JP4356932B2 - Method for producing carbon steel interior agglomerates for iron making - Google Patents
Method for producing carbon steel interior agglomerates for iron making Download PDFInfo
- Publication number
- JP4356932B2 JP4356932B2 JP2004133816A JP2004133816A JP4356932B2 JP 4356932 B2 JP4356932 B2 JP 4356932B2 JP 2004133816 A JP2004133816 A JP 2004133816A JP 2004133816 A JP2004133816 A JP 2004133816A JP 4356932 B2 JP4356932 B2 JP 4356932B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- maximum fluidity
- iron oxide
- oxide raw
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、製鉄用炭材内装塊成化物の製造方法に関するものであり、殊に、軟化流動性の低い炭材を用いた場合でも、高強度でかつ還元反応の促進される製鉄用炭材内装塊成化物を製造することのできる方法に関するものである。 The present invention relates to a method for producing an agglomerated carbonaceous material for iron making, and in particular, a steel material for iron making that has a high strength and promotes a reduction reaction even when a carbon material with low softening fluidity is used. The present invention relates to a method capable of producing an interior agglomerated product.
製鉄用の還元炉では、取扱い性や操業性等の観点から、粉状の製鉄用原料を予め粒状やペレット状に塊成されたものが用いられている。また鉄鉱石を直接還元して還元鉄を製造すべく、鉄鉱石などの酸化鉄原料を主原料とし、これに還元剤として炭材等を配合したものが提案されている。 In a steelmaking reduction furnace, a powdered ironmaking raw material previously agglomerated in the form of particles or pellets is used from the viewpoints of handleability and operability. In order to produce reduced iron by directly reducing iron ore, iron oxide raw materials such as iron ore are used as the main raw material, and carbonaceous materials and the like are blended as a reducing agent.
この様に鉄鉱石(酸化鉄原料)と炭材をメインとする塊成化物を製造する方法として、特許文献1には、バインダー等を加えることなく高強度の塊成化物を製造する方法が示されている。具体的には、製鉄所等から発生する含鉄微粉にコークス粉を混合して水分を一定量とし、この混合物を押出成形により塊状化し、該塊状物の角部をドラム機で除去した後、竪型炉に装入して加熱焼成する方法が示されている。しかし該方法では、水分の調節や竪型炉内部の各温度を一定に保つ必要があるなど操作が煩雑となる。 As a method for producing an agglomerate mainly composed of iron ore (iron oxide raw material) and carbonaceous material, Patent Document 1 discloses a method for producing a high-strength agglomerate without adding a binder or the like. Has been. Specifically, coke powder is mixed with iron-containing fine powder generated from a steel mill or the like to make a certain amount of moisture, the mixture is agglomerated by extrusion molding, and corners of the agglomerate are removed with a drum machine, A method of charging in a mold furnace and heating and firing is shown. However, in this method, the operation becomes complicated, for example, it is necessary to adjust moisture and keep the temperature inside the vertical furnace constant.
特許文献2には、回転炉床式還元炉等の固体還元型の焼成還元炉で使用する粉化の抑制された成形体として、酸化第二鉄と炭素含有粉体を用いて得られるものであって気孔率が40%以上のものを製造することが示されている。製造方法として具体的には、水分を含む状態の原料混合物を、押し込みローラーで金属製の板に設置してある貫通穴型から押し出す方法が示されている。また特許文献3には、塊成化物中の粉鉱石の還元時間を短縮し、さらに還元後の還元鉄の溶融時間を短縮できる塊成化物として、粉鉄石と炭材の混合物からなるものであって嵩密度が一定値以上のものが示されている。 Patent Document 2 is obtained by using ferric oxide and a carbon-containing powder as a compacted compact that is used in a solid reduction firing reduction furnace such as a rotary hearth type reduction furnace. Thus, it has been shown to produce those having a porosity of 40% or more. Specifically, a method of extruding a raw material mixture containing moisture from a through-hole mold installed on a metal plate with a pushing roller is shown. Further, Patent Document 3 includes a mixture of powdered iron and carbon as an agglomerated material that can reduce the reduction time of the fine ore in the agglomerated material and further reduce the melting time of the reduced iron after the reduction. In this case, the bulk density is a certain value or more.
しかしこれら特許文献2や特許文献3に示される技術の様に、嵩密度や気孔率が高い塊成化物は、高炉等の様に高強度が必要とされる場合には適用し難いと考えられる。 However, agglomerates with high bulk density and high porosity like the techniques shown in Patent Document 2 and Patent Document 3 are considered difficult to apply when high strength is required such as in a blast furnace. .
特許文献4には、粉状鉄鉱石と炭材を混合・加圧成形して高強度の塊成鉱を製造するときに、炭材の熱可塑性を利用すれば、高密度で被還元性の大きく改善された炭材内装塊成化物が得られることが示されている。しかしこの技術では、上記炭材が軟化流動性の高い粘結炭に限られており、使用する炭材の種類が制限される。
本発明は上記事情に鑑みてなされたものであって、その目的は、軟化流動性の低い炭材を用いた場合でも、高強度でかつ製鉄時に還元反応の促進される製鉄用炭材内装塊成化物を製造できる方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an iron-making carbonaceous material-incorporated lump that has a high strength and promotes a reduction reaction at the time of ironmaking, even when using a carbonized material with low softening fluidity. The object is to provide a method by which chemical compounds can be produced.
本発明に係る製鉄用炭材内装塊成化物の製造方法は、酸化鉄原料と炭材を含む塊成用組成物であって、該酸化鉄原料と炭材の比率(質量比)を下記式(1)の範囲に調節した塊成用組成物を混合した後、加熱下で脱気しつつ押出成形するところに特徴を有するものであり、強度のより高い製鉄用炭材内装塊成化物を製造するには、押出成形時の雰囲気圧力を0.02〜0.2atmとすることが好ましい。
酸化鉄原料:炭材=85〜75:15〜25 …(1)
The method for producing an agglomerate for a carbonaceous material for iron making according to the present invention is a composition for agglomeration including an iron oxide raw material and a carbonaceous material, wherein the ratio (mass ratio) of the iron oxide raw material and the carbonaceous material is expressed by the following formula: After mixing the agglomeration composition adjusted to the range of (1), it is characterized in that it is extruded while being deaerated under heating. For production, it is preferable that the atmospheric pressure during extrusion molding is 0.02 to 0.2 atm.
Iron oxide raw material: Carbonaceous material = 85-75: 15-25 (1)
本発明は、この様な製造方法により押出成形時に炭材の可塑性を十分に発現させて良好に成形し、高強度の塊成化物が得られるものである。炭材の可塑性を有効に発現させるには、軟化開始温度(以下「軟化開始温度」は炭材の軟化開始温度を意味する)未満の温度にある炭材と、炭材の最高流動度温度(以下「最高流動度温度」は炭材の最高流動度温度を意味する)以上の温度にある酸化鉄原料を混合して、混合物(塊成用組成物)が該最高流動度温度以上にある状態で混合し、その後、上記の通り加熱下で脱気しつつ押出成形するのがよい。 According to the present invention, by such a production method, the plasticity of the carbon material is sufficiently expressed during extrusion molding, and the carbon material is molded well, and a high-strength agglomerated product is obtained. In order to effectively develop the plasticity of the carbon material, the carbon material at a temperature lower than the softening start temperature (hereinafter, “softening start temperature” means the softening start temperature of the carbon material) and the maximum fluidity temperature of the carbon material ( In the following, “the maximum fluidity temperature” means the maximum fluidity temperature of the carbonaceous material) and the iron oxide raw material at a temperature equal to or higher than that is mixed, and the mixture (the agglomerating composition) is above the maximum fluidity temperature. And then extruding while degassing under heating as described above.
塊成用組成物を固体または半固体の状態で十分に混合するには、最高流動度温度未満の温度にある炭材と、酸化鉄原料とを混合して、混合物(塊成化組成物)が該最高流動度温度未満にある状態で混合し、その後、加熱機構を有するスクリュータイプの押出成形機で混合物を該最高流動度温度以上にまで加熱して脱気しつつ押出成形する方法が有効である。 In order to sufficiently mix the agglomeration composition in a solid or semi-solid state, the carbonaceous material at a temperature lower than the maximum fluidity temperature and the iron oxide raw material are mixed, and the mixture (agglomerated composition) Is effective when the mixture is mixed in a state where the temperature is less than the maximum fluidity temperature, and then the mixture is heated to a temperature higher than the maximum fluidity temperature by a screw type extruder having a heating mechanism and deaerated. It is.
尚、上記軟化開始温度および最高流動度温度とは、JIS M 8801の方法に基づき、ギーセラープラストメータで測定した温度をいう。 The softening start temperature and the maximum fluidity temperature are temperatures measured with a Gieseler plastometer based on the method of JIS M8801.
本発明法は、前記炭材として最高流動度が2.5以下の石炭を用いて、高強度の製鉄用炭材内装塊成化物を製造することができる方法でもある。 The method of the present invention is also a method capable of producing a high-strength carbonaceous material-incorporated agglomerate for iron making using coal having a maximum fluidity of 2.5 or less as the carbon material.
本発明によれば、炭材として軟化流動性の高い粘結炭だけでなく、軟化流動性の低いものを用いた場合でも、高強度でかつ製鉄時に還元剤を別途添加せずとも還元反応の促進される製鉄用炭材内装塊成化物を製造することができる。また、軟化流動性を有する炭材を使用した場合には、強度向上のために配合する炭材を低減して鉄分含量の高い塊成化物を製造することができ、製銑において、多量の金属鉄を効率良く製造できる。 According to the present invention, not only caking coal with high softening fluidity but also low softening fluidity as a carbon material, high strength and reduction reaction can be performed without adding a reducing agent separately during iron making. An agglomerated carbonaceous material agglomerated material for iron making can be produced. In addition, when a carbon material having softening fluidity is used, an agglomerate having a high iron content can be produced by reducing the amount of carbon material to be blended for strength improvement. Iron can be produced efficiently.
本発明者らは、軟化流動性の高い粘結炭の使用を前提とした従来の炭材内装塊成化物の製造において、該粘結炭の代わりに軟化流動性の低い炭材を使用した場合でも、酸化鉄原料と炭材の密着性が高く高強度を示し、かつ製鉄時に還元剤を別途添加せずとも還元反応の促進される製鉄用炭材内装塊成化物が得られる方法について鋭意研究を行った。その結果、特に酸化鉄原料と炭材を含む塊成用組成物を混合した後、加熱下で脱気しつつ押出成形すればよいことを見出し、本発明に想到した。 In the production of a conventional carbonized material agglomerated product based on the use of caking coal with a high softening fluidity, the present inventors use a charcoal material with a low softening fluidity instead of the caking coal. However, earnest research on how to obtain an agglomerated carbonaceous material agglomerate for iron making that shows high strength and high adhesion between the iron oxide raw material and the carbonaceous material, and promotes the reduction reaction without adding a separate reducing agent during iron making. Went. As a result, the inventors have found that it is only necessary to mix an agglomeration composition containing an iron oxide raw material and a carbonaceous material and then extrude while degassing under heating, and arrived at the present invention.
この様に、軟化流動性の低い炭材を使用した場合や炭材の配合率を低減した場合でも、高強度の塊成化物が得られる理由として、押出成形機のチャンバーを減圧することによって、炭材の融点が低下して炭材の軟化流動性が増し、可塑性材料として有効に作用すると共に、脱気により減圧状態となり成形体内の空隙が減少し、密着性の高い塊成化物が得られるためと考えられる。 In this way, even when using a carbon material with low softening fluidity or reducing the blending rate of the carbon material, the reason why a high-strength agglomerate is obtained is to reduce the pressure of the chamber of the extruder, The melting point of the carbon material is lowered, the softening fluidity of the carbon material is increased, and it effectively acts as a plastic material. In addition, degassing results in a reduced pressure state and the voids in the molded body are reduced, and an agglomerated material with high adhesion is obtained. This is probably because of this.
上記方法を実現させるための具体的な手段として、酸化鉄原料と炭材を含む塊成用組成物を、例えば一軸式または二軸式のスクリュータイプの押出成形機に装入して、押出成形機のチャンバー外筒と押出しスクリューに熱媒を通して加熱し、かつ脱気しながら成形加工する方法が挙げられる。 As a specific means for realizing the above method, an agglomeration composition containing an iron oxide raw material and a carbonaceous material is charged into, for example, a single-screw or twin-screw extruder, and extrusion molding is performed. There is a method in which a heating medium is heated through a chamber outer cylinder and an extrusion screw of the machine, and molding is performed while deaeration.
本発明は、上記脱気による押出成形時の雰囲気圧力(チャンバー内圧)まで特に限定するものでなく、後述する図1に示す通り、常圧(1atm)から減圧することによって、常圧で成形した場合よりも高強度の塊成化物が得られるが、押出成形機の雰囲気圧力を0.2atm以下、より好ましくは0.1atm以下、更に好ましくは0.06atm以下にまで減圧(脱気)すれば顕著に強度が上昇するので好ましい。 The present invention is not particularly limited to the atmospheric pressure (chamber internal pressure) at the time of extrusion molding by degassing, and is molded at normal pressure by reducing the pressure from normal pressure (1 atm) as shown in FIG. An agglomerate having a higher strength than the case can be obtained, but if the atmospheric pressure of the extruder is reduced to 0.2 atm or less, more preferably 0.1 atm or less, and even more preferably 0.06 atm or less (degassing). It is preferable because the strength is remarkably increased.
一方、過剰に脱気して押出成形機の雰囲気圧力が低すぎると、塊成化物の強度が低下する。その理由としては、真空度が非常に高くかつ加熱雰囲気下では炭材が分解され易く、該分解で生じた低分子炭化水素が揮発分として放出され易くなる。その結果、炭材が軟化溶融状態である時間が短くなり、また可塑性材料として作用する炭材が減少し、炭材と酸化鉄との密着性が低下するためと考えられる。この様な現象を抑えるには、炭材の種類に関係なく、押出成形時の雰囲気圧力を0.02atm以上とするのがよく、より好ましくは0.03atm以上である。尚、成形加工時の加熱温度は、(最高流動度温度−30℃)〜(最高流動度温度+30℃)とするのがよい。 On the other hand, if the deaeration is excessive and the atmospheric pressure of the extruder is too low, the strength of the agglomerated material decreases. The reason is that the degree of vacuum is very high and the carbonaceous material is easily decomposed in a heated atmosphere, and low molecular hydrocarbons generated by the decomposition are easily released as volatile components. As a result, it is considered that the time during which the carbon material is in a softened and melted state is shortened, the carbon material acting as a plastic material is reduced, and the adhesion between the carbon material and iron oxide is reduced. In order to suppress such a phenomenon, the atmospheric pressure at the time of extrusion is preferably 0.02 atm or more, more preferably 0.03 atm or more, regardless of the type of carbonaceous material. The heating temperature at the time of molding is preferably (maximum fluidity temperature-30 ° C) to (maximum fluidity temperature + 30 ° C).
本発明はこの様に、軟化流動性の程度を問わず、炭材を可塑性材料として利用して高強度の塊成化物を得ることができる点に特徴を有するものであり、炭材の可塑性をより有効に発現させるには、成形に際して、炭材を含む塊成用組成物を最高流動度温度以上に高めておくことが有効である。 As described above, the present invention is characterized in that a high strength agglomerate can be obtained by using a carbonaceous material as a plastic material regardless of the degree of softening fluidity. In order to express it more effectively, it is effective to raise the agglomeration composition containing the carbonaceous material to the maximum fluidity temperature or higher during molding.
具体的には、軟化開始温度未満の温度にある炭材と、最高流動度温度以上の温度にある酸化鉄原料を混合して、混合物が該最高流動度温度以上(好ましくは[最高流動度温度+30℃]以下)にある状態で混合し、その後、上述の通り加熱下で脱気しつつ押出成形する方法が挙げられる。 Specifically, a carbon material at a temperature lower than the softening start temperature and an iron oxide raw material at a temperature equal to or higher than the maximum fluidity temperature are mixed, and the mixture becomes equal to or higher than the maximum fluidity temperature (preferably [maximum fluidity temperature + 30 ° C.] or less), and then extrusion molding while degassing under heating as described above.
混合する炭材を軟化開始温度未満のものとすれば、酸化鉄原料と混合したとき継粉の発生を抑制でき、炭材が酸化鉄原料全体に十分行き渡り、密着性の高い高強度の塊成化物が得られ易くなるからである。よって混合する炭材は、予熱する場合でも軟化開始温度未満に抑えるのが好ましく、より好ましくは(軟化開始温度−50℃)以下である。尚、混合前の炭材の温度が低すぎると混合物中の温度が均一となりにくいので、約200℃以上に加熱しておくことが好ましい。 If the carbonaceous material to be mixed is less than the softening start temperature, the generation of spatter can be suppressed when mixed with the iron oxide raw material, and the carbonaceous material is sufficiently spread over the entire iron oxide raw material, and high strength agglomeration with high adhesion. This is because a chemical compound is easily obtained. Therefore, it is preferable to suppress the carbonaceous material to be mixed below the softening start temperature even when preheating, and more preferably (softening start temperature−50 ° C.) or lower. In addition, since the temperature in a mixture becomes difficult to become uniform when the temperature of the carbon | charcoal material before mixing is too low, it is preferable to heat to about 200 degreeC or more.
一方、混合後の塊成用組成物(混合物)の温度が最高流動度温度以上となるようにするには、前記炭材と混合する酸化鉄原料を最高流動度温度以上の温度に加熱しておくのがよい。具体的な加熱温度は、炭材の前記予熱温度および炭材と酸化鉄原料との比率にもよるが、炭材が(最高流動度温度−100℃)以下の場合には、酸化鉄原料を(最高流動度温度+150℃)以上に加熱しておくことが好ましく、炭材が(最高流動度温度−200℃)以下の場合には、酸化鉄原料を(最高流動度温度+300℃)以上に加熱しておくことが好ましい。 On the other hand, in order to make the temperature of the composition for agglomeration (mixture) after mixing equal to or higher than the maximum fluidity temperature, the iron oxide raw material mixed with the carbonaceous material is heated to a temperature equal to or higher than the maximum fluidity temperature. It is good to leave. The specific heating temperature depends on the preheating temperature of the carbonaceous material and the ratio of the carbonaceous material and the iron oxide raw material, but when the carbonaceous material is less than (maximum fluidity temperature −100 ° C.), the iron oxide raw material is selected. It is preferable to heat to (maximum fluidity temperature + 150 ° C.) or higher, and when the carbonaceous material is (maximum fluidity temperature−200 ° C.) or less, the iron oxide raw material is increased to (maximum fluidity temperature + 300 ° C.) or more It is preferable to heat.
この様に予め加熱しておいた酸化鉄原料や炭材を混合して、混合物を最高流動度温度以上とし、該温度の混合物を押出成形機に装入して、最高流動度温度以上の温度に保持しながら脱気下で押出形成すればよい。 In this way, the iron oxide raw material and charcoal material that have been heated in advance are mixed, and the mixture is brought to the maximum fluidity temperature or more, and the mixture at the temperature is charged into the extruder, and the temperature above the maximum fluidity temperature is introduced. It is only necessary to perform extrusion forming under deaeration while maintaining the temperature.
尚、上記の通り、炭材と最高流動度温度よりも高温の酸化鉄原料を混合した時には、局所的に炭材が溶融し、更に温度が上昇して再固化するといった現象が生じ得る。そうすると可塑性材料として作用する炭材が減少する場合がある。 As described above, when the carbonaceous material and the iron oxide raw material having a temperature higher than the maximum fluidity temperature are mixed, a phenomenon may occur in which the carbonaceous material locally melts and further rises in temperature and resolidifies. If it does so, the carbonaceous material which acts as a plastic material may reduce.
この様な現象を抑制して炭材を可塑性材料として十分に作用させるには、最高流動度温度未満の温度にある炭材と、酸化鉄原料とを混合して、混合物(塊成用組成物)が該最高流動度温度未満にある状態で混合し、その後の成形加工時に、炭材の温度を最高流動度温度もしくはそれ以上の温度(好ましくは最高流動度温度+30℃以下)にまで高める方法が推奨される。特に、押出成形機として、スクリュータイプのものであって、例えば押出成形機のチャンバー外筒と押出しスクリューに熱媒が通るなど加熱機構を有するものを使用すれば、スクリューの強い混錬作用により加熱効率も向上するので、十分に成形段階でも昇温できる。 In order to suppress such a phenomenon and to make the carbonaceous material sufficiently act as a plastic material, the carbonaceous material at a temperature lower than the maximum fluidity temperature and the iron oxide raw material are mixed, and the mixture (the agglomerating composition) is mixed. ) Is below the maximum fluidity temperature, and during the subsequent molding process, the temperature of the carbonaceous material is increased to the maximum fluidity temperature or higher (preferably the maximum fluidity temperature + 30 ° C. or less). Is recommended. In particular, if the extruder is of the screw type and has a heating mechanism such as passing through the chamber outer cylinder of the extruder and the extrusion screw, it will be heated by the strong kneading action of the screw. Since the efficiency is improved, the temperature can be sufficiently increased even at the molding stage.
