減が図れた。
As described above, according to the present invention, without using a binder, it is possible to secure the strength that can be charged into a vertical furnace such as a blast furnace or a cupola even if expensive caking coal is reduced. The manufacturing method of agglomerates was established. This made it possible to reduce the manufacturing cost of the carbon material-containing agglomerate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に係わる炭材内装塊成化物の製造
フローの概念図である。
FIG. 1 is a conceptual diagram of a production flow of a carbonaceous material-containing agglomerate according to an embodiment of the present invention.

【図2】本実施例に用いられた熱間成型機の概要を示す
図である。
FIG. 2 is a diagram showing an outline of a hot molding machine used in this example.

【図3】粘結炭の最高流動度(MF)と塊成化物の圧潰
強度との関係を示す図である。
FIG. 3 is a graph showing the relationship between the maximum fluidity (MF) of coking coal and the crush strength of agglomerates.

【図4】鉄鉱石のみを用いる場合における、粘結炭の体
積割合とブリケット(塊成化物)の圧潰強度との関係を
示す図である。
FIG. 4 is a diagram showing the relationship between the volume ratio of caking coal and the crushing strength of briquettes (agglomerates) when only iron ore is used.

【図5】鉄鉱石の一部を置き換えて高炉乾ダストを用い
る場合における、粘結炭の体積割合とブリケット(塊成
化物)の圧潰強度との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the volume ratio of coking coal and the crushing strength of briquettes (agglomerates) when blast furnace dry dust is used by replacing a part of iron ore.

【図6】ブリケット(塊成化物)のタンブラー回転強度
試験時の−1mm粉率と圧潰強度との関係を示す図であ
る。
FIG. 6 is a diagram showing a relationship between a -1 mm powder ratio and a crushing strength during a tumbler rotation strength test of a briquette (agglomerate).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−92833(JP,A) 特開 平9−41047(JP,A) 特開 平4−231420(JP,A) 特公 昭41−7047(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 ─────────────────────────────────────────────────── ─── Continued Front Page (56) References JP-A-11-92833 (JP, A) JP-A-9-41047 (JP, A) JP-A-4-231420 (JP, A) JP-B-41- 7047 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1/00-61/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉状の鉄鉱石、製鉄ダストおよび粉状の
炭材との混合物を250〜550℃で熱間成型して行う
炭材内装塊成化物の製造方法であって、前記製鉄ダスト
の体積が前記混合物の体積の20%以下であり、前記炭
材が1種類または2種類以上の炭材で構成され、そのう
ちの少なくとも1種類の炭材がギーセラー最高流動度M
FがlogMF>1.5の軟化溶融性を有する炭材であ
り、かつその軟化溶融性を有する炭材の合計体積が前記
混合物の体積の30%以上であることを特徴とする炭材
内装塊成化物の製造方法
1. Powdered iron ore, ironmaking dust and powdered iron ore
Hot-molding a mixture with carbonaceous material at 250-550 ° C
A method for producing a carbonaceous material-containing agglomerate, comprising the ironmaking dust
Volume of 20% or less of the volume of the mixture,
The material is composed of one or more types of carbon materials,
At least one kind of carbonaceous material has the highest fluidity M
F is a carbonaceous material having a softening and melting property of logMF> 1.5
And the total volume of the carbonaceous material having its softening and melting property is
Carbonaceous material characterized by being 30% or more of the volume of the mixture
Manufacturing method of interior agglomerate .
【請求項2】 前記熱間成型における成型圧力が29〜
38kN/cmである請求項1に記載の炭材内装塊成化
物の製造方法
2. The molding pressure in the hot molding is 29 to
38 kN / cm, agglomerated carbonaceous material interior according to claim 1.
Method of manufacturing things .
JP2000106469A 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates Expired - Fee Related JP3502008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106469A JP3502008B2 (en) 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106469A JP3502008B2 (en) 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates

Publications (2)

Publication Number Publication Date
JP2001294944A JP2001294944A (en) 2001-10-26
JP3502008B2 true JP3502008B2 (en) 2004-03-02

Family

ID=18619630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106469A Expired - Fee Related JP3502008B2 (en) 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates

Country Status (1)

Country Link
JP (1) JP3502008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005190A1 (en) 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438297B2 (en) * 2003-03-10 2010-03-24 株式会社神戸製鋼所 Method for producing reduced metal and agglomerated carbonaceous material agglomerates
JP4532313B2 (en) * 2005-03-07 2010-08-25 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP4996103B2 (en) * 2006-02-07 2012-08-08 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
KR102288003B1 (en) 2016-12-28 2021-08-09 제이에프이 스틸 가부시키가이샤 Manufacturing method of sintered ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005190A1 (en) 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore

Also Published As

Publication number Publication date
JP2001294944A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP4438297B2 (en) Method for producing reduced metal and agglomerated carbonaceous material agglomerates
JP3953420B2 (en) Method for producing metallized briquette
JP3004265B1 (en) Carbon material interior pellet and reduced iron production method
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
RU2507275C2 (en) Production method of agglomerates from fine iron carrier
JP4996105B2 (en) Vertical coal interior agglomerates
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP3754553B2 (en) Agglomerated product for reduced iron and method for producing the same
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP2004211179A (en) Method of reducing chromium-containing raw material
JP4718241B2 (en) Coke production method
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP4441461B2 (en) Manufacturing method of carbonized material agglomerates
JP2006152432A (en) Method for producing molten iron
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
CA2423166C (en) Method for making reduced iron
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP4843445B2 (en) Manufacturing method of carbonized material agglomerates
JP3863104B2 (en) Blast furnace operation method
JPH0364571B2 (en)
JP4356932B2 (en) Method for producing carbon steel interior agglomerates for iron making

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

R150 Certificate of patent or registration of utility model

Ref document number: 3502008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees