JP5000402B2 - Method for producing carbon-containing unfired pellets for blast furnace - Google Patents

Method for producing carbon-containing unfired pellets for blast furnace Download PDF

Info

Publication number
JP5000402B2
JP5000402B2 JP2007174163A JP2007174163A JP5000402B2 JP 5000402 B2 JP5000402 B2 JP 5000402B2 JP 2007174163 A JP2007174163 A JP 2007174163A JP 2007174163 A JP2007174163 A JP 2007174163A JP 5000402 B2 JP5000402 B2 JP 5000402B2
Authority
JP
Japan
Prior art keywords
carbon
blast furnace
iron
mass
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007174163A
Other languages
Japanese (ja)
Other versions
JP2008095177A (en
Inventor
謙一 樋口
洋平 伊藤
高志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007174163A priority Critical patent/JP5000402B2/en
Publication of JP2008095177A publication Critical patent/JP2008095177A/en
Application granted granted Critical
Publication of JP5000402B2 publication Critical patent/JP5000402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、製鉄プロセスにおいて発生する焼結ダスト、高炉ダストなどの含鉄ダストや、焼結用粉状鉄鉱石より粒度が小さいペレットフィード(ペレット用原料)等の微粉状鉄鉱石などからなる微粉状鉄含有原料と、微粉状炭材を造粒し製造する、高炉用含炭非焼成ペレットの製造方法に関する。   The present invention is a fine powder comprising iron-containing dust such as sintered dust and blast furnace dust generated in the iron making process, and fine iron ore such as pellet feed (raw material for pellets) having a smaller particle size than the powder iron ore for sintering. The present invention relates to a method for producing a carbon-containing unfired pellet for a blast furnace, in which an iron-containing raw material and a pulverized carbon material are granulated and produced.

現在の製鉄プロセスにおける高炉用鉄原料は、約2〜3mmの平均粒度の粉状鉄鉱石を主要な鉄含有原料として用い、石灰石、珪石などの副原料、粉コークス、無煙炭などの炭材を配合し、さらに水分を添加して混合、造粒して擬似粒子とした後、焼結機で原料中の炭材を熱源として加熱、焼結して得られる焼結鉱が主流を占めている。   The iron raw material for blast furnaces in the current iron making process uses powdered iron ore with an average particle size of about 2 to 3 mm as the main iron-containing raw material, and contains auxiliary materials such as limestone and silica, and carbonaceous materials such as powdered coke and anthracite. In addition, sintered ore obtained by adding water and mixing and granulating into pseudo particles and then heating and sintering the carbonaceous material in the raw material with a sintering machine as the heat source dominates.

この方法における焼結原料の造粒物は、主として粒径が約1mm以上の粗粒子を核として、この周囲に、粒径が約0.5〜1mm未満の微粉粒子が付着した擬似粒子となる。この擬似粒子は、焼結機内の焼結原料の通気性を維持し、焼結反応を良好に進行させるために、焼結原料の装入時や、さらに、加熱・乾燥され、焼結されるまでの間に崩壊しないだけの冷間圧潰強度が要求される。   The granulated product of the sintered raw material in this method is a pseudo particle in which fine particles having a particle size of less than about 0.5 to 1 mm are attached around the coarse particles having a particle size of about 1 mm or more as a core. . In order to maintain the breathability of the sintering raw material in the sintering machine and to advance the sintering reaction satisfactorily, these pseudo particles are heated and dried and sintered in order to advance the sintering reaction well. The cold crushing strength that does not collapse is required.

通常、焼結原料を擬似粒子に造粒するためには、ドラムミキサーを用いて、焼結原料の混合とともに造粒を行うことが多い。   Usually, in order to granulate a sintering raw material into pseudo particles, granulation is often performed together with mixing of the sintering raw material using a drum mixer.

一方、製鉄プロセスにおいて多量に発生する焼結ダスト、高炉ダストなどを集塵機などで回収した含鉄ダスト、さらに、スラッジ、スケール粉等の微粉のダスト(これらは、一般に、製鉄ダストと称する)や、ペレットフィード(ペレット用原料)などの微粉状原料も、鉄含有原料として用いられる。   On the other hand, iron-containing dust collected by a dust collector, etc., which is a large amount of sintered dust, blast furnace dust, etc. generated in the iron making process, fine dust such as sludge and scale powder (these are generally called iron making dust), pellets Fine powder materials such as feed (raw materials for pellets) are also used as iron-containing materials.

しかし、これらの微粉原料は、粒径0.25mm以下の微粉粒子が全体の80%以上を占めるため、これらを焼結原料として用いる場合には、微粉粒子による原料充填層の通気性悪化、生産性低下などの問題が生じやすい。   However, in these fine powder raw materials, fine powder particles having a particle size of 0.25 mm or less occupy 80% or more of the total, so when these are used as a sintering raw material, the permeability of the raw material packed layer is deteriorated due to the fine powder particles, production It is easy to cause problems such as deterioration of performance.

このような微粉状原料を主要な鉄含有原料として焼結する場合には、予め混合機を用いて鉄含有原料と副原料に水分を添加し混合した後、さらに、ドラムミキサーに比べて造粒強度が高いディスクペレタイザーなどの造粒機を用いて、粒径0.25mm以下の微粉粒子を主体する球状のペレットを製造した後、燃焼ガスなどを熱源とする外部加熱型焼結機を用いて焼結を行う。   When sintering such a fine powdery raw material as a main iron-containing raw material, after adding water to the iron-containing raw material and auxiliary raw materials and mixing them in advance using a mixer, granulation is further performed compared to a drum mixer. Using a granulator such as a disk pelletizer with high strength to produce spherical pellets mainly composed of fine particles with a particle size of 0.25 mm or less, and then using an external heating type sintering machine that uses combustion gas as a heat source Sintering is performed.

また、微粉状原料は、造粒してペレットにした後、養生(生石灰などの水和反応や炭酸塩化処理)により造粒物の強度を高めた後、焼結せずに、そのまま、高炉用鉄原料として使用する非焼成型の塊成鉱も古くから知られている。   In addition, after the granulated raw material is granulated into pellets, the strength of the granulated material is increased by curing (hydration reaction or carbonation treatment of quick lime etc.), and then it is used as it is for blast furnace without sintering. Non-calcined agglomerates used as iron raw materials have also been known for a long time.

非焼成型塊成鉱の製造方法としては、高炉2次灰、転炉ダスト、焼結ダスト、スラリーなどの製鉄所で発生する製鉄ダストをペレットに造粒する際に、ダストの粒度分布を適正範囲に調整し、生石灰、セメントなどの結合材(バインダー)と5〜15%の水分を添加し、ディスクペレタイザー等により造粒しペレットを製造した後、ヤード堆積等により数日間養生(CaO系バインダーの水和反応、炭酸塩化反応の促進)して硬化させるコールドボンドペレットの製造方法が知られている(例えば、特許文献1、参照)。   As a method for producing non-calcined agglomerated ore, the particle size distribution of dust is appropriate when pelletizing iron dust generated at steelworks such as blast furnace secondary ash, converter dust, sintered dust, and slurry. Adjust to the range, add binder (binder) such as quick lime and cement and 5-15% moisture, granulate with a disk pelletizer, etc. to produce pellets, then cure for several days by yard deposition (CaO binder) There is known a method for producing cold bond pellets that are cured by promoting hydration reaction and carbonation reaction (for example, see Patent Document 1).

また、近年、高炉操業における還元材比の低減を目的とし、上記非焼成塊成鉱プロセスを利用して、炭素含有量の高い非焼成塊成鉱を製造する方法も提案されている(例えば、特許文献2〜5、参照)。   In recent years, for the purpose of reducing the ratio of reducing materials in blast furnace operation, a method for producing a non-fired agglomerate having a high carbon content using the non-fired agglomerate process has also been proposed (for example, Patent Documents 2 to 5).

例えば、含酸化鉄原料とカーボン系炭材を配合しバインダーを加えて混錬、成型、養生してなるカーボン内装非焼成塊成鉱において、鉄鉱石類の酸化鉄を還元し金属鉄とするために必要な理論炭素量の80〜120%のカーボンを含有し、かつ、常温での圧潰強度7850kN/m2(80kg/cm2)以上となるようにバインダーを選択して混合、成型、養生してなることを特徴とする高炉用のカーボン内装非焼成塊成鉱およびその製造方法が提案されている(例えば、特許文献2、参照)。 For example, to reduce iron oxide in iron ore to metallic iron in a carbon interior non-fired agglomerate that is made by mixing iron-containing iron oxide raw material and carbon-based carbonaceous material and kneading, molding and curing by adding a binder. The binder is selected, mixed, molded, and cured so that it contains 80 to 120% of the theoretical amount of carbon necessary for the process, and the crushing strength at room temperature is 7850 kN / m 2 (80 kg / cm 2 ) or higher. A carbon interior non-fired agglomerated ore for blast furnace and a method for producing the same have been proposed (see, for example, Patent Document 2).

この方法によれば、一般に還元ガスの温度とガス組成(ηCO=CO2/(CO+CO2))との関係から、酸化鉄の還元反応の進行が制約される高炉シャフト部の熱保存帯と還元反応平衡帯においても、900〜1100℃の温度領域で、非焼成塊成鉱中の酸化鉄は、内装するカーボンにより還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減効果が期待できる。 According to this method, the thermal preservation zone and reduction of the blast furnace shaft part, in which the progress of the reduction reaction of iron oxide is generally restricted from the relationship between the temperature of the reducing gas and the gas composition (ηCO = CO 2 / (CO + CO 2 )). Even in the reaction equilibrium zone, in the temperature range of 900 to 1100 ° C., the iron oxide in the uncalcined agglomerate undergoes a reduction reaction due to the carbon incorporated therein, and as a result, the reduction rate is improved, so the ratio of reducing materials during blast furnace operation The reduction effect can be expected.

しかしながら、この方法では、非焼成塊成鉱に内装するC含有量は、酸化鉱を還元し金属鉄とするために必要な理論炭素量(以下、C当量ということもある)で120%以下(全カーボン含有量(T.C)は約15質量%以下に相当する)に制限され、これ以上C含有量を増加すると、非焼成塊成鉱の冷間圧潰強度および熱間強度が損なわれるという問題があった。   However, in this method, the C content contained in the unfired agglomerated mineral is 120% or less in terms of the theoretical carbon amount (hereinafter sometimes referred to as C equivalent) necessary for reducing the oxide ore into metallic iron. The total carbon content (TC) is limited to about 15% by mass or less), and if the C content is further increased, the cold crushing strength and hot strength of the unfired agglomerated minerals are impaired. There was a problem.

さらに、この方法では、炭材を内装した非焼成塊成鉱の冷間圧潰強度を維持するために、生石灰に代えて、早強ポルトランドセメントなどのセメント系のバインダーを使用するため、バインダーの添加量を増加させると吸熱反応であるセメントの脱水反応により高炉内のシャフト部での昇温速度が低下するだけでなく、低温での還元停滞域(低温熱保存帯)を発生させ、高炉用鉄原料として装入する焼結鉱の高炉内の還元粉化を助長させてしまう点が問題であった。   Furthermore, in this method, in order to maintain the cold crushing strength of the unfired agglomerated minerals with the carbonaceous material, a cement-based binder such as early-strength Portland cement is used instead of quick lime. Increasing the amount not only reduces the rate of temperature rise at the shaft in the blast furnace due to the dehydration reaction of cement, which is an endothermic reaction, but also generates a reduction stagnation zone (low temperature thermal preservation zone) at low temperatures, which causes iron for blast furnaces. The problem was that it promoted reducing powderization in the blast furnace of the sintered ore charged as a raw material.

また、炭材と酸化鉄を主体とする鉄鉱石からなる炭材内装ペレットであって、炭材の軟化溶融時の最高流動度と鉄鉱石の10μm以下の酸化鉄粒子の割合との関係を規定した還元性と還元後の強度に優れた炭材内装ペレットが提案されている(例えば、特許文献3、参照)。   In addition, it is a coal interior pellet made of iron ore mainly composed of carbon material and iron oxide, and defines the relationship between the maximum fluidity during softening and melting of the carbon material and the ratio of iron oxide particles of 10 μm or less in the iron ore. Carbonaceous material-incorporated pellets excellent in reducing properties and strength after reduction have been proposed (see, for example, Patent Document 3).

この方法によれば、ペレット中の炭材が260〜550℃の温度域で軟化溶融、固化することを利用し、酸化鉄粒子間の空隙に溶融した炭材を侵入、固化させ、炭材と酸化鉄の接触面積を大きくし、熱伝導性を改善して還元効率を高めるとともに、酸化鉄粒子同士の結合を強めることにより、還元後の強度(熱間強度)も向上させることができる。   According to this method, the carbonaceous material in the pellets is softened and melted and solidified in a temperature range of 260 to 550 ° C., and the molten carbonaceous material enters and solidifies into the voids between the iron oxide particles. By increasing the contact area of iron oxide, improving thermal conductivity to increase reduction efficiency, and strengthening the bond between iron oxide particles, the strength after reduction (hot strength) can also be improved.

しかし、この方法により、炭材内装ペレットの被還元性と還元後の強度(熱間強度)を向上させるためには、最高流動度の高い石炭類を炭材として利用しなければならないため、省エネルギー、省資源を前提とした高炉操業時の還元材比の低減という目的の点から好ましい方法とは言い難い。   However, in order to improve the reducibility and strength after reduction (hot strength) of the carbon material-containing pellets by this method, coal with the highest fluidity must be used as the carbon material. It is difficult to say that this is a preferable method from the viewpoint of reducing the reducing material ratio during blast furnace operation on the premise of saving resources.

また、粉鉱石と、揮発分が16%以上、ギーセラー流動度が20DDPM以上の粘結炭(炭材)を混合し、260〜550℃の温度域で成形圧20〜150MPaで熱間成形した後、成形温度範囲で5分間以上の脱ガス処理を行うことを特徴とする見掛け密度が2.3g/cm3以上である還元鉄用塊成化物も提案されている(例えば、特許文献4、参照)。 Also, after mixing powdered ore and caking coal (carbon material) having a volatile content of 16% or more and a Gieseler fluidity of 20 DDPM or more and hot forming at a molding pressure of 20 to 150 MPa in a temperature range of 260 to 550 ° C. An agglomerated product for reduced iron having an apparent density of 2.3 g / cm 3 or more, characterized by performing a degassing treatment for 5 minutes or more in a molding temperature range (see, for example, Patent Document 4). ).

この方法によれば、炭材が軟化溶融、固化する260〜550℃の温度域で熱間成形して、酸化鉄粒子どうしを炭材で強固に連結し、見掛け密度が2.3g/cm3以上の塊成化物とした後、脱ガス処理により炭材からの揮発分を抜くことにより、塊成化物の強度を高め、還元中の塊成化物の膨れによる割れを防止するものである。 According to this method, hot molding is performed in a temperature range of 260 to 550 ° C. where the carbon material is softened, melted and solidified, and the iron oxide particles are firmly connected with the carbon material, and the apparent density is 2.3 g / cm 3. After the above-mentioned agglomerated material is obtained, the volatile matter from the carbonaceous material is removed by degassing, thereby increasing the strength of the agglomerated material and preventing cracking due to swelling of the agglomerated material during reduction.

しかし、この方法は、熱間ブリケット成型や、脱ガス処理を必要とするため、製造時のエネルギー消費が高く、製造コストが高くなる点で経済的に不利な方法であり、また、造粒法に比べて塊成物の密度が高くなるため、塊成物中の炭材のガス化や酸化鉄の還元反応で発生するCO、CO2ガスによる爆裂(バーステイング)が発生しやすい。 However, since this method requires hot briquette molding and degassing treatment, it is an economically disadvantageous method in terms of high energy consumption during production and high production costs. Since the density of the agglomerate is higher than that of, explosions (bursting) due to CO and CO 2 gas generated by the gasification of the carbonaceous material in the agglomerate and the reduction reaction of iron oxide are likely to occur.

また、粒径が3〜25mmの炭材を核とし、核を内包する外周層を粒径が1mm以下の鉄原料と炭材との混合物とし、核としての炭材の体積分率が塊成鉱全体の0.2〜30vol%で、外周層中の炭材の含有率が5〜25wt%であり、塊成鉱全体の全カーボン含有量が25〜35質量%と高い、2重構造の炭材内装塊成物が提案されている(例えば、特許文献5、参照)。   Also, a carbon material having a particle size of 3 to 25 mm is used as a core, and an outer peripheral layer including the core is a mixture of an iron raw material and a carbon material having a particle size of 1 mm or less, and the volume fraction of the carbon material as the core is agglomerated. It is 0.2-30 vol% of the whole ore, the content rate of the carbonaceous material in the outer peripheral layer is 5-25 wt%, and the total carbon content of the entire agglomerated ore is as high as 25-35 mass%. A carbonaceous material agglomerate has been proposed (see, for example, Patent Document 5).

この技術によれば、外周層中に含有する粒径が1mm以下の炭材により酸化鉄を還元し、外周層が融液化した場合に、核としての炭材を浸炭源として機能させることにより、高炉内での被還元性を改善する他、浸炭作用による溶銑の滴下挙動を改善し、高炉操業時の燃料比低減と融着帯部の通気抵抗を低減することができる。   According to this technique, when reducing the iron oxide with a carbonaceous material having a particle size of 1 mm or less contained in the outer peripheral layer, and the outer peripheral layer is melted, by making the carbonaceous material as a nucleus function as a carburizing source, In addition to improving the reducibility in the blast furnace, the dripping behavior of the hot metal due to the carburizing action can be improved, and the fuel ratio can be reduced during the blast furnace operation and the ventilation resistance of the cohesive zone can be reduced.

しかし、この粒径および炭材と酸化物の組成が異なる2重構造からなり、全カーボン含有量が25質量%以上と高い塊成物は、冷間の磨耗強度が低くなるという問題がある。また、このような特殊な2重構造を有する塊成鉱を製造するためには、製造工程が複雑となり、強度維持のために多量のバインダーが必要となるなど、製造時の生産性やコストの点から不利な方法であった。   However, the agglomerates having a double structure in which the particle size and the composition of the carbonaceous material and the oxide are different and the total carbon content is as high as 25% by mass or more have a problem that the cold wear strength is low. In addition, in order to manufacture such agglomerates having a special double structure, the manufacturing process becomes complicated, and a large amount of binder is required to maintain strength. It was a disadvantageous method.

以上のように、従来の含炭非焼成ペレットは、高炉用原料として要求される冷間圧潰強度50kg/cm2以上を維持するために、炭素含有量を15質量%(炭素当量で1.2に相当)に制限せざるを得なかったため、上記ペレット中の酸化鉄の直接還元は十分に促進できても、上記ペレット以外の焼結鉱などの主要な高炉用鉄含有原料の還元を十分に促進することはできなかった。 As described above, the conventional carbon-containing non-fired pellets have a carbon content of 15% by mass (1.2% in terms of carbon equivalent) in order to maintain the cold crushing strength of 50 kg / cm 2 or more required as a blast furnace raw material. Therefore, the direct reduction of iron oxide in the pellets can be sufficiently promoted, but the reduction of major blast furnace iron-containing raw materials such as sintered ore other than the pellets is sufficient. It could not be promoted.

また、従来法によりポルトランドセメントなどの水硬性バインダーを多量に添加することで、含炭非焼成ペレットの冷間圧潰強度は、ある程度まで向上できるが、高炉内の還元温度域で、上記バインダーは脱水反応を起こすため、十分な熱間強度を維持することはできなかった。   Also, by adding a large amount of hydraulic binder such as Portland cement by the conventional method, the cold crushing strength of the carbon-containing unfired pellets can be improved to some extent, but the binder is dehydrated in the reduction temperature range in the blast furnace. Due to the reaction, sufficient hot strength could not be maintained.

したがって、比較的安価でかつ単純な製造方法を用いて、含炭非焼成ペレットと高炉用鉄含有原料の被還元率を向上し、高炉操業時の還元材比を大幅に低減するために、十分な炭素含有量を有し、かつ、冷間強度とともに還元温度域での熱間強度(還元時の強度)にも優れた炭材内装非焼成塊成鉱の製造方法の開発が望まれている。   Therefore, in order to improve the reduction rate of carbon-containing unfired pellets and iron-containing raw materials for blast furnace using a relatively inexpensive and simple manufacturing method, and to greatly reduce the ratio of reducing material during blast furnace operation, Development of a method for producing unfired agglomerates of carbonaceous materials with an excellent carbon content and excellent cold strength as well as hot strength in the reduction temperature range (strength during reduction) is desired. .

特開昭53−130202号公報JP-A-53-130202 特開2003−342646号公報JP 2003-342646 A 特開2000−160219号公報JP 2000-160219 A 特開平11−92833号公報JP 11-92833 A 特開平8−199249号公報JP-A-8-199249

本発明は、上記従来技術の現況に鑑み、比較的安価で簡易な製造方法を用いて、高炉で使用する際に、含炭非焼成ペレットだけでなく、それ以外の主要な高炉用鉄含有原料の還元を促進し、高炉操業時の還元材比を大幅に低減できるだけの十分な炭素含有量を有し、かつ、高炉用原料として要求される冷間圧潰強度50kg/cm2以上を維持するとともに、従来に比べて、還元温度域での熱間強度に優れた含炭非焼成ペレットの製造方法を提供することを課題とする。 In view of the present state of the prior art, the present invention uses not only carbon-containing unfired pellets but also other major iron-containing raw materials for blast furnaces when used in a blast furnace using a relatively inexpensive and simple manufacturing method. Has sufficient carbon content to greatly reduce the ratio of reducing material during blast furnace operation and maintains the cold crushing strength of 50 kg / cm 2 or more required as a blast furnace raw material. It is an object of the present invention to provide a method for producing a carbon-containing non-fired pellet that is superior in hot strength in the reduction temperature range as compared to the conventional case.

本発明者らは、含炭非焼成ペレットを構成する原料粒子の充填構造、高炉内の還元温度域での原料粒子の挙動(炭材、バインダーの熱分解・ガス化、および、酸化鉄粒子の還元状態)と、上記ペレットの冷間強度および還元温度域での熱間強度との関係について、実験などにより鋭意検討した。   The present inventors have a structure of filling raw material particles constituting carbon-containing unfired pellets, behavior of raw material particles in a reduction temperature range in a blast furnace (carbon material, pyrolysis and gasification of binder, and iron oxide particles). The relationship between the reduction state) and the cold strength of the pellets and the hot strength in the reduction temperature range was studied intensively through experiments and the like.

その結果、含炭非焼成ペレット中の原料粒子のうちで、特に、炭材の粒度(質量基準のメジアン径)および炭素含有量が、含炭非焼成ペレットの冷間強度とともに、還元温度域での熱間強度に大きく影響することが解った。   As a result, among the raw material particles in the carbon-containing non-fired pellets, in particular, the carbonaceous material particle size (mass-based median diameter) and carbon content are reduced in the reduction temperature range along with the cold strength of the carbon-containing non-fired pellets. It has been found that this greatly affects the hot strength.

本発明は、この知見に基づき上記課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。   The present invention has been made to solve the above problems based on this finding, and the gist of the present invention is as follows.

(1)鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材に、水硬性バインダーを添加し、水分を調整しつつ混合、造粒することにより、冷間圧潰強度50kg/cm2以上の高炉用含炭非焼成ペレットを製造する方法であって、全原料の粒度を2mm以下とし、全原料中の炭素含有割合(T.C)が15〜25質量%となるように前記微粉状炭材の配合割合を調整し、かつ、該微粉状炭材のメジアン径を100〜150μmとすることを特徴とする高炉用含炭非焼成ペレットの製造方法。 (1) Add a hydraulic binder to a finely divided iron-containing raw material containing 40 mass% or more of iron and a finely divided carbonaceous material containing 10 mass% or more of carbon, and mix and granulate while adjusting moisture. This is a method for producing a blast furnace carbon-containing unfired pellet having a cold crushing strength of 50 kg / cm 2 or more, wherein the particle size of all raw materials is 2 mm or less, and the carbon content ratio (TC) in all raw materials is Adjusting the blending ratio of the pulverized carbon material so as to be 15 to 25% by mass, and the median diameter of the pulverized carbon material is 100 to 150 μm, Production method.

(2)前記水硬性バインダーを5〜15質量%添加し、水分が5〜15質量%となるように調整しつつ造粒することを特徴とする上記(1)記載の高炉用含炭非焼成ペレットの製造方法。   (2) Addition of 5 to 15% by mass of the hydraulic binder, and granulate while adjusting the water content to 5 to 15% by mass. Pellet manufacturing method.

(3)前記微粉状炭材として、高炉一次灰、コークスダスト、および、粉コークスのいずれか1種または2種以上を用いることを特徴とする上記(1)または(2)記載の高炉用含炭非焼成ペレットの製造方法。   (3) The blast furnace inclusion according to (1) or (2) above, wherein any one or more of blast furnace primary ash, coke dust, and powder coke are used as the finely divided carbonaceous material. A method for producing charcoal non-fired pellets.

(4)前記微粉状鉄含有原料として、焼結ダスト、および、微粉状鉄鉱石の1種または2種以上を用いることを特徴とする上記(1)〜(3)のいずれかに記載の高炉用含炭非焼成ペレットの製造方法。   (4) The blast furnace according to any one of (1) to (3) above, wherein one or more of sintered dust and fine iron ore are used as the fine iron-containing material. Of manufacturing carbon-containing non-fired pellets.

(5)前記微粉状鉄含有原料中に微粉状鉄鉱石を配合し、該鉄鉱石中に粒径10μm以下の超微粒子が全原料に対する割合で3.5質量%以上含有することを特徴とする上記(1)〜(4)のいずれかに記載の高炉用含炭非焼成ペレットの製造方法。   (5) The pulverized iron-containing raw material is mixed with pulverized iron ore, and ultrafine particles having a particle size of 10 μm or less are contained in the iron ore in a proportion of 3.5% by mass or more with respect to the total raw material. The manufacturing method of the carbon-containing non-baking pellet for blast furnaces in any one of said (1)-(4).

(6)前記全原料中の炭素含有割合(T.C)が15〜20質量%となるように、前記微粉状炭材の配合割合を調整することを特徴とする上記(1)〜(5)のいずれかに記載の高炉用含炭非焼成ペレットの製造方法。   (6) The said (1)-(5) characterized by adjusting the mixture ratio of the said fine powder carbon material so that the carbon content rate (TC) in the said all raw materials may be 15-20 mass%. ) For producing a carbon-containing non-fired pellet for a blast furnace.

本発明によれば、高炉で使用する際に、含炭非焼成ペレットだけでなく、焼結鉱などの主要な高炉用鉄含有原料の被還元率を向上するために十分な炭素含有量を有し、かつ、高炉用原料として要求される冷間圧潰強度50kg/cm2以上を維持するとともに、従来に比べて、還元温度域での熱間強度に優れた含炭非焼成ペレットを製造することができる。 According to the present invention, when used in a blast furnace, it has a sufficient carbon content to improve the reduction rate of not only carbon-containing unfired pellets but also main blast furnace iron-containing raw materials such as sintered ore. In addition, while maintaining the cold crushing strength of 50 kg / cm 2 or more required as a raw material for blast furnaces, the manufacture of carbon-containing non-fired pellets that are superior in hot strength in the reduction temperature range as compared with the past. Can do.

したがって、本発明の適用により得られた含炭非焼成ペレットを高炉用鉄含有原料の一部として使用することにより、高炉操業時の還元材比(コークス比)を、大幅に低減することができる。   Therefore, by using the carbon-containing unfired pellets obtained by applying the present invention as a part of the iron-containing raw material for blast furnace, the reducing material ratio (coke ratio) during blast furnace operation can be greatly reduced. .

さらに、焼成プロセスに比べて、省エネルギー化、低CO2化が可能となる非焼成ペレットのプロセスを用いて、比較的安価で簡易な方法により、製鉄プロセスで発生したダストを、鉄含有原料および炭材としてリサイクル処理できるため、工業的および社会的な貢献は多大なものである。 Furthermore, using the non-fired pellet process that enables energy saving and lower CO 2 compared to the firing process, the dust generated in the iron making process can be reduced by using a relatively inexpensive and simple method. Since it can be recycled as a material, industrial and social contributions are significant.

本発明の詳細について説明する。   Details of the present invention will be described.

本発明の高炉用含炭非焼成ペレットの製造方法は、鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材に、水硬性バインダーを添加し、水分を調整しつつ造粒することを前提とする。   The method for producing a carbon-containing non-fired pellet for a blast furnace according to the present invention includes adding a hydraulic binder to a finely divided iron-containing raw material containing 40 mass% or more of iron and a finely divided carbonaceous material containing 10 mass% or more of carbon. And granulation while adjusting the moisture.

鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材は、特に限定する必要はなく、例えば、表1および図1に示す、製鉄プロセスで使用される原料の他、製鉄プロセスの各製造工程で発生する製鉄ダストを利用することができる。   The pulverized iron-containing raw material containing 40% by mass or more of iron and the pulverized carbon material containing 10% by mass or more of carbon are not particularly limited. For example, in the iron making process shown in Table 1 and FIG. In addition to the raw materials used, iron-making dust generated in each manufacturing step of the iron-making process can be used.

表1と図1に、各種の微粉状鉄含有原料および微粉状炭材の主要成分と粒度分布を示す。   Table 1 and FIG. 1 show the main components and particle size distribution of various pulverized iron-containing raw materials and pulverized carbonaceous materials.

なお、表中の原料粒度は質量基準のメジアン径で表した。質量基準のメジアン径は、原料粒子の累積質量分布における累積値(質量%)が50%に相当する原料の粒子径として定義される。   In addition, the raw material particle size in a table | surface was represented by the mass median diameter. The mass-based median diameter is defined as the particle diameter of the raw material corresponding to a cumulative value (mass%) of 50% in the cumulative mass distribution of the raw material particles.

一般に、原料の粒度分布特性は、質量平均径が使用されることが多いが、同一の粒度分布特性の原料であっても、階級のとり方によって値が異なるため、本発明では、特に、微粉領域の精度ある質量基準のメジアン径を、原料粒度の指標として採用した。   In general, the particle size distribution characteristic of the raw material is often a mass average diameter, but even in the case of a raw material having the same particle size distribution characteristic, the value varies depending on how to take the class. A mass-based median diameter with high accuracy was adopted as an index of raw material particle size.

本発明では、表1および図1に示す焼結ダストおよび微粉状鉄鉱石を、鉄分を40質量%以上含有する微粉状鉄含有原料として使用し、高炉一次灰、コークスダスト、および、粉コークスを、炭素分を10質量%以上含有する微粉状炭材として使用することができる。   In the present invention, the sintered dust and fine iron ore shown in Table 1 and FIG. 1 are used as a fine powder iron-containing raw material containing 40% by mass or more of iron, and blast furnace primary ash, coke dust, and fine coke are used. It can be used as a finely divided carbonaceous material containing 10% by mass or more of carbon.

また、表1および図1に示すように、各製鉄ダスト、各製鉄原料によって粒度が異なるため、後述する全体原料の粒度、および、微粉状炭材の粒度(質量基準のメジアン径)を所定範囲に調整するために、各製鉄ダスト、各製鉄原料の配合量を調整したり、さらには、篩い分けや、破砕、水洗などにより、粒度を調整することが好ましい。   Further, as shown in Table 1 and FIG. 1, since the particle size varies depending on each iron-making dust and each iron-making raw material, the particle size of the whole raw material and the particle size (mass-based median diameter) of the pulverized carbonaceous material described later are within a predetermined range. In order to adjust the particle size, it is preferable to adjust the blending amount of each ironmaking dust and each ironmaking raw material, and further adjust the particle size by sieving, crushing, washing with water and the like.

造粒設備は、特に限定する必要はなく、原料の混錬、加水、造粒、成品篩の機能を有するものであればよく、混錬機、造粒機などは、特に限定されるものではない。   The granulation equipment is not particularly limited, and may be any material having functions of kneading raw materials, hydration, granulation, and product sieving. Kneading machines, granulating machines, etc. are not particularly limited. Absent.

なお、本発明において、水硬性バインダーとは、原料中に含有する水分や添加水分との水和反応により硬化することにより造粒物の冷間圧潰強度を高める機能を有するバインダーを意味し、このバインダーの種類は、特に限定されるものではない。   In the present invention, the hydraulic binder means a binder having a function of increasing the cold crushing strength of the granulated product by curing by a hydration reaction with moisture contained in the raw material or added moisture. The kind of binder is not specifically limited.

このような水硬性バインダーは、一般的に用いられる高炉水砕スラグを主成分とする微粉末とアルカリ刺激剤からなる時効性バインダーや、ポルトランドセメント、ベントナイトなどが挙げられ、本発明においても、これらを用いることができる。   Examples of such hydraulic binders include aging binders composed of fine powder mainly composed of blast furnace granulated slag and alkali stimulants, Portland cement, bentonite, and the like in the present invention. Can be used.

本発明は、高炉操業時の還元材比を大幅に低減できるだけの炭素含有量:15質量%(炭素当量で1.2に相当)以上で、冷間圧潰強度50kg/cm2以上を有するとともに、従来に比べて、還元温度域での熱間強度に優れた含炭非焼成ぺレットを製造することを第2の前提とする。 The present invention has a carbon content that can greatly reduce the ratio of reducing material during blast furnace operation: 15 mass% (corresponding to 1.2 in terms of carbon equivalent) or more, a cold crushing strength of 50 kg / cm 2 or more, The second premise is to produce a carbon-containing non-fired pellet that is superior in hot strength in the reduction temperature range as compared to the conventional case.

従来から、含炭非焼成ペレット中の酸化鉄を還元するのに必要な理論上の炭素量に対する炭素含有量(T.C)の比を「炭素当量」と定義し、炭素による酸化鉄の還元度の目安にしている。   Conventionally, the ratio of the carbon content (TC) to the theoretical carbon amount required to reduce iron oxide in a carbon-containing unfired pellet is defined as “carbon equivalent”, and reduction of iron oxide by carbon It is a guideline for the degree.

本発明の上記炭素含有量:15質量%以上は、炭素当量:1.2以上に相当し、高炉で使用する際に、非焼成ペレット中の酸化鉄を還元し、さらに、余剰カーボンのガス化により、非焼成ペレット以外の焼結鉱などの高炉用鉄含有原料の還元を促進することも期待できる。   The carbon content of the present invention: 15% by mass or more corresponds to a carbon equivalent of 1.2 or more. When used in a blast furnace, the iron oxide in the non-fired pellets is reduced, and the excess carbon is gasified. Thus, it can be expected that the reduction of iron-containing raw materials for blast furnaces such as sintered ore other than non-fired pellets will be promoted.

しかし、前述したように、従来の造粒方法によれば、特殊な造粒やバインダーを多量に添加しない限りは、含炭非焼成塊成鉱の冷間圧潰強度は大きく低下するため、炭素含有量を15質量%(炭素当量で1.2に相当)以上に増加することはできなかった。   However, as mentioned above, according to the conventional granulation method, unless a large amount of special granulation or binder is added, the cold crushing strength of the carbon-containing unfired agglomerated ore greatly decreases, The amount could not be increased beyond 15% by mass (corresponding to 1.2 in terms of carbon equivalent).

また、ポルトランドセメントなどの水硬性バインダーを多量に添加することで、含炭非焼成ペレットの冷間圧潰強度は、ある程度まで向上できるが、高炉内の還元温度域で上記バインダーは、脱水反応を起こすため、十分な熱間強度を維持することはできない。   Moreover, by adding a large amount of a hydraulic binder such as Portland cement, the cold crushing strength of the carbon-containing non-fired pellets can be improved to some extent, but the binder causes a dehydration reaction in the reduction temperature range in the blast furnace. Therefore, sufficient hot strength cannot be maintained.

そこで、本発明者らは、冷間および還元温度域での含炭非焼成ペレットの構造および高炉内での原料粒子の挙動(炭材、バインダーの熱分解・ガス化、および、酸化鉄粒子の還元状態)と、冷間および還元温度域での強度との関係について、還元試験および圧潰強度測定により検討した。   Therefore, the present inventors have made the structure of the carbon-containing unfired pellets in the cold and reduction temperature range and the behavior of the raw material particles in the blast furnace (carbon material, pyrolysis and gasification of the binder, and iron oxide particles). The relationship between the reduction state) and the strength in the cold and reduction temperature range was examined by reduction test and crushing strength measurement.

高炉内の還元反応を荷重下で模擬できる還元試験装置を用い、高炉シャフト部の熱保存帯と還元反応平衡帯における還元ガス組成(COが36%、CO2が14%、N2が50%)および温度(900〜1100℃)とほぼ同じ条件で、炭素含有量(T.C):20質量%の含炭非焼成ペレット(炭素当量:2.0)を用いて還元試験を実施した。 Using a reduction test device that can simulate the reduction reaction in the blast furnace under load, the reducing gas composition in the thermal storage zone and reduction reaction equilibrium zone of the blast furnace shaft (CO is 36%, CO 2 is 14%, N 2 is 50% ) And temperature (900 to 1100 ° C.) under almost the same conditions, a reduction test was performed using carbon-containing non-fired pellets (carbon equivalent: 2.0) with a carbon content (TC) of 20% by mass.

含炭非焼成ペレットは、原料を混合機で5分間混合し、早強ポルトランドセメントを10質量%添加した後、混錬機で加水しながら5分間混錬し、さらに、造粒機で造粒して、生ペレットとした。試料は、この生ペレットを、さらに、室内で2週間放置(養生処理)したものを用いた。還元温度:900℃および1100℃で還元した試料を、還元試験装置から取り出し、組織を観察し、圧潰強度を測定した。   For carbon-containing non-fired pellets, the raw materials are mixed for 5 minutes with a mixer, 10% by weight of Portland cement is added, and then kneaded for 5 minutes with a kneader and then granulated with a granulator. And it was set as the raw pellet. As the sample, the raw pellet was further left in the room for 2 weeks (curing treatment). Reduction temperature: Samples reduced at 900 ° C. and 1100 ° C. were taken out from the reduction test apparatus, the structure was observed, and the crushing strength was measured.

圧潰強度の測定は、JIS M8718に準じて、試料1個に対して、規定の加圧速度で圧縮荷重を掛けることにより、破壊した時の荷重値を測定し、強度指数は、単位断面積当たりの荷重値(kg/cm2)とする。 The crushing strength is measured in accordance with JIS M8718 by measuring the load value when one sample is broken by applying a compressive load at a specified pressure rate. Load value (kg / cm 2 ).

図2に、上記試験結果に基づく、冷間および還元温度域での含炭非焼成ペレット内の各原料粒子(酸化鉄、炭材、セメント(バインダー))の状態変化の過程を模式的に示す。   FIG. 2 schematically shows the process of state change of each raw material particle (iron oxide, carbonaceous material, cement (binder)) in the carbon-containing unfired pellets in the cold and reduction temperature range based on the above test results. .

還元前の冷間における含炭非焼成ペレットの原料粒子構造は、酸化鉄粒子と炭材粒子の間隙にセメント(バインダー)が充填され、強固に結合された構造を有するため、圧壊強度50kg/cm2以上の冷間強度を維持することができる。 The raw material particle structure of the carbon-containing non-fired pellets before the reduction has a structure in which the gap between the iron oxide particles and the carbon material particles is filled with cement (binder) and is firmly bonded, so that the crushing strength is 50 kg / cm. A cold strength of 2 or more can be maintained.

なお、本発明者らの実験結果から、従来から知られるように、含炭非焼成ペレット内の炭素含有割合が過度に高くなる場合や、全原料の粒度が過度に大きくなる場合に、冷間圧潰強度が低下することを確認している。   From the experimental results of the present inventors, as conventionally known, when the carbon content ratio in the carbon-containing unfired pellets is excessively high, or when the particle size of all raw materials is excessively large, It has been confirmed that the crushing strength decreases.

所定範囲で炭素含有割合を増加することや、全原料の粒度の増大に応じてセメント(バインダー)の添加量を増加することにより、含炭非焼成ペレットの冷間強度は、ある程度まで向上する。しかし、後述するように、高炉内の高温領域では、炭素とバインダーはガス化し、空隙が形成され、熱間強度の低下の原因となるため、炭素およびバインダーの含有割合の過度の増加は好ましくない。   The cold strength of the carbon-containing unfired pellets is improved to some extent by increasing the carbon content within a predetermined range or increasing the amount of cement (binder) added in accordance with the increase in the particle size of all raw materials. However, as will be described later, in the high temperature region in the blast furnace, carbon and the binder are gasified, voids are formed, causing a decrease in hot strength, so an excessive increase in the content ratio of carbon and binder is not preferable. .

一方、高炉シャフト部の熱保存帯の下限温度に相当する還元温度:900℃では、セメントは、この温度より低温側で生じる脱水反応により消失し、その後に、空隙が形成される。   On the other hand, at a reduction temperature of 900 ° C. corresponding to the lower limit temperature of the heat preservation zone of the blast furnace shaft portion, the cement disappears due to a dehydration reaction that occurs on a lower temperature side than this temperature, and thereafter voids are formed.

また、この還元温度では、炭材のうち、粒径が大きい炭材粒子は、そのまま残留するが、粒径が小さい(約50μm以下)炭材は、比較的低温でCOにガス化し、消失するとともに、酸化鉄がCOガスによって還元される結果、生成した金属鉄同士が結合した、金属鉄のネットワーク相が形成されることが解った。   At this reduction temperature, among the carbonaceous materials, the carbonaceous material particles having a large particle size remain as they are, but the carbonaceous material having a small particle size (about 50 μm or less) is gasified to CO at a relatively low temperature and disappears. At the same time, it was found that as a result of the reduction of iron oxide by CO gas, a network phase of metallic iron in which the produced metallic irons are bonded to each other is formed.

この還元温度では、冷間において酸化鉄と炭素を結合していたセメント(バインダー)が消失しているにもかかわらず、圧潰強度は約11kg/cm2であり、高炉内で装入物の荷重条件での限界圧潰強度:10kg/Piece(粒径13mmでは7kg/cm2に相当)(例えば、鉄と鋼、72(1986)、p.S980、参照)を上回る十分な強度を維持している。 At this reduction temperature, the crushing strength is about 11 kg / cm 2 despite the disappearance of the cement (binder) that binds iron oxide and carbon in the cold state. Limiting crush strength under conditions: Sufficient strength exceeding 10 kg / Piece (equivalent to 7 kg / cm 2 for a particle size of 13 mm) (for example, iron and steel, 72 (1986), p. S980, see)) .

還元温度:900℃における、粒径が小さい(約50μm以下)炭材による酸化鉄の還元反応によって形成される金属鉄同士のネットワーク相は、酸化物のような空孔の移動や陰イオンの拡散を伴わずに、極めて早い拡散速度で、斑点状の金属鉄同士が固相拡散結合することにより形成されるものと考えられる。   Reduction temperature: At 900 ° C., the network phase of metallic iron formed by the reduction reaction of iron oxide with a carbonaceous material with a small particle size (about 50 μm or less) is the movement of vacancies like oxides and diffusion of anions It is considered that the spot-like metallic irons are formed by solid-phase diffusion bonding at an extremely high diffusion rate without accompanying.

このように形成された金属鉄同士のネットワーク相は、高温状態でも、高炉内の装入物による荷重に対して十分に大きな耐性を持つため、高炉内での焼結層の軟化溶融着を防止して、通気性は大幅に改善される。また、この還元温度では、含炭非焼成ペレットの還元率は95%と、ほぼガス還元のみで酸化鉄を還元する際に到達し得る還元率に達している。   The network phase of metallic iron formed in this way has a sufficiently large resistance to the load caused by the charges in the blast furnace even at high temperatures, thus preventing the softening and fusion of the sintered layer in the blast furnace. Thus, the breathability is greatly improved. Further, at this reduction temperature, the reduction rate of the carbon-containing non-fired pellets reaches 95%, which is a reduction rate that can be reached when reducing iron oxide by only gas reduction.

なお、還元温度:900℃では、ペレット内の粗径(約50μm以上)の炭材は、微粉(約50μm以下)の炭材に比べて、表面積が小さい分、ガス化反応が遅れるので、ペレット内に残留する。   At a reduction temperature of 900 ° C., the carbonaceous material having a coarse diameter (about 50 μm or more) in the pellet has a smaller surface area than the carbonaceous material of fine powder (about 50 μm or less), so the gasification reaction is delayed. Remains in.

さらに、高炉シャフト部の熱保存帯の上限温度から還元反応平衡帯に相当する還元温度:1100℃では、還元温度:900℃では残留していた粒径の大きい(約50μm以上)炭材もガス化反応によって消失していた。還元温度:900℃では、含炭非焼成ペレットの還元率は、既に、95%に達しているため、この還元温度でガス化された炭材を、該ペレット以外の焼結鉱、塊鉱石などの主要な高炉用鉄含有原料の間接還元反応に利用することが期待できる。   Furthermore, from the upper limit temperature of the heat preservation zone of the blast furnace shaft portion, the reduction temperature corresponding to the reduction reaction equilibrium zone: 1100 ° C., the reduction material temperature: 900 ° C. The remaining carbon particle having a large particle size (about 50 μm or more) is also gas It disappeared by the chemical reaction. At a reduction temperature of 900 ° C., the reduction rate of the carbon-containing non-fired pellets has already reached 95%. Therefore, the carbonized material gasified at this reduction temperature is used for sintered ore other than the pellets, lump ore, etc. It can be expected to be used for the indirect reduction reaction of the main iron-containing raw materials for blast furnace.

また、この還元温度では、還元温度:900℃で形成された金属鉄同士のネットワーク相が維持され、圧潰強度は、約11kg/cm2であり、還元温度:900℃と同等の強度を維持している。 Further, at this reduction temperature, the network phase of metallic iron formed at the reduction temperature: 900 ° C. is maintained, the crushing strength is about 11 kg / cm 2 , and the strength equivalent to the reduction temperature: 900 ° C. is maintained. ing.

なお、還元温度:900℃、1100℃では、金属鉄同士のネットワーク相によって強度が維持されるが、後述するように、ペレット内の全原料に対する炭素含有割合が過度に高くなると、相対的に、酸化鉄粒子の間隔が大きくなるため、金属鉄同士のネットワーク相の形成が阻害され、還元温度:900℃、1100℃での熱間強度が低下する原因となる。   In addition, at the reduction temperatures: 900 ° C. and 1100 ° C., the strength is maintained by the network phase between the metal irons, but as will be described later, when the carbon content ratio with respect to all the raw materials in the pellet becomes excessively high, Since the interval between the iron oxide particles is increased, the formation of the network phase between the metal irons is hindered, which causes a decrease in hot strength at reduction temperatures of 900 ° C. and 1100 ° C.

また、粒径が小さい(約50μm以下)炭材のみを含有した含炭非焼成ペレットの場合は、900℃以上の比較的低温側で、酸化鉄の大部分が炭材による還元反応によって金属鉄となった後にも、炭材のガス化が進行し、ペレット内に空隙が生じるため、900〜1100℃での高温域のペレット圧潰強度は、大きく低下する。   Moreover, in the case of a carbon-containing non-fired pellet containing only a carbonaceous material having a small particle size (about 50 μm or less), most of the iron oxide is reduced to a metallic iron by a reduction reaction with the carbonaceous material at a relatively low temperature of 900 ° C. or higher. Even after this, gasification of the carbonaceous material proceeds and voids are generated in the pellet, so that the pellet crushing strength in the high temperature range at 900 to 1100 ° C. is greatly reduced.

本発明は、以上の知見に基づいてなされたものであり、全原料の粒度、全原料中の炭素含有割合(T.C)、および、微粉状炭材のメジアン径を適正化することにより、高炉用原料として要求される冷間圧潰強度:50kg/cm2以上を維持しつつ、高炉シャフト部の熱保存帯温度域(900℃以上)において、主として、細粒炭素による酸化鉄の還元反応によるペレット内の金属鉄ネットワーク相の形成を促進し、さらに、高炉シャフト部の還元反応平衡帯温度域(1100℃以下)において、ペレット内の残留(粗粒)炭素とペレット以外の主要な高炉用鉄含有原料(焼結鉱、塊鉄鉱石など)の間接還元を促進して、従来に比べて被還元性が高く、かつ、還元温度域での熱間強度に優れた含炭非焼成ペレットを製造することを技術思想とするものである。 The present invention has been made based on the above findings, and by optimizing the particle size of all raw materials, the carbon content ratio (TC) in all raw materials, and the median diameter of finely divided carbonaceous materials, Cold crushing strength required as a raw material for blast furnace: Maintaining 50 kg / cm 2 or more, mainly in the thermal preservation zone temperature range (900 ° C. or more) of the blast furnace shaft part, mainly by the reduction reaction of iron oxide by fine-grained carbon. It promotes the formation of metallic iron network phase in the pellet, and in the reduction reaction equilibrium zone temperature range (below 1100 ° C) of the blast furnace shaft, the main (main) blast furnace iron other than the residual (coarse) carbon in the pellet and the pellet Promote indirect reduction of contained raw materials (sintered ore, lump iron ore, etc.) to produce carbon-containing non-fired pellets with higher reducibility and superior hot strength in the reduction temperature range Technical thought to do It is intended to.

上記技術思想を実現するために、本発明の構成は、鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材に、水硬性バインダーを添加し、水分を調整しつつ造粒することにより、冷間圧潰強度50kg/cm2以上の高炉用含炭非焼成ペレットを製造する方法を前提とし、全原料の粒度を2mm以下とし、全原料中の炭素含有割合(T.C)が15〜25質量%となるように上記微粉状炭材の配合割合を調整し、かつ、該微粉状炭材のメジアン径を100〜150μmとすることを特徴とする。 In order to realize the above technical idea, the constitution of the present invention is to add a hydraulic binder to a finely divided iron-containing raw material containing 40% by mass or more of iron and a finely divided carbonaceous material containing 10% by mass or more of carbon. And by granulating while adjusting the moisture, assuming a method of producing coal-free non-fired pellets for blast furnace with a cold crushing strength of 50 kg / cm 2 or more, the particle size of all raw materials is 2 mm or less, The blending ratio of the fine powdery carbonaceous material is adjusted so that the carbon content ratio (TC) is 15 to 25% by mass, and the median diameter of the fine powdery carbonaceous material is 100 to 150 μm. And

以下に、本発明が特徴とする構成の限定理由について説明する。   Below, the reason for limitation of the structure characterized by this invention is demonstrated.

(全原料の粒度、炭素含有割合(T.C)、微粉状炭材のメジアン径)
図3に、ペレット中の微粉状炭材のメジアン径および炭素含有割合(T.C)と、還元温度:1000℃で還元後の圧潰強度との関係を示す。
(Particle size of all raw materials, carbon content ratio (TC), median diameter of pulverized carbonaceous material)
FIG. 3 shows the relationship between the median diameter and carbon content (TC) of the finely divided carbonaceous material in the pellet and the crushing strength after reduction at a reduction temperature of 1000 ° C.

また、図4に、ペレット中の微粉状炭材のメジアン径および炭素含有割合(T.C)と、高炉操業時の還元材比との関係を示す。   Moreover, in FIG. 4, the relationship between the median diameter and carbon content rate (TC) of the pulverized carbonaceous material in a pellet and the reducing material ratio at the time of blast furnace operation is shown.

原料は、表1に示す焼結ダストおよび微粉状鉄鉱石を微粉状鉄含有原料とし、高炉一次灰、コークスダストおよび粉コークスを微粉炭材とし、早強ポルトランドセメントをバインダーとして、全原料の粒度が2mm以下になるように調整した後、図2で説明した方法および条件と同様に、ペレット造粒、養生を行った。   The raw materials are sintered dust and fine iron ore shown in Table 1 as fine powdered iron-containing raw materials, blast furnace primary ash, coke dust and fine coke are finely divided carbonaceous materials, and early-strength Portland cement is used as a binder. Was adjusted to 2 mm or less, and pellet granulation and curing were performed in the same manner as in the method and conditions described in FIG.

図3に示す圧潰強度は、図2で用いたものと同じ還元試験の方法及び条件で、還元温度:1000℃で還元した炭材含有量と炭材粒径の異なる含炭非焼成ペレットを取り出して、図2で用いたものと同じ方法で圧潰強度を測定したものである。   The crushing strength shown in FIG. 3 is the same reduction test method and conditions as used in FIG. 2, and the carbonized non-fired pellets with different carbonaceous material content and carbonaceous particle size reduced at a reduction temperature of 1000 ° C. are taken out. The crushing strength was measured by the same method as that used in FIG.

また、図4に示す高炉操業時の還元材比は、高炉内の還元反応を模擬できる試験装置(BIS炉)も用いて、通常の焼結鉱の一部(10質量%分)を、炭材含有量と炭材粒径の異なる非焼成ペレットに置き換えて高炉で使用した時の還元材比(RAR)を評価した結果を示す。なお、非焼成ペレットは、試験装置(BIS炉)内の鉱石層中に均一分散させた。また、還元材比(RAR)は、定常状態での排ガス分析結果を基に、リスト線図を用いて算出した。   Further, the ratio of reducing materials during blast furnace operation shown in FIG. 4 is obtained by using a test apparatus (BIS furnace) capable of simulating a reduction reaction in the blast furnace, and using a part (10% by mass) of ordinary sintered ore as charcoal. The result which evaluated the reducing material ratio (RAR) when it replaces with the non-baking pellet from which material content and a carbon material particle size differ is used in a blast furnace is shown. In addition, the non-baked pellets were uniformly dispersed in the ore layer in the test apparatus (BIS furnace). The reducing material ratio (RAR) was calculated using a list diagram based on the exhaust gas analysis result in the steady state.

