JPS60184642A - Manufacture of unfired lump ore - Google Patents

Manufacture of unfired lump ore

Info

Publication number
JPS60184642A
JPS60184642A JP4039884A JP4039884A JPS60184642A JP S60184642 A JPS60184642 A JP S60184642A JP 4039884 A JP4039884 A JP 4039884A JP 4039884 A JP4039884 A JP 4039884A JP S60184642 A JPS60184642 A JP S60184642A
Authority
JP
Japan
Prior art keywords
cement
iron ore
flakes
water
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4039884A
Other languages
Japanese (ja)
Other versions
JPH0365412B2 (en
Inventor
Yoshihiro Kiwaki
木脇 祐弘
Takeshi Kuroda
武 黒田
Masaru Shirasaka
優 白坂
Kenji Shimaji
嶋地 賢治
Shohei Suzuki
章平 鈴木
Junsuke Haruna
春名 淳介
Masami Fujimoto
藤本 政美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Onoda Cement Co Ltd filed Critical Nippon Steel Corp
Priority to JP4039884A priority Critical patent/JPS60184642A/en
Publication of JPS60184642A publication Critical patent/JPS60184642A/en
Publication of JPH0365412B2 publication Critical patent/JPH0365412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture easily unfired lump ore having superior strength and water resistance without carrying out sintering by mixing fine iron ore with cement and water, compression-molding the mixture into flakes, and curing the flakes. CONSTITUTION:Fine iron ore is mixed with cement and water, and the mixture is compression-molded into flakes of about 6-15mm. thickness with a pair of press molding rolls. The flakes are crushed optionally to about 10-50mm. grain size, aged for <= about 24hr, and charged into a blast furnace. Any of hematite, magnetite and limonite type fine iron ores may be used as said fine iron ore, and the preferred grain size is <= about 5mm.. Portland cement, mixed cement or the like is added as said cement by 2-8wt%, and water is added by 4-8wt%.

Description

【発明の詳細な説明】 く技術分野〉 本発明は鉄鉱石粉末又は酸化鉄粉末を高炉で製銑する際
高炉装入時の粉末の飛散を防止し且つ炉内の通気性を保
持して精錬反応を円滑に進行せしめるだめの原料鉄鉱石
粉末の予備処理に関する。
[Detailed Description of the Invention] Technical Field> The present invention prevents scattering of powder when charging iron ore powder or iron oxide powder in a blast furnace, and maintains air permeability in the furnace for smelting. This invention relates to preliminary treatment of raw material iron ore powder to allow the reaction to proceed smoothly.

〈従来技術〉 近年は出銑比の増大あるいはコークス比の低減等の要請
から高炉に装入する鉄鉱石の粒度が更に小さくなる傾向
にある事、富鉱の涸渇化による低品位鉱の利用の必要性
から粉鉱石の取り扱い量が増大している事、また製銑工
場での粉塵公害防止のためダストの回収が強化されてい
る事、等のために鉄鉱石粉末の使用針は益々増加する傾
向にある。これらの鉄鉱石粉末をそのまま高炉に装入す
る七、通気性の不良や不均一、ガス灰発生量の増加、お
よび荷下シの不良等を生じ、コークス比の増大あるいは
出銑比の低下等高炉の操業に著るしい悪影響を及はすた
め鉄鉱石粉末社適当な方法で塊成化して用いる必要があ
る。
<Prior art> In recent years, the particle size of iron ore charged into blast furnaces has been becoming smaller due to demands such as increasing the pig iron production ratio or reducing the coke ratio. The amount of iron ore powder handled is increasing due to necessity, and dust collection is being strengthened to prevent dust pollution at pig iron factories, etc., so the use of iron ore powder is increasing. There is a tendency. Charging these iron ore powders into the blast furnace as they are causes poor or uneven ventilation, an increase in the amount of gas ash generated, and poor unloading, resulting in an increase in the coke ratio or a decrease in the tapping ratio. Iron ore powder must be agglomerated using an appropriate method because it has a significant negative effect on blast furnace operations.

鉄鉱石粉末又は酸化鉄粉末などの原料を塊成化する方法
として現在工業的に実施されているものには次の方法が
ある。
The following methods are currently used industrially to agglomerate raw materials such as iron ore powder or iron oxide powder.

口I 焼結法 約5−以下の鉄鉱石粉末に適当な粒度のコークスと必要
に応じて石灰石粉末とを混合し、格子上で1200〜1
400 ”Cの温度下にて焼成し、鉄鉱石の一部を浴融
芒せて焼結させ、冷却後破砕して適当な粒とする方法。
Mouth I Sintering method Iron ore powder of about 5-100 ml or less is mixed with coke of a suitable particle size and limestone powder if necessary, and 1200-1000 g
A method in which iron ore is calcined at a temperature of 400"C, a part of the iron ore is melted in a bath, sintered, and after cooling crushed to form suitable particles.

(2) ベレツタイノングー焼成法 律粉砕した:沃鉱石粉末に適当長の水分および必要に応
じてベントナイト、石灰等を加え回転ドラム、回転2皿
等を用いて造粒しその後ロータリーキルンで焼成し焼結
させて充分な強度を得る方法。
(2) Pulverized by Beretsutai Nong Gu Calcining Method: An appropriate amount of moisture and bentonite, lime, etc. are added to the ore powder as needed, and it is granulated using a rotating drum, two rotating plates, etc., and then calcined in a rotary kiln. A method to obtain sufficient strength by tying the knots together.

(3) ペレタイジングー冷間硬化法 俗にコールドボンド法とLわれるもので微粉砕した鉄鉱
石粉末とポルトランドセメントあるいにポルトランドセ
メントクリンカー粉末の混合物に適当釦の水分を加えて
、回転ドラムあるいは回転皿などを用いて造粒しその後
養生して充分な強度をイむる方法。
(3) Pelletizing - Cold hardening method A mixture of finely ground iron ore powder and Portland cement or Portland cement clinker powder is mixed with a mixture of iron ore powder and Portland cement or Portland cement clinker powder using a method commonly known as the cold bonding method, and the mixture is prepared using a rotating drum or rotating plate. A method in which the material is granulated using, for example, granules, and then cured to obtain sufficient strength.

以上の3法に大別されるが、+11および(h)の方法
は何れも鉄鉱石粉末の粒状物あるいはペレットに強度を
付力させるため、何等かの方法でこれらの粒状物あるい
をユペレットを焼成している。
Although it is roughly divided into the above three methods, methods +11 and (h) both use some method to add strength to the iron ore powder granules or pellets. is being fired.

この焼成には大規模な設備を必要とするばかシでなく、
焼成炉よフ発生するSOx、NOxあるいは粉塵等が公
害源になるという間融がある。このため非焼成の塊成化
方法として上記(3)の方法が開発されているが、上記
(3)の方法には次のような欠点があシ未だ充分ではな
い。
This firing does not require large-scale equipment;
There is a phenomenon in which SOx, NOx, dust, etc. generated from the firing furnace become a source of pollution. For this reason, method (3) above has been developed as a non-fired agglomeration method, but method (3) has the following drawbacks and is still not sufficient.

イ)強度発現までに長期間(通常7〜10日)を要する
ために大規模な養生設備を必要とする。
b) Since it takes a long time (usually 7 to 10 days) to develop strength, large-scale curing equipment is required.

口)dレットは球状であるため安息角が小さく、高炉に
投入した時炉の中央部に偏在するため高炉操業が著るし
く不安定になる。これを避けるために使用量が非常に少
量に限定される(通常10〜20重量%)。
Since d-lets are spherical, their angle of repose is small, and when they are introduced into a blast furnace, they are unevenly distributed in the center of the furnace, making blast furnace operation extremely unstable. To avoid this, the amount used is limited to a very small amount (usually 10 to 20% by weight).

ハ)充分な強度を達成させるにはセメントを多量(通常
7%以上)に添加する必要があるため、高炉の操業中に
スラグ比が高くなるため、出銑比、コークス比および炉
前作業性等が悪くなる。
c) In order to achieve sufficient strength, it is necessary to add a large amount of cement (usually 7% or more), which increases the slag ratio during blast furnace operation, which reduces the tap iron ratio, coke ratio, and pre-furnace workability. etc. become worse.

二〕 ベレットは球状且つトポ化学的に還元反応が進行
するため内部に未還元FeOが残留し易い。
2) Since the pellet is spherical and the reduction reaction proceeds topochemically, unreduced FeO tends to remain inside the pellet.

ポ)8!!造過程で原料の鉄鉱石を微粉砕する必要があ
るため、粉砕動力費が旨い。
Po) 8! ! Since the raw material iron ore needs to be finely pulverized during the production process, the power cost for pulverization is low.

〈発明の目的〉 本発明は予じめ焼結する事なしに成形後短詩j111で
強度を発現すると共に制水性を有しそして高炉中での被
還元性に侵れ、且つ鉄鉱石粉末が溶融温度に達するまで
自形を保持するに充分な強度を有する非焼成塊成鉱を簡
単な設備で製造する方法を提供することを目的とする。
<Purpose of the invention> The present invention develops strength after forming without sintering in advance, has water-repellent properties, is resistant to reducibility in a blast furnace, and is capable of melting iron ore powder. It is an object of the present invention to provide a method for producing uncalcined agglomerated ore having sufficient strength to maintain its shape until it reaches a temperature using simple equipment.

〈発明の構成〉 上記目的を達成するため、本発明の構成は、鉄鉱石粉末
、セメントおよび水の混合物を加圧成形ロールによりフ
レーク状に圧縮成形した後、養生することを%徴とする
<Configuration of the Invention> In order to achieve the above object, the configuration of the present invention includes compression molding a mixture of iron ore powder, cement, and water into flakes using a pressure molding roll, and then curing the mixture.

本発明で使用する鉄鉱石粉末はへマタイト系、マグネタ
イト系およびリモナイト系いずれでも良く、又使用する
セメントrs yt?ルトランドセメント、混合セメン
ト、アルミナセメントあるいはポルトランドセメントク
リンカ−粉末いずれでも使用出来る。
The iron ore powder used in the present invention may be hematite-based, magnetite-based, or limonite-based. Rutland cement, mixed cement, alumina cement or Portland cement clinker powder can be used.

鉄鉱石粉末の粒度は、使用するロール成形機のロール間
隙よシ小さいl’Lうが良く、通常51III+以下が
好ま・しい。
The particle size of the iron ore powder should be smaller than the roll gap of the roll forming machine used, and is usually preferably 51III+ or less.

次にバインダーとして鉄鉱石粉末に添加きれるセメント
の添加量は少量な程好ましいが、2重量−以下では冷間
南下強度が小さくなるため好まし、くなく、又8重量−
以上ではこれ以上添加しても強度はそれ程向上せず従っ
て添加量としては2重量饅以上8重量%未満が好ましい
Next, it is preferable that the amount of cement that can be added to the iron ore powder as a binder is as small as possible, but if it is less than 2 weight, the cold southward strength will decrease, so it is not preferable.
In this case, even if more than this amount is added, the strength will not be improved so much, so the amount added is preferably 2% by weight or more and less than 8% by weight.

鉄鉱石粉末、セメントおよび水の混合は、鉄鉱石の粉砕
時に混合しても良く、又通常のコンクリートミキザー等
によシ混合しても良い。
The iron ore powder, cement, and water may be mixed when the iron ore is crushed, or may be mixed using a common concrete mixer or the like.

鉄鉱石粉末とセメントの混合物への水の添加量は、鉄鉱
石粉末の粉末度により変化するが、通猟4M量チ以上〜
8重量係未満が好ましい、4重量%以下では非焼成塊成
鉱の冷間落下強度が小さく、また8重量−以上で・は添
加した水9が成形時に成形物の系外に滲みたすため剤ま
しくない。
The amount of water added to the mixture of iron ore powder and cement varies depending on the fineness of the iron ore powder, but the amount of water added to the mixture is 4M or more.
Less than 8% by weight is preferable; if it is less than 4% by weight, the cold drop strength of the unfired agglomerated ore is small, and if it is more than 8% by weight, the added water 9 will seep out of the molded product during molding. Not a drug.

一対の加圧成形ロールによシ上記混合原料を圧縮成形す
ると、成形物はフレーク状に連続して製造される。又ロ
ールfJJ隙を変化する事によυフレークの厚さかコン
トロール出来る。フレークの厚さは6馴以上15m未満
が好ましい、6論以下では冷間落下強度が小さく、一方
15論以上では非焼成塊成鉱の被還元性状が不良となる
ので各々好ましくない。
When the mixed raw materials are compression-molded using a pair of pressure-forming rolls, a molded product is continuously produced in the form of flakes. Also, by changing the roll fJJ gap, the thickness of the υ flakes can be controlled. The thickness of the flakes is preferably 6 m or more and less than 15 m. If it is less than 6 m, the cold drop strength will be low, while if it is more than 15 m, the reducible properties of the uncalcined agglomerate will be poor, so these are not preferable.

成形物は必要に応じ解砕機により所定の粒径、通當10
〜50 mmまで解砕された後、養生される。成形物の
養生は、1日以内の養生で高炉に装入する場合には蒸気
養生が良く、又、1日以上養生する場合には常温養生で
も良い。尚、蒸気養生あるいは常温養生いずれの縁5合
も養生後100℃以上で強制乾燥処理すると良い。強制
乾燥によシ成形物の強度が増加し、又高炉へ侵入する水
分量も減少できるので好ましい。
If necessary, the molded product is crushed to a predetermined particle size using a crusher, approximately 10
After being crushed to ~50 mm, it is cured. For curing of the molded product, steam curing is preferable when charging the molded product into a blast furnace after curing for less than one day, and room temperature curing may be used when curing for more than one day. In addition, it is preferable that the edge 5, whether steam-cured or room-temperature cured, be subjected to forced drying at 100° C. or higher after curing. Forced drying is preferred because it increases the strength of the molded product and also reduces the amount of moisture entering the blast furnace.

〈発明の効果〉 岬、上説明した本発明によれは次の利点がある。<Effect of the invention> The present invention described above has the following advantages.

イ、鉄鉱石粉末を冷間で塊成化するため、SOx。B. SOx is added to cold agglomerate iron ore powder.

NOxおよび粉塵等に対する大気汚染防止文[策が必要
ない。
Air pollution prevention measures against NOx and dust etc. [No measures are required.

ロ、フレーク状として製造されるため、従来の非焼成ペ
レットよシも安息角か大きく高U=投入時の偏在現象が
防止できる。
B. Since it is manufactured in the form of flakes, the angle of repose is larger than that of conventional non-fired pellets, and the phenomenon of uneven distribution at high U=feeding can be prevented.

ハ、従来の非焼成ベレットよシも養生時りを著出来、高
炉操業時のスラグ比を抑制できる。
C. Conventional non-fired pellets can also significantly reduce curing time and suppress the slag ratio during blast furnace operation.

ホ、従来の非焼成ベレットよシも粉砕動力費を低減出来
る。
E. Conventional non-fired pellets can also reduce crushing power costs.

へ、被還元性にすぐれ、製錬効果が向上する。It has excellent reducibility and improves the smelting effect.

く実験例〉 以下に本発明の実験例を示す。Experimental example Experimental examples of the present invention are shown below.

実験例1 105℃で乾燥しその後1闘以下に粉砕したプラソルリ
オドセ産鉄鉱石(ヘマタイト系)粉末ニ早強ポルトラン
ドセメントを1重量%〜10重量%添加混合したものを
1水準各150kp#製した。その後混合物100亀蓋
部と水6重蓋ff1i ヲコンクリートミキサーで混合
し、一対の加圧成形用ロールでフレーク状に圧縮成形し
た。
Experimental Example 1 Each level was made of 150 kp # of iron ore (hematite type) powder from Prasol Rio Doce, which was dried at 105°C and then crushed to a size of less than 1 pound, mixed with 1% to 10% by weight of early strength Portland cement. did. Thereafter, 100 g of the mixture and 6 g of water were mixed in a concrete mixer, and compression molded into flakes with a pair of pressure molding rolls.

成形物を20℃相対湿度80%以上で1F=1および7
日養生した後JIS M8711に準じて落下強吸を測
定し第1図の結果を得た。
1F = 1 and 7 at 20℃ relative humidity 80% or higher
After curing for a day, strong fall suction was measured according to JIS M8711, and the results shown in Figure 1 were obtained.

ロール径:450腑 ロール巾:300m+成形圧:8
00〜1000 kg/cyd!+、 1図から明C)
かなように鉄鉱石粉末へのセメントの添加月、け2亀が
%〜8重量慢が好ましいことが解る。
Roll diameter: 450mm Roll width: 300m + Molding pressure: 8
00~1000 kg/cyd! +, Figure 1 to light C)
It can be seen that when cement is added to iron ore powder, it is preferable to add 2% to 8% by weight.

実験例2 実験例−1で使用したリオドセ産鉄鉱石粉末941銅部
、早強ポルトランドセメント6重量部および水を5重量
部をパグミルで混合した後実験例−1で使用したと同じ
ロール機を使用し、ロール間隙を変更して袖々の厚さの
7レークをM8711に準じて落下強度を、J I S
 MB 713に準じて最終還元率を測定し第2図、第
3図の結果を得た。
Experimental Example 2 After mixing 941 parts of copper of Riodoce iron ore powder used in Experimental Example-1, 6 parts by weight of early-strength Portland cement, and 5 parts by weight of water in a pug mill, the same roll machine as used in Experimental Example-1 was used. Using J I S
The final reduction rate was measured according to MB 713, and the results shown in FIGS. 2 and 3 were obtained.

第2図および第3図から成形されるフレークの厚さは6
簡以上15■以下が好ましい事が解る。即ち6鰭以下の
時は落下強度が小さく、又15IaI+以上の時はフレ
ークの被還元性が不良となるため好ましくない。
The thickness of the flakes formed from Figures 2 and 3 is 6.
It can be seen that a value of simple or more and 15 or less is preferable. That is, when it is less than 6 fins, the drop strength is low, and when it is more than 15 IaI+, the reducibility of the flakes becomes poor, which is not preferable.

実験例3 オーストラリアノ1マスレー産鉄鉱石(ヘマタイト系)
を5間以下に粉砕しその後普通ポルトランドセメントを
6wt S、水を6wt%添加しノやグミルで混合した
後、実験例−1で使用した成形ロール機で圧縮成形した
。フレークを種々の条件で養生しその後安息角、落下強
度、最終還元率及び最大圧損値を測定し表−1〜表−4
の結果を得た。
Experimental example 3 Iron ore (hematite type) from Australia's Masley
The mixture was pulverized to less than 5 minutes, and then 6 wt. After curing the flakes under various conditions, the angle of repose, falling strength, final reduction rate, and maximum pressure drop value were measured.
I got the result.

比較のだめブリケットマシン成形物および非焼成ペレッ
ト(普通ポルトランドセメントIO、w−トーーーーー
ー1.UトhJ+1=験島→+n1Jsp王鉄QS2p
ie、るい残分1.2%に粉砕し皿型造粒機て13〜1
5喘径に造粒)についても調製して試験した。
For comparison, briquette machine molded products and unfired pellets (ordinary Portland cement IO, w-to--1.Uto-hJ+1=Kijima→+n1JspOutetsu QS2p
ie, crushed to a clear residue of 1.2% using a dish-type granulator 13-1
Granulation to a diameter of 5 mm) was also prepared and tested.

表−I M形刃法と製品収率 本発明によるロール成形は製品収率が著るしく高い事が
明らかである。
Table I M-shaped blade method and product yield It is clear that the roll forming method according to the present invention has a significantly high product yield.

II&蒸気養生でベレット表面にクラックが多数発生し
ているため試験を中止した。
II & steam curing, the test was discontinued because many cracks were generated on the pellet surface.

表−2から本発明のロールによるEE@収形物は冷間落
下強度が、他′0成形物に較べ著るしく大である事が解
る。
From Table 2, it can be seen that the cold drop strength of the EE@ molded products formed by the roll of the present invention is significantly higher than that of other molded products.

一方ブリケットマシンによる成形物は促進養生あるいは
長期養生の効果が小さい。これは成形圧力が成形物に均
一に作用しないために生じる成形物の不均一性が養生に
よシ解消されないためと考えられる。
On the other hand, the effect of accelerated curing or long-term curing is small for products formed by briquette machines. This is thought to be because the non-uniformity of the molded product, which occurs because the molding pressure does not act uniformly on the molded product, is not resolved by curing.

父、皿型造粒物の非焼成ペレットは95%の落下強度を
達成するには常温7時間の養生を必要とし、これを短縮
するため80℃蒸気養生を3時r#J+行うと、表mI
にクラックが発生し製品を損う問題がある。ところが本
発明の成形物は80℃蒸気養生3時間により落下強度が
91%に達し、短時間の強度発籾、が可能である。
Father, unfired pellets made of dish-shaped granules require 7 hours of curing at room temperature to achieve 95% drop strength.To shorten this time, steam curing at 80°C for 3 hours r#J+ results in the following results: mI
There is a problem that cracks occur and damage the product. However, the molded product of the present invention reaches a drop strength of 91% after 3 hours of steam curing at 80° C., making it possible to develop rice with high strength in a short period of time.

次に被還元性についてみると、ブリケットマシン成形物
あるいは従来の皿型造粒物に比べ、本発明に係る成形物
の被還元性は、表−3から明らかなように最終還元率9
5%であ多大幅に同士していることが判る1、これは本
発明の成形物f−77レーク状をなし、その厚みか10
mと薄いだめ内部まで還元反応が進行した結果であると
考えられる。又本発明の成形物のふくれ指数も従来のも
のと同等であり、この点の不tp会もないことが判る。
Next, looking at reducibility, compared to briquette machine molded products or conventional dish-shaped granules, the reducibility of the molded products according to the present invention is as clear from Table 3, with a final reduction rate of 9.
It can be seen that at 5%, the difference is quite large.1 This indicates that the molded product of the present invention has a f-77 lake shape, and its thickness is approximately 10%.
This is thought to be the result of the reduction reaction progressing to the inside of the reservoir, which is as thin as m. Moreover, the swelling index of the molded product of the present invention is the same as that of the conventional molded product, and it can be seen that there is no problem in this respect.

表−4成形方法と安息角 注)安息角の測定法:サンプル(10〜50細粒径) 
30 k7を150mφの円筒に入れその後円筒を引き
抜いた後の安息角を測定した。
Table-4 Molding method and angle of repose Note) Measuring method of angle of repose: Sample (10-50 fine particle size)
30 k7 was placed in a 150 mφ cylinder, and the angle of repose after the cylinder was pulled out was measured.

更に本発明の成形物と比較例の成形物について安息角を
測定した。この結果を表4に示す。
Furthermore, the angle of repose was measured for the molded product of the present invention and the molded product of the comparative example. The results are shown in Table 4.

表−4から明らかなように本発明の成形物の安息角は従
来の成形物の安息角に比べ大きく、高炉に装入した際好
都合であることが判る。
As is clear from Table 4, the angle of repose of the molded product of the present invention is larger than that of conventional molded products, and it is found that it is convenient when charged into a blast furnace.

実験例4 カナダタツス産鉄鉱石(マグネタイト系)を1m以下に
粉砕し、普通sfポルトランドセメント 。
Experimental Example 4 Iron ore (magnetite type) from Tatsusu, Canada was crushed into pieces of 1 m or less and made into ordinary SF Portland cement.

7重量%コークス粉を5重量%添加混合した後混合物1
00重量部に対して6重匁部の水を添加しノ9グミルで
混合した後実験例−1で使用したロール成形機を使用し
成形圧1500 k4/mで成形した。フレークの厚さ
は13鮎であった。
Mixture 1 after adding 5% by weight of 7% coke powder and mixing
After adding 6 parts by weight of water to 00 parts by weight and mixing with a 9-gum mill, the mixture was molded using the roll molding machine used in Experimental Example 1 at a molding pressure of 1500 k4/m. The thickness of the flakes was 13 mm.

成形物を常温1日養生、80℃4時間蒸気養生および5
034時間蒸気養生後250℃で2時間乾燥の各々の水
準で養生し、その後JISに準じて冷間落下強度、最終
還元率、ふくれ指数を測定して表−5の結果を得た。
Curing the molded product at room temperature for 1 day, steam curing at 80°C for 4 hours, and
After steam curing for 034 hours, the samples were cured at various levels of drying at 250° C. for 2 hours, and then the cold drop strength, final reduction rate, and blistering index were measured according to JIS, and the results shown in Table 5 were obtained.

表 −5 表−5から明らかなように本実験例においても最終還元
率はいずれも91〜92%であシ、実験例−3の場合と
同様、従来のものよル大きな被還元性を示していること
が判る。
Table 5 As is clear from Table 5, the final reduction rates in this experimental example were all 91 to 92%, indicating greater reducibility than the conventional one, as in Experimental Example 3. It can be seen that

実施例5 オーストラリアローブリバー産鉄鉱石(リモナイト系)
を3w以下に粉砕しその後早強ポルトランドセメント2
5重i%、88μt!石灰石粉5重11%を添加し混合
した後、混合物100重量部に対して水7重1部iJ?
グミルで混合した後、実験例−1で使用したロール成形
機を使用し、成形圧5001f/m で成形した。フレ
ーク厚さは8.0 mであった。
Example 5 Iron ore from Robe River, Australia (limonite type)
pulverized to 3W or less, then early-strength Portland cement 2
5fold i%, 88μt! After adding and mixing 5 parts by weight of limestone powder and 11% by weight, add 7 parts by weight to 1 part iJ of water to 100 parts by weight of the mixture.
After mixing with a gum mill, the mixture was molded using the roll molding machine used in Experimental Example 1 at a molding pressure of 5001 f/m 2 . The flake thickness was 8.0 m.

成形物を常温1日養生、90’C2時111蒸気養生、
90℃2時間蒸気養生後200 ’Cで2時間乾燥の各
々の水準で養生した後JISに準じて冷間落下強度、最
終還元率、およびふくれ指数を測定し表−6の結果を得
た。
Curing the molded product at room temperature for 1 day, steam curing at 90'C 2:11,
After steam curing at 90° C. for 2 hours and drying at 200° C. for 2 hours, the cold drop strength, final reduction rate, and blistering index were measured according to JIS, and the results shown in Table 6 were obtained.

表−6 表−6から明らかなように本実験例においても最終還元
率はいずれも95%〜96%であシ、実験例−3の場合
と同様、従来よシ大きな被還元性を示していることが判
る。又、蒸気養生によシ短ルJ強度の発現も可能である
ことが判る。
Table 6 As is clear from Table 6, the final reduction rates in this experimental example were all 95% to 96%, and as in the case of Experimental Example 3, the reducibility was greater than that of the conventional method. I know that there is. It is also found that it is possible to develop short-circuit J strength by steam curing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の成形物に係シ、第1図は
セメント添加Msと落下強度との関係を示すグラフ、第
2図はフレーク厚さと落下強度との関係を示すグラフ、
第3図はフレーク厚さと最終還元率との関係を示すグラ
フである。 特許出願人 小野田セメント株式会社 新日本製鉄株式会社 代 理 人 弁理士 元 石 士 部(他1名) 第1図 第2図 フレーク厚さくmm) 第1頁の続き 0発 明 者 嶋 地 賢 治 小野田土大字小野田@
発 明 者 鈴 木 章 平 東海市東海町5丁目内 0発 明 者 春 名 淳 介 東海市東海町5丁目内 0発 明 者 藤 本 政 美 北九州市へ幡区枝光製
鐵所内 6276 小野田セメント株式会社中央研1−1−1 
新日本製鐵株式会社八幡
1 to 3 relate to the molded product of the present invention, FIG. 1 is a graph showing the relationship between cement addition Ms and falling strength, and FIG. 2 is a graph showing the relationship between flake thickness and falling strength,
FIG. 3 is a graph showing the relationship between flake thickness and final reduction rate. Patent Applicant: Onoda Cement Co., Ltd. Nippon Steel Corporation Representative: Patent Attorney: Shibu Moto Ishi (and 1 other person) Fig. 1 Fig. 2: Flake thickness (mm) Continued from page 1 0 Inventor: Kenji Shima Onoda Tsuchi Oaza Onoda @
Inventor Akira Suzuki 5-chome, Tokai-cho, Tokai City 0 Inventor Junsuke Haruna 5-chome, Tokai-cho, Tokai City 0 Inventor Masami Fujimoto 6276 Edamitsu Steel Works, Hata-ku, Kitakyushu City Onoda Cement Co., Ltd. Company Chuoken 1-1-1
Nippon Steel Corporation Yawata

Claims (1)

【特許請求の範囲】 (11鉄鉱石粉末、セメントおよび水の混合物を加圧成
形ロールによシフレーク状に圧縮成形した後、養生する
ことを特徴とする非焼成塊成鉱の製造方法。 (21上記混合物においてセメントの添加量が21−M
%〜8重蓋チ、水の添加量か4重量−〜8重釦チである
ことを特徴とする特許請求の範囲8r1.1項記載の非
焼成塊成鉱の製造方法。
[Claims] (11) A method for producing a non-calcined agglomerate, which comprises compressing a mixture of iron ore powder, cement, and water into flakes using a pressure forming roll, and then curing the mixture. (21) In the above mixture, the amount of cement added is 21-M
The method for producing uncalcined agglomerate ore according to claim 8r1.1, wherein the amount of water added is 4% to 8 times by weight.
JP4039884A 1984-03-05 1984-03-05 Manufacture of unfired lump ore Granted JPS60184642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4039884A JPS60184642A (en) 1984-03-05 1984-03-05 Manufacture of unfired lump ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4039884A JPS60184642A (en) 1984-03-05 1984-03-05 Manufacture of unfired lump ore

Publications (2)

Publication Number Publication Date
JPS60184642A true JPS60184642A (en) 1985-09-20
JPH0365412B2 JPH0365412B2 (en) 1991-10-11

Family

ID=12579558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4039884A Granted JPS60184642A (en) 1984-03-05 1984-03-05 Manufacture of unfired lump ore

Country Status (1)

Country Link
JP (1) JPS60184642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274678A (en) * 1995-02-17 1995-10-24 Kubota Corp Threshing apparatus
JPH07274677A (en) * 1995-01-18 1995-10-24 Kubota Corp Threshing apparatus
JP2011111662A (en) * 2009-11-30 2011-06-09 Jfe Steel Corp Method for producing molded raw material for producing reduced iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274677A (en) * 1995-01-18 1995-10-24 Kubota Corp Threshing apparatus
JPH07274678A (en) * 1995-02-17 1995-10-24 Kubota Corp Threshing apparatus
JP2011111662A (en) * 2009-11-30 2011-06-09 Jfe Steel Corp Method for producing molded raw material for producing reduced iron

Also Published As

Publication number Publication date
JPH0365412B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
KR101644785B1 (en) Process for producing agglomerates of finely particulate iron carriers
AU2002322154B2 (en) Iron ore briquetting
US6676725B2 (en) Cold bonded iron particulate pellets
SK74994A3 (en) Method of manufacture of cold pressed briquettes containing iron
US10815548B2 (en) Method for producing briquettes from pellet fines, DRI sludge, DRI fines and dust from DRI dedusting systems, for industrial use in direct-reduced iron production processes
EP1579016B1 (en) Cold briquetting and pelletisation of mineral fines using an iron-bearing hydraulic binder
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JPS60255937A (en) Manufacture of cold-bound briquette
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP2016108580A (en) Manufacturing method of carbon material interior ore
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2016160451A (en) Method for manufacturing carbonaceous material interior ore
JPS60184642A (en) Manufacture of unfired lump ore
JP2009030114A (en) Method for producing ore raw material for blast furnace
JP2009030112A (en) Method for producing ore raw material for blast furnace
JP2002241853A (en) Non-burning agglomerate for blast furnace
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
KR20180123857A (en) Mill scale briquet with reinforced strength
JPH0660359B2 (en) Method for producing unfired agglomerated ore
JP2003129140A (en) Method for manufacturing molded article designed for reducing rotary hearth
CN113366128A (en) A method of briquetting coal from pellet fines, DRI sludge, DRI fines and residual fines from DRI dust treatment system
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JP2019173059A (en) Manufacturing method of nonfired agglomerated ore for blast furnace, and manufacturing method of pozzolanic reactive iron-containing raw material
JPS60248831A (en) Manufacture of uncalcined lump ore