尚、炭材と混合させる前の酸化鉄原料の温度については特に限定されず、炭材と混合したときに混合物(塊成用組成物)の温度が最高流動度温度未満となる範囲で予め加熱してもよい。 The temperature of the iron oxide raw material before mixing with the carbonaceous material is not particularly limited, and is preheated in a range where the temperature of the mixture (composition composition) is less than the maximum fluidity temperature when mixed with the carbonaceous material. May be.
この様な方法を採用すれば、最高流動度温度よりも低温で混合するので、炭材を固体状態または半固体状態のまま均一に分散させ易く、その結果、後述する図3に示す通り炭材の配合率を低減しても高強度の塊成化物が得られる。 If such a method is adopted, the carbonaceous material is mixed at a temperature lower than the maximum fluidity temperature, so that the carbonaceous material is easily dispersed uniformly in a solid state or a semi-solid state. As a result, as shown in FIG. Even if the blending ratio is reduced, a high-strength agglomerated product can be obtained.
本発明法は、前記炭材として、最高流動度が2.5以下の石炭を用いて製鉄用炭材内装塊成化物を製造する場合にその効果をより発揮するものであり、最高流動度が1.5以下、更には流動性を示さず最高流動度の測定が不可能な石炭を用いた場合により効果を発揮する。この様に本発明法では、軟化流動性が低いかもしくは示さない石炭も前記炭材として使用できるので、使用可能な炭材種類の範囲が広がる。 The method of the present invention is more effective when producing a coal agglomerate for iron making using coal having a maximum fluidity of 2.5 or less as the carbon material, and the maximum fluidity is This is more effective when coal is used that is 1.5 or less, and that does not exhibit fluidity and cannot measure the maximum fluidity. As described above, in the method of the present invention, coal having low softening fluidity or not shown can also be used as the carbon material, so that the range of usable carbon material types is expanded.
炭材としては、常温〜250℃で固体状態のものを使用するが、上述の通り流動性の有無は問わず様々な種類のものを使用でき、サイズが約0.01〜0.50mmの粉状のものを使用することができる。 As the carbon material, those in a solid state at room temperature to 250 ° C. are used, but as described above, various kinds of materials can be used regardless of the presence or absence of fluidity, and powder having a size of about 0.01 to 0.50 mm. Can be used.
酸化鉄原料としては、製鉄用原料として一般的に汎用されている鉄鉱石の他、酸化鉄を主成分として含む高炉ダストや転炉ダスト、ミルスケール等を使用することができる。鉄鉱石としては、様々な銘柄のものを用いることができ、例えば赤鉄鉱(ヘマタイト:Fe2 O3 )や磁鉄鉱(マグネタイト:Fe3 O4 )、ゲーサイト(Fe2 O3 ・H2 O)を多く含有する褐鉄鉱系鉱石、MgO含有物質としてドロマイト鉱石を使用してもよい。また焼結性の低いマラマンバ鉱石等を使用することもできる。これらの酸化鉄原料としては、サイズが0.01〜0.50mmの粉状のものが強度確保や混合の容易性から好ましく使用される。 As the iron oxide raw material, blast furnace dust, converter dust, mill scale, etc. containing iron oxide as a main component can be used in addition to iron ore generally used as a raw material for iron making. Various types of iron ores can be used. For example, hematite (hematite: Fe 2 O 3 ), magnetite (magnetite: Fe 3 O 4 ), goethite (Fe 2 O 3 .H 2 O), etc. Dolomite ore may be used as a limonite-based ore containing a large amount of Mg or a MgO-containing substance. Also, maramamba ore with low sinterability can be used. As these iron oxide raw materials, powdery ones having a size of 0.01 to 0.50 mm are preferably used from the viewpoint of ensuring strength and easy mixing.
尚、本発明では、塊成用組成物に含まれる炭材および酸化鉄原料の割合(質量比)が下記範囲を満たすことを前提とする。酸化鉄原料の割合が少なすぎると、塊成化物中の鉄分含量が少なくなり、高炉の生産性を低下させる原因になる他、塊成化物が強度不足になる等の不具合が生じるからである。一方、酸化鉄原料が過剰となり、炭材が少なすぎると、前記炭材の効果が十分に発揮されないばかりか、製鉄時の還元反応が促進され難くなるからである。
酸化鉄原料:炭材=85〜75:15〜25 …(1)
In the present invention, it is assumed that the ratio (mass ratio) of the carbonaceous material and the iron oxide raw material contained in the agglomeration composition satisfies the following range. This is because if the ratio of the iron oxide raw material is too small, the iron content in the agglomerated material is reduced, which causes a decrease in the productivity of the blast furnace, and also causes problems such as insufficient strength of the agglomerated material. On the other hand, if the iron oxide raw material becomes excessive and the amount of the carbon material is too small, not only the effect of the carbon material is not sufficiently exhibited, but also the reduction reaction at the time of iron making is hardly promoted.