図3によれば、いずれのペレットの炭素含有量(T.C)においても、炭材の粒度(メジアン径)が小さくても、逆に大きすぎても、圧潰強度が低下することが解る。これは、炭材の粒度が小さすぎると、低温で、酸化鉄のメタルへの還元によるブリッジ効果が十分発現する前に、含有する炭材が多量にガス化してしまい、多量の空隙が生じ、十分な強度を維持できないことを示している。   According to FIG. 3, it can be seen that the crushing strength is lowered regardless of whether the particle size (median diameter) of the carbonaceous material is small or too large in any carbon content (TC) of any pellet. This is because if the particle size of the carbon material is too small, the carbon material contained in it is gasified in a large amount before the bridging effect due to reduction of iron oxide to metal is sufficiently expressed at a low temperature, resulting in a large amount of voids, This indicates that sufficient strength cannot be maintained.

一方、炭材の粒度が大きすぎると、ガス化反応が遅くなり、酸化鉄の還元が遅れ、金属鉄の生成が不均一となるために、ペレット内のセメント結合が消失する前に、十分な金属鉄のネツトワーク相を形成することができないためである。   On the other hand, if the particle size of the carbon material is too large, the gasification reaction is delayed, the reduction of iron oxide is delayed, and the production of metallic iron becomes non-uniform, so that the cement bond in the pellet is not enough before disappearing. This is because a network phase of metallic iron cannot be formed.

また、炭材の粒度(メジアン径)が同じ場合でも、炭材含有量が多いほど、還元後の圧潰強度は小さくなる。これは、炭素含有量(T.C)が増加するに伴い、平均的な酸化鉄粒子間の距離が大きくなり、炭材やバインダー(セメント)のガス化後に形成される空隙が多くなり、金属鉄のネットワーク相の形成が阻害されるためである。   Further, even when the carbonaceous material has the same particle size (median diameter), the greater the carbonaceous material content, the smaller the crushing strength after reduction. This is because as the carbon content (TC) increases, the average distance between iron oxide particles increases, and the voids formed after gasification of the carbonaceous material and binder (cement) increase. This is because the formation of an iron network phase is inhibited.

また、図3には、全原料の粒度を2mm以下に調整したペレットの他に、全原料の粒度を5mm以下に調整した、還元温度:1000℃のペレットの圧潰強度を●で示す。図から、全原料の粒度が2mm以下に調整したペレットに比べて、全原料の粒度を5mm以下に調整した、還元温度:1000℃のペレットの圧潰強度は、著しく低下したことが解る。   In addition, in FIG. 3, the crushing strength of pellets having a reduction temperature of 1000 ° C., in which the particle size of all raw materials is adjusted to 5 mm or less, in addition to the pellets in which the particle size of all raw materials is adjusted to 2 mm or less, is indicated by ●. From the figure, it can be seen that the crushing strength of pellets having a reduction temperature of 1000 ° C., in which the particle size of all raw materials is adjusted to 5 mm or less, is significantly lower than that of pellets in which the particle size of all raw materials is adjusted to 2 mm or less.

これは、粒径が2mm以上の粗大な炭材は、ガス化反応が遅くなるため、金属鉄のネットワーク相が十分に発達しないことに加えて、装入物の荷重による圧縮応力が、ガス化されずに残留した炭材や、粗粒の酸化鉄などの粗大原料粒子に集中し、破壊の起点となるためである。   This is because a coarse carbon material with a particle size of 2 mm or more has a slow gasification reaction, so that the network phase of metallic iron does not develop sufficiently, and the compressive stress due to the load of the charge is gasified. This is because it concentrates on the remaining carbon material and coarse raw material particles such as coarse iron oxide and becomes the starting point of destruction.

図3によれば、高炉内での装入物の荷重に対してペレットの自形を保つことができる限界の圧潰強度である7kg/cm2以上を確保するためには、全原料の粒度を2mm以下とし、炭素含有量(T.C)を25質量%以下とし、かつ、炭材の粒度(メジアン径)を100〜150μmの範囲内にする必要があることが解る。 According to FIG. 3, in order to ensure a limit crushing strength of 7 kg / cm 2 or more that can maintain the pellet's self-shape against the load of the charge in the blast furnace, It is understood that it is necessary to set the carbon content (TC) to 25% by mass or less, and to set the particle size (median diameter) of the carbonaceous material within the range of 100 to 150 μm.

図4によれば、いずれのペレットの炭素含有量(T.C)においても、炭材の粒度(メジアン径)が小さいほど、高炉操業時の還元材比(RAR)が低下することが解る。また、炭材の粒度(メジアン径)が同じ条件でも、ペレットの炭素含有量(T.C)が多いほど、高炉操業時の還元材比(RAR)が低下することが解る。   According to FIG. 4, it can be seen that, regardless of the carbon content (TC) of any pellet, the reducing material ratio (RAR) during blast furnace operation decreases as the particle size (median diameter) of the carbon material decreases. In addition, it can be seen that the reducing material ratio (RAR) at the time of blast furnace operation decreases as the carbon content (TC) of the pellet increases even under the same condition of the particle size (median diameter) of the carbonaceous material.

これらの理由は、炭材の粒度(メジアン径)が小さくなるほど、ペレットの炭素含有量(T.C)が多いほど、ガス化反応性が高くなるため、より低温でガス化し、非焼成ペレット中の酸化鉄の還元を促進するとともに、高炉シャフト部での熱保存帯温度が低下し、鉄のウスタイトと平衡ガス組成が、低還元ポテンシャル側へ移動するため、還元ガスの利用効率(ηCO=CO2/(CO+CO2))が向上するためである。 The reason for this is that as the particle size (median diameter) of the carbon material decreases and the carbon content (TC) of the pellet increases, the gasification reactivity increases. In addition to promoting the reduction of iron oxide, the temperature of the heat preservation zone at the blast furnace shaft portion is reduced, and the iron wustite and equilibrium gas composition move to the low reduction potential side, so the efficiency of use of the reducing gas (ηCO = CO 2 / (CO + CO 2 )) is improved.

図4において、14質量%のペレットの炭素含有量(T.C)は、炭素当量(含炭非焼成ペレット中の酸化鉄を直接還元するのに必要な理論上の炭素量に対する炭素含有量(T.C)の比)が1.0に相当するが、この炭素含有量では、炭材は、ペレット自身の酸化鉄の直接還元にほとんど消費されるため、高炉操業時の還元材比(RAR)の低減効果は小さい。   In FIG. 4, the carbon content (TC) of the 14 mass% pellet is the carbon equivalent (the carbon content relative to the theoretical carbon amount required to directly reduce iron oxide in the carbon-containing unfired pellet ( The ratio of TC) corresponds to 1.0, but at this carbon content, the carbonaceous material is almost consumed for direct reduction of the iron oxide in the pellet itself, so the ratio of reducing material during blast furnace operation (RAR) ) Reduction effect is small.

図4によれば、炭素含有量(T.C)が15質量%以上で、高炉操業時の還元材比(RAR)の削減効果が得られ、ペレット自身の酸化鉄の直接還元に加えて、余剰炭素のガス化により、非焼成ペレットと隣接する焼結鉱などの主要な高炉用鉄含有原料の間接還元が促進されることが解る。   According to FIG. 4, when the carbon content (TC) is 15% by mass or more, an effect of reducing the reducing material ratio (RAR) during blast furnace operation is obtained, in addition to direct reduction of iron oxide in the pellet itself, It can be seen that gasification of surplus carbon promotes indirect reduction of main blast furnace iron-containing raw materials such as sintered ore adjacent to non-fired pellets.

一方、炭素含有量(T.C)が15質量%以上であっても、炭材の粒度(メジアン径)が150μm以上に粗くなる場合は、炭材の粒径が大き過ぎて、炭材のガス化反応が十分に進まないため、高炉操業時の還元材比(RAR)の削減効果は小さい。   On the other hand, even if the carbon content (TC) is 15% by mass or more, if the carbonaceous material particle size (median diameter) becomes coarser than 150 μm, the carbonaceous material particle size is too large. Since the gasification reaction does not proceed sufficiently, the reducing material ratio (RAR) reduction effect during blast furnace operation is small.

また、図4には、全原料の粒度を2mm以下に調整したペレットの他に、全原料の粒度を5mm以下に調整した、還元温度:1000℃のペレットの圧潰強度を●で示す。図から、全原料の粒度を2mm以下に調整したペレットに比べて、全原料の粒度を5mm以下に調整したペレットでは、高炉操業時の還元材比(RAR)の低減効果は、著しく損なわれたことが解る。   Further, in FIG. 4, the crushing strength of pellets having a reduction temperature of 1000 ° C., in which the particle size of all the raw materials is adjusted to 5 mm or less, in addition to the pellets in which the particle size of all the raw materials is adjusted to 2 mm or less, is indicated by ●. From the figure, compared with the pellets in which the particle size of all raw materials was adjusted to 2 mm or less, in the pellets in which the particle size of all raw materials was adjusted to 5 mm or less, the reducing material ratio (RAR) reduction effect during blast furnace operation was significantly impaired. I understand that.

これは、粒径が2mmより大きい粗大な炭材は、ガス化反応が遅くなるため、焼結鉱などの主要な高炉用鉄含有原料の間接還元が十分に促進できないためである。   This is because a coarse carbon material having a particle size larger than 2 mm has a slow gasification reaction, so that indirect reduction of main blast furnace iron-containing raw materials such as sintered ore cannot be sufficiently promoted.

図4によれば、高炉操業時の還元材比(RAR)を、475(kg/tp)以下に十分に低減するためには、全原料の粒度を2mm以下とし、炭素含有量(T.C)を15質量%以上とし、かつ、炭材の粒度(メジアン径)を150μm以下の範囲内にする必要がある。   According to FIG. 4, in order to sufficiently reduce the reducing material ratio (RAR) during blast furnace operation to 475 (kg / tp) or less, the particle size of all raw materials is set to 2 mm or less, and the carbon content (TC ) Must be 15% by mass or more, and the particle size (median diameter) of the carbonaceous material must be within a range of 150 μm or less.

以上、図3および図4により説明したとおり、全原料の粒度が2mmを超えると、炭材は、ガス化反応が遅くなるため、金属鉄のネットワーク相が十分に発達できず、また、ペレット以外の焼結鉱などの主要な高炉用鉄含有原料の間接還元を十分に促進できないため、圧潰強度および高炉操業時の還元材比(RAR)のいずれも、十分に改善することはできない。   As described above with reference to FIGS. 3 and 4, when the particle size of all raw materials exceeds 2 mm, the carbonaceous material has a slow gasification reaction, so that the network phase of metallic iron cannot be sufficiently developed. Since the indirect reduction of the main blast furnace iron-containing raw materials such as sintered ore cannot be sufficiently promoted, neither the crushing strength nor the reducing material ratio (RAR) during blast furnace operation can be sufficiently improved.

炭素含有量(T.C)が15質量%未満になると、ガス化反応性が低くなるため、非焼成ペレット中の酸化鉄の還元を促進するとともに、高炉シャフト部での熱保存帯温度を低下し、還元ガスの利用効率(ηCO=CO2/(CO+CO2))を十分に向上することができなくなるため、高炉操業時の還元材比(RAR)を十分に改善することはできない。 When the carbon content (TC) is less than 15% by mass, the gasification reactivity is lowered, so that the reduction of the iron oxide in the non-fired pellets is promoted and the temperature of the heat preservation zone at the blast furnace shaft portion is lowered. However, since the use efficiency (ηCO = CO 2 / (CO + CO 2 )) of the reducing gas cannot be sufficiently improved, the reducing material ratio (RAR) at the time of blast furnace operation cannot be sufficiently improved.

逆に、炭素含有量(T.C)が25質量%を超えると、平均的な酸化鉄粒子間の距離が大きくなり、金属鉄のネットワーク相の形成が阻害されるため、圧潰強度を十分に改善することができない。   Conversely, if the carbon content (TC) exceeds 25% by mass, the average distance between the iron oxide particles increases, and the formation of the metallic iron network phase is hindered. It cannot be improved.

炭材の粒度(メジアン径)が100μm未満になると、炭材を、最密充填構造で存在させることができず、圧潰強度が低下する。逆に、炭材の粒度(メジアン径)が150μmを超えると、ガス化反応が遅くなり、酸化鉄の還元が遅れ、十分な金属鉄のネツトワーク相を形成することができなくなるため、圧潰強度を十分に改善することができない。   When the particle size (median diameter) of the carbonaceous material is less than 100 μm, the carbonaceous material cannot be present in a close-packed structure, and the crushing strength is reduced. On the other hand, if the particle size (median diameter) of the carbon material exceeds 150 μm, the gasification reaction will be slow, the reduction of iron oxide will be delayed, and it will not be possible to form a sufficient metallic iron network phase. Cannot be improved sufficiently.

また、炭材の粒度(メジアン径)が100μm未満になると、比表面積の増大によるガス化反応性向上効果が小さくなるため、非焼成ペレット中の酸化鉄の還元を促進するとともに、高炉シャフト部での熱保存帯温度が低下し、還元ガスの利用効率(ηCO=CO2/(CO+CO2))が向上する効果がなくなるため、高炉操業時の還元材比(RAR)の何れも、十分に改善することはできない。 Further, when the particle size (median diameter) of the carbonaceous material is less than 100 μm, the effect of improving the gasification reactivity due to the increase in the specific surface area is reduced, so that the reduction of the iron oxide in the non-fired pellets is promoted and the blast furnace shaft portion As the heat storage zone temperature of the steel decreases, the effect of reducing gas utilization efficiency (ηCO = CO 2 / (CO + CO 2 )) is lost, so the ratio of reducing material (RAR) during blast furnace operation is sufficiently improved. I can't do it.

以上の技術的理由から、本発明では、高炉内での装入物の荷重に対してペレットの自形を保つことができる限界の圧潰強度である7kg/cm2以上を確保し、かつ、高炉操業時の還元材比(RAR)を475(kg/tp)以下に十分に低減するために、全原料の粒度を2mm以下とし、炭素含有量(T.C)を15〜25質量%とし、かつ、炭材の粒度(メジアン径)を100〜150μmと規定する。 For the above technical reasons, in the present invention, a minimum crushing strength of 7 kg / cm 2 that can maintain the self-shape of the pellet with respect to the load of the charged material in the blast furnace is secured, and the blast furnace In order to sufficiently reduce the reducing material ratio (RAR) during operation to 475 (kg / tp) or less, the particle size of all raw materials is 2 mm or less, the carbon content (TC) is 15 to 25% by mass, And the particle size (median diameter) of a carbon material is prescribed | regulated as 100-150 micrometers.

なお、上述したように、高炉シャフト部の熱保存帯から還元反応平衡帯の温度域(900〜1100℃)での圧潰強度が7kg/cm2以上を有する含炭非焼成ペレットの冷間圧潰強度は、50kg/cm2以上を確保することができる。 As described above, the cold crushing strength of the carbon-containing non-fired pellets having a crushing strength of 7 kg / cm 2 or more in the temperature range (900 to 1100 ° C.) from the thermal preservation zone of the blast furnace shaft portion to the reduction reaction equilibrium zone. Can secure 50 kg / cm 2 or more.

したがって、本発明の含炭非焼成ペレットは、搬送時および高炉装入時の衝撃による破壊に十分耐えられる冷間強度を有するので、製造時のハンドリングや、高炉への輸送、装入時に、粉化の心配がない。   Therefore, the carbon-containing non-fired pellets of the present invention have a cold strength that can sufficiently withstand the damage caused by impact during transportation and charging in the blast furnace, so that during handling, transportation to the blast furnace, and charging, There is no worry about conversion.

本発明の含炭非焼成ペレットは、通常の非焼成ペレットに比べて、炭素含有量(T.C)が高く、見掛け密度が低いため、高炉装入時に、見掛け密度の高い焼結鉱などの主要な高炉鉄含有原料の上部に偏析して装入される心配がある。   The carbon-containing non-fired pellets of the present invention have a high carbon content (TC) and a low apparent density as compared with ordinary non-fired pellets. There is a concern that it will be segregated at the top of the main raw material containing blast furnace iron.

高炉シャフト部の熱保存帯から還元反応平衡帯の温度域(900〜1100℃)において、本発明の含炭非焼成ペレット内の炭材のガス化により発生するCOガスを、周辺の焼結鉱の還元に効率良く利用する観点から、カーボン含有量の高い非焼成ペレットを、鉱石層のより下層に配置し、通常は、下層部の焼結鉱の還元によって還元ポテンシャルが低下したガスで還元されている上層部の焼結鉱の還元促進を図る必要がある。   In the temperature range (900 to 1100 ° C.) from the thermal preservation zone of the blast furnace shaft portion to the reduction reaction equilibrium zone, CO gas generated by the gasification of the carbonaceous material in the carbon-containing unfired pellets of the present invention is converted into the surrounding sintered ore. From the standpoint of efficient use for reduction of steel, non-fired pellets with a high carbon content are placed in the lower layer of the ore layer and are usually reduced with a gas whose reduction potential has been reduced by reduction of the sintered ore in the lower layer. It is necessary to promote reduction of the upper-layer sintered ore.

図5に、含炭非焼成ペレット中の炭素含有量(T.C)と焼結鉱層厚の高さ方向位置における占有率との関係を示す。   FIG. 5 shows the relationship between the carbon content (TC) in the carbon-containing non-fired pellets and the occupation ratio at the height direction position of the sintered ore layer thickness.

なお、図5は、高炉装入シミュレーターで、焼結鉱と炭素含有量(T.C)の異なる含炭非焼成ペレットを装入後、焼結鉱層厚の高さ方向位置における含炭非焼成ペレットの占有率を測定した結果である。   In addition, FIG. 5 is a blast furnace charging simulator. After charging a coal-containing non-fired pellet having a different carbon content (TC) from the sintered ore, the carbon-containing non-fired in the height direction position of the sintered ore layer thickness. It is the result of having measured the occupation rate of the pellet.

含炭非焼成ペレットの製造方法は、表1に示す原料を用いて、図2で用いたものと同じ方法及び条件で行った。また、焼結鉱は、実機を模して50mm以下の粒度範囲で、平均粒径15mmとし、含炭非焼成ペレットは平均粒径で10〜15mmとした。   The carbon-containing non-fired pellets were produced using the raw materials shown in Table 1 under the same methods and conditions as those used in FIG. Moreover, the sintered ore imitated an actual machine and had a particle size range of 50 mm or less, an average particle size of 15 mm, and the carbon-containing non-fired pellets had an average particle size of 10 to 15 mm.

図5によれば、含炭非焼成ペレットの炭素含有量(T.C)が高くなるに伴い、含炭非焼成ペレットは、装入後に、焼結鉱層の上層に多く偏在することが解る。これは、焼結鉱の見掛け密度が2.8g/cm3であるのに対して、含炭非焼成ペレットの炭素含有量(T.C)の増加に伴い、含炭非焼成ペレットの見掛け密度が、相対的に小さくなるためである。炭素含有量(T.C)が25質量%以下の含炭非焼成ペレットの見掛け密度は2.0g/cm3を保っており、また、焼結鉱との平均粒径との差の影響もあり、焼結鉱層内へ均一に装入することが可能である。 According to FIG. 5, it can be seen that as the carbon content (TC) of the carbon-containing non-fired pellets increases, the carbon-containing non-fired pellets are unevenly distributed in the upper layer of the sintered ore layer after charging. This is because the apparent density of the sintered ore is 2.8 g / cm 3 , whereas the apparent density of the carbon-containing non-fired pellets increases as the carbon content (TC) of the carbon-containing non-fired pellets increases. However, it is because it becomes relatively small. The apparent density of the carbon-containing non-fired pellets having a carbon content (TC) of 25% by mass or less is maintained at 2.0 g / cm 3 , and the influence of the difference from the average particle diameter with the sintered ore is also affected. Yes, it is possible to uniformly charge the sintered ore layer.

以上から、本発明において、含炭非焼成ペレットの炭素含有量(T.C)を25質量%以下とすることにより、高炉装入時に、含炭非焼成ペレットの焼結鉱層内の過度な偏析を抑制し、高炉シャフト部の熱保存帯から還元反応平衡帯の温度域(900〜1100℃)において、ペレット内の炭材により発生したCOガスを焼結鉱などの主要高炉用鉄含有原料の間接還元の促進に寄与させることが可能となる。   From the above, in the present invention, by setting the carbon content (TC) of the carbon-containing unfired pellets to 25% by mass or less, excessive segregation in the sintered ore layer of the carbon-containing unfired pellets during charging of the blast furnace. In the temperature range (900-1100 ° C.) from the thermal preservation zone of the blast furnace shaft to the reduction reaction equilibrium zone, the CO gas generated by the carbonaceous material in the pellets of the iron-containing raw material for main blast furnaces such as sintered ore It is possible to contribute to the promotion of indirect reduction.

高炉装入時に、含炭非焼成ペレットの焼結鉱層内の偏析を抑制し、含炭非焼成ペレット内の炭材により発生したCOガスにより、それ以外の主要な高炉用鉄含有原料の還元を促進する点から、含炭非焼成ペレットの炭素含有量(T.C)を20質量%以下とすることが、より好ましい。   During charging of the blast furnace, segregation in the sintered ore layer of the carbon-containing unfired pellets is suppressed, and CO gas generated by the carbonaceous material in the carbon-containing unfired pellets reduces the other main blast furnace iron-containing raw materials. From the point of promotion, it is more preferable that the carbon content (TC) of the carbon-containing non-fired pellets is 20% by mass or less.

(水硬性バインダーの添加量、水分量)
本発明は、前述のとおり、鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材に、水硬性バインダーを添加し、水分を調整しつつ造粒することにより、冷間圧潰強度50kg/cm2以上の高炉用含炭非焼成ペレットを製造することを前提とし、水硬性バインダーの添加量および水分量は、全原料中の炭素含有割合(T.C)に応じて、高炉用含炭非焼成ペレットの冷間圧潰強度が50kg/cm2以上となるように調整される。
(Amount of hydraulic binder added, water content)
As described above, the present invention adds a hydraulic binder to a finely divided iron-containing raw material containing 40% by mass or more of iron and a finely divided carbonaceous material containing 10% by mass or more of carbon, while adjusting moisture. On the premise of producing granulated non-fired pellets for blast furnace with a cold crushing strength of 50 kg / cm 2 or more by granulation, the amount of hydraulic binder added and the amount of water are the carbon content in the total raw material ( TC) is adjusted so that the cold crushing strength of the blast furnace carbon-containing unfired pellets is 50 kg / cm 2 or more.

全原料中の炭素含有割合(T.C)が高くなるに従い、ペレットの冷間圧潰強度は低下するため、炭素含有割合(T.C)の増加量に応じて、水硬性バインダーの配合量を増加するとともに、添加水分量も増加し、水硬性バインダーの水和反応を促進させることにより、50kg/cm2 以上の冷間圧潰強度を維持することができる。 As the carbon content ratio (TC) in all raw materials increases, the cold crushing strength of the pellets decreases, so the amount of hydraulic binder added depends on the increase in the carbon content ratio (TC). As the amount increases, the amount of added water also increases, and by promoting the hydration reaction of the hydraulic binder, it is possible to maintain a cold crushing strength of 50 kg / cm 2 or more.

高炉用含炭非焼成ペレットの冷間圧潰強度:50kg/cm2以上を安定して得るためには、水硬性バインダーを5質量%以上とするのが好ましい。 In order to stably obtain the cold crushing strength of the blast furnace-containing non-fired pellets: 50 kg / cm 2 or more, the hydraulic binder is preferably 5% by mass or more.

また、この際に、硬性バインダーの水和反応による硬化を促進させ、ペレットの冷間圧潰強度を維持するために、全原料中の水分量は、5〜15質量%とする必要がある。全原料中の水分量が5質量%未満では、安定した生ペレットを製造することができないばかりか、水硬性バインダーの水和反応による硬化が十分に発現せず、養生後の冷間圧潰強度が向上しない。   At this time, in order to promote hardening by the hydration reaction of the hard binder and maintain the cold crushing strength of the pellets, the water content in all the raw materials needs to be 5 to 15% by mass. If the water content in the total raw material is less than 5% by mass, not only stable raw pellets can be produced, but also the hardening due to the hydration reaction of the hydraulic binder does not sufficiently occur, and the cold crushing strength after curing is low. Does not improve.

一方、全原料中の水分量が15質量%を超えると、過剰水分により、逆に、ペレットの冷間圧潰強度が低下する。水硬性バインダーが15質量%を超える場合には、高炉内で吸熱反応であるセメントの脱水反応により、シャフト部での昇温速度が低下し、低温での還元停滞域(低温熱保存帯)が発生し、高炉用鉄原料として装入する焼結鉱の高炉内での還元粉化が助長される。   On the other hand, if the amount of water in all the raw materials exceeds 15% by mass, the cold crushing strength of the pellets is reduced due to excess moisture. When the hydraulic binder exceeds 15% by mass, the dehydration reaction of the cement, which is an endothermic reaction in the blast furnace, reduces the rate of temperature rise at the shaft, resulting in a low-temperature reduction stagnation zone (low-temperature heat storage zone). The reduced pulverization in the blast furnace of the sintered ore that is generated and charged as the iron raw material for the blast furnace is promoted.

また、ペレット中の水硬性バインダーの含有量が15質量%を超える場合には、ペレット中の鉄分とC分の割合が減少し、高炉用含炭非焼成ペレットとしての品位が低下するため、高炉内でのスラグ発生量が増大し、これにより、炉下部の通気性が悪化し、安定した高炉操業が困難となるので、好ましくない。   Further, when the content of the hydraulic binder in the pellet exceeds 15% by mass, the ratio of iron and C in the pellet decreases, and the quality as a carbon-containing non-fired pellet for the blast furnace decreases. This increases the amount of slag generated in the furnace, which deteriorates the air permeability in the lower part of the furnace and makes stable blast furnace operation difficult.

また、水硬性バインダーが15質量%を超える場合には、高炉内の熱保存帯から還元反応平衡帯の温度域では、水硬性バインダーは、既に脱水し、その後、多くの空隙が形成されるため、金属鉄のネットワーク相による熱間強度向上効果を安定して確保できない場合が生じる。   Further, when the hydraulic binder exceeds 15% by mass, the hydraulic binder is already dehydrated in the temperature range from the thermal preservation zone in the blast furnace to the reduction reaction equilibrium zone, and many voids are formed thereafter. In some cases, the effect of improving the hot strength by the network phase of metallic iron cannot be secured stably.

以上の理由から、高炉用含炭非焼成ペレットの冷間圧潰強度:50kg/cm2以上を安定して得るとともに、高炉内の熱保存帯から還元反応平衡帯の温度域での熱間強度を安定して向上させるためには、水硬性バインダーを5〜15質量%とするのが好ましい。 For the above reasons, the cold crushing strength of the carbon-containing unfired pellets for the blast furnace is stably obtained at 50 kg / cm 2 or more, and the hot strength in the temperature range from the thermal preservation zone in the blast furnace to the reduction reaction equilibrium zone is obtained. In order to improve it stably, it is preferable to make a hydraulic binder into 5-15 mass%.

(微粉状鉄含有原料中の粒径10μm以下の超微粒子の含有量)
本発明者らの検討により、ウェストアンジェラスやデンポゴアなどの特定銘柄の鉄鉱石には、粒径10μm以下の超微細粒子が多く含有することを確認した。また、塊鉱石を水洗処理した後のスラリーケーキには、塊鉱石にまぶりついた超微粉が極めて多く含まれていることも確認した。
(Content of ultrafine particles having a particle size of 10 μm or less in the raw material containing fine powder iron)
As a result of the study by the present inventors, it was confirmed that iron ores of specific brands such as West Angelus and Denpogoa contain a large amount of ultrafine particles having a particle size of 10 μm or less. In addition, it was confirmed that the slurry cake after the lump ore was washed with water contained an extremely large amount of ultra fine powder covered with the lump ore.

これらの微粉状鉄鉱石の1種または複数種の配合量を該鉄鉱石中に粒径10μm以下の超微粒子が全原料に対する割合で3.5質量%以上含有するように調整することで、冷間での圧壊強度および熱間強度を高く保つことができる。   By adjusting the amount of one or more of these finely divided iron ores so that ultrafine particles having a particle size of 10 μm or less are contained in the iron ore in a ratio of 3.5% by mass or more with respect to the total raw materials, The crushing strength and hot strength between them can be kept high.

一般に、鉱物学的に、岩石または鉱物の風化物のうち、砂より粒径が細かいものは粘土と呼ばれており、湿っているときには、粘性と塑性がある。この粘土の粒径の定義は必ずしも明らかではないが、国際土壌学会および米国農務省では2μm以下、日本農学会では10μm以下としている(「粘土ハンドブック第二版」p3、日本粘土学会(1994年)、参照)。   Generally, in terms of mineralogy, weathered rocks or minerals having a particle size smaller than that of sand are called clay, and when wet, they are viscous and plastic. The definition of the particle size of this clay is not always clear, but it is 2 μm or less by the International Soil Society and the US Department of Agriculture, and 10 μm or less by the Japanese Agricultural Society (“Clay Handbook 2nd Edition” p3, Japan Clay Society (1994) ,reference).

また、粘土(超微粒子)の水分中での挙動は、その化学成分、その電荷分布と水中に溶存する電解質イオンの種類と量、水溶液のpH等によって異なり、粘土(超微粒子)が水分中に均一に分散した状態で、水分が多い場合はスラリー状となり、水分が少なくなるとペースト可塑物となり、水分の低下にともない、順次粘性、粘弾性、塑性が現れる。   Also, the behavior of clay (ultrafine particles) in water varies depending on its chemical composition, its charge distribution and the type and amount of electrolyte ions dissolved in water, the pH of the aqueous solution, etc. In a uniformly dispersed state, when there is a lot of water, it becomes a slurry, and when the water content is low, it becomes a paste plastic. As the water content decreases, viscosity, viscoelasticity, and plasticity appear in sequence.

本発明者らは、これらの鉱物学的知見を基に、特定銘柄の鉄鉱石中に多く含有する粒径10μm以下の超微細粒子の上記特性を利用して、ペレット造粒物における主として粒径0.5mm以下の微粉粒同士の結合力(付着力)を高めるための検討を行った。   Based on these mineralogical findings, the present inventors mainly utilized the above characteristics of ultrafine particles having a particle size of 10 μm or less contained in a large amount of a specific brand of iron ore. A study was conducted to increase the bonding force (adhesive force) between fine particles of 0.5 mm or less.

その結果、特定銘柄の鉄鉱石中に多く含有する粒径10μm以下の超微細粒子も、上記粘土(超微粒子)と同様な特性を示し、造粒時に、この超微細粒子が、粒径0.5mm以下の微粉粒同士の間に存在する水分の粘性、粘弾性、塑性を発現させ、結合力(付着力)を向上させることを確認した。   As a result, ultrafine particles having a particle size of 10 μm or less, which are contained in a large amount in a specific brand of iron ore, exhibit the same characteristics as the above clay (ultrafine particles). It was confirmed that the viscosity, viscoelasticity, and plasticity of moisture existing between fine particles of 5 mm or less were expressed, and the binding force (adhesive force) was improved.

また、これらの粒径10μm以下の超微細粒子の作用により、含炭非焼成ペレット内の原料粒子間の結合力(付着力)を向上し、冷間での圧壊強度および熱間強度を向上するためには、粒径10μm以下の超微粒子が、全原料に対する割合で3.5質量%以上含有する鉄鉱石を、鉄含有原料として配合する必要がある。   In addition, by the action of these ultrafine particles having a particle size of 10 μm or less, the bonding strength (adhesion) between the raw material particles in the carbon-containing unfired pellets is improved, and the cold crushing strength and hot strength are improved. For this purpose, iron ore containing ultra-fine particles having a particle size of 10 μm or less in a ratio of 3.5% by mass or more with respect to the total raw materials needs to be blended as an iron-containing raw material.

したがって、本発明では、上記全原料の粒度、全原料中の炭素含有割合(T.C)、該微粉状炭材のメジアン径の規定に加えて、さらに、微粉状鉄含有原料中に微粉状鉄鉱石を配合し、この鉄鉱石中に、粒径10μm以下の超微粒子が全原料に対する割合で、3.5質量%以上含有するのが好ましい。   Therefore, in the present invention, in addition to the definition of the particle size of all the raw materials, the carbon content ratio (TC) in all the raw materials, and the median diameter of the fine powdery carbonaceous material, the fine powdery iron-containing raw material further It is preferable that iron ore is blended, and ultrafine particles having a particle size of 10 μm or less are contained in the iron ore in a proportion of 3.5% by mass or more based on the total amount of raw materials.

配合する鉄鉱石中粒径10μm以下の超微粒子の含有量が、全原料に対する割合で、3.5%未満の場合には、造粒時に、この超微細粒子が、粒径0.5mm以下の微粉粒同士の間に存在する水分の粘性、粘弾性、塑性を発現させ、結合力(付着力)を向上させる効果が十分に得られず、生ペレット強度、および、冷間圧潰強度をより高める効果は得られなくなる。   When the content of ultrafine particles with a particle size of 10 μm or less in the iron ore to be blended is less than 3.5% in a ratio to the total raw materials, the ultrafine particles have a particle size of 0.5 mm or less during granulation. The effect of improving the cohesive strength (adhesive strength) by developing the viscosity, viscoelasticity, and plasticity of moisture existing between fine particles cannot be obtained sufficiently, and the raw pellet strength and cold crushing strength are further increased. The effect cannot be obtained.

また、鉄鉱石中の粒径10μm以下の超微粒子の含有量が、全原料に対する割合で、3.5質量%未満の場合には、高炉シャフト部の熱保存帯から還元反応平衡帯の温度域(900〜1100℃)において、ペレット内の炭材との直接還元反応によって生成する微粉由来の金属鉄がペレット内に均一に分散して、金属鉄のネットワーク相を形成することによる効果が十分に得られなくなる。   In addition, when the content of ultrafine particles having a particle size of 10 μm or less in iron ore is less than 3.5% by mass with respect to the total raw material, the temperature range from the thermal preservation zone of the blast furnace shaft portion to the reduction reaction equilibrium zone (900 to 1100 ° C.) The fine powder-derived metallic iron produced by the direct reduction reaction with the carbonaceous material in the pellet is uniformly dispersed in the pellet, and the effect of forming the network phase of metallic iron is sufficient. It can no longer be obtained.

したがって、冷間での圧壊強度および熱間強度をより向上するためには、微粉状鉄含有原料中に配合する鉄鉱石中の粒径10μm以下の超微粒子の含有量を、全原料に対する割合で、3.5質量%以上とするのが好ましい。   Therefore, in order to further improve the cold crushing strength and the hot strength, the content of ultrafine particles having a particle size of 10 μm or less in the iron ore blended in the finely divided iron-containing raw material is expressed as a ratio to the total raw material. 3.5 mass% or more is preferable.

以下、実施例により本発明の効果について説明する。   The effects of the present invention will be described below with reference to examples.

[実施例1]
表1に示す原料を用いて、含炭非焼成ペレットを製造した。原料は、セメント(早強ポルトランドセメント)の配合比率を10〜14質量%とし、炭材(コークスダスト、粉コークス、および、高炉一次灰)、および、微粉状鉄含有原料(焼結ダストと鉄鉱石)の配合割合を変化させた。
[Example 1]
Using the raw materials shown in Table 1, carbon-containing unfired pellets were produced. The raw material is a mixture ratio of cement (early strong Portland cement) of 10 to 14% by mass, carbonaceous materials (coke dust, fine coke, and blast furnace primary ash), and fine iron-containing raw materials (sintered dust and iron ore) The mixing ratio of (stone) was changed.

これらの原料に、水分とセメントを添加した後、アイリッヒミキサーで混錬して、パンペレタイザーで造粒し、生ペレットとし、さらに、生ペレットを、2週間、天日養生した。なお、生ペレットの水分は、配合するセメント量に応じて、10〜14重量%に調整した。   After adding water and cement to these raw materials, they were kneaded with an Eirich mixer, granulated with a pan pelletizer to obtain raw pellets, and the raw pellets were then cured for two weeks. In addition, the water | moisture content of the raw pellet was adjusted to 10 to 14 weight% according to the cement amount to mix | blend.

得られた含炭非焼成ペレットについては、生ペレット強度、冷間圧潰強度、還元後の圧潰強度、含炭非焼成ペレットを10質量%使用した場合のRARを、それぞれ測定し評価した。   About the obtained carbon-containing non-baked pellet, raw pellet strength, cold crushing strength, crushing strength after reduction, and RAR when using 10% by mass of carbon-containing non-fired pellets were measured and evaluated.

生ペレット強度は、1mの高さから落下させた場合に破壊に至る落下回数として表示した。   The raw pellet strength was expressed as the number of drops that resulted in destruction when dropped from a height of 1 m.

圧潰強度の測定は、JIS M8718に準じて、試料1個に対して、規定の加圧速度で圧縮荷重を掛けることにより、破壊した時の荷重値を測定し、強度指数は、単位断面積当たりの荷重値(kg/cm2)とする。 The crushing strength is measured in accordance with JIS M8718 by measuring the load value when one sample is broken by applying a compressive load at a specified pressure rate. Load value (kg / cm 2 ).

含炭非焼成ペレットの還元は、高炉内の還元反応を荷重下で模擬できる還元試験装置を用い、高炉シャフト部の熱保存帯と還元反応平衡帯における還元ガス組成(COが36%、CO2が14%、N2が50%)および温度:1000℃と同じ条件で行った。 The reduction of the carbon-containing non-fired pellets is performed using a reduction test apparatus that can simulate the reduction reaction in the blast furnace under a load. The reduction gas composition (CO is 36%, CO 2 in the thermal preservation zone and reduction reaction equilibrium zone of the blast furnace shaft portion). 14%, N 2 50%) and temperature: 1000 ° C.

高炉操業時の還元材比は、高炉内の還元反応を模擬できる試験装置(BIS炉)も用いて、含炭非焼成ペレットを、通常の焼結鉱の10質量%分と置き換えて高炉で使用した時の還元材比(RAR)を評価した。   The ratio of reducing material during blast furnace operation is also used in the blast furnace by replacing the carbon-containing unfired pellets with 10% by mass of ordinary sintered ore using a test device (BIS furnace) that can simulate the reduction reaction in the blast furnace. The reducing material ratio (RAR) was evaluated.

なお、非焼成ペレットを配合しない条件のRARは482kg/tpであった。また、含炭非焼成ペレットは、試験装置(BIS炉)内の鉱石層中に均一分散させた。また、還元材比(RAR)は、定常時の排ガス分析結果を基に、リスト線図を用いて算出した。   In addition, RAR of the conditions which do not mix | blend a non-baking pellet was 482 kg / tp. Moreover, the carbon-containing non-baked pellets were uniformly dispersed in the ore layer in the test apparatus (BIS furnace). The reducing material ratio (RAR) was calculated using a list diagram based on the result of steady state exhaust gas analysis.

表2に、原料配合条件と含炭非焼成ペレットの評価結果を示す。   Table 2 shows the raw material blending conditions and the evaluation results of the carbon-containing non-fired pellets.

表2から解るように、No.1の比較例は、全原料粒度の規定範囲、炭材炭材粒度(メジアン径)が本発明の範囲を満足するため、還元後強度は十分高いものの、炭素含有割合(T.C)が、本発明で規定する範囲より低いため、RARの大きな低下は得られなかったものである。   As can be seen from Table 2, no. In Comparative Example 1, since the specified range of the total raw material particle size, the carbonaceous material carbon material particle size (median diameter) satisfies the range of the present invention, although the strength after reduction is sufficiently high, the carbon content ratio (TC) is Since it is lower than the range defined in the present invention, a large reduction in RAR was not obtained.

No.2の比較例は、全原料粒度の規定範囲、炭材粒度(メジアン径)は、本発明の範囲を満足しているが、炭素含有割合(T.C)が、本発明で規定する範囲より高いため、還元材比(RAR)の大きな低減効果は得られたものの、還元後圧潰強度が不十分なものである。   No. In Comparative Example 2, the specified range of the total raw material particle size and the carbonaceous material particle size (median diameter) satisfy the range of the present invention, but the carbon content ratio (TC) is more than the range specified by the present invention. Since it is high, a large reduction effect of the reducing material ratio (RAR) is obtained, but the crushing strength after reduction is insufficient.

No.3の比較例は、全原料粒度の規定範囲、炭素含有割合(T.C)は、本発明の範囲を満足し、還元材比(RAR)の大きな低減効果は得られたものの、炭材の粒度(メジアン径)が過度に小さいため、還元後の圧潰強度が低かったものである。   No. In Comparative Example 3, the specified range of the total raw material particle size and the carbon content ratio (TC) satisfy the range of the present invention, and a large reduction effect of the reducing material ratio (RAR) was obtained. Since the particle size (median diameter) is excessively small, the crushing strength after reduction is low.

No.4の比較例は、全原料粒度の規定範囲、炭素含有割合(T.C)は、本発明の範囲を満足しているが、炭材の粒度(メジアン径)が過度に大きいため、還元後圧潰強度が低く、かつ、RAR低減効果も小さかったものである。   No. In Comparative Example 4, the specified range of the total raw material particle size and the carbon content (TC) satisfy the range of the present invention, but the particle size (median diameter) of the carbonaceous material is excessively large. The crushing strength was low and the RAR reduction effect was small.

No.5の比較例は、炭素含有割合(T.C)、炭材の粒度(メジアン径)とも、本発明の範囲を満足しているが、炭材に2mm以上の粒度を含み、本発明の全原料粒度の規定範囲から外れるため、還元後圧潰強度が低く、かつ、還元材比(RAR)低減効果も小さかったものである。   No. In Comparative Example 5, the carbon content ratio (TC) and the particle size (median diameter) of the carbon material satisfy the scope of the present invention, but the carbon material contains a particle size of 2 mm or more, Since it falls outside the specified range of the raw material particle size, the crushing strength after reduction is low and the reducing material ratio (RAR) reduction effect is also small.

一方、No.6〜11は、本発明で規定する全原料粒度の規定範囲、炭素含有割合(T.C)、炭材粒度(メジアン径)を満足する発明であり、生ペレット、冷間圧潰強度、還元後圧潰強度は、いずれも良好であり、かつ、大きな還元材比(RAR)低減効果が得られたものである。   On the other hand, no. 6 to 11 are inventions that satisfy the specified range of the total raw material particle size, the carbon content (TC), and the carbonaceous material particle size (median diameter) specified in the present invention, raw pellets, cold crushing strength, after reduction The crushing strength is good, and a large reducing material ratio (RAR) reduction effect is obtained.

これらの発明例の中でも、配合した鉄鉱石中の粒径10μm以下の超微粒子の含有量が、全原料に対する割合で、3.5質量%以上であるNo.7および8は、生ペレット強度、冷間圧潰強度、還元後圧潰強度とも、高い優れた結果が得られたものである。   Among these invention examples, the content of ultrafine particles having a particle size of 10 μm or less in the blended iron ore is 3.5% by mass or more in terms of the ratio to the total raw materials. In Nos. 7 and 8, high excellent results were obtained for the raw pellet strength, the cold crushing strength, and the crushing strength after reduction.

[実施例2]
上記の非焼成ペレットを、有効容積5500m3の高炉において、原料の一部として使用し調査した。各水準は約1ヶ月間の操業結果の平均を示した。焼結鉱比80%、塊鉱石比15%、ペレット比5%の通常操業から、T.C=22質量%の非焼成ペレットを3%使用する操業へ移行した。
[Example 2]
The above non-fired pellets were used and investigated as part of the raw material in a blast furnace having an effective volume of 5500 m 3 . Each level showed the average of operation results for about one month. From normal operation with a sintered ore ratio of 80%, a lump ore ratio of 15%, and a pellet ratio of 5%, It shifted to the operation which uses 3% of C = 22 mass% non-baking pellets.

その際、非焼成ペレットから持ち込まれるスラグ量、水分量の影響を最小とするべく、焼結鉱比、塊鉱石比、ペレット比を調整した。非焼成ペレットに含有されるカーボン10kg/tp分は、塊コークス比を低減した。その結果、シャフト効率の大幅な向上が得られたので、塊コークス比をさらに低減することができた。   At that time, the sintered ore ratio, the lump ore ratio, and the pellet ratio were adjusted so as to minimize the effects of the amount of slag and moisture contained from the non-fired pellets. The carbon content of 10 kg / tp contained in the non-fired pellets reduced the mass coke ratio. As a result, the shaft efficiency was greatly improved, and the coke coke ratio could be further reduced.

以上の操業調整の結果、RARを480kg/tpから460kg/tpへ大幅に低減することができた。   As a result of the above operation adjustment, the RAR could be significantly reduced from 480 kg / tp to 460 kg / tp.

各種の微粉状鉄含有原料および微粉状炭材の粒度分布を示す図である。It is a figure which shows the particle size distribution of various pulverized iron containing raw materials and pulverized carbonaceous materials. 冷間および還元温度域での含炭非焼成ペレット内の各原料粒子(酸化鉄、炭材、セメント(バインダー))の状態変化の過程を模式的に示す図である。It is a figure which shows typically the process of the state change of each raw material particle | grains (iron oxide, carbonaceous material, cement (binder)) in a carbon-containing non-baking pellet in a cold and reduction temperature range. ペレット中の微粉状炭材の炭材粒度(メジアン径)および炭素含有割合(T.C)と、還元後圧潰強度との関係を示す図である。It is a figure which shows the relationship between the carbon material particle size (median diameter) and carbon content rate (TC) of the pulverized carbon material in a pellet, and the crushing strength after reduction. ペレット中の微粉状炭材の炭材粒度(メジアン径)および炭素含有割合(T.C)と、高炉操業時の還元材比(RAR)との関係を示す図である。It is a figure which shows the relationship between the carbon material particle size (median diameter) and carbon content rate (TC) of the pulverized carbon material in a pellet, and the reducing material ratio (RAR) at the time of blast furnace operation. 含炭非焼成ペレット中の炭素含有量(T.C)と焼結鉱層厚の高さ方向位置における占有率との関係を示す図である。It is a figure which shows the relationship between the carbon content (TC) in a carbon-containing non-baking pellet, and the occupation rate in the height direction position of a sintered ore layer thickness.

Claims (6)

鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材に、水硬性バインダーを添加し、水分を調整しつつ混合、造粒することにより、冷間圧潰強度50kg/cm2以上の高炉用含炭非焼成ペレットを製造する方法であって、全原料の粒度を2mm以下とし、全原料中の炭素含有割合(T.C)が15〜25質量%となるように前記微粉状炭材の配合割合を調整し、かつ、該微粉状炭材のメジアン径を100〜150μmとすることを特徴とする高炉用含炭非焼成ペレットの製造方法。 By adding a hydraulic binder to the finely divided iron-containing raw material containing 40% by mass or more of iron and a finely divided carbonaceous material containing 10% by mass or more of carbon, mixing and granulating while adjusting moisture, A method for producing a blast furnace carbon-containing unfired pellet having a cold crushing strength of 50 kg / cm 2 or more, wherein the particle size of all raw materials is 2 mm or less, and the carbon content (TC) in all raw materials is 15 to 25 A method for producing a coal-containing non-fired pellet for a blast furnace, wherein the blending ratio of the pulverized carbon material is adjusted so as to be mass%, and the median diameter of the pulverized carbon material is 100 to 150 μm. 前記水硬性バインダーを5〜15質量%添加し、水分が5〜15質量%となるように調整しつつ造粒することを特徴とする請求項1記載の高炉用含炭非焼成ペレットの製造方法。   The method for producing a blast furnace carbon-containing non-fired pellet according to claim 1, wherein the hydraulic binder is granulated while adding 5 to 15% by mass and adjusting the water content to 5 to 15% by mass. . 前記微粉状炭材として、高炉一次灰、コークスダスト、および、粉コークスのいずれか1種または2種以上を用いることを特徴とする請求項1または2記載の高炉用含炭非焼成ペレットの製造方法。   The pulverized primary ash, coke dust, and powder coke are used as the pulverized carbonaceous material, or any one or more of them is used. Method. 前記微粉状鉄含有原料として、焼結ダスト、および、微粉状鉄鉱石の1種または2種を用いることを特徴とする請求項1〜3のいずれかに記載の高炉用含炭非焼成ペレットの製造方法。   The pulverized unburned pellets for blast furnace according to any one of claims 1 to 3, wherein one or two types of sintered dust and fine iron ore are used as the fine powder iron-containing raw material. Production method. 前記微粉状鉄含有原料中に微粉状鉄鉱石を配合し、該鉄鉱石中に粒径10μm以下の超微粒子が全原料に対する割合で3.5質量%以上含有することを特徴とする請求項1〜4のいずれかに記載の高炉用含炭非焼成ペレットの製造方法。   2. The fine powder iron ore is blended in the fine powder iron-containing raw material, and ultrafine particles having a particle size of 10 μm or less are contained in the iron ore in a proportion of 3.5% by mass or more with respect to the total raw material. The manufacturing method of the carbon-containing unbaking pellet for blast furnaces in any one of -4. 前記全原料中の炭素含有割合(T.C)が15〜20質量%となるように、前記微粉状炭材の配合割合を調整することを特徴とする請求項1〜5のいずれかに記載の高炉用含炭非焼成ペレットの製造方法。   The blending ratio of the pulverized carbonaceous material is adjusted so that the carbon content ratio (TC) in the total raw material is 15 to 20% by mass. Method for producing carbon-containing unfired pellets for blast furnace.
JP2007174163A 2006-09-11 2007-07-02 Method for producing carbon-containing unfired pellets for blast furnace Active JP5000402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174163A JP5000402B2 (en) 2006-09-11 2007-07-02 Method for producing carbon-containing unfired pellets for blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006245535 2006-09-11
JP2006245535 2006-09-11
JP2007174163A JP5000402B2 (en) 2006-09-11 2007-07-02 Method for producing carbon-containing unfired pellets for blast furnace

Publications (2)

Publication Number Publication Date
JP2008095177A JP2008095177A (en) 2008-04-24
JP5000402B2 true JP5000402B2 (en) 2012-08-15

Family

ID=39378335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174163A Active JP5000402B2 (en) 2006-09-11 2007-07-02 Method for producing carbon-containing unfired pellets for blast furnace

Country Status (1)

Country Link
JP (1) JP5000402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614710A (en) * 2015-05-28 2018-01-19 株式会社神户制钢所 The manufacture method of reduced iron

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114742B2 (en) * 2007-12-28 2013-01-09 新日鐵住金株式会社 Method for producing carbon-containing unfired pellets for blast furnace
WO2010041770A1 (en) * 2008-10-10 2010-04-15 新日本製鐵株式会社 Blast furnace operating method using carbon-containing unfired pellets
IN2012DN00992A (en) * 2009-08-21 2015-04-10 Nippon Steel & Sumitomo Metal Corp
BR112012003786B1 (en) * 2009-08-21 2021-11-16 Nippon Steel Corporation AGGLOMERATE CONTAINING UNBURNT CARBON FOR BLAST FURNACES AND ITS PRODUCTION PROCESS
AT509072B1 (en) * 2010-04-19 2011-06-15 Siemens Vai Metals Tech Gmbh BENTONITE-BOUNDED PRESS LEGS BELOW OXIDIC ICE CARRIER
JP5821362B2 (en) * 2010-07-30 2015-11-24 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5146572B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5146573B1 (en) * 2010-07-30 2013-02-20 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5051317B1 (en) * 2010-07-30 2012-10-17 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP5516311B2 (en) * 2010-10-14 2014-06-11 新日鐵住金株式会社 Method for producing carbon-containing unfired pellets for blast furnace
JP6056492B2 (en) * 2013-01-16 2017-01-11 新日鐵住金株式会社 Method for producing unfired carbon-containing agglomerated blast furnace
JP6287021B2 (en) * 2013-10-08 2018-03-07 新日鐵住金株式会社 Blast furnace operation method
JP6696376B2 (en) * 2016-09-13 2020-05-20 日本製鉄株式会社 Blast furnace operation method
EP3856939A1 (en) * 2018-09-27 2021-08-04 Danieli & C. Officine Meccaniche S.p.A. Solid agglomerated product based on iron oxides and corresponding production method
JP7188033B2 (en) * 2018-11-30 2022-12-13 日本製鉄株式会社 Method for producing coal-bearing agglomerate ore
JP7368726B2 (en) * 2020-01-10 2023-10-25 日本製鉄株式会社 Method for producing unfired coal-containing agglomerated ore for blast furnaces

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118604B2 (en) * 2002-05-28 2008-07-16 株式会社 テツゲン Non-fired agglomerated carbon interior for blast furnace and method for producing the same
EP1579016B1 (en) * 2002-12-02 2006-10-11 Council of Scientific and Industrial Research Cold briquetting and pelletisation of mineral fines using an iron-bearing hydraulic binder
US7896963B2 (en) * 2003-09-23 2011-03-01 Hanqing Liu Self-reducing, cold-bonded pellets
JP2005290525A (en) * 2004-04-05 2005-10-20 Nippon Steel Corp Method for producing cold-agglomerated ore for blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614710A (en) * 2015-05-28 2018-01-19 株式会社神户制钢所 The manufacture method of reduced iron

Also Published As

Publication number Publication date
JP2008095177A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5000402B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
KR101475125B1 (en) Unfired carbon-containing agglomerate for blast furnaces and production method therefor
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP5762403B2 (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
KR100571063B1 (en) Carbon containing nonfired agglomerated ore for blast furnace and production method thereof
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP4842403B2 (en) Method for producing unfired carbon-containing agglomerated mineral
KR100718581B1 (en) Substituting for pig iron and manufacturing method thereof
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
TW201823476A (en) Sintered ore manufacturing method
JP2003301205A (en) Method for charging blast furnace material
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP2002241853A (en) Non-burning agglomerate for blast furnace
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
CN113166843A (en) Solid agglomerated product based on iron oxide and corresponding production method
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
RU2473703C2 (en) Method of operating blast furnace in using carbon-bearing green pellets
JP2012067332A (en) Nonfired carbonaceous-material-containing agglomerated ore for iron manufacture
JP5790554B2 (en) Method for producing reduced iron
JP2002285249A (en) Method for granulating raw material for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

R151 Written notification of patent or utility model registration

Ref document number: 5000402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350