JP5803540B2 - Method for producing unfired carbon-containing agglomerated mineral - Google Patents

Method for producing unfired carbon-containing agglomerated mineral Download PDF

Info

Publication number
JP5803540B2
JP5803540B2 JP2011223969A JP2011223969A JP5803540B2 JP 5803540 B2 JP5803540 B2 JP 5803540B2 JP 2011223969 A JP2011223969 A JP 2011223969A JP 2011223969 A JP2011223969 A JP 2011223969A JP 5803540 B2 JP5803540 B2 JP 5803540B2
Authority
JP
Japan
Prior art keywords
carbon
mass
particle size
pregelatinized starch
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011223969A
Other languages
Japanese (ja)
Other versions
JP2013082972A (en
Inventor
浩一 横山
浩一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011223969A priority Critical patent/JP5803540B2/en
Publication of JP2013082972A publication Critical patent/JP2013082972A/en
Application granted granted Critical
Publication of JP5803540B2 publication Critical patent/JP5803540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、非焼成含炭塊成鉱の製造方法に関する。   The present invention relates to a method for producing a non-fired carbon-containing agglomerated mineral.

従来、製鉄所は、各種の鉄酸化物を配合し、セメント系の時効性バインダーを添加して混錬、成型して非焼成のペレットやブリケットを製造し、高炉原料として使用してきた。   Conventionally, steel mills have been blended with various iron oxides, added with cement-based aging binders, kneaded and molded to produce unfired pellets and briquettes, which have been used as blast furnace raw materials.

これらの高炉用非焼成含炭塊成鉱は、高炉までの輸送及び高炉装入時の粉化に耐えるための一定の冷間圧潰強度が必要である。そのため、鉄酸化物を造粒機により造粒する際には、ダストの粒度分布を適正範囲に調整し、石灰石、セメントなどのバインダーに水分を添加し、造粒した後、養生し硬化させることにより強度を確保してきた。   These unfired carbon-containing agglomerated ores for blast furnaces must have a certain cold crushing strength to withstand transportation to the blast furnace and pulverization during blast furnace charging. Therefore, when granulating iron oxide with a granulator, adjust the particle size distribution of dust to an appropriate range, add moisture to binders such as limestone and cement, granulate, and then cure and harden The strength has been secured.

また、これらの高炉用非焼成含炭塊成鉱は、内装するカーボンにより高炉内の還元反応を起こす結果、還元率が向上することから、高炉操業時の還元材比の低減のために、内装カーボンの増量が図られてきた。   In addition, these unfired carbon-containing agglomerated ores for blast furnaces cause a reduction reaction in the blast furnace due to the carbon contained in the blast furnace, resulting in an improvement in the reduction rate. The amount of carbon has been increased.

以上のことより、高炉用非焼成含炭塊成鉱は、内装カーボン量が多く、かつ、冷間圧潰強度が高いものが望まれる。   From the above, it is desired that the unfired carbon-containing agglomerated ore for blast furnace has a large amount of interior carbon and high cold crushing strength.

高炉用非焼成含炭ペレットの冷間圧潰強度をあげる方法として、「微粉状鉄含有原料と微粉状炭材に水硬性バインダーを添加し、かつ、全原料中の炭素含有割合(T.C)が15〜25質量%となるように前記微粉状炭材の配合割合を調整し、さらに、水分を調整しつつ混合、造粒した後、養生処理することにより、冷間圧潰強度85kg/cm2(8300kN/m2)以上の高炉用非焼成含炭ペレットを製造する方法であって、前記養生処理は、前記造粒後のペレットを一次養生用ヤードで12〜48時間大気中に放置した後、該ペレットを二次養生用シャフト炉に装入し、該シャフト炉内で、60〜90℃の温度と5時間以上の処理時間で蒸気吹込処理を行い、その後、引き続き連続して、乾燥処理を行い、かつ前記蒸気吹込処理と前記乾燥処理の総処理時間が8時間以内となるようにする」発明がある(特許文献1)。 As a method of increasing the cold crushing strength of unfired carbon-containing pellets for blast furnaces, “addition of a hydraulic binder to a finely divided iron-containing raw material and finely divided carbonaceous material, and a carbon content ratio in all raw materials (TC) Is adjusted to a blending ratio of the pulverized carbonaceous material so that it is 15 to 25% by mass, further mixed and granulated while adjusting the moisture, and then subjected to a curing treatment to obtain a cold crushing strength of 85 kg / cm 2. (8300 kN / m 2 ) A method for producing unfired carbon-containing pellets for blast furnaces, wherein the curing treatment is performed after the pellets after granulation are left in the atmosphere for 12 to 48 hours in a primary curing yard. The pellet is charged into a shaft furnace for secondary curing, and steam blowing treatment is performed in the shaft furnace at a temperature of 60 to 90 ° C. and a treatment time of 5 hours or more. And before the steam blowing process The total processing time of the drying process should be within 8 hours "is the invention (Patent document 1).

又、高炉操業における還元材比の低減を目的とし、「含酸化鉄原料とカーボン系炭材を配合しバインダーを加えて混錬、成型、養生してなるカーボン内装非焼成塊成鉱において、鉄鉱石類の被還元酸素を還元し金属鉄とするために必要な理論炭素量の80〜120%のカーボンを含有し、かつ常温での圧潰強度7850kN/m2 以上となるようにバインダーを選択して混錬、成型、養生してなることを特徴とする高炉用のカーボン内装非焼成塊成鉱。」の発明が提案されている(特許文献2)。 In addition, for the purpose of reducing the ratio of reducing material in blast furnace operation, “in-carbon non-fired agglomerated minerals that are kneaded, molded, and cured by blending iron-containing raw material and carbon-based carbonaceous material and adding a binder. The binder is selected so that it contains 80 to 120% of the theoretical carbon required to reduce the reducible oxygen of stones to metallic iron, and the crushing strength at room temperature is 7850 kN / m 2 or more. An invention of a carbon-incorporated non-fired agglomerated blast furnace for a blast furnace characterized by being kneaded, molded and cured is proposed (Patent Document 2).

又、高炉法やDR法(直接還元法)に使用される炭材内装非焼成ブリケットの還元後強度の低下を目的に、「成型、乾燥後の空隙率が15〜25%である炭材内装非焼成ブリケット」の提案がある(特許文献3)。   In addition, for the purpose of reducing the strength after reduction of unfired briquette used in the blast furnace method and DR method (direct reduction method), “carbon interior with a porosity of 15 to 25% after molding and drying” There is a proposal of “non-fired briquette” (Patent Document 3).

又、全鉄原料の粒度、微粉状炭材の配合割合を調整し、かつ、微粉状炭材のメジアン径を調整することにより、高炉用原料ペレットとして要求される50kg/cm2(4900kN/m2)以上の冷間強度を維持するとともに、高炉操業時の還元材比を大幅に低減できるだけの十分な炭素含有量を有し、還元後の圧潰強度7kg/cm2(690kN/m2)以上を有する、非焼成含炭ペレット製造方法が提案されている(特許文献4)。 In addition, by adjusting the particle size of all iron raw materials, the blending ratio of fine powdered carbon materials, and adjusting the median diameter of fine powdered carbon materials, 50 kg / cm 2 (4900 kN / m) required as raw material pellets for blast furnaces 2 ) While maintaining the above cold strength, it has a sufficient carbon content to greatly reduce the ratio of reducing material during blast furnace operation, and the crushing strength after reduction is 7 kg / cm 2 (690 kN / m 2 ) or more A non-fired carbon-containing pellet manufacturing method has been proposed (Patent Document 4).

特開2009−161791号公報JP 2009-161791 A 特開2003−342646号公報JP 2003-342646 A 特開昭62−290833号公報JP 62-290833 A 特開2008−95177号公報JP 2008-95177 A

高炉用非焼成含炭塊成鉱は、内装カーボン量が多く、かつ、冷間圧潰強度が高いものが望まれる。
特許文献1に記載の発明によれば、高炉用非焼成含炭ペレットが内装するカーボン量が多く、冷間圧潰強度の高い非焼成含炭ペレットを得ることができるが、成型後の一次養生後に、更に二次養生用シャフト炉において、蒸気吹込養生とその後の乾燥処理が必要となり、設備費及び処理費が高くなるという問題がある。
The unfired carbon-containing agglomerated ore for blast furnace is desired to have a large amount of interior carbon and high cold crushing strength.
According to the invention described in Patent Document 1, the amount of carbon contained in the non-fired carbon-containing pellets for blast furnaces is large, and a non-fired carbon-containing pellet with high cold crushing strength can be obtained. Furthermore, in the secondary curing shaft furnace, there is a problem that steam blowing curing and subsequent drying treatment are required, resulting in high equipment costs and treatment costs.

特許文献2に記載の発明によれば、炭材を内装した非焼成塊成鉱の冷間圧潰強度を維持するために、生石灰に代えて、早強ポルトランドセメントなどのセメント系のバインダーを使用するため、バインダーの添加量を増加させると吸熱反応であるセメントの脱水反応により高炉内のシャフト部での昇温速度が低下するだけでなく、低温での還元停滞域(低温熱保存帯)を発生させ、高炉用鉄原料として装入する焼結鉱の高炉内の還元粉化を助長させてしまう点が問題である。   According to the invention described in Patent Document 2, a cement binder such as early-strength Portland cement is used instead of quick lime in order to maintain the cold crushing strength of the unfired agglomerated mineral with carbonaceous materials. Therefore, increasing the amount of binder added not only reduces the rate of temperature rise at the shaft in the blast furnace due to the endothermic cement dehydration reaction, but also generates a reduction stagnation zone (low temperature thermal storage zone) at low temperatures. The problem is that it promotes the reduction pulverization of the sintered ore charged as the iron raw material for the blast furnace in the blast furnace.

特許文献3に記載の発明によれば、炭材内装非焼成ブリケットの高炉における還元時の強度低下を抑制できる効果がある程度期待できる。
しかしながら、炭材内装非焼成ブリケットの成型、乾燥後の空隙率は、原料や炭材の性状、粒度により影響され、空隙率を15〜25%の範囲にコントロールするのは難しく、原料等の制約を受けるという問題がある。
According to the invention described in Patent Document 3, it can be expected to some degree that the strength reduction during reduction in the blast furnace of the carbonaceous material-incorporated unfired briquette can be suppressed.
However, the porosity after molding and drying of the carbonaceous material-incorporated non-fired briquette is affected by the properties and particle size of the raw material and the carbonaceous material, and it is difficult to control the porosity within the range of 15 to 25%. There is a problem of receiving.

特許文献4に記載の発明によれば、全原料中の粒度を2mm以下とし、全原料中炭素含有割合(T.C)が15〜25質量%となるように微粉状炭材の配合割合を調整し、炭材のメジアン径を100〜150μmとすることにより、冷間圧潰強度、還元後圧潰強度が良好であり、高い還元材比低減効果を有する非焼成含炭塊成鉱を製造することができる。
しかしながら、この方法では、全原料中の粒度を2mm以下とし、炭材のメジアン径を100〜150μmとしなければならず、原料と炭材の両面からの制約があり、又、早強セメントを10%以上添加することとなると、この非焼成含炭塊成鉱を高炉にて使用する量を増加させた場合、高炉に投入されるスラグ量も増加する問題がある。また、早強セメントは400〜500℃で脱水反応(吸熱反応)が進行するため、セメント10%を添加した含炭塊成鉱の過剰使用は高炉内の温度を低下させ、高炉内装入物の昇温遅れ、還元遅れが生じる問題がある。
According to the invention described in Patent Document 4, the blending ratio of the finely powdered carbon material is set so that the particle size in all raw materials is 2 mm or less and the carbon content ratio (TC) in all raw materials is 15 to 25% by mass. By adjusting and setting the median diameter of the carbon material to 100 to 150 μm, producing a non-fired carbon-containing agglomerated mineral having good cold crushing strength and post-reduction crushing strength and having a high reducing material ratio reduction effect. Can do.
However, in this method, the particle size in all the raw materials must be 2 mm or less, the median diameter of the carbonaceous material must be 100 to 150 μm, there are restrictions from both the raw material and the carbonaceous material, and 10 If the amount of non-fired carbon-containing agglomerated mineral used in the blast furnace is increased, the amount of slag charged into the blast furnace also increases. In addition, since the early strong cement undergoes a dehydration reaction (endothermic reaction) at 400 to 500 ° C., excessive use of the carbon-containing agglomerated mineral with 10% added cement lowers the temperature in the blast furnace, There is a problem that a temperature rise delay and a reduction delay occur.

本発明者は、酸化鉄原料の特性に合わせたバインダーの選択と最適化により、少ない水硬性バインダーの使用で、内装カーボン量が多く、かつ、冷間圧潰強度が高い非焼成含炭塊成鉱の製造方法を検討した。   The present inventor has selected a non-fired carbon-containing agglomerated mineral with a high amount of interior carbon and high cold crushing strength by using a small hydraulic binder by selecting and optimizing the binder in accordance with the characteristics of the iron oxide raw material. The manufacturing method of was examined.

本発明の目的は、少ない水硬性バインダーの使用で、内装カーボン量が多く、かつ、冷間圧潰強度が高い非焼成含炭塊成鉱の製造方法を提供することである。   An object of the present invention is to provide a method for producing a non-fired carbon-containing agglomerated mineral with a high amount of interior carbon and high cold crushing strength by using a small hydraulic binder.

本発明者は、水硬性バインダーをα化澱粉に変更することにより、冷間圧潰強度が高い高炉用非焼成含炭塊成鉱の製造が可能であることを見出した。   The present inventor has found that by changing the hydraulic binder to pregelatinized starch, it is possible to produce a non-fired carbon-containing agglomerated ore for blast furnace with high cold crushing strength.

本発明は、この知見に基づいて上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。   The present invention has been made to solve the above-mentioned problems based on this finding, and the gist thereof is as follows.

(1)粒度の上限を250μm粒度調整されたペレットフィード及び粉鉄鉱石の少なくともいずれかと固体炭素に、粒度の上限を200μm粒度調整されたα化澱粉を含むバインダーを加え混合・混練する工程と、
前記混合・混練した物を、塊成鉱にブリケット法又は押し出し成型法により成型し、造粒する工程と、
前記成型した塊成鉱を養生・乾燥する工程と、
を実施することを特徴とする非焼成含炭塊成鉱の製造方法。
(2)水硬性バインダーを含まないように水硬性バインダーの全量を前記α化澱粉に置換する場合であって、前記α化澱粉の量が、前記ペレットフィード及び粉鉄鉱石の少なくともいずれかと固体炭素とα化澱粉の質量合計に対し、0.3質量%以上、1.0質量%以下であることを特徴とする(1)に記載の非焼成含炭塊成鉱の製造方法。
(3)前記固体炭素の量が、前記ペレットフィード及び粉鉄鉱石の少なくともいずれかと固体炭素とα化澱粉の質量合計に対し、20質量%以上、30質量%以下であることを特徴とする(1)及び(2)のいずれかに記載の非焼成含炭塊成鉱の製造方法。
(1) the upper limit of the particle size on at least one solid carbon pellet feed and fine iron ore which is the particle size adjusted to 250 [mu] m, and mixed and kneaded adding a binder containing α-starch which is particle size control limit to 200μm particle size step When,
The mixed and kneaded product is molded into an agglomerated ore by a briquette method or an extrusion molding method , and granulated ;
Curing and drying the molded agglomerate,
The manufacturing method of the non-baking carbon-containing agglomerated mineral characterized by implementing.
(2) When the total amount of the hydraulic binder is replaced with the pregelatinized starch so as not to include the hydraulic binder, the amount of the pregelatinized starch is at least one of the pellet feed and fine iron ore and solid carbon The method for producing a non-fired carbon-containing agglomerated mineral according to (1), wherein the content is 0.3% by mass or more and 1.0% by mass or less with respect to the total mass of the pregelatinized starch.
(3) The amount of the solid carbon is 20% by mass or more and 30% by mass or less with respect to at least one of the pellet feed and fine iron ore, and the total mass of the solid carbon and pregelatinized starch ( The manufacturing method of the non-baking carbon-containing agglomerated mineral in any one of 1) and (2).

本発明は、冷間圧潰強度が高い非焼成含炭塊成鉱の製造方法を提供することができる。   The present invention can provide a method for producing an unfired carbon-containing agglomerated mineral having a high cold crushing strength.

コークス配合比率と還元材比低減効果を示す図。The figure which shows a coke mixture ratio and a reducing material ratio reduction effect.

以下に各種成型法にて塊成化した含炭塊成鉱の試験結果を示す。成型法は転動造粒法、圧縮成型法、押出し成型法にて塊成化しており、塊成体の容量は5cmに統一した。また転動造粒法では、直径1mのパンペレタイザーを用いて造粒試験を実施し、圧縮成型法では、ロール径500mmのブリケットマシンを用い、線圧4tにて圧縮成型した。押出し成型法では、押出し速度(原料が孔を通過する速度)を40mm/sに設定して成型試験を実施した。
塊成化した含炭塊成鉱は14日間、30℃の雰囲気で養生した後、105℃で2時間乾燥させ、圧潰強度試験を実施した。
また、事前処理として、バインダーも含め、所定量の原料を混合し、混錬機にて6分混錬し、所定量の水分を加えた後、4分間混錬したものを塊成化した。
The test results of the carbon-containing agglomerated agglomerated by various molding methods are shown below. The molding method was agglomerated by the rolling granulation method, the compression molding method, and the extrusion molding method, and the volume of the agglomerate was unified to 5 cm 3 . In the rolling granulation method, a granulation test was performed using a pan pelletizer having a diameter of 1 m. In the compression molding method, a briquette machine having a roll diameter of 500 mm was used and compression molding was performed at a linear pressure of 4 t. In the extrusion molding method, the molding test was performed with the extrusion speed (speed at which the raw material passes through the holes) set to 40 mm / s.
The agglomerated carbon-containing agglomerated minerals were cured in an atmosphere of 30 ° C. for 14 days, dried at 105 ° C. for 2 hours, and then subjected to a crushing strength test.
In addition, as a pretreatment, a predetermined amount of raw materials including a binder were mixed, kneaded for 6 minutes with a kneader, added with a predetermined amount of water, and then kneaded for 4 minutes to agglomerate.

圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で圧縮荷重をかけることにより、破壊した時の荷重値を測定した。   The crushing strength was measured in accordance with JIS M8718 “Iron Ore Pellet Crushing Strength Test Method” by applying a compressive load to one sample at a specified pressure rate to measure the load value when it was broken. .

表1に250μm以下に粒度調整した粉鉱石を配合し、−1mmの粉コークスを25質量%配合した条件で、ブリケット法にて成型した成型物の養生後強度を示す。リオドセペレットフィード、MBRペレットフィード、MUSAペレットフィード、ローブリバー粉鉱石の場合、早強ポルトランドセメント添加条件に対し、早強ポートランドセメントを全量α化澱粉に置換した。α化澱粉を0.3%以上添加した場合に強度が発現した。
α化澱粉は水を加えるとゲル状になり、粒子同士の摩擦力を低下させる。この状態で圧縮成型、あるいは押出し成型することで、粒子同士の再配列を促し、充填密度が密になる。
塊鉱石やペレットフィードのような、単一粒子で空隙が少ない鉱石系原料を用いて圧縮成型すると、ゲル化したα化澱粉が粒子の凹凸に埋没することなく効率良く粒子間に拡散し、乾燥後に強固なネットワークを形成するため、成型体の強度が向上する。
α化澱粉を1.5%添加した条件では若干の強度向上は見られるものの、大きな改善効果は見られないことから、強度面、コスト面から考察すると、α化澱粉の添加量は0.3〜1.0%とすることが望ましい。
一方、α化澱粉を0.3%未満とすると、強度は早強ポルトランドセメント5%配合時とほぼ同等となった。
又、粉焼結を配合した場合は、α化澱粉の添加による強度向上効果はほとんど認められない。これは、焼結系の鉄源は単一粒子の凹凸が多く、空隙が多く、焼結系ダストの粒子内にα化澱粉が埋没したためであると考えられる。
Table 1 shows the post-curing strength of a molded product molded by the briquette method under the condition of blending powder ore adjusted to a particle size of 250 μm or less and blending 25% by mass of −1 mm powder coke. In the case of riodose pellet feed, MBR pellet feed, MUSA pellet feed, and lobe river powder ore, the early strength Portland cement was entirely replaced with pregelatinized starch in response to the early strength Portland cement addition conditions. Strength was developed when 0.3% or more of pregelatinized starch was added.
The pregelatinized starch becomes a gel when water is added, reducing the frictional force between the particles. By performing compression molding or extrusion molding in this state, rearrangement of particles is promoted, and the packing density becomes dense.
When compression molding is performed using an ore-based raw material with a single particle and few voids, such as lump ore or pellet feed, the gelatinized pregelatinized starch is efficiently diffused between the particles without being buried in the irregularities of the particles, and dried. Since a strong network is formed later, the strength of the molded body is improved.
Although a slight improvement in strength is observed under the condition where 1.5% of pregelatinized starch is added, no significant improvement effect is observed. Therefore, considering the strength and cost, the amount of pregelatinized starch added is 0.3. It is desirable to set it to -1.0%.
On the other hand, when the pregelatinized starch was less than 0.3%, the strength was almost the same as when 5% of early strong Portland cement was blended.
Moreover, when powder sintering is mix | blended, the intensity | strength improvement effect by addition of pregelatinized starch is hardly recognized. This is presumably because the sintered iron source has many irregularities of single particles and many voids, and the pregelatinized starch was buried in the particles of the sintered dust.

Figure 0005803540
Figure 0005803540

表2に各粒度の鉱石原料に−1mmのコークス粉を25質量%配合した含炭塊成鉱にα化澱粉を1.0%添加し、ブリケット法にて成型した含炭塊成鉱の強度を示す。鉱石系原料の粒度が250μmを超える場合、塊成物の強度が大幅に低下しており、バインダーの効果が失われることがわかった。これは、圧縮成型により粒度が大きい鉱石が割れることにより強度が低下したことや、充填構造が粗となったことが強度低下の要因として挙げられる。   Table 2 shows the strength of carbon-containing agglomerated minerals obtained by adding 1.0% pregelatinized starch to carbon-containing agglomerated minerals containing 25% by mass of -1 mm coke powder in ore raw material of each particle size and molding by briquette method. Indicates. When the particle size of the ore-based raw material exceeds 250 μm, it has been found that the strength of the agglomerate is greatly reduced and the effect of the binder is lost. This can be attributed to the fact that the strength decreased due to the cracking of the ore having a large particle size by compression molding, and that the filling structure became rough as the cause of the strength decrease.

Figure 0005803540
Figure 0005803540

表3に200μm以上のα化澱粉を添加した条件での成型試験結果を示す。
α化澱粉の粒度が大きすぎると、混錬時に鉱石粉と良く混合されず、強度発現効果が低位であったことから、α化澱粉の粒度は200μm以下とするのがよい。
200μm以上のα化澱粉の場合、混錬時に原料と良く混合せず、添加効率が低下したと考えられる。
Table 3 shows the results of the molding test under the condition where 200 μm or more pregelatinized starch was added.
If the particle size of the pregelatinized starch is too large, it is not well mixed with the ore powder at the time of kneading, and the strength development effect is low, so the particle size of the pregelatinized starch is preferably 200 μm or less.
In the case of pregelatinized starch having a particle size of 200 μm or more, it is considered that the addition efficiency was lowered because the starch was not well mixed with the raw material during kneading.

Figure 0005803540
Figure 0005803540

図1にコークス配合比率を変化させた場合の高炉使用試験結果を示す。当試験にて使用した含炭塊成鉱はα化澱粉を1%添加し、リオドセペレットフィードを使用している。還元材比低減効果は、高炉にて含炭塊成鉱を100kg/tpig使用した場合の効果を示している。
コークス配合比率20〜30%で配合した含炭塊成鉱を高炉使用した場合、還元効率が向上し、還元材比低減効果が最大となることがわかった。一方、コークス配合比率を20%未満としたばあい、および30%よりも多く配合した場合は、還元材比低減効果が低下することから、コークス添加量は20%〜30%が望ましい。なお、全水準において、コークス粉配合比率に関わらず、α化澱粉1%添加の含炭塊成鉱強度は1000kN/m2以上を満たしていた。
FIG. 1 shows the blast furnace use test results when the coke mixing ratio is changed. The carbon-containing agglomerated mineral used in this test is 1% of pregelatinized starch and uses a riodose pellet feed. The reducing material ratio reducing effect shows the effect when using 100 kg / tpig of carbon-containing agglomerated ore in a blast furnace.
It was found that when a carbon-containing agglomerated mineral blended at a coke blending ratio of 20 to 30% was used in a blast furnace, the reduction efficiency was improved and the reducing material ratio reduction effect was maximized. On the other hand, when the coke blending ratio is less than 20% and when blending more than 30%, the reducing material ratio reducing effect is lowered, so that the coke addition amount is desirably 20% to 30%. At all levels, regardless of the coke powder blending ratio, the strength of the carbon-containing agglomerated mineral added with 1% pregelatinized starch satisfied 1000 kN / m 2 or more.

表4にα化澱粉を1%添加した条件でリオドセペレットフィードを鉱石系原料とし、コークス粉を25%添加した条件で、転動増粒法、圧縮成型法(ブリケット法)、押出し成型法にて製造した含炭塊成鉱の乾燥後強度を示す(成型条件は上述)。
表4から、圧縮を伴わない転動造粒法ではα化澱粉の効果が低いことがわかる。α化澱粉は粒子同士の圧密により拡散し、乾燥時に粒子同士の強度を向上させるため、成型時に圧縮を伴ったブリケット法、押出し成型法は強度が向上したと考えられる。
したがって、α化澱粉を使用し含炭塊成鉱の冷間強度を向上させる効果を最大限享受するにはブリケット法や押出し成型法が望ましい。ただし、転動造粒法でも強度向上効果は認められる。
Table 4 shows that riodose pellet feed is used as an ore-based raw material with 1% pregelatinized starch added and 25% coke powder is added. The strength after drying of the carbon-containing agglomerated mineral produced is shown (molding conditions are the same as described above).
From Table 4, it can be seen that the effect of pregelatinized starch is low in the rolling granulation method without compression. The pregelatinized starch diffuses due to the compaction between the particles and improves the strength between the particles at the time of drying. Therefore, it is considered that the briquette method and the extrusion molding method accompanied by compression at the time of molding improved the strength.
Therefore, the briquette method and the extrusion molding method are desirable in order to obtain the maximum effect of improving the cold strength of the carbon-containing agglomerated mineral using pregelatinized starch. However, the strength improvement effect is recognized also by the rolling granulation method.

Figure 0005803540
Figure 0005803540

少ない水硬性バインダーの使用で、内装カーボン量が多く、かつ、冷間圧潰強度が高い非焼成含炭塊成鉱の製造方法を提供することができる。   By using a small hydraulic binder, it is possible to provide a method for producing a non-fired carbon-containing agglomerated mineral with a large amount of interior carbon and high cold crushing strength.

Claims (3)

粒度の上限を250μm粒度調整されたペレットフィード及び粉鉄鉱石の少なくともいずれかと固体炭素に、粒度の上限を200μm粒度調整されたα化澱粉を含むバインダーを加え混合・混練する工程と、
前記混合・混練した物を、塊成鉱にブリケット法又は押し出し成型法により成型し、造粒する工程と、
前記成型した塊成鉱を養生・乾燥する工程と、
を実施することを特徴とする非焼成含炭塊成鉱の製造方法。
The upper limit of the particle size on at least one solid carbon of particle size control pellet feed and fine iron ore in 250 [mu] m, and mixing and kneading adding a binder containing α-starch which is particle size control limit to 200μm particle size,
The mixed and kneaded product is molded into an agglomerated ore by a briquette method or an extrusion molding method , and granulated ;
Curing and drying the molded agglomerate,
The manufacturing method of the non-baking carbon-containing agglomerated mineral characterized by implementing.
水硬性バインダーを含まないように水硬性バインダーの全量を前記α化澱粉に置換する場合であって、前記α化澱粉の量が、前記ペレットフィード及び粉鉄鉱石の少なくともいずれかと固体炭素とα化澱粉の質量合計に対し、0.3質量%以上、1.0質量%以下であることを特徴とする請求項1に記載の非焼成含炭塊成鉱の製造方法。 When the total amount of hydraulic binder is replaced with the pregelatinized starch so as not to include a hydraulic binder, the amount of pregelatinized starch is at least one of the pellet feed and fine iron ore, solid carbon, and pregelatinized. It is 0.3 mass% or more and 1.0 mass% or less with respect to the mass total of starch, The manufacturing method of the non-baking carbon-containing agglomerated mineral of Claim 1 characterized by the above-mentioned. 前記固体炭素の量が、前記ペレットフィード及び粉鉄鉱石の少なくともいずれかと固体炭素とα化澱粉の質量合計に対し、20質量%以上、30質量%以下であることを特徴とする請求項1及び請求項2のいずれかに記載の非焼成含炭塊成鉱の製造方法。   The amount of the solid carbon is 20% by mass or more and 30% by mass or less with respect to at least one of the pellet feed and fine iron ore, and the total mass of the solid carbon and pregelatinized starch. The manufacturing method of the non-baking carbon-containing agglomerated mineral in any one of Claims 2.
JP2011223969A 2011-10-11 2011-10-11 Method for producing unfired carbon-containing agglomerated mineral Expired - Fee Related JP5803540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223969A JP5803540B2 (en) 2011-10-11 2011-10-11 Method for producing unfired carbon-containing agglomerated mineral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223969A JP5803540B2 (en) 2011-10-11 2011-10-11 Method for producing unfired carbon-containing agglomerated mineral

Publications (2)

Publication Number Publication Date
JP2013082972A JP2013082972A (en) 2013-05-09
JP5803540B2 true JP5803540B2 (en) 2015-11-04

Family

ID=48528438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223969A Expired - Fee Related JP5803540B2 (en) 2011-10-11 2011-10-11 Method for producing unfired carbon-containing agglomerated mineral

Country Status (1)

Country Link
JP (1) JP5803540B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137379A (en) * 2014-01-21 2015-07-30 日新製鋼株式会社 Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
JP6228101B2 (en) * 2014-12-02 2017-11-08 日新製鋼株式会社 Manufacturing method of carbon material interior ore
JP7366832B2 (en) 2019-04-23 2023-10-23 株式会社神戸製鋼所 Method for manufacturing iron ore pellets
BR112021018309A2 (en) * 2019-04-23 2021-11-23 Kk Kobe Seiko Sho Kobe Steel Ltd Method for producing iron ore pellets
CN115279928B (en) * 2020-05-18 2024-01-19 日本制铁株式会社 Method for producing agglomerate and agglomerate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US500783A (en) * 1893-07-04 John osbobn tonkin
US5306327A (en) * 1990-09-26 1994-04-26 Oriox Technologies, Inc. Modified native starch base binder for pelletizing mineral material
JP3040978B2 (en) * 1997-10-30 2000-05-15 株式会社神戸製鋼所 Method for producing reduced iron pellets and reduced iron pellets
JP2001214222A (en) * 2000-01-31 2001-08-07 Oji Cornstarch Co Ltd Steel-making dust agglomerate and its manufacturing method
JP2010100888A (en) * 2008-10-23 2010-05-06 Jfe Steel Corp Method for producing granulation sintering raw material

Also Published As

Publication number Publication date
JP2013082972A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5000402B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
CN105331808A (en) Method for iron ore powder agglomeration
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
KR101444562B1 (en) Unfired carbon-containing agglomerate and production method therefor
JP2015137379A (en) Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6680167B2 (en) Method for producing coal-free uncalcined agglomerated ore for blast furnace
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2002241853A (en) Non-burning agglomerate for blast furnace
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP7188033B2 (en) Method for producing coal-bearing agglomerate ore
JP2019173059A (en) Manufacturing method of nonfired agglomerated ore for blast furnace, and manufacturing method of pozzolanic reactive iron-containing raw material
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
WO2021029008A1 (en) Carbon composite ore and method for manufacturing same
JPS60184642A (en) Manufacture of unfired lump ore
JP2019104947A (en) Ore containing carbon and production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees