JP6228149B2 - Manufacturing method of carbon material interior ore - Google Patents

Manufacturing method of carbon material interior ore Download PDF

Info

Publication number
JP6228149B2
JP6228149B2 JP2015038016A JP2015038016A JP6228149B2 JP 6228149 B2 JP6228149 B2 JP 6228149B2 JP 2015038016 A JP2015038016 A JP 2015038016A JP 2015038016 A JP2015038016 A JP 2015038016A JP 6228149 B2 JP6228149 B2 JP 6228149B2
Authority
JP
Japan
Prior art keywords
organic binder
raw material
crushing strength
iron oxide
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015038016A
Other languages
Japanese (ja)
Other versions
JP2016160451A (en
Inventor
享太 前野
享太 前野
諭 弘中
諭 弘中
智郎 山本
智郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2015038016A priority Critical patent/JP6228149B2/en
Publication of JP2016160451A publication Critical patent/JP2016160451A/en
Application granted granted Critical
Publication of JP6228149B2 publication Critical patent/JP6228149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉で製鉄原料として使用される炭材内装鉱の製造方法に関する。   The present invention relates to a method for producing a carbonaceous interior ore used as an ironmaking raw material in a blast furnace.

近年、高炉操業における還元材比の低減を目的として、炭材と酸化鉄含有原料とを混合し成形した炭材内装鉱が用いられている。   In recent years, for the purpose of reducing the ratio of reducing material in blast furnace operation, carbon material interior ore formed by mixing carbon material and iron oxide-containing raw material has been used.

炭材内装鉱は、焼結鉱やペレットに比べ被還元性に優れるという大きな特徴があるが、高炉用原料として使用する場合、高炉までの搬送の際および高炉への装入の際に粉化しないように、所定の冷間圧潰強度を確保する必要がある。   Carbonaceous interior ore has a great feature that it is more reducible than sintered ore or pellets, but when used as a raw material for blast furnace, it is pulverized when transported to blast furnace and charged into blast furnace. Therefore, it is necessary to ensure a predetermined cold crushing strength.

そこで、焼結ダストや微粉状鉄鉱石等の鉄含有原料と、粉コークスやコークスダスト等の粉状炭材と、セメント等の水硬性バインダとを混合し成形することにより、冷間圧潰強度を向上させた非焼成含炭塊成鉱を製造する方法が知られている(例えば、特許文献1参照。)。   Therefore, cold crushing strength is improved by mixing and forming iron-containing raw materials such as sintered dust and fine powdered iron ore, powdered carbon materials such as powdered coke and coke dust, and hydraulic binders such as cement. A method for producing an improved non-fired carbon-containing agglomerated mineral is known (for example, see Patent Document 1).

また、アルカリ金属元素を0.7質量%以上含有する金属精錬ダストに酸性物質である塩酸やリグニンを添加して、酸化金属塊成物を製造する方法が知られている(例えば、特許文献2参照。)。   Further, there is known a method for producing a metal oxide agglomerate by adding hydrochloric acid or lignin, which are acidic substances, to metal smelting dust containing 0.7% by mass or more of an alkali metal element (for example, Patent Document 2). reference.).

特開2009−161791号公報JP 2009-161791 A 特許第3944378号公報Japanese Patent No. 3944378

しかしながら、上述の特許文献1の構成では、成形後の一次養生および二次養生や、養生後の乾燥処理に多くの時間や費用がかかってしまうため、効率的に製造できないという問題等が考えられる。   However, in the structure of the above-mentioned patent document 1, since it takes much time and expense for the primary curing and secondary curing after molding, and the drying treatment after curing, there may be a problem that it cannot be efficiently manufactured. .

また、バインダとしてCaOやSiO等の含有量が高いセメント等の水硬性バインダを使用するため、炭材内装鉱中のスラグ量が増加し、高炉での還元材比が上昇する可能性がある。 Further, in order to use the hydraulic binder of the high content cement such as CaO and SiO 2 as a binder, slag content in the carbonaceous material decorated ore is increased, there is a possibility that the reducing agent ratio in blast furnace is increased .

上述の特許文献2の構成では、セメント等の水硬性バインダを多量に使用しないため、スラグ量は低く抑えられるが、高炉に比べて要求される強度が著しく低い回転炉床炉での使用が想定されており、具体的にその強度は、0.1kN/p程度と高炉用の原料としては低すぎる。   In the configuration of Patent Document 2 described above, since a large amount of hydraulic binder such as cement is not used, the amount of slag can be kept low, but it is assumed to be used in a rotary hearth furnace that requires significantly less strength than a blast furnace. Specifically, its strength is about 0.1 kN / p, which is too low as a raw material for a blast furnace.

また、特許文献2の方法において、高炉用原料として必要な強度が得られる条件は不明であり、アルカリ金属元素の含有量が0.7質量%未満の原料を用いた場合に、強度を向上できるかどうかも明らかではない。   In addition, in the method of Patent Document 2, the conditions for obtaining the strength required as a blast furnace raw material are unknown, and the strength can be improved when a raw material having an alkali metal element content of less than 0.7 mass% is used. It is not clear whether or not.

したがって、炭材内装鉱の製造に関して、効率的に製造でき、高炉用原料として良好な圧潰強度を確保できる方法が求められていた。   Therefore, there has been a demand for a method capable of efficiently producing carbonaceous interior ore and ensuring a good crushing strength as a blast furnace raw material.

本発明はこのような点に鑑みなされたもので、効率的に製造でき、高炉用原料として良好な圧潰強度を確保できる炭材内装鉱の製造方法を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the manufacturing method of the carbonaceous material interior ore which can be manufactured efficiently and can ensure favorable crushing strength as a raw material for blast furnaces.

請求項1に記載された炭材内装鉱の製造方法は、粉状の酸化鉄含有原料と粉状の炭材とに有機バインダを添加し、水分調整し、混合および造粒する炭材内装鉱の製造方法であって、有機バインダの合計添加量は、固形分換算で有機バインダを含まない全原料に対して外数換算で質量%以上10質量%以下であり、50mlの水に酸化鉄含有原料を1g投入して1分間撹拌した状態でのpHが9.5以上の場合は、ゼータ電位の絶対値が20mV以上となるように少なくとも2種の有機バインダを添加するものである。 The method for producing a carbon material-containing ore according to claim 1 comprises adding an organic binder to a powdered iron oxide-containing raw material and a powdered carbon material, adjusting the moisture, mixing and granulating the carbon material-containing ore. The total addition amount of the organic binder is 2% by mass or more and 10% by mass or less in terms of external number with respect to all raw materials not containing the organic binder in terms of solid content, and iron oxide in 50 ml of water. When the pH is 9.5 or more when 1 g of the starting material is added and stirred for 1 minute , at least two kinds of organic binders are added so that the absolute value of the zeta potential is 20 mV or more.

請求項2に記載された炭材内装鉱の製造方法は、請求項1記載の炭材内装鉱の製造方法において、有機バインダは、パルプ廃液、糖蜜、発酵液およびアクリル系ポリマのうちの少なくともいずれかであるものである。   The method for producing a carbon material interior ore according to claim 2 is the method for producing a carbon material interior ore according to claim 1, wherein the organic binder is at least one of pulp waste liquor, molasses, fermentation liquor and acrylic polymer. It is something.

本発明によれば、酸化鉄含有原料のpHが9.5以上の場合は、ゼータ電位の絶対値が20mV以上となるように少なくとも2種の有機バインダを添加するため、高炉用原料として良好な圧潰強度を確保できるとともに、非焼成で効率的に製造できる。 According to the present invention, the iron oxide-containing raw material has a pH of 9 . In the case of 5 or more, since at least two kinds of organic binders are added so that the absolute value of the zeta potential is 20 mV or more, it is possible to ensure a good crushing strength as a raw material for blast furnaces and to efficiently manufacture without firing. .

酸化鉄含有原料として南米産鉄鉱石を用いた場合の圧潰強度と有機バインダ量との関係を示すグラフである。It is a graph which shows the relationship between the crushing strength at the time of using a South American iron ore as an iron oxide containing raw material, and the amount of organic binders. 酸化鉄含有原料として製鉄所ダストを用いた場合の圧潰強度と有機バインダ量との関係を示すグラフである。It is a graph which shows the relationship between the crushing strength at the time of using steel mill dust as an iron oxide containing raw material, and the amount of organic binders. 炭材内装鉱の圧潰強度と酸化鉄含有原料のpHとの関係を示すグラフである。It is a graph which shows the relationship between the crushing strength of a carbon material interior ore, and the pH of an iron oxide containing raw material. 有機バインダの添加状態の違いによる圧潰強度を示すグラフである。It is a graph which shows the crushing strength by the difference in the addition state of an organic binder. 有機バインダの添加状態の違いによるゼータ電位を示すグラフである。It is a graph which shows the zeta potential by the difference in the addition state of an organic binder.

以下、本発明の一実施の形態の構成について図面を参照しながら詳細に説明する。   Hereinafter, the configuration of an embodiment of the present invention will be described in detail with reference to the drawings.

高炉で製鉄原料として使用される炭材内装鉱を製造する際には、粉状の酸化鉄含有原料と粉状の炭材とに有機バインダを添加し、水分調整し、混合して造粒する。   When producing carbonaceous material ore used as a raw material for iron making in a blast furnace, an organic binder is added to the powdered iron oxide-containing raw material and the powdered carbonaceous material, the water content is adjusted, mixed and granulated .

酸化鉄含有原料は、例えばペレット用や焼結鉱用の鉄鉱石、製鉄所で発生するダストやダストスケール、および、ダストスケールの混合粉等が適宜用いられる。   As the iron oxide-containing raw material, for example, iron ore for pellets or sintered ore, dust or dust scale generated in a steel mill, mixed powder of dust scale, or the like is appropriately used.

炭材は、例えば、粉コークス、一般炭、無煙炭、コークスダストおよび高炉1次灰等が適宜用いられる。   As the carbon material, for example, powder coke, steam coal, anthracite, coke dust, blast furnace primary ash, and the like are appropriately used.

有機バインダは、リグニン亜硫酸塩、リグニン亜硫酸塩を含み分散効果を有するパルプ廃液、糖蜜、発酵液、澱粉およびアクリル系ポリマ等が適宜用いられる。   As the organic binder, lignin sulfite, pulp waste liquid containing lignin sulfite and having a dispersion effect, molasses, fermentation broth, starch, acrylic polymer, and the like are appropriately used.

また、バインダとして、例えば生石灰やベントナイト等の無機バインダを原料中のスラグ量が増加しない範囲で上記有機バインダに加えてもよい。   Further, as the binder, for example, an inorganic binder such as quick lime or bentonite may be added to the organic binder as long as the amount of slag in the raw material does not increase.

造粒する際には、一対の成形ロールを有するブリケットマシン(ロール型圧縮造粒機)でピロー形ブリケットやアーモンド形ブリケットを製造する圧縮造粒法や、パンペレタイザ(パン型造粒機)で球形に成形する転動造粒法等を適宜適用できる。   When granulating, a briquette machine (roll-type compression granulator) with a pair of forming rolls is used to produce a pillow-type briquette or almond-type briquette, or a pelletizer (pan-type granulator) is used to form a spherical shape. A rolling granulation method or the like that is formed into a shape can be applied as appropriate.

なお、成形直後の非焼成炭材内装鉱は、高炉までの輸送の粉化および高炉装入時の粉化を防止するため、所定の強度を確保する必要がある。そのため、成形後の生の炭材内装鉱は、強度向上を目的として乾燥処理を行うことが好ましい。この乾燥処理の条件は適宜決定できるが、例えば、100〜300℃の熱風で水分含有量が3%以下になるように行うと好ましい。   In addition, it is necessary to ensure the predetermined intensity | strength in order for the non-baking carbonaceous material interior ore immediately after shaping | molding to prevent the powdering of the transport to a blast furnace, and the powdering at the time of blast furnace charging. Therefore, it is preferable that the raw carbon material interior ore after the molding is dried for the purpose of improving the strength. The conditions for this drying treatment can be determined as appropriate, but it is preferable to carry out the drying so that the moisture content is 3% or less with hot air at 100 to 300 ° C., for example.

ここで、養生が不要でスラグ量の低い炭材内装鉱を高強度化するには、酸化鉄含有原料のpHに応じて適切な有機バインダを選定することが重要である。   Here, it is important to select an appropriate organic binder in accordance with the pH of the iron oxide-containing raw material in order to increase the strength of the carbonaceous interior ore that does not require curing and has a low slag amount.

そこで、圧潰強度を向上できる条件を明らかにするため、表1に示す各酸化鉄含有原料と、表2に示す各有機バインダとを用いて炭材内装鉱を製造して、酸化鉄含有原料と有機バインダとによる圧潰強度の違いを確認した。なお、混合粉とは製鉄所内で発生する地金やガス灰等を混合した原料である。   Therefore, in order to clarify the conditions under which the crushing strength can be improved, each iron oxide-containing raw material shown in Table 1 and each organic binder shown in Table 2 are used to produce a carbonaceous interior ore, The difference in crushing strength due to the organic binder was confirmed. In addition, mixed powder is the raw material which mixed ingot, gas ash, etc. which generate | occur | produce in an ironworks.

Figure 0006228149
Figure 0006228149

Figure 0006228149
Figure 0006228149

図1には、酸化鉄含有原料として南米産鉄鉱石Aを用いた場合の圧潰強度と有機バインダ量との関係を示し、図2には、酸化鉄含有原料として製鉄所ダストを用いた場合の圧潰強度と有機バインダ量との関係を示す。   FIG. 1 shows the relationship between the crushing strength and the amount of organic binder when South American iron ore A is used as the iron oxide-containing raw material, and FIG. 2 shows the case where steel mill dust is used as the iron oxide-containing raw material. The relationship between crushing strength and the amount of organic binders is shown.

なお、図1および図2では、炭材としては粉コークスを用い、有機バインダとしてはパルプ廃液および糖蜜を用いた。また、有機バインダの添加量は固形分換算における全原料に対する値である。   In FIG. 1 and FIG. 2, powdered coke was used as the carbon material, and pulp waste liquid and molasses were used as the organic binder. Moreover, the addition amount of an organic binder is a value with respect to all the raw materials in solid content conversion.

炭材内装鉱は、原料に水分を加えながら混練した後、ブリケットマシンを用いて圧縮成形して作製した。作製した生ブリケットは、W:25mm×D:18mm×H:10mmのアーモンド形である。このような生ブリケットを105℃で2時間以上乾燥させた後、JIS M 8718に基づいて圧潰強度試験を行った。   The carbonaceous material interior ore was kneaded while adding moisture to the raw material, and then compression molded using a briquette machine. The produced raw briquette has an almond shape of W: 25 mm × D: 18 mm × H: 10 mm. Such raw briquettes were dried at 105 ° C. for 2 hours or more, and then subjected to a crushing strength test based on JIS M 8718.

すなわち、圧潰強度測定では、10mm/minの一定加圧盤速度で生ブリケットに荷重をかけ、荷重が試験における最大荷重値の50%以下になった場合、または、上部および下部圧縮の間隙が生ブリケットの平均粒度の50%になるまで荷重をかけた場合に、加圧操作を終了した。そして、加圧操作で得られた圧縮荷重の最大値を圧潰強度とした。   That is, in the crushing strength measurement, when the raw briquette is loaded at a constant pressure plate speed of 10 mm / min and the load becomes 50% or less of the maximum load value in the test, or the gap between the upper and lower compression is the raw briquette. When the load was applied until 50% of the average particle size, the pressing operation was terminated. And the maximum value of the compressive load obtained by pressurization operation was made into crushing strength.

なお、高炉用原料である炭材内装鉱としての圧潰強度は、0.8kN/p以上であることが好ましい。   In addition, it is preferable that the crushing strength as a carbon material interior ore which is a raw material for blast furnaces is 0.8 kN / p or more.

図1に示すように、酸化鉄含有原料として南米産鉄鉱石Aを用いると、有機バインダとしてパルプ廃液および糖蜜のどちらを用いても、有機バインダ量の増加にともなって圧潰強度が上昇し、有機バインダ量を2%以上にすることで高炉用原料として要求される0.8kN/p以上の圧潰強度となる。   As shown in FIG. 1, when the South American iron ore A is used as the iron oxide-containing raw material, the crushing strength increases as the amount of the organic binder increases, regardless of whether the pulp waste liquid or molasses is used as the organic binder. By setting the binder amount to 2% or more, the crushing strength is 0.8 kN / p or more required as a blast furnace raw material.

一方、酸化鉄含有原料として製鉄所ダストを用いると、有機バインダとしてパルプ廃液および糖蜜のどちらを用いても、有機バインダ量の増加にともなう圧潰強度の上昇が小さく、高炉用原料として要求される0.8kN/p以上の圧潰強度を得られない。   On the other hand, when steel mill dust is used as the iron oxide-containing raw material, the increase in the crushing strength accompanying the increase in the amount of organic binder is small regardless of whether the pulp waste liquid or molasses is used as the organic binder, and 0 required as a raw material for blast furnaces. A crushing strength of 8 kN / p or more cannot be obtained.

そこで、酸化鉄含有原料の種類により有機バインダを添加した際の圧潰強度の上昇度合いが異なる原因を酸化鉄含有原料のpHに着目して確認した。   Therefore, the cause of the difference in the increase in crushing strength when an organic binder was added depending on the type of iron oxide-containing raw material was confirmed by focusing on the pH of the iron oxide-containing raw material.

図3には、炭材内装鉱の圧潰強度と酸化鉄含有原料のpHとの関係を示す。なお、炭材としては粉コークスを用い、有機バインダはパルプ廃液を3%添加した。また、酸化鉄含有原料のpHは、50mlの水に原料(粒径0.125mm以下)を1g投入して1分間撹拌した後に測定した。   FIG. 3 shows the relationship between the crushing strength of the carbon material-containing ore and the pH of the iron oxide-containing raw material. In addition, the powdery coke was used as a carbon material, and 3% of pulp waste liquid was added to the organic binder. Further, the pH of the iron oxide-containing raw material was measured after adding 1 g of the raw material (particle size 0.125 mm or less) to 50 ml of water and stirring for 1 minute.

図3に示すように、pHが8.0〜8.5程度の鉄鉱石を酸化鉄含有原料として用いた場合、有機バインダとしてパルプ廃液のみの添加で0.8kN/pを超える高い圧潰強度が得られる。   As shown in FIG. 3, when iron ore having a pH of about 8.0 to 8.5 is used as an iron oxide-containing raw material, a high crushing strength exceeding 0.8 kN / p is obtained by adding only pulp waste liquid as an organic binder. can get.

圧潰強度は、pHの影響により図3に網かけで示す領域で推移すると考えられる。圧潰強度の幅に関しては原料粒度等の他の要因に影響される。   It is considered that the crushing strength changes in a shaded region in FIG. 3 due to the influence of pH. The width of the crushing strength is affected by other factors such as the raw material particle size.

そして、pH9.5以上の場合には、高炉用原料としての基準である0.8kN/p以上の圧潰強度が得られない可能性がある。   And in the case of pH9.5 or more, there exists a possibility that the crushing strength of 0.8 kN / p or more which is the standard as a blast furnace raw material cannot be obtained.

ここで、pHが高い酸化鉄含有原料を用いた場合であっても、有機バインダを2種類以上添加し、かつ、ゼータ電位の絶対値を20mV以上にすることによって、圧潰強度を向上させて高炉用原料として必要な圧潰強度が得られる。   Here, even when an iron oxide-containing raw material having a high pH is used, two or more kinds of organic binders are added, and the absolute value of the zeta potential is set to 20 mV or more, thereby improving the crushing strength and improving the blast furnace. The crushing strength required as a raw material can be obtained.

図4には、酸化鉄含有原料として製鉄所ダストを用い、炭材として粉コークスを用い、有機バインダとしてパルプ廃液と糖蜜とを用いた場合の圧潰強度を示す。なお、比較対象として、有機バインダを用いなかった場合、および、有機バインダとしてパルプ廃液または糖蜜を単独添加した場合の圧潰強度も示す。   FIG. 4 shows the crushing strength when iron mill dust is used as the iron oxide-containing raw material, powdered coke is used as the carbonaceous material, and pulp waste liquid and molasses are used as the organic binder. In addition, as an object to be compared, the crushing strength when an organic binder is not used and when a pulp waste liquid or molasses is added alone as an organic binder is also shown.

図4に示すように、有機バインダとしてパルプ廃液または糖蜜を単独添加した場合は、有機バインダを添加しなかった場合に比べて、圧潰強度はあまり上昇せず、高炉用原料としての要求される強度を確保できない。   As shown in FIG. 4, when the pulp waste liquid or molasses is added alone as the organic binder, the crushing strength does not increase much compared to the case where the organic binder is not added, and the required strength as a blast furnace raw material. Cannot be secured.

これに対して、有機バインダとしてパルプ廃液と糖蜜とを複合添加した場合は、有機バインダを添加しなかった場合に比べて、圧潰強度が向上し、高炉用原料として要求される強度を確保できる。   On the other hand, when the pulp waste liquid and molasses are added in combination as an organic binder, the crushing strength is improved and the strength required as a raw material for a blast furnace can be ensured as compared with the case where no organic binder is added.

図5には、図4に示した条件におけるゼータ電位の測定結果を示す。ゼータ電位は、混練した原料1.5g(粒径0.125mm以下)を蒸留水48.5gに投入し撹拌した後、粒子を分散させた状態で超音波スペクトロスコピーを用いて測定した。   FIG. 5 shows the measurement result of the zeta potential under the conditions shown in FIG. The zeta potential was measured using ultrasonic spectroscopy in a state where particles were dispersed after adding 1.5 g of the kneaded material (particle size: 0.125 mm or less) to 48.5 g of distilled water and stirring.

図5に示すように、パルプ廃液および糖蜜を単独で添加した場合は、いずれもゼータ電位の絶対値が小さいのに対し、パルプ廃液と糖蜜とを複合添加すると、ゼータ電位の絶対値が大きくなる。   As shown in FIG. 5, when the pulp waste liquor and molasses are added alone, the absolute value of the zeta potential is small, whereas when the pulp waste liquor and molasses are added in combination, the absolute value of the zeta potential increases. .

ここで、ゼータ電位は、粒子の分散挙動を表す指標であり、ゼータ電位の絶対値が大きいほど、粒子の分散性が良好であると言われている。有機バインダ、例えばパルプ廃液は、分散効果を有するリグニンスルホン酸を主成分としており、原料中の微粒子を分散させて、圧潰強度向上作用を奏する。   Here, the zeta potential is an index representing the dispersion behavior of the particles, and it is said that the larger the absolute value of the zeta potential, the better the dispersibility of the particles. An organic binder, for example, pulp waste liquid, is mainly composed of lignin sulfonic acid having a dispersing effect, and has an effect of improving crushing strength by dispersing fine particles in the raw material.

そして、pHが低い原料では有機バインダが1種のみでもゼータ電位の絶対値が大きく、バインダの分散効果によって高い圧潰強度を確保できる。   A raw material having a low pH has a large absolute value of the zeta potential even if only one kind of organic binder is used, and a high crushing strength can be ensured by the dispersing effect of the binder.

一方、pHが高い酸化鉄含有原料では、添加する有機バインダが1種のみであると、ゼータ電位の絶対値が小さいため、分散効果が奏しにくく圧潰強度が低くなってしまうが、2種以上の有機バインダを添加することで、ゼータ電位の絶対値が大きくなるため、有機バインダによる分散効果によって高い圧潰強度を確保できる。   On the other hand, in an iron oxide-containing raw material having a high pH, if only one organic binder is added, the absolute value of the zeta potential is small, so that the dispersion effect is difficult to achieve and the crushing strength is low. By adding the organic binder, the absolute value of the zeta potential is increased, so that a high crushing strength can be ensured by the dispersion effect of the organic binder.

なお、有機バインダを複合添加することによりゼータ電位の絶対値が大きくなる詳細な理由は明らかではないが、複数の有機バインダを用いることで、粒子表面に有機バインダが吸着しやすくなるため、ゼータ電位の絶対値が大きくなると考えられる。   Although the detailed reason why the absolute value of the zeta potential increases by adding an organic binder in combination is not clear, the use of a plurality of organic binders makes it easier for the organic binder to be adsorbed on the particle surface. It is thought that the absolute value of becomes larger.

したがって、酸化鉄含有原料のpHが9.5未満の場合は、少なくとも1種の有機バインダを添加し、酸化鉄含有原料のpHが9.5以上の場合は、ゼータ電位の絶対値が20mV以上となるように、少なくとも2種の有機バインダを複合添加することとした。   Therefore, when the pH of the iron oxide-containing raw material is less than 9.5, at least one organic binder is added. When the pH of the iron oxide-containing raw material is 9.5 or higher, the absolute value of the zeta potential is 20 mV or higher. Thus, at least two kinds of organic binders were added in combination.

なお、有機バインダの添加量は、固形分換算で有機バインダを含まない全原料に対して2質量%未満であると高炉用の原料として必要な圧潰強度を確保できない可能性がある。一方、有機バインダの添加量が、固形分換算で有機バインダを含まない全原料に対して10質量%を超えると圧潰強度向上作用が飽和する可能性がありコストの増加を招く。したがって、有機バインダの合計添加量は、固形分換算で有機バインダを含まない全原料に対して2質量%以上10質量%以下とする。 In addition, when the addition amount of the organic binder is less than 2% by mass with respect to the total raw materials not containing the organic binder in terms of solid content, there is a possibility that the crushing strength necessary as the raw material for the blast furnace cannot be ensured. On the other hand, when the addition amount of the organic binder exceeds 10% by mass with respect to all raw materials not containing the organic binder in terms of solid content, the action for improving the crushing strength may be saturated, resulting in an increase in cost. Therefore, the total addition amount of the organic binder is 2% by mass or more and 10% by mass or less with respect to all raw materials not containing the organic binder in terms of solid content.

次に、上記一実施の形態の作用および効果を説明する。   Next, the operation and effect of the one embodiment will be described.

上記一実施の形態によれば、酸化鉄含有原料のpHが9.5未満の場合は、少なくとも1種の有機バインダを添加し、酸化鉄含有原料のpHが9.5以上の場合は、ゼータ電位の絶対値が20mV以上となるように少なくとも2種の有機バインダを添加するため、有機バインダによる分散効果を確保して圧潰強度を向上できる。そのため、非焼成であっても、例えば上記特許文献1等のように養生や乾燥処理に多くの時間や費用をかけることなく、効率的に製造できるとともに、高炉用原料として0.8kN/p以上の良好な圧潰強度を確保できる。   According to the one embodiment, when the pH of the iron oxide-containing raw material is less than 9.5, at least one organic binder is added, and when the pH of the iron oxide-containing raw material is 9.5 or more, zeta Since at least two kinds of organic binders are added so that the absolute value of the potential becomes 20 mV or more, the dispersion effect by the organic binder can be secured and the crushing strength can be improved. Therefore, even if it is not baked, it can be efficiently produced without spending much time and cost for curing and drying treatment as in the above-mentioned Patent Document 1, etc., and 0.8 kN / p or more as a raw material for a blast furnace Good crushing strength can be secured.

有機バインダの添加量は、固形分換算で有機バインダを含まない全原料に対して2質量%以上10質量%以下にすることで、炭材内装鉱として必要な圧潰強度を確保できるとともに、圧潰強度向上作用の飽和によるコストの増加を防止できる。 The addition amount of the organic binder is 2% by mass or more and 10% by mass or less with respect to all raw materials not containing the organic binder in terms of solid content. It is possible to prevent an increase in cost due to saturation of the improving action.

炭材内装鉱は、造粒後に例えば100〜300℃の熱風で水分含有量が3%以下になるように乾燥処理することにより、強度を向上できるため、高炉までの輸送の際の粉化および高炉へ装入する際の粉化を防止できる。   Since the carbonaceous interior ore can be improved in strength by granulating, for example, with hot air at 100 to 300 ° C. after granulation so that the water content is 3% or less, pulverization and transportation during transportation to the blast furnace are possible. Powdering during charging into the blast furnace can be prevented.

以下、本実施例および比較例について説明する。   Hereinafter, this example and a comparative example will be described.

表3に示す配合で酸化鉄含有原料と炭材と有機バインダとを水分を加えながら混練し、ブリケットマシンを用いて圧縮成形して造粒した。なお、有機バインダの添加量は外数で示す。   The iron oxide-containing raw material, the carbonaceous material and the organic binder were kneaded while adding moisture in the formulation shown in Table 3, and compression molded using a briquette machine and granulated. The addition amount of the organic binder is indicated by an external number.

造粒した生ブリケットは、W:25mm×D:18mm×H:10mmのアーモンド形である。   The granulated raw briquette has an almond shape of W: 25 mm × D: 18 mm × H: 10 mm.

この生ブリケットを105℃で2時間以上乾燥させた後、JIS M 8718に基づいて圧潰強度測定に供した。   After this raw briquette was dried at 105 ° C. for 2 hours or more, it was subjected to crushing strength measurement based on JIS M 8718.

圧潰強度測定では、10mm/minの一定加圧盤速度で生ブリケットに荷重をかけ、荷重が試験における最大荷重値の50%以下になった場合、または、上部および下部圧縮の間隙が生ブリケットの平均粒度の50%になるまで荷重をかけた場合に、加圧操作を終了した。そして、加圧操作で得られた圧縮荷重の最大値を圧潰強度とした。   In the crushing strength measurement, when the raw briquette is loaded at a constant pressure plate speed of 10 mm / min and the load becomes 50% or less of the maximum load value in the test, or the upper and lower compression gaps are the average of the raw briquette When a load was applied until the particle size reached 50%, the pressing operation was terminated. And the maximum value of the compressive load obtained by pressurization operation was made into crushing strength.

酸化鉄含有原料のpHが9.5未満であるNo.1ないしNo.4では、有機バインダとしてパルプ廃液、糖蜜およびアクリル系ポリマのいずれかを単独添加した。   No. in which the pH of the iron oxide-containing raw material is less than 9.5. 1 to No. In No. 4, any one of pulp waste liquid, molasses, and acrylic polymer was added alone as an organic binder.

また、酸化鉄含有原料のpHが9.5以上であるNo.5ないしNo.8は、有機バインダとしてパルプ廃液および糖蜜を複合添加、または、パルプ廃液および発酵液を複合添加した。なお、これらNo.5ないしNo.8は、ゼータ電位の測定も行った。   Moreover, No. whose pH of an iron oxide containing raw material is 9.5 or more. 5 to No. No. 8 was a composite addition of pulp waste liquid and molasses as an organic binder, or a composite addition of pulp waste liquid and fermentation liquor. In addition, these No. 5 to No. 8 also measured the zeta potential.

各本実施例および各比較例の試験条件および試験結果を表3に示す。   Table 3 shows the test conditions and test results for each of the examples and comparative examples.

Figure 0006228149
Figure 0006228149

表3に示すように、酸化鉄含有原料のpHが9.5未満で有機バインダを1種添加した参考例であるNo.1ないしNo.4は、高炉用原料の基準である0.8kN/p以上の高い圧潰強度が得られた。 As shown in Table 3, No. 1 which is a reference example in which the pH of the iron oxide-containing raw material is less than 9.5 and one organic binder is added. 1 to No. For No. 4, a high crushing strength of 0.8 kN / p or more, which is a standard for blast furnace raw materials, was obtained.

また、酸化鉄含有原料のpHが9.5以上で有機バインダを2種添加した本実施例であるNo.5ないしNo.8は、有機バインダを複合添加することでゼータ電位の絶対値が20以上となり、高炉用原料の基準である0.8kN/p以上の高い圧潰強度が得られた。   Further, in this example, the pH of the iron oxide-containing raw material is 9.5 or more and two kinds of organic binders are added. 5 to No. For compound No. 8, the absolute value of the zeta potential was 20 or more by adding an organic binder in combination, and a high crushing strength of 0.8 kN / p or more, which is the standard for blast furnace raw materials, was obtained.

一方、比較例であるNo.9は、有機バインダ量が2%より少なかったため、高炉用原料の基準である0.8kN/pより低い圧潰強度だった。   On the other hand, a comparative example No. No. 9 had a crushing strength lower than 0.8 kN / p, which is the standard for blast furnace raw materials, because the amount of organic binder was less than 2%.

また、酸化鉄含有原料のpHが9.5以上で有機バインダを1種のみ単独添加した比較例であるNo.10およびNo.11は、ゼータ電位の絶対値が20より小さく、高炉用原料の基準である0.8kN/pより低い圧潰強度だった。   Further, No. 1 which is a comparative example in which the pH of the iron oxide-containing raw material is 9.5 or more and only one organic binder is added alone. 10 and no. No. 11 had an absolute value of zeta potential smaller than 20 and a crushing strength lower than 0.8 kN / p, which is the standard for blast furnace raw materials.

以上の結果より、酸化鉄含有原料のpHに応じて有機バインダを選定することにより、非焼成であっても高炉用原料として圧潰強度の優れた炭材内装鉱を製造できる。   From the above results, by selecting an organic binder according to the pH of the iron oxide-containing raw material, it is possible to produce an interior ore with excellent crushing strength as a raw material for a blast furnace even if it is not fired.

Claims (2)

粉状の酸化鉄含有原料と粉状の炭材とに有機バインダを添加し、水分調整し、混合および造粒する炭材内装鉱の製造方法であって、
有機バインダの合計添加量は、固形分換算で有機バインダを含まない全原料に対して外数換算で質量%以上10質量%以下であり、
50mlの水に酸化鉄含有原料を1g投入して1分間撹拌した状態でのpHが9.5以上の場合は、ゼータ電位の絶対値が20mV以上となるように少なくとも2種の有機バインダを添加する
ことを特徴とする炭材内装鉱の製造方法。
An organic binder is added to a powdered iron oxide-containing raw material and a powdered carbon material, the moisture is adjusted, mixed and granulated, and a method for producing a carbonaceous interior ore,
The total addition amount of the organic binder is 2% by mass or more and 10% by mass or less in terms of external number with respect to all raw materials not containing the organic binder in terms of solid content,
Add 1g of iron oxide-containing raw material to 50ml of water, and if the pH is 9.5 or more after stirring for 1 minute , add at least two organic binders so that the absolute value of zeta potential is 20mV or more A method for producing a carbonaceous interior mine characterized by:
有機バインダは、パルプ廃液、糖蜜、発酵液およびアクリル系ポリマのうちの少なくともいずれかである
ことを特徴とする請求項1記載の炭材内装鉱の製造方法。
The method for producing a carbonaceous interior mine according to claim 1, wherein the organic binder is at least one of pulp waste liquid, molasses, fermentation liquid, and acrylic polymer.
JP2015038016A 2015-02-27 2015-02-27 Manufacturing method of carbon material interior ore Active JP6228149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038016A JP6228149B2 (en) 2015-02-27 2015-02-27 Manufacturing method of carbon material interior ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038016A JP6228149B2 (en) 2015-02-27 2015-02-27 Manufacturing method of carbon material interior ore

Publications (2)

Publication Number Publication Date
JP2016160451A JP2016160451A (en) 2016-09-05
JP6228149B2 true JP6228149B2 (en) 2017-11-08

Family

ID=56844326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038016A Active JP6228149B2 (en) 2015-02-27 2015-02-27 Manufacturing method of carbon material interior ore

Country Status (1)

Country Link
JP (1) JP6228149B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019027437A2 (en) * 2017-07-04 2020-07-07 Nippon Steel Nisshin Co., Ltd. ore containing carbon material and production method
JP7445122B2 (en) 2020-03-18 2024-03-07 日本製鉄株式会社 Method for producing agglomerates and method for producing reduced iron
WO2021234759A1 (en) * 2020-05-18 2021-11-25 日本製鉄株式会社 Method for producing agglomerated material, and agglomerated material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040978B2 (en) * 1997-10-30 2000-05-15 株式会社神戸製鋼所 Method for producing reduced iron pellets and reduced iron pellets
US8206487B2 (en) * 2007-07-27 2012-06-26 Kobe Steel, Ltd. Method for producing carbon composite metal oxide briquettes

Also Published As

Publication number Publication date
JP2016160451A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
KR20150071388A (en) Method for manufacturing sintered iron ore
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP6228149B2 (en) Manufacturing method of carbon material interior ore
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP2006508251A (en) Cold briquetting and cold pelletization of mineral fines using a hydraulic binder containing iron.
JP2015137379A (en) Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
KR102630996B1 (en) Iron ore fine aggregate manufacturing process and agglomeration products
JP2013082972A (en) Method for producing carbon-containing nonfired agglomerated ore
JP6326074B2 (en) Carbon material interior ore and method for producing the same
AU2017388174B2 (en) Sintered ore manufacturing method
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
KR101927710B1 (en) Mill scale briquet with reinforced strength
JP2009030114A (en) Method for producing ore raw material for blast furnace
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
CN106591571A (en) Method for preparing iron-containing pellets through red mud
JP2003129140A (en) Method for manufacturing molded article designed for reducing rotary hearth
JP6996268B2 (en) Charcoal interior ore and its manufacturing method
EP3856939A1 (en) Solid agglomerated product based on iron oxides and corresponding production method
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
TW201908497A (en) Carbonaceous containing ore and method of manufacturing the same
WO2021029008A1 (en) Carbon composite ore and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170315

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171012

R150 Certificate of patent or registration of utility model

Ref document number: 6228149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350