Iron oxide raw material: Carbonaceous material = 85-75: 15-25 (1)
成形方法として、下記実施例では、押し出された連続成形物をカッティングして円柱状の塊成鉱を得ているが、塊成鉱の形状はこれに限定されず、上記連続成形物をカッティング後、更にプレス成形するなどして、球状、砂利状等の様々な形状に成形することができる。尚、塊成化物を製造するに際し、必要に応じて石灰石等を添加してもよい。 As a forming method, in the following example, the extruded continuous molded product is cut to obtain a cylindrical agglomerate, but the shape of the agglomerated mineral is not limited to this, and after the continuous molded product is cut Further, it can be formed into various shapes such as a spherical shape and a gravel shape by further press molding. In addition, when manufacturing an agglomerated material, you may add limestone etc. as needed.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
<実施例1>
約200℃に予熱した表1に示す性状の粉状石炭(粒径約0.5mm以下に粉砕したもの)に、約750℃に加熱した粉状鉄鉱石(粒径約0.5mm以下に粉砕したもの)を、質量比で石炭(炭材):鉄鉱石=20:80の割合となるように配合し、250℃に保温した高速ミキサーに投入して攪拌・混合し(混合物の温度は450℃)、該混合物をスクリュータイプの2軸式押出成形機に装入して、成型温度:450℃、成型圧力(線圧):2.0〜2.9t/cmの条件で直径30mmの円形の成形ダイス(抜き型)を用いて連続的に押出成形し、直径30mmの円柱状連続成形体を、長さ30mmで切断し、直径:30mm、高さ:30mmの円柱状塊成化物を得た。前記成形温度450℃は、表1に示す通り、粘結炭Aおよび粘結炭Bの軟化開始温度と固化温度の間の最高流動度温度に近い温度であり、該温度で成形すれば、容易に成形でき高強度の塊成化物が得られる。
<Example 1>
Powdered iron ore heated to about 750 ° C (pulverized to a particle size of about 0.5 mm or less) into powdered coal of the properties shown in Table 1 preheated to about 200 ° C (pulverized to a particle size of about 0.5 mm or less) Are mixed in a mass ratio of coal (charcoal material): iron ore = 20: 80, put into a high-speed mixer kept at 250 ° C., and stirred and mixed (the temperature of the mixture is 450). C), the mixture was charged into a screw-type twin-screw extruder, and a circular shape with a diameter of 30 mm under conditions of a molding temperature: 450 ° C. and a molding pressure (linear pressure): 2.0 to 2.9 t / cm. Is continuously extruded using a molding die (cutting die), and a cylindrical continuous molded body having a diameter of 30 mm is cut at a length of 30 mm to obtain a cylindrical agglomerate having a diameter of 30 mm and a height of 30 mm. It was. As shown in Table 1, the molding temperature 450 ° C. is a temperature close to the maximum fluidity temperature between the softening start temperature and the solidification temperature of the caking coal A and caking coal B, and it is easy to mold at that temperature. Can be formed into a high-strength agglomerated material.
そして表2に示す通り、石炭の種類と押出成形時の雰囲気圧力(チャンバー内圧)を変えて塊成化物を製造し、得られた塊成化物の強度を測定した。 And as shown in Table 2, the agglomerate was manufactured by changing the kind of coal and the atmospheric pressure (chamber internal pressure) at the time of extrusion molding, and the strength of the obtained agglomerate was measured.
塊成化物の強度は、ISO 4700に準じて測定した圧潰強度で評価した。具体的には、円柱状の成形体の円形面中央部に荷重を加えて圧潰強度を測定した。測定値を表2に示す。尚、表2中の数値は圧潰強度(単位:N)を示す。 The strength of the agglomerated material was evaluated by the crushing strength measured according to ISO 4700. Specifically, the crushing strength was measured by applying a load to the central part of the circular surface of the cylindrical molded body. The measured values are shown in Table 2. In addition, the numerical value in Table 2 shows crushing strength (unit: N).
尚、表1には、各石炭の軟化流動性の指標として、JIS M 8801の方法でギーセラープラストメータで測定した最高流動度、軟化開始温度、最高流動度温度および固化温度を示す。最高流動度が高いものほど高い軟化流動性を示し、粘結炭Aは、従来より使用されてきた軟化流動性の高い石炭である。本実施例では、該粘結炭Aを用いた塊成化物の強度を強度の基準値としている(後述する図1〜3)。粘結炭Bは、表1に示す通り、前記粘結炭Aよりも軟化流動性が小さく、一般炭Cは、前記粘結炭Aや粘結炭Bと異なり、高温下でも軟化流動性を示さず粉状のままであり、塊成化物の製造には好ましくない石炭と位置付けられるものである。下記表2に示す「A+C」は、前記粘結炭Aと一般炭Cを60:40(質量比)で混合したものである。 Table 1 shows the maximum fluidity, the softening start temperature, the maximum fluidity temperature, and the solidification temperature measured with a Gieseler plastometer by the method of JIS M8801 as an index of the softening fluidity of each coal. The higher the maximum fluidity, the higher the softening fluidity, and the caking coal A is a coal having a high softening fluidity that has been used conventionally. In the present Example, the intensity | strength of the agglomerate using this caking coal A is made into the reference value of intensity | strength (FIGS. 1-3 mentioned later). As shown in Table 1, the caking coal B has a softening fluidity smaller than that of the caking coal A, and the general coal C has softening fluidity even at high temperatures, unlike the caking coal A and caking coal B. It is not shown and remains in a powder form and is regarded as a coal that is not preferable for the production of agglomerates. “A + C” shown in Table 2 below is a mixture of the caking coal A and steaming coal C at 60:40 (mass ratio).
図1は、石炭の種類および押出成形時の雰囲気圧力と塊成化物の強度との関係を示したグラフであり、前記表2のデータを整理したものである。各塊成化物の強度は、粘結炭Aと鉄鉱石を20:80(質量比)の割合で混合して得られた塊成化物の強度(図1に示す○)を基準とした相対値で示している(以下、図2および図3についても同じ)。 FIG. 1 is a graph showing the relationship between the type of coal, the atmospheric pressure at the time of extrusion molding, and the strength of the agglomerated material. The data in Table 2 is organized. The strength of each agglomerated material is a relative value based on the strength of the agglomerated material obtained by mixing caking coal A and iron ore at a ratio of 20:80 (mass ratio) (◯ shown in FIG. 1). (Hereinafter, the same applies to FIGS. 2 and 3).
この図1から、押出成形時の成形圧(機械的圧力)が一定の場合には、押出成形時の雰囲気圧力を下げれば、いずれの種類の石炭を使用した場合にも、常圧で成形するよりも高強度のものが得られることがわかる。 From FIG. 1, when the molding pressure (mechanical pressure) at the time of extrusion molding is constant, if the atmospheric pressure at the time of extrusion molding is lowered, the molding is carried out at normal pressure when any kind of coal is used. It can be seen that a higher strength can be obtained.
特に押出成形時の雰囲気圧力を、0.2atm以下、更には0.08atm以下にまで脱気すれば、軟化流動性の低い粘結炭Bや、上記粘結炭Aと軟化流動性を有さない一般炭Cを混合したものを使用した場合でも、軟化流動性の良い粘結炭Aを用いて常圧で成形した場合とほぼ同等強度レベルの塊成化物が得られることがわかる。 In particular, if the atmospheric pressure at the time of extrusion molding is degassed to 0.2 atm or less, and further to 0.08 atm or less, caking coal B having a low softening fluidity and the caking coal A and softening fluidity are provided. It can be seen that an agglomerate having a strength level almost equal to that obtained when molded at normal pressure using caking coal A with good softening fluidity can be obtained even when a mixture of non-general coal C is used.
しかし図1から明らかなように、いずれの種類の石炭を用いた場合にも、約0.03atmを下回る雰囲気圧力とした場合には、塊成化物の強度が低下する傾向がみられ、特に、粘結炭Bを使用した場合と(A+C)を使用した場合に塊成化物の強度低下が著しいことを確認した。 However, as is apparent from FIG. 1, when any type of coal is used, when the atmospheric pressure is less than about 0.03 atm, the strength of the agglomerates tends to decrease. It was confirmed that the strength reduction of the agglomerated material was remarkable when caking coal B was used and when (A + C) was used.
<実施例2>
炭材として粘結炭Bを使用し、該粘結炭Bの添加率(粘結炭Bと鉄鉱石の合計に対する粘結炭Bの質量%)と押出成形時の雰囲気圧力を変化させて、前記実施例1と同様に塊成化物を製造し、得られた塊成化物の強度を測定した。また、比較のため、炭材として粘結炭Aを使用した場合についても、同様の実験を行った。その結果を表3に示す。尚、表3における「加圧成形」は後述する実施例3の図3に示す様に、400℃で混合した後に450℃に加熱しながら成形したものである。また表3中の数値は圧潰強度(単位:N)を示す。
<Example 2>
Using caking coal B as a carbon material, changing the addition rate of caking coal B (mass% of caking coal B with respect to the sum of caking coal B and iron ore) and the atmospheric pressure during extrusion molding, An agglomerated material was produced in the same manner as in Example 1, and the strength of the obtained agglomerated material was measured. For comparison, the same experiment was performed when caking coal A was used as the charcoal material. The results are shown in Table 3. “Pressurization” in Table 3 is formed by mixing at 400 ° C. and then heating to 450 ° C. as shown in FIG. 3 of Example 3 described later. Numerical values in Table 3 indicate crushing strength (unit: N).
図2は、炭材の添加率および押出成形時の雰囲気圧力と塊成化物の強度との関係を示すグラフであり、表3に示すデータを整理したものである。この図2から、脱気しながら成形することによって、粘結炭Aを用いて常圧で成形した場合とほぼ同レベルの強度のものが得られることがわかる。また、同一種類の炭材(粘結炭B)を使用する場合、脱気しながら成形することで、常圧で成形する場合と同レベルの強度のものを、少ない炭材で製造することができ、強度確保のために炭材を増加させる必要がない。 FIG. 2 is a graph showing the relationship between the carbon material addition rate, the atmospheric pressure during extrusion molding, and the strength of the agglomerated material, and the data shown in Table 3 is organized. From FIG. 2, it can be seen that by molding while degassing, a product having almost the same level of strength as that obtained by molding with caking coal A at normal pressure can be obtained. Moreover, when using the same kind of carbonaceous material (caking coal B), by molding while degassing, the same level of strength as when molding at normal pressure can be produced with less carbonaceous material. And there is no need to increase the amount of charcoal to ensure strength.
<実施例3>
最高流動度温度が450℃である粘結炭Bを用いて、該粘結炭Bの配合率を変化させると共に、下記(A)または(B)の通り製造条件を変えて塊成化物を製造し、得られた塊成化物の強度を測定した。その結果を、石炭の添加率および製造条件と塊成化物の強度との関係として図3に示す。
(A)前記実施例1と同条件で製造する。
(但し、チャンバー内圧は0.06atm)
(B)粘結炭Bを添加率に関係なく約200℃まで加熱し、一方、粘結炭との混合後に混合器の計器温度が400℃となるように、鉄鉱石を750℃まで加熱し、これらを400℃で混合した後、雰囲気圧力:0.06atmとなるように脱気しながら450℃(計器温度)で押出成形する。
<Example 3>
Using caking coal B having a maximum fluidity temperature of 450 ° C., the blending ratio of caking coal B is changed, and the agglomerates are produced by changing the production conditions as shown in (A) or (B) below. Then, the strength of the obtained agglomerated material was measured. The results are shown in FIG. 3 as the relationship between the coal addition rate and production conditions, and the strength of the agglomerated material.
(A) Manufacture under the same conditions as in Example 1.
(However, chamber internal pressure is 0.06 atm)
(B) The caking coal B is heated to about 200 ° C. regardless of the addition rate, while the iron ore is heated to 750 ° C. so that the mixing instrument temperature becomes 400 ° C. after mixing with the caking coal. After mixing these at 400 ° C., extrusion molding is performed at 450 ° C. (instrument temperature) while deaeration so that the atmospheric pressure is 0.06 atm.
この図3より、石炭の配合率が同じ場合には、最高流動度温度よりも低温で鉄鉱石と石炭の混合を行えば、最高流動度温度以上で混合・成形する場合よりも高強度の塊成化物が得られ、この傾向は、粘結炭Bの配合率が小さくなるほど明らかになることがわかる。また同レベルの強度の塊成化物を得る場合、石炭の混合を成形温度より低温で行えば、石炭の配合率を抑えることが可能である。 As shown in FIG. 3, when the mixing ratio of coal is the same, if iron ore and coal are mixed at a temperature lower than the maximum fluidity temperature, a lump with a higher strength than when mixing and forming at or above the maximum fluidity temperature. An obtained compound is obtained, and it is understood that this tendency becomes clear as the blending ratio of caking coal B decreases. Moreover, when obtaining the agglomerate of the same level, if the coal is mixed at a temperature lower than the molding temperature, the blending ratio of coal can be suppressed.
Claims (5)
酸化鉄原料:炭材=85〜75:15〜25 …(1) A composition for agglomeration comprising one or more iron oxide raw materials and carbon materials selected from the group consisting of iron ore, blast furnace dust, converter dust and mill scale , wherein the ratio of the iron oxide raw materials and carbon materials ( A method for producing an agglomerated carbonaceous material-incorporated agglomerate for iron making, comprising mixing an agglomeration composition having a mass ratio adjusted to the range of the following formula (1) and then extruding while degassing under heating: .
Iron oxide raw material: Carbonaceous material = 85-75: 15-25 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004133816A JP4356932B2 (en) | 2004-04-28 | 2004-04-28 | Method for producing carbon steel interior agglomerates for iron making |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004133816A JP4356932B2 (en) | 2004-04-28 | 2004-04-28 | Method for producing carbon steel interior agglomerates for iron making |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005314745A JP2005314745A (en) | 2005-11-10 |
JP4356932B2 true JP4356932B2 (en) | 2009-11-04 |
Family
ID=35442473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004133816A Expired - Fee Related JP4356932B2 (en) | 2004-04-28 | 2004-04-28 | Method for producing carbon steel interior agglomerates for iron making |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4356932B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11479832B2 (en) | 2016-04-22 | 2022-10-25 | Sumitomo Metal Mining Co., Ltd. | Method for smelting oxide ore |
EP3778936B1 (en) | 2016-04-27 | 2024-01-10 | Sumitomo Metal Mining Co., Ltd. | Nickel oxide ore smelting method for smelting ferronickel |
-
2004
- 2004-04-28 JP JP2004133816A patent/JP4356932B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005314745A (en) | 2005-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI487798B (en) | Process for producing agglomerates | |
JP5571345B2 (en) | Method for producing briquettes, method for producing reduced metals, and method for separating zinc or lead | |
JP2004269978A (en) | Production method of reduced metal and carbon material-containing agglomerate | |
EP1426451B1 (en) | Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same | |
WO2010005023A1 (en) | Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method | |
JP4627236B2 (en) | Manufacturing method of carbonized material agglomerates | |
KR102630996B1 (en) | Iron ore fine aggregate manufacturing process and agglomeration products | |
JP3502064B2 (en) | Method for producing agglomerates of ironmaking raw materials | |
JP4113820B2 (en) | Method for producing reduced metal raw material agglomerate and method for producing reduced metal | |
JP5803540B2 (en) | Method for producing unfired carbon-containing agglomerated mineral | |
JP2004211179A (en) | Method of reducing chromium-containing raw material | |
JP3502011B2 (en) | Manufacturing method of carbonized interior agglomerates | |
JP4356932B2 (en) | Method for producing carbon steel interior agglomerates for iron making | |
JP4502708B2 (en) | Method for producing carbon steel interior agglomerates for iron making | |
JP3502008B2 (en) | Manufacturing method of carbonized interior agglomerates | |
JP4600102B2 (en) | Method for producing reduced iron | |
JP2006328236A (en) | Manufacturing process of coke and manufacturing process of molded coal used for it | |
JP4490735B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP2007056306A (en) | Method for producing sintered ore, and pseudo particle for producing sintered ore | |
JP4996103B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP2005097665A (en) | Reduced metal raw material agglomerate and its producing method, and method for producing reduced metal | |
JP7188033B2 (en) | Method for producing coal-bearing agglomerate ore | |
RU2781327C1 (en) | Method for creating iron ore fines agglomerate and agglomerated product | |
JPH0364571B2 (en) | ||
TW202432849A (en) | Process for production of iron ore agglomerate for use in direct reduction reactors and the agglomerated product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090731 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130814 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |