JP6326074B2 - Carbon material interior ore and method for producing the same - Google Patents

Carbon material interior ore and method for producing the same Download PDF

Info

Publication number
JP6326074B2
JP6326074B2 JP2016010874A JP2016010874A JP6326074B2 JP 6326074 B2 JP6326074 B2 JP 6326074B2 JP 2016010874 A JP2016010874 A JP 2016010874A JP 2016010874 A JP2016010874 A JP 2016010874A JP 6326074 B2 JP6326074 B2 JP 6326074B2
Authority
JP
Japan
Prior art keywords
carbon
iron oxide
raw material
mass
containing raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016010874A
Other languages
Japanese (ja)
Other versions
JP2017128786A (en
Inventor
諭 弘中
諭 弘中
享太 前野
享太 前野
智郎 山本
智郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2016010874A priority Critical patent/JP6326074B2/en
Publication of JP2017128786A publication Critical patent/JP2017128786A/en
Application granted granted Critical
Publication of JP6326074B2 publication Critical patent/JP6326074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉で製鉄原料として使用される炭材内装鉱およびその製造方法に関する。   The present invention relates to a carbonaceous interior ore used as an ironmaking raw material in a blast furnace and a method for producing the same.

近年、高炉操業における還元材比の低減を目的として、炭材と酸化鉄含有原料とを混合および造粒して形成された炭材内装鉱が提案されている。   In recent years, carbon material interior ores formed by mixing and granulating a carbon material and an iron oxide-containing raw material have been proposed for the purpose of reducing the reducing material ratio in blast furnace operation.

高炉用原料として使用する炭材内装鉱は、強度や低温域での還元粉化性に加えて、優れた被還元性が求められる。   Carbonaceous interior ore used as a raw material for blast furnaces is required to have excellent reducibility in addition to strength and reduced powderability in a low temperature range.

この種の圧潰強度および被還元性に優れた非焼成の炭材内装鉱を製造する方法としては、特許文献1に示すように、粒度が10μm以上50μm以下の高結晶水鉱石を含む鉄含有原料と、粒度が100μm以下の微粉コークスおよびセメント等の水硬性バインダーとを混合および成型し、炭材内装鉱の炭素含有量を18質量%以上25質量%以下とし、かつ、気孔率を20%以上30%以下とする方法が知られている。   As a method for producing an unfired carbonaceous interior ore excellent in crushing strength and reducibility of this kind, as shown in Patent Document 1, an iron-containing raw material containing a high crystal water ore having a particle size of 10 μm or more and 50 μm or less Are mixed and molded with fine coke having a particle size of 100 μm or less and a hydraulic binder such as cement, the carbon content of the carbonaceous material interior ore is 18% by mass or more and 25% by mass or less, and the porosity is 20% or more. A method of setting it to 30% or less is known.

また、冷間圧潰強度および被還元性に優れた炭材内装鉱を製造する方法としては、特許文献2に示すように、BET法による比表面積が0.6m/g以上10m/g以下となるよう鉄含有原料と軟化溶融性を有する炭材との混合物を250℃以上550℃以下の熱間で成型する方法が知られている。 In addition, as a method for producing a carbonaceous interior ore excellent in cold crush strength and reducibility, as shown in Patent Document 2, the specific surface area by the BET method is 0.6 m 2 / g or more and 10 m 2 / g or less. There is known a method in which a mixture of an iron-containing raw material and a softening and melting carbon material is molded at a temperature of 250 ° C. or higher and 550 ° C. or lower.

国際公開第2011/021560号International Publication No. 2011/021560 特開2007−77484号公報JP 2007-77484 A

しかしながら、上述の特許文献1の方法では、成型後の一次養生、二次養生およびその後の乾燥処理に時間および費用がかかり、効率的に製造できない問題が考えられる。   However, in the method of the above-mentioned patent document 1, it takes time and expense for the primary curing after the molding, the secondary curing, and the subsequent drying treatment, and there is a problem that it cannot be efficiently manufactured.

また、上述の特許文献2の方法では、原料を250〜550℃に加熱して熱間で成型する必要があるため、非焼成の場合に比べてエネルギーロスが大きく、設備も複雑化してしまい、効率的に製造できない問題が考えられる。   Moreover, in the method of the above-mentioned patent document 2, since it is necessary to heat a raw material to 250-550 degreeC and to shape | mold hot, an energy loss is large compared with the case of non-baking, and facilities also become complicated, There may be problems that cannot be efficiently produced.

本発明はこのような点に鑑みなされたもので、効率的に製造できる炭材内装鉱およびその製造方法を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the carbonaceous material interior ore which can be manufactured efficiently, and its manufacturing method.

請求項1に記載された炭材内装鉱は、酸化鉄含有原料と炭材と有機バインダーとを用いて形成された炭材内装鉱であって、酸化鉄含有原料は、鉄鉱石、および、製鉄所内の集塵機から回収された酸化鉄を含有するダストの少なくともいずれかであり、酸化鉄原料における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の酸化鉄含有原料の配合比率とを乗じた値である酸化鉄含有原料由来の炭素量をXとし、炭材における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の炭材の配合比率とを乗じた値である炭材由来の炭素量をYとした場合において、3.5X+Y≧25で示す関係を満足し、かつ、0.2X+Y≦20で示す関係を満足するものである。 The carbon material-containing ore according to claim 1 is a carbon material-containing ore formed using an iron oxide-containing raw material, a carbon material, and an organic binder, and the iron oxide-containing raw material includes iron ore and iron making. Iron oxide containing at least one of the iron oxide-containing dust recovered from the dust collector in the station, where the carbon content (% by mass) in the iron oxide raw material and the total mass of the iron oxide-containing raw material and carbonaceous material are 1. When the amount of carbon derived from the iron oxide-containing raw material, which is a value multiplied by the blending ratio of the containing raw material, is X, and the total carbon mass (mass%) in the carbonaceous material and the total mass of the iron oxide-containing raw material and the carbonaceous material are 1. When the carbon amount derived from the carbonaceous material, which is a value obtained by multiplying the carbonaceous material blending ratio by Y, is satisfied, the relationship expressed by 3.5X + Y ≧ 25 is satisfied, and the relationship expressed by 0.2X + Y ≦ 20 is satisfied To do.

請求項2に記載された炭材内装鉱は、請求項1記載の炭材内装鉱において、酸化鉄含有原料は、炭素の含有量が5質量%以上30質量%未満であるものである。   The carbonaceous interior ore according to claim 2 is the carbonaceous interior ore according to claim 1, wherein the iron oxide-containing raw material has a carbon content of 5 mass% or more and less than 30 mass%.

請求項3に記載された炭材内装鉱は、請求項1または2記載の炭材内装鉱において、炭材は、炭素の含有量が70質量%以上であるものである。   The carbon material interior ore according to claim 3 is the carbon material interior ore according to claim 1 or 2, wherein the carbon material has a carbon content of 70% by mass or more.

請求項4に記載された炭材内装鉱の製造方法は、粉状の酸化鉄含有原料および粉状の炭材に有機バインダーを添加するとともに水分を調整し、混合および造粒して非焼成で製造する炭材内装鉱の製造方法であって、酸化鉄含有原料は、鉄鉱石、および、製鉄所内の集塵機から回収された酸化鉄を含有するダストの少なくともいずれかであり、酸化鉄原料における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の酸化鉄含有原料の配合比率とを乗じた値である酸化鉄含有原料由来の炭素量をXとし、炭材における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の炭材の配合比率とを乗じた値である炭材由来の炭素量をYとした場合において、3.5X+Y>25で示す関係を満足し、かつ、0.2X+Y<20で示す関係を満足するように原料を調整するものである。 The method for producing a carbonaceous material-containing ore according to claim 4 includes adding an organic binder to the powdered iron oxide-containing raw material and the powdered carbonaceous material, adjusting the moisture, mixing and granulating, and non-firing. A method for producing a carbonaceous interior ore to be produced, wherein the iron oxide-containing raw material is at least one of iron ore and dust containing iron oxide recovered from a dust collector in the ironworks, and carbon in the iron oxide raw material the content (mass%) and carbon content derived from the iron oxide-containing material is a value obtained by multiplying the mixing ratio of the iron oxide-containing material in the case of the one total mass of iron oxide-containing material and carbonaceous material and X, charcoal In the case where the carbon content derived from the carbon material, which is a value obtained by multiplying the carbon content (% by mass) in the material with the blending ratio of the carbon material when the total mass of the iron oxide-containing raw material and the carbon material is 1, is defined as Y. 3.5X + Y> 25 is satisfied And it is used for adjusting the raw material so as to satisfy the relationship shown by 0.2X + Y <20.

請求項5に記載された炭材内装鉱の製造方法は、請求項4記載の炭材内装鉱の製造方法において、酸化鉄含有原料は、炭素の含有量が5質量%以上30質量%未満であるものである。   The method for producing a carbon material interior ore according to claim 5 is the method for producing a carbon material interior ore according to claim 4, wherein the iron oxide-containing raw material has a carbon content of 5 mass% or more and less than 30 mass%. There is something.

請求項6に記載された炭材内装鉱の製造方法は、請求項4または5記載の炭材内装鉱の製造方法において、炭材は、炭素の含有量が70質量%以上であるものである。   The method for producing a carbon material interior ore according to claim 6 is the method for producing a carbon material interior ore according to claim 4 or 5, wherein the carbon material has a carbon content of 70% by mass or more. .

本発明によれば、酸化鉄含有原料由来の炭素量をXとし、炭材由来の炭素量をYとした場合において、3.5X+Y≧25で示す関係を満足し、かつ、0.2X+Y≦20で示す関係を満足するように、酸化鉄含有原料および炭材の種類や配合を調整するだけで、被還元性を向上できるとともに高炉用原料としての圧潰強度を確保できるため、効率的に製造できる。   According to the present invention, when the amount of carbon derived from the iron oxide-containing raw material is X and the amount of carbon derived from the carbonaceous material is Y, the relationship represented by 3.5X + Y ≧ 25 is satisfied, and 0.2X + Y ≦ 20 In order to satisfy the relationship shown in, the reducibility can be improved and the crushing strength as a blast furnace raw material can be ensured simply by adjusting the types and blends of the iron oxide-containing raw material and carbonaceous material, so that it can be efficiently produced. .

炭材内装鉱の還元率を測定する際の還元試験の条件を示すグラフである。It is a graph which shows the conditions of the reduction | restoration test at the time of measuring the reduction rate of a carbon material interior ore. 炭材内装鉱炭素含有量と還元率との関係を示すグラフである。It is a graph which shows the relationship between carbon material interior ore carbon content and a reduction rate. 炭材内装鉱の炭素含有量と圧潰強度との関係を示すグラフである。It is a graph which shows the relationship between the carbon content and crushing strength of a carbon material interior ore. 炭材内装鉱の3.5X+Yで示す値と還元率との関係を示すグラフである。It is a graph which shows the relationship between the value shown by 3.5X + Y of a carbon material interior ore, and a reduction rate. 炭材内装鉱の0.2X+Yで示す値と圧潰強度との関係を示すグラフである。It is a graph which shows the relationship between the value shown by 0.2X + Y of carbon material interior ore, and crushing strength.

以下、本発明の一実施の形態の構成について詳細に説明する。   Hereinafter, the configuration of an embodiment of the present invention will be described in detail.

炭材内装鉱は、粉状の酸化鉄含有原料と粉状の炭材とを所定の割合で配合し、有機バインダーを添加するとともに、水分を添加して適宜水分を調整した後、混合および造粒して製造される。   Carbonaceous interior ore is prepared by mixing powdered iron oxide-containing raw material and powdered carbonaceous material at a predetermined ratio, adding an organic binder, adding water, adjusting the water appropriately, mixing and Manufactured granulated.

酸化鉄含有原料は、酸化鉄を含むものであり、鉄鉱石、および、製鉄所内の集塵機から回収されるダストが用いられる。なお、これらの原料が単独で用いられるだけでなく、複数種を所定の割合で配合してもよい。 Iron oxide-containing material is one containing iron oxide, iron ore, and, Dust recovered from dust collector ironworks is used. Not only these ingredients is used alone, but it may also be formulated more at a predetermined ratio.

酸化鉄含有原料に含まれる炭素量は、炭材内装鉱の被還元性を向上するためには5質量%以上とすることが好ましい。一方、酸化鉄含有原料に含まれる炭素量が30質量%以上になると、炭材内装鉱の圧潰強度が低下する可能性がある。そのため、酸化鉄含有原料に含まれる炭素量は、5質量%以上30質量%未満が好ましい。   The amount of carbon contained in the iron oxide-containing raw material is preferably 5% by mass or more in order to improve the reducibility of the carbonaceous interior ore. On the other hand, when the amount of carbon contained in the iron oxide-containing raw material is 30% by mass or more, the crushing strength of the carbonaceous material-containing ore may be reduced. Therefore, the amount of carbon contained in the iron oxide-containing raw material is preferably 5% by mass or more and less than 30% by mass.

炭材は、例えば、粉コークス、一般炭、無煙炭およびコークスダスト等が用いられる。なお、これらの原料が単独で用いられるだけでなく、複数種を所定の割合で配合してもよい。また、これらの原料には限定されず他の炭材を用いてもよい。   As the carbon material, for example, powdered coke, general coal, anthracite, coke dust, or the like is used. These raw materials are not only used alone, but a plurality of types may be blended at a predetermined ratio. Moreover, it is not limited to these raw materials, You may use another carbonaceous material.

炭材に含まれる炭素量は、炭材内装鉱の被還元性を確保するために70質量%以上が好ましい。   The amount of carbon contained in the carbon material is preferably 70% by mass or more in order to ensure the reducibility of the carbon material interior ore.

有機バインダーは、例えばパルプ廃液、糖蜜、各種ポリマー、澱粉およびカルボキシメチルセルロース等が適宜用いられる。なお、これらを単独で用いられるだけでなく、複数種を所定の割合で配合してもよい。また、これらの有機バインダーに限定されず、他の有機バインダーを用いてもよい。   As the organic binder, for example, pulp waste liquid, molasses, various polymers, starch, carboxymethyl cellulose, and the like are appropriately used. In addition to these being used alone, a plurality of types may be blended at a predetermined ratio. Moreover, it is not limited to these organic binders, You may use another organic binder.

さらに、原料として、有機バインダーに加えて、例えば生石灰やベンナイト等の無機バインダーを、原料中のスラグ量が増加しない範囲で添加してもよい。   Furthermore, as a raw material, in addition to an organic binder, an inorganic binder such as quick lime or bennite may be added within a range in which the amount of slag in the raw material does not increase.

有機バインダーの添加量は適宜決定できるが、各種原料全体における有機バインダーの割合が、固形分換算で1%未満であると高炉用原料として十分な圧潰強度が確保できない可能性があり、固形分換算で10%を超えると強度向上効果が飽和して材料コストの増加を招く。そのため、有機バインダーの添加量は、固形分換算で1%以上10%以下が好ましい。   The amount of organic binder added can be determined as appropriate, but if the ratio of the organic binder in all raw materials is less than 1% in terms of solid content, there is a possibility that sufficient crushing strength as a raw material for blast furnaces may not be secured, and in terms of solid content If it exceeds 10%, the strength improvement effect is saturated and the material cost increases. Therefore, the addition amount of the organic binder is preferably 1% or more and 10% or less in terms of solid content.

原料を造粒する際には、例えば一対の成型ロールを有するブリケットマシンでピロー型ブリケットやアーモンド型ブリケットを製造する圧縮造粒法、および、パンペレタイザーで球形に成型する転動造粒法等で適宜行われるが、これらの方法に限定されず、他の方法にて造粒してもよい。   When the raw material is granulated, for example, a compression granulation method in which a pillow type briquette or an almond type briquette is manufactured with a briquette machine having a pair of molding rolls, and a rolling granulation method in which the raw material is formed into a spherical shape with a pan pelletizer. Although it is performed appropriately, the method is not limited to these methods, and granulation may be performed by other methods.

成型直後の非焼成の炭材内装鉱は、高炉までの輸送および高炉装入時の粉化に耐えるため、一定の強度が必要である。そのため、成型後の生の炭材内装鉱は、強度向上のため乾燥処理を行う。このような乾燥処理は、例えば100℃以上300℃以下の熱風にて、短材内装鉱の水分含有量が3%以下になるように行うことが好ましい。   The non-fired carbonaceous material-containing ore immediately after molding needs to have a certain strength in order to withstand transportation to the blast furnace and pulverization during charging of the blast furnace. For this reason, the raw carbon material interior ore after molding is subjected to a drying process to improve the strength. Such a drying treatment is preferably performed, for example, with hot air of 100 ° C. or more and 300 ° C. or less so that the moisture content of the short material interior ore is 3% or less.

ここで、炭材内装鉱の被還元性には炭素量が大きく影響し、炭素量が多いほど被還元性が向上して、高炉還元材比の低減効果は大きくなる。一方、炭材内装鉱中の炭素量が増加すると圧潰強度が低下する。そのため、従来は炭材内装鉱として求められる圧潰強度と被還元性とを満足する炭素量で製造される。   Here, the carbon content greatly influences the reducibility of the carbonaceous interior ore, and the greater the carbon content, the better the reducibility and the greater the reduction effect of the blast furnace reductant ratio. On the other hand, when the amount of carbon in the carbonaceous material interior ore increases, the crushing strength decreases. Therefore, it is conventionally manufactured with a carbon amount that satisfies the crushing strength and reducibility required as a carbonaceous interior ore.

しかしながら、炭材内装鉱中の炭素には、炭材に含まれる炭素だけでなく、酸化鉄含有原料由来のものもあり、このような炭素源の違いにより、炭材内装鉱の圧潰強度や被還元性等の特性にどのような影響を及ぼすかを検討した。   However, the carbon in the carbon material interior ore is not only carbon contained in the carbon material, but also derived from iron oxide-containing raw materials. The effect on the properties such as reducibility was examined.

炭素含有量の違いや酸化鉄含有原料の配合量の違いにより炭材内装鉱の被還元性に及ぼす影響を確認するため、炭素含有量や各炭素源からの炭素量を変化させて、炭材内装鉱を製造し、圧潰強度および還元率を測定した。   In order to confirm the influence on the reducibility of the carbonaceous interior ore due to the difference in the carbon content and the blending amount of the iron oxide-containing raw material, the carbon content and the carbon content from each carbon source were changed. An interior ore was manufactured and the crushing strength and the reduction rate were measured.

まず、表1に示す割合で4種類の酸化鉄含有原料を配合した。   First, four types of iron oxide-containing raw materials were blended at the ratio shown in Table 1.

Figure 0006326074
Figure 0006326074

また、表2に示す割合で炭材である粉状のコークスと一般炭とを配合した。   Moreover, the powdery coke which is a carbon material, and general charcoal were mix | blended in the ratio shown in Table 2.

Figure 0006326074
Figure 0006326074

これら各種割合で配合した酸化鉄含有原料および炭材に、表3に示す2種類の有機バインダーを添加し、水分を加えながら混錬した後、ブリケットマシンを用い圧縮成型し、炭材内装鉱を作製した。炭材内装鉱(生ブリケット)は25mm×18mm×10mmのアーモンド型である。   After adding the two types of organic binders shown in Table 3 to the iron oxide-containing raw materials and charcoal blended in various proportions, kneading while adding moisture, compression molding using a briquette machine, Produced. The carbonaceous interior ore (raw briquette) is an almond type of 25 mm × 18 mm × 10 mm.

Figure 0006326074
Figure 0006326074

そして、生ブリケットを105℃で2時間以上乾燥させた後、圧潰強度を測定するとともに、還元試験に供した。なお、圧潰強度はJIS M 8718に準じて測定した。また、還元試験は、図1に示す温度・ガス履歴で行い、試験後の成分から還元率を測定した。   And after drying raw briquette at 105 degreeC for 2 hours or more, while crushing strength was measured, it used for the reduction | restoration test. The crushing strength was measured according to JIS M8718. Moreover, the reduction test was performed with the temperature and gas history shown in FIG. 1, and the reduction rate was measured from the components after the test.

図2には、酸化鉄含有原料として炭素を含有しない鉄鉱石Aを用いた場合と、酸化鉄含有原料として炭素を8質量%含有する所内ダストを用いた場合とのそれぞれにおける炭材内装鉱の炭素含有量と還元率との関係を示す。   In FIG. 2, the carbonaceous inner ore in the case of using iron ore A containing no carbon as the iron oxide-containing raw material and in the case of using in-house dust containing 8% by mass of carbon as the iron oxide-containing raw material. The relationship between carbon content and a reduction rate is shown.

酸化鉄含有原料として炭素を含有しない鉄鉱石Aを用いた場合には、炭素含有量の増加にともない還元率は増加する。これに対して、炭素を含有する所内ダストを酸化鉄含有原料として用いた場合には、炭素含有量によらず還元率が100%であり、鉄鉱石Aを用いた場合よりも還元率が高くなった。また、同一炭素含有量で比較した場合、酸化鉄含有原料として炭素を含有する所内ダストを用いた方が還元率は高くなった。   When iron ore A that does not contain carbon is used as the iron oxide-containing raw material, the reduction rate increases as the carbon content increases. In contrast, when in-house dust containing carbon is used as the iron oxide-containing raw material, the reduction rate is 100% regardless of the carbon content, and the reduction rate is higher than when iron ore A is used. became. In addition, when compared with the same carbon content, the reduction rate was higher when in-house dust containing carbon was used as the iron oxide-containing raw material.

つまり、酸化鉄含有原料に含まれる炭素の方が炭材内装鉱の被還元性を向上させる効果が高いことが分かる。   That is, it can be seen that the carbon contained in the iron oxide-containing raw material has a higher effect of improving the reducibility of the carbonaceous material interior ore.

図3には、酸化鉄含有原料として炭素を含有しない鉄鉱石Aを用いた場合と、酸化鉄含有原料として炭素を8質量%含有する所内ダストを用いた場合とのそれぞれにおける炭材内装鉱の炭素含有量と圧潰強度との関係を示す。   In FIG. 3, the carbonaceous inner ore in the case of using iron ore A containing no carbon as the iron oxide-containing raw material and in the case of using in-house dust containing 8% by mass of carbon as the iron oxide-containing raw material. The relationship between carbon content and crushing strength is shown.

炭素を含有しない鉄鉱石Aを酸化鉄含有原料として用いた場合、および、炭素を含有する所内ダストを用いた場合のいずれも、炭素量が所定量を越えると圧潰強度が急激に低下する。   When the iron ore A containing no carbon is used as the iron oxide-containing raw material and when the in-house dust containing carbon is used, when the carbon content exceeds a predetermined amount, the crushing strength rapidly decreases.

また、鉄鉱石Aを用いた場合と所内ダストを用いた場合とでは、圧潰強度が急激に低下する炭素量が異なり、所内ダストを用いた場合の方が高炭素量で強度低下が起こる。   In addition, the amount of carbon in which the crushing strength rapidly decreases is different between the case of using iron ore A and the case of using in-house dust, and the case of using in-house dust causes a decrease in strength at a higher carbon amount.

つまり、炭材に含まれる炭素の方が、酸化鉄含有原料に含まれる炭素より炭材内装鉱の圧潰強度を低下させる悪影響が小さい。   In other words, the carbon contained in the carbon material has less adverse effect on reducing the crushing strength of the carbon material interior ore than the carbon contained in the iron oxide-containing raw material.

このように、酸化鉄含有原料由来の炭素と炭材由来の炭素とでは、圧潰強度や被還元性に及ぼす影響が異なるため、圧潰強度および被還元性に優れる炭材内装鉱を製造するには、炭素源による影響の違いを考慮して原料の配合比率を適正化する必要がある。   As described above, since the influence on the crushing strength and the reducibility differs between the carbon derived from the iron oxide-containing raw material and the carbon derived from the carbonaceous material, in order to produce a carbonaceous interior ore excellent in crushing strength and reducibility Therefore, it is necessary to optimize the mixing ratio of raw materials in consideration of the difference in influence due to the carbon source.

そこで、圧潰強度および被還元性と、酸化鉄含有原料由来の炭素量(X)と、炭材由来の炭素量(Y)との関係を確認した。   Then, the relationship between crushing strength and reducibility, the carbon amount (X) derived from the iron oxide-containing raw material, and the carbon amount (Y) derived from the carbonaceous material was confirmed.

なお、酸化鉄含有原料由来の炭素量であるXは、酸化鉄含有原料中のC量(質量%)と炭材内装鉱中の酸化鉄含有原料および炭材の合計質量を1とした場合の酸化鉄含有原料の配合比率とを乗じた値であり、炭材由来の炭素量であるYは、炭材中のC量(質量%)と炭材内装鉱中の酸化鉄含有原料および炭材の合計質量を1とした場合の炭材の配合比率とを乗じた値である。 Incidentally, a carbon content derived from the iron oxide-containing material X is a case where the total weight of iron oxide-containing material and carbonaceous material in the amount of C (mass%) and carbonaceous material in interior ore iron oxide-containing material and 1 a value obtained by multiplying the mixing ratio of the iron oxide-containing material, a carbon content derived from carbonaceous material Y is, C content in the carbonaceous material (mass%) and iron oxide-containing material in the carbonaceous material furnished ore and carbonaceous material It is a value obtained by multiplying the blending ratio of the carbonaceous materials when the total mass of 1 is 1 .

還元率は、図4に示すように3.5X+Yで示す値と相関があり、圧潰強度は図5に示すように0.2X+Yで示す値と相関があることが分かった。   As shown in FIG. 4, the reduction rate has a correlation with the value indicated by 3.5X + Y, and the crushing strength has a correlation with the value indicated by 0.2X + Y as shown in FIG.

具体的には、炭材内装鉱の還元率は、酸化鉄含有原料の種類によらず3.5X+Yで示す値の増加にともなって上昇し、3.5X+Yで示す値が25以上で還元率が100%程度に達する。   Specifically, the reduction rate of the carbonaceous interior ore increases with an increase in the value indicated by 3.5X + Y regardless of the type of raw material containing iron oxide, and the reduction rate is 25 or more when the value indicated by 3.5X + Y It reaches about 100%.

一方、圧潰強度は、0.2X+Yで示す値が20を超えると、いずれの酸化鉄含有原料でも大きく低下する。   On the other hand, when the value shown by 0.2X + Y exceeds 20, the crushing strength is greatly reduced in any iron oxide-containing raw material.

以上の結果より、酸化鉄含有原料由来の炭素量(X)と炭材由来の炭素量(Y)とが、3.5X+Y≧25で示す関係を満足し、かつ、0.2X+Y≦20で示す関係を満足するように原料の配合を調整すれば、圧潰強度および被還元性に優れる炭材内装鉱を製造できる。   From the above results, the amount of carbon derived from the iron oxide-containing raw material (X) and the amount of carbon derived from the carbonaceous material (Y) satisfy the relationship represented by 3.5X + Y ≧ 25 and are represented by 0.2X + Y ≦ 20. By adjusting the blending of raw materials so as to satisfy the relationship, it is possible to produce a carbonaceous interior ore that is excellent in crushing strength and reducibility.

酸化鉄含有原料に含まれる炭素の方が被還元性の向上効果が大きい理由は、酸化鉄と炭材との間の距離が短く、炭材による被還元性の向上効果が大きいためと考えられる。また、酸化鉄含有原料に含まれる炭素の方が圧潰強度の低下させやすい理由は、酸化鉄含有原料より炭材の粒径が小さいためと考えられる。   The reason why carbon contained in the iron oxide-containing raw material has a larger reducibility improvement effect is considered to be because the distance between the iron oxide and the carbonaceous material is short and the reducibility improvement effect by the carbonaceous material is large. . The reason why carbon contained in the iron oxide-containing raw material is likely to reduce the crushing strength is considered to be because the particle size of the carbonaceous material is smaller than that of the iron oxide-containing raw material.

次に、上記一実施の形態の効果等を説明する。   Next, effects and the like of the one embodiment will be described.

上記一実施の形態によれば、酸化鉄含有原料由来の炭素量をXとし、炭材由来の炭素量をYとした場合において、3.5X+Y≧25で示す関係を満足し、かつ、0.2X+Y≦20で示す関係を満足するように、酸化鉄含有原料および炭材の種類や配合を調整するだけで、被還元性を向上できるとともに高炉用原料としての圧潰強度を確保できる。したがって、成型後の後処理や焼成を行わずに、圧潰強度および被還元性に優れた炭材内装鉱を効率的に製造できる。   According to the above embodiment, when the amount of carbon derived from the iron oxide-containing raw material is X and the amount of carbon derived from the carbonaceous material is Y, the relationship expressed by 3.5X + Y ≧ 25 is satisfied, and The reducibility can be improved and the crushing strength as a blast furnace raw material can be secured only by adjusting the types and blends of the iron oxide-containing raw material and the carbonaceous material so as to satisfy the relationship represented by 2X + Y ≦ 20. Therefore, it is possible to efficiently produce a carbonaceous interior ore excellent in crushing strength and reducibility without performing post-treatment and firing after molding.

また、炭素量が5質量%以上30質量%未満である酸化鉄含有原料を用いることにより、被還元性を向上させやすく、圧潰強度を確保しやすい。   Moreover, by using the iron oxide containing raw material whose carbon amount is 5 mass% or more and less than 30 mass%, it is easy to improve reducibility and to ensure crushing strength.

さらに、炭素量が70質量%以上の炭材を用いることにより、被還元性を確保しやすい。   Furthermore, it is easy to ensure reducibility by using a carbon material having a carbon content of 70% by mass or more.

以下、実施例および比較例について説明する。   Hereinafter, examples and comparative examples will be described.

まず、表4に示す配合の原料に水分を加えながら混練し、ブリケットマシンを用いて圧縮成型して、25mm×18mm×10mmのアーモンド型の生ブリケットを成型した。   First, the raw materials having the composition shown in Table 4 were kneaded while adding water, and compression molded using a briquette machine to form an almond-type raw briquette of 25 mm × 18 mm × 10 mm.

Figure 0006326074
Figure 0006326074

また、生ブリケットを105℃で2時間以上乾燥させた後、JIS M 8718に準じて圧潰強度測定を行うとともに、還元試験に供した。   In addition, after the raw briquette was dried at 105 ° C. for 2 hours or longer, the crushing strength was measured according to JIS M 8718 and subjected to a reduction test.

各実施例および各比較例における酸化鉄含有原料由来の炭素量(X)と、炭材由来の炭素量(Y)と、これらXおよびYの各種関係式と、各実験結果とを表5に示す。   Table 5 shows the carbon amount (X) derived from the iron oxide-containing raw material in each example and each comparative example, the carbon amount derived from the carbonaceous material (Y), various relational expressions of these X and Y, and the respective experimental results. Show.

Figure 0006326074
Figure 0006326074

3.5X+Yで示す値が25以上でかつ0.2X+Yで示す値が20以下の実施例であるNo.1ないしNo.6は、いずれも圧潰強度が0.7kN以上で高炉用原料として十分な圧潰強度を確保でき、還元率が100%で被還元性が良好であった。   No. 5 is an example in which the value indicated by 3.5X + Y is 25 or more and the value indicated by 0.2X + Y is 20 or less. 1 to No. No. 6 had a crushing strength of 0.7 kN or more, a sufficient crushing strength as a raw material for a blast furnace could be secured, the reduction rate was 100%, and the reducibility was good.

これに対して、比較例であるNo.7は、0.2X+Yで示す値が20以下であり圧潰強度は高いものの、3.5X+Yで示す値が25未満であるため、還元率が90.3%と低く、被還元性が劣っていた。   On the other hand, No. which is a comparative example. 7 had a value of 0.2X + Y of 20 or less and high crushing strength, but the value of 3.5X + Y was less than 25, so the reduction rate was as low as 90.3% and the reducibility was inferior. .

また、比較例であるNo.8およびNo.9は、3.5X+Yで示す値が25以上で被還元性が良好であるものの、0.2X+Yで示す値が20を超えるため、圧潰強度が0.7kNより低く、高炉用原料として十分な圧潰強度を確保できていなかった。   Moreover, No. which is a comparative example. 8 and no. 9 has a value of 3.5X + Y of 25 or more and good reducibility, but the value of 0.2X + Y exceeds 20, so that the crushing strength is lower than 0.7 kN, which is sufficient as a raw material for blast furnace. The strength could not be secured.

Claims (6)

酸化鉄含有原料と炭材と有機バインダーとを用いて形成された炭材内装鉱であって、
酸化鉄含有原料は、鉄鉱石、および、製鉄所内の集塵機から回収された酸化鉄を含有するダストの少なくともいずれかであり、
酸化鉄原料における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の酸化鉄含有原料の配合比率とを乗じた値である酸化鉄含有原料由来の炭素量をXとし、炭材における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の炭材の配合比率とを乗じた値である炭材由来の炭素量をYとした場合において、
3.5X+Y≧25で示す関係を満足し、かつ、0.2X+Y≦20で示す関係を満足する
ことを特徴とする炭材内装鉱。
A carbonaceous material interior ore formed using an iron oxide-containing raw material, a carbonaceous material, and an organic binder,
The iron oxide-containing raw material is at least one of iron ore and dust containing iron oxide recovered from a dust collector in the ironworks,
The amount of carbon derived from the iron oxide-containing raw material, which is a value obtained by multiplying the carbon content (mass%) in the iron oxide raw material by the blending ratio of the iron oxide-containing raw material when the total mass of the iron oxide-containing raw material and the carbonaceous material is 1. Is the carbon content (mass%) in the carbon material, and the carbon content derived from the carbon material, which is a value obtained by multiplying the carbon material content (mass%) and the mixing ratio of the carbon material when the total mass of the iron oxide-containing raw material and the carbon material is 1. In the case of Y,
A carbonaceous interior ore characterized by satisfying the relationship represented by 3.5X + Y ≧ 25 and satisfying the relationship represented by 0.2X + Y ≦ 20.
酸化鉄含有原料は、炭素の含有量が5質量%以上30質量%未満である
ことを特徴とする請求項1記載の炭材内装鉱。
The carbonaceous material-containing ore according to claim 1, wherein the iron oxide-containing raw material has a carbon content of 5% by mass or more and less than 30% by mass.
炭材は、炭素の含有量が70質量%以上である
ことを特徴とする請求項1または2記載の炭材内装鉱。
The carbonaceous material interior ore according to claim 1 or 2, wherein the carbonaceous material has a carbon content of 70 mass% or more.
粉状の酸化鉄含有原料および粉状の炭材に有機バインダーを添加するとともに水分を調整し、混合および造粒して非焼成で製造する炭材内装鉱の製造方法であって、
酸化鉄含有原料は、鉄鉱石、および、製鉄所内の集塵機から回収された酸化鉄を含有するダストの少なくともいずれかであり、
酸化鉄原料における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の酸化鉄含有原料の配合比率とを乗じた値である酸化鉄含有原料由来の炭素量をXとし、炭材における炭素含有量(質量%)と酸化鉄含有原料および炭材の合計質量を1とした場合の炭材の配合比率とを乗じた値である炭材由来の炭素量をYとした場合において、
3.5X+Y>25で示す関係を満足し、かつ、0.2X+Y<20で示す関係を満足するように原料を調整する
ことを特徴とする炭材内装鉱の製造方法。
A method for producing a carbonaceous material-containing ore that adds an organic binder to a powdered iron oxide-containing raw material and powdered carbonaceous material, adjusts the moisture, mixes and granulates, and produces it without firing.
The iron oxide-containing raw material is at least one of iron ore and dust containing iron oxide recovered from a dust collector in the ironworks,
The amount of carbon derived from the iron oxide-containing raw material, which is a value obtained by multiplying the carbon content (mass%) in the iron oxide raw material by the blending ratio of the iron oxide-containing raw material when the total mass of the iron oxide-containing raw material and the carbonaceous material is 1. Is the carbon content (mass%) in the carbon material, and the carbon content derived from the carbon material, which is a value obtained by multiplying the carbon material content (mass%) and the mixing ratio of the carbon material when the total mass of the iron oxide-containing raw material and the carbon material is 1. In the case of Y,
The raw material is adjusted so as to satisfy the relationship represented by 3.5X + Y> 25 and the relationship represented by 0.2X + Y <20.
酸化鉄含有原料は、炭素の含有量が5質量%以上30質量%未満である
ことを特徴とする請求項4記載の炭材内装鉱の製造方法。
The method for producing a carbonaceous material-containing ore according to claim 4, wherein the iron oxide-containing raw material has a carbon content of 5% by mass or more and less than 30% by mass.
炭材は、炭素の含有量が70質量%以上である
請求項4または5記載の炭材内装鉱の製造方法。
Carbon material content is 70 mass% or more, The manufacturing method of the carbon material interior ore of Claim 4 or 5.
JP2016010874A 2016-01-22 2016-01-22 Carbon material interior ore and method for producing the same Active JP6326074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016010874A JP6326074B2 (en) 2016-01-22 2016-01-22 Carbon material interior ore and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010874A JP6326074B2 (en) 2016-01-22 2016-01-22 Carbon material interior ore and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017128786A JP2017128786A (en) 2017-07-27
JP6326074B2 true JP6326074B2 (en) 2018-05-16

Family

ID=59396603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010874A Active JP6326074B2 (en) 2016-01-22 2016-01-22 Carbon material interior ore and method for producing the same

Country Status (1)

Country Link
JP (1) JP6326074B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7207153B2 (en) * 2019-05-16 2023-01-18 日本製鉄株式会社 agglomerates
WO2021029008A1 (en) * 2019-08-13 2021-02-18 日本製鉄株式会社 Carbon composite ore and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825180B2 (en) * 2012-04-03 2015-12-02 新日鐵住金株式会社 Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char

Also Published As

Publication number Publication date
JP2017128786A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP4411306B2 (en) Method for manufacturing reduced briquettes
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JPWO2010041770A1 (en) Blast furnace operation method using carbon-containing unfired pellets
KR20130008935A (en) Process for producing pellet with carbonaceous material incorporated therein
KR101444562B1 (en) Unfired carbon-containing agglomerate and production method therefor
JP6228149B2 (en) Manufacturing method of carbon material interior ore
JP2015137379A (en) Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2009161791A5 (en)
AU2017388174B2 (en) Sintered ore manufacturing method
KR20080112818A (en) Method for recovering high value metals from waste materials of steel making process
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2009030114A (en) Method for producing ore raw material for blast furnace
JP6333770B2 (en) Method for producing ferronickel
JP2009030116A (en) Method for producing ore raw material for blast furnace
WO2019008675A1 (en) Carbon material interior ore and production method therefor
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP2009030115A (en) Method for producing ore raw material for blast furnace
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170816

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170816

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180413

R150 Certificate of patent or registration of utility model

Ref document number: 6326074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350