JP4490735B2 - Manufacturing method of carbonized material agglomerates - Google Patents

Manufacturing method of carbonized material agglomerates Download PDF

Info

Publication number
JP4490735B2
JP4490735B2 JP2004167189A JP2004167189A JP4490735B2 JP 4490735 B2 JP4490735 B2 JP 4490735B2 JP 2004167189 A JP2004167189 A JP 2004167189A JP 2004167189 A JP2004167189 A JP 2004167189A JP 4490735 B2 JP4490735 B2 JP 4490735B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
mixture
agglomerated
powdered
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004167189A
Other languages
Japanese (ja)
Other versions
JP2005344181A (en
Inventor
昭人 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004167189A priority Critical patent/JP4490735B2/en
Publication of JP2005344181A publication Critical patent/JP2005344181A/en
Application granted granted Critical
Publication of JP4490735B2 publication Critical patent/JP4490735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉、キューポラなどの竪型炉用装入原料として用いることができる炭材内装塊成化物の製造方法に関する。 The present invention, blast furnace, a method of manufacturing a carbonaceous material furnished agglomerated product can be used as a shaft furnace for charging raw materials such as cupola.

本発明者らは、高炉、キューポラなどの竪型炉用装入原料として用いることを目的として、粉鉱石と粘結炭の混合物を熱間成形することにより、従来の炭材内装コールドペレット等のようにセメントなどのバインダを添加せずとも高強度が得られる炭材内装塊成化物を開発した。   The present inventors, for the purpose of using as a raw material for vertical furnaces such as blast furnaces, cupolas, etc., by hot forming a mixture of fine ore and caking coal, In this way, we have developed an agglomerate of carbonaceous material that can achieve high strength without adding a binder such as cement.

そして、このような炭材内装塊成化物は、例えば図1に示すように、粉状鉄鉱石Bをロータリキルン2で400〜800℃に加熱するとともに、軟化溶融性を有する粉状炭材Aを別途ロータリドライヤ1で軟化溶融が起こらない250℃未満の温度で乾燥したのち、この粉状炭材Aと粉状鉄鉱石Bとを二軸型のミキサ3で混合して粉状炭材Aが軟化溶融する温度である250〜550℃の混合物Cとし、この混合物Cを双ロール型成形機4で熱間成形することにより製造できることを開示した(特許文献1,2参照)。   And such a carbonaceous material agglomerated material is, for example, as shown in FIG. 1, powdered iron ore B is heated to 400 to 800 ° C. with a rotary kiln 2 and powdered carbonaceous material A having softening and melting properties. Is separately dried at a temperature of less than 250 ° C. at which softening and melting does not occur in the rotary dryer 1, and then the powdered carbon material A and the powdered iron ore B are mixed by the biaxial mixer 3 to obtain the powdered carbon material A It is disclosed that the mixture C can be produced by hot forming with a twin roll molding machine 4 with a mixture C of 250 to 550 ° C., which is a temperature at which the material melts and melts (see Patent Documents 1 and 2).

しかしながら、上記方法により製造した場合であっても、炭材内装塊成化物Dが竪型炉に装入され加熱された際に、爆裂が発生し、粉化する場合があることがわかった。   However, even when manufactured by the above method, it has been found that when the carbonaceous material agglomerated material D is charged into a vertical furnace and heated, explosion may occur and pulverize.

特開2001−294944号公報JP 2001-294944 A 特開2002−146444号公報JP 2002-146444 A

そこで、本発明は、竪型炉内で加熱された際に爆裂を確実に防止できる炭材内装塊成化物の製造方法を提供することを目的とする。 Accordingly, an object of the present invention to provide a method of manufacturing a carbonaceous material furnished agglomerated product can be reliably prevented explosion when heated in the vertical furnace.

請求項1に記載の発明は、粉状鉄鉱石、高炉ダスト、転炉ダスト、電気炉ダストおよびミルスケールよりなる群から選ばれた1種または2種以上の粉状鉄含有原料を400〜800℃に加熱し、軟化溶融性を有する粉状炭材を250℃未満(ただし、93℃以下を除く)で乾燥し、ついで前記粉状鉄鉱石と前記粉状炭材とをミキサで混合して250〜550℃の混合物とするとともに、この混合物の前記ミキサ内における滞留時間を1min以上20minとし、その後この混合物を成形機で熱間成形することにより、下式の関係が成り立つ炭材内装塊成化物を製造することを特徴とする炭材内装塊成化物の製造方法である。
式 εW/εC≧0.8
ここに、εCは、前記炭材内装塊成化物の中心を通る断面内において、当該炭材内装塊成化物の中心から半径の1/2の位置までの気孔率分布を算術平均して求めた平均気孔率であり、εWは、前記炭材内装塊成化物の中心を通る断面内において、当該炭材内装塊成化物の半径の1/2の位置から表面までの気孔率分布を算術平均して求めた平均気孔率である。
Invention of Claim 1 is 400-800 1 or 2 types of powdered iron containing raw materials chosen from the group which consists of powdered iron ore, blast furnace dust, converter dust, electric furnace dust, and a mill scale. The powdered carbon material having soft melting property is dried at less than 250 ° C (excluding 93 ° C or less), and then the powdered iron ore and the powdered carbon material are mixed with a mixer. A mixture of 250 to 550 ° C. and a residence time of the mixture in the mixer is set to 1 min or more and 20 min, and then the mixture is hot-molded by a molding machine, so that the following formula is established: It is the manufacturing method of the carbonaceous material agglomerate characterized by manufacturing a chemical.
Formula ε W / ε C ≧ 0.8
Here, ε C is obtained by arithmetically averaging the porosity distribution from the center of the carbonaceous material agglomerated material to a position at a half of the radius in a cross section passing through the center of the carbonized material agglomerated material. Ε W is the average porosity of the carbonaceous material agglomerated material in the cross section passing through the center of the carbonaceous material agglomerated material, and calculates the porosity distribution from the position of the radius of the carbonaceous material agglomerated material to the surface. The average porosity obtained by averaging.

なお、「粉状鉄含有原料」とは、鉄鉱石、製鉄ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケールなど)など主として酸化鉄を含有する原料、またはこれらの原料の2種以上の混合物であって、粉状のものの総称である。また、「軟化溶融性を有する粉状炭材」とは、粘結炭、SRCなど軟化溶融性を有する炭素質物質を少なくとも1種含むものであって、粉状のものの総称である。なお、この「軟化溶融性を有する粉状炭材」は、上記軟化溶融性を有する炭素質物質に加えて、さらにコークス、一般炭、無煙炭、オイルコークスなど軟化溶融性を実質的に有しない炭素質物質を1種以上混合したものであってもよい。   "Powdered iron-containing raw material" means raw materials mainly containing iron oxide such as iron ore and iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.), or two or more of these raw materials It is a general term for a mixture of powders. Further, the “powdered carbon material having softening and melting property” is a general term for powdery materials including at least one carbonaceous material having softening and melting property such as caking coal and SRC. This “powdered carbonaceous material having softening and melting properties” includes carbon having substantially no softening and melting properties, such as coke, steaming coal, anthracite, and oil coke, in addition to the carbonaceous material having softening and melting properties. It may be a mixture of one or more substances.

求項に係る発明によれば、粉状鉄鉱石と粉状炭材とを混合後、所定の時間内に熱間成形することにより、粉状炭材が軟化溶融した状態のまま成形できるので、高強度の塊成化物が得られるとともに、塊成化物の表面近傍が過度に緻密化されることが防止され、加熱により内部で発生した揮発分や還元ガスが容易に塊成化物外に放出され、塊成化物が爆裂することが確実に防止されるAccording to the invention of Motomeko 1, after mixing the powdered iron ore and powdered carbonaceous material, by hot molding within a predetermined period of time, can be molded remain powdery carbonaceous material is softened molten Therefore, a high-strength agglomerated material can be obtained, and the vicinity of the agglomerated material surface can be prevented from being excessively densified, and volatile matter and reducing gas generated by heating can easily be removed from the agglomerated material. Is released and reliably prevents the agglomerates from exploding .

以下、本発明の一実施形態として、炭材内装塊成化物を高炉用原料として用いる場合について詳細に説明するが、本発明に係る炭材内装塊成化物は、高炉に限らずキューポラ等の竪型炉にも同様に適用できるものである。   Hereinafter, as an embodiment of the present invention, a case where a carbonaceous material agglomerated product is used as a raw material for a blast furnace will be described in detail. The same applies to mold furnaces.

(炭材内装塊成化物の構成)
本発明に係る炭材内装塊成化物は、例えば、粉状鉄含有原料としての粉状鉄鉱石と、粉状炭材としての粉状石炭との混合物からなり、かつ、塊成化物内の気孔率分布が下記の式(1)を満たすものである。
εW/εC≧0.8 …式(1)
ここに、ε C は、炭材内装塊成化物の中心を通る断面内において、当該炭材内装塊成化物の中心から半径の1/2の位置までの気孔率分布を算術平均して求めた平均気孔率であり、ε W は、炭材内装塊成化物の中心を通る断面内において、当該炭材内装塊成化物の半径の1/2の位置から表面までの気孔率分布を算術平均して求めた平均気孔率である。
(Composition of carbon material agglomerates)
The carbonaceous material-incorporated agglomerate according to the present invention comprises, for example, a mixture of powdered iron ore as a powdered iron-containing raw material and powdered coal as a powdered carbon material, and pores in the agglomerated material. The rate distribution satisfies the following formula (1).
ε W / ε C ≧ 0.8 (1)
Here, ε C was obtained by arithmetically averaging the porosity distribution from the center of the carbonaceous material agglomerated material to the position of half the radius in the cross section passing through the center of the carbonized material agglomerated material. Ε W is an arithmetic average of the porosity distribution from the position of half the radius of the carbonaceous material agglomerated material to the surface in the cross section passing through the center of the carbonized material agglomerated material. It is the average porosity obtained by the above.

また、εW/εCの指標は、塊成化物の表面近傍における緻密化の度合いを定量化したものであり、この値が小さくなるにしたがい、塊成化物の表面が緻密化し、加熱の際に内部で発生した揮発分や還元ガスが塊成化物外に放出されにくくなり、内部のガス圧力が上昇して、爆裂が発生しやすくなる。εW/εCの下限値は、後記実施例に基づき0.8としたが、好ましくは0.9、さらに好ましくは1.0である。なお、εW/εCの上限値は、上記爆裂防止の観点からは特に制限はないが、εW/εCの値が大きくなりすぎると表面近傍の気孔率が過度に高くなり、塊成化物の耐磨耗性が低下して却って粉化しやすくなるので、好ましくは1.5、さらに好ましくは、1.3とするとよい。 The index of ε W / ε C is a quantification of the degree of densification in the vicinity of the surface of the agglomerated material. As this value becomes smaller, the surface of the agglomerated material becomes densified and heated. Volatile components and reducing gas generated inside are difficult to be released out of the agglomerated material, and the internal gas pressure rises, and explosion tends to occur. The lower limit value of ε W / ε C is set to 0.8 based on the examples described later, but is preferably 0.9, and more preferably 1.0. The upper limit value of ε W / ε C is not particularly limited from the viewpoint of preventing the explosion, but if the value of ε W / ε C is too large, the porosity in the vicinity of the surface becomes excessively high, and agglomeration occurs. Since the abrasion resistance of the chemical compound decreases and it tends to be pulverized, it is preferably 1.5, and more preferably 1.3.

(炭材内装塊成化物の製造方法)
図1に本発明の実施に係る炭材内装塊成化物の製造フローの概念図を示す。鉄鉱石と、炭材のうち軟化溶融性を実質的に有しない炭材(例えば、コークス粉、一般炭、無煙炭、オイルコークス等)は、必要な場合には粉砕して、74μm以下の粒子が70%程度の粉状にする。炭材のうち軟化溶融性を有する炭材(例えば、粘結炭、SRC等)も、上記の軟化溶融性を実質的に有しない炭材ほどは細かくする必要はないが、粉状鉄鉱石および軟化溶融性を実質的に有しない炭材との混合状態を良好に保つために1mm以下程度に粉砕するのが望ましい。
(Manufacturing method of carbonized material agglomerates)
The conceptual diagram of the manufacture flow of the carbonaceous material agglomerated material which concerns on implementation of this invention in FIG. 1 is shown. Iron ore and carbonaceous material (eg, coke powder, general coal, anthracite, oil coke, etc.) that has substantially no softening and melting property are pulverized when necessary to obtain particles of 74 μm or less. 70% powder. Of the carbon materials, carbon materials having soft melting properties (for example, caking coal, SRC, etc.) need not be made as fine as carbon materials having substantially no soft melting properties, but powdered iron ore and It is desirable to grind to about 1 mm or less in order to maintain a good mixed state with the carbonaceous material substantially not having softening and melting properties.

このようにして粒度調整された粉状炭材Aは、ロータリドライヤ1で、炭材Aが軟化溶融しない250℃未満の温度で乾燥し、付着水分を除去する。一方、粉状鉄鉱石Bは、粉状炭材Aと混合したときに目標温度の250〜550℃となるように、ロータリキルン2で400〜800℃に予熱する。ただし、粉状鉄鉱石の一部を置き換えて製鉄ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケール等)を用いる場合には、製鉄ダストは炭素や金属鉄を含むため予熱すると燃焼するので、製鉄ダストは予熱せずにそのまま混合して用いる。 The powdery carbonaceous material A thus adjusted in particle size is dried by the rotary dryer 1 at a temperature of less than 250 ° C. at which the carbonaceous material A is not softened and melted to remove adhering moisture. On the other hand, the powder iron ore B is preheated to 400 to 800 ° C. in the rotary kiln 2 so that the target temperature becomes 250 to 550 ° C. when mixed with the powder carbon material A. However, when using iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.) by replacing part of the powdered iron ore, iron-making dust burns when preheated because it contains carbon and metallic iron. Therefore, steelmaking dust is mixed and used as it is without preheating.

乾燥した粉状炭材Aと予熱した粉状鉄鉱石Bとの混合には、粉状炭材Aの一部の過熱を防止するために短時間で混合できるこの業種で常用されている、例えば二軸型のミキサ3を用いる。また、このミキサ3は成形温度を確保するために保温する。   For mixing the dried powdered carbon material A and the preheated powdered iron ore B, it is commonly used in this industry that can be mixed in a short time to prevent overheating of a part of the powdered carbon material A, for example A biaxial mixer 3 is used. The mixer 3 is kept warm in order to ensure the molding temperature.

そして、ミキサ3内における混合物Cの滞留時間(保持時間)の上限は20min、好ましくは16min、さらに好ましくは12minとする。混合物Cの滞留時間(保持時間)を上記のように制限した理由は以下のとおりである。   The upper limit of the residence time (holding time) of the mixture C in the mixer 3 is 20 min, preferably 16 min, and more preferably 12 min. The reason why the residence time (holding time) of the mixture C is limited as described above is as follows.

すなわち、上記ミキサ3内での混合後の保持状態における混合物C中の粉状炭材Aの溶融軟化・固化の状況を推定するために、粉状石炭(logMF=2.14;ここに、MF:最高流動度[単位:ddpm])単体をJIS M8801に基づきギーセラプラストメータを用いて、昇温+保持の温度条件下における流動度の経時変化を測定した。測定結果を図2に示す。同図に示すように、流動性発現(点a)後、約12min後に最高流動度に達し(点b)、その後、保持時間の経過とともに流動性が低下し、約21min後には流動性がほぼ完全に失われている(点c)。ここで、ミキサ3内に250℃未満の粉状石炭Aが400〜800℃に加熱された粉状鉄鉱石Bとともに装入され両者が混合されると、粉状石炭Aは急速に昇温されて250〜550℃の範囲の保持温度に到達するので、図2と同様の挙動を示すものと推定される。したがって、ミキサ3内における混合物Cの滞留時間(保持時間)は、混合物C中の粉状炭材Aが流動性を失わない20min以下とする必要があり、より高い流動性が維持される16min以下、さらには最高流動度に近い流動性が確保される12min以下とするのが好ましい。もし、ミキサ3内における混合物Cの滞留時間(保持時間)が20minを超えると、粉状炭材Aが流動性をほぼ完全に喪失してしまい、潤滑剤としての機能がなくなり、冷間成形と同様、塊成化物の表面が緻密化してしまうこととなるほか、酷い場合はバインダとしての機能もなくなり、塊成化自体ができなくなることもある(後記実施例の比較例参照)。   That is, in order to estimate the melt softening / solidification state of the powdered carbonaceous material A in the mixture C in the holding state after mixing in the mixer 3, powdered coal (log MF = 2.14; where MF : Maximum fluidity [unit: ddpm]) Using a Giesera plastometer based on JIS M8801, the change over time in the fluidity was measured under the temperature rising and holding temperature conditions. The measurement results are shown in FIG. As shown in the figure, after the fluidity expression (point a), the maximum fluidity is reached after about 12 minutes (point b), and then the fluidity decreases with the lapse of the holding time, and the fluidity is almost after about 21 minutes. Completely lost (point c). Here, when the powdered coal A having a temperature of less than 250 ° C. is charged into the mixer 3 together with the powdered iron ore B heated to 400 to 800 ° C. and mixed together, the temperature of the powdered coal A is rapidly increased. Therefore, it is estimated that the same behavior as in FIG. 2 is exhibited. Therefore, the residence time (holding time) of the mixture C in the mixer 3 needs to be 20 min or less so that the powdered carbonaceous material A in the mixture C does not lose fluidity, and 16 min or less in which higher fluidity is maintained. Furthermore, it is preferable to set it to 12 minutes or less, which ensures fluidity close to the maximum fluidity. If the residence time (holding time) of the mixture C in the mixer 3 exceeds 20 minutes, the powdered carbonaceous material A loses its fluidity almost completely, and the function as a lubricant is lost. Similarly, the surface of the agglomerated material will be densified, and if it is severe, the function as a binder may be lost, and agglomeration itself may not be possible (see Comparative Examples in Examples below).

なお、ミキサ3内における混合物Cの滞留時間(保持時間)の下限値は、混合後粉状石炭Aが保持温度に到達するまでの昇温時間や、ロータリドライヤ1、ロータリキルン2からの原料排出速度と成形機3による成形速度との差の変動を吸収するバッファとしての役割をミキサ3にもたせること等を考慮して、1min、さらには3min、特に5minとすることが好ましい。   The lower limit value of the residence time (holding time) of the mixture C in the mixer 3 is the temperature rise time until the mixed coal A reaches the holding temperature after mixing, the raw material discharge from the rotary dryer 1 and the rotary kiln 2. In consideration of giving the mixer 3 a role as a buffer that absorbs fluctuations in the difference between the speed and the molding speed by the molding machine 3, it is preferably 1 min, further 3 min, especially 5 min.

粉状炭材Aと粉状鉄鉱石Bからなる混合物Cは、例えば熱間成形用の双ロール型成形機4を用いて塊成化物(ブリケット)Dに加圧成形する。加圧成形は塊成化物Dが成形機4から高炉炉頂装入までのハンドリングに耐え得るに十分な強度約500N/個(30mm×25mm×15mm程度の大きさに対して)が得られるよう、成形加圧力を10kN/cm以上、好ましくは20kN/cm以上とする。   The mixture C composed of the powdered carbon material A and the powdered iron ore B is pressure-molded into an agglomerate (briquette) D using, for example, a twin roll molding machine 4 for hot forming. Pressure molding seems to give a strength of about 500 N / piece (for a size of about 30 mm × 25 mm × 15 mm) sufficient for the agglomerate D to withstand handling from the molding machine 4 to the top loading of the blast furnace. The molding pressure is 10 kN / cm or more, preferably 20 kN / cm or more.

このようにして成形した塊成化物Dは、粉状鉄鉱石Bの空隙に、溶融した軟化溶融性を有する炭材Aが浸入し、この炭材Aが潤滑剤として作用して、塊成化物Dの表面に加えられた成形加圧力が塊成化物Dの内部にまでほぼ均一に及ぶため、表面近傍のみが圧密されることが防止される。その結果、塊成化物D内の気孔率分布が平均化されて上記式(1)の関係を満たすこととなり、加熱時に爆裂が起こらない塊成化物Dが得られる。   The agglomerated material D formed in this way is agglomerated by the molten carbon material A having a softening and melting property entering the voids of the powdered iron ore B and acting as a lubricant. Since the molding pressure applied to the surface of D extends almost uniformly to the inside of the agglomerate D, only the vicinity of the surface is prevented from being consolidated. As a result, the porosity distribution in the agglomerate D is averaged to satisfy the relationship of the above formula (1), and the agglomerate D in which no explosion occurs during heating is obtained.

また、固化後の炭材Aは、粉状鉄鉱石Bの粒子同士を強固に連結するとともに、粉状鉄鉱石Bとの接触面積も大きくなっており、この塊成化物Dは、高強度で、かつ被還元性に優れたものとなる。   In addition, the carbonized material A after solidification strongly connects the particles of the powdered iron ore B and has a large contact area with the powdered iron ore B, and this agglomerated material D has high strength. In addition, the reducibility is excellent.

なお、ミキサ3と成形機4は密閉構造とし、ミキサ3および成形機4で発生する炭材Aの熱分解ガス(揮発分)は炭化水素が主成分であるので、このガスをエジェクタ等を用いて吸引回収し、回収したガスはロータリキルン2等の加熱燃料として利用する。   The mixer 3 and the molding machine 4 are hermetically sealed, and the pyrolysis gas (volatile matter) of the carbonaceous material A generated in the mixer 3 and the molding machine 4 is mainly composed of hydrocarbons. The collected gas is used as heating fuel for the rotary kiln 2 and the like.

成形後の塊成化物Dは、バンカ5内で不活性ガスにより冷却した後、バンカ5から排出して篩い、篩下の粉は再びミキサ3に戻して原料として利用し、篩上は目的とする高強度の高炉原料となる。   The agglomerated material D after molding is cooled in the bunker 5 with an inert gas, then discharged from the bunker 5 and sieved, and the powder under the sieve is returned to the mixer 3 and used as a raw material. It becomes a high strength blast furnace raw material.

なお、特開平11−92833号公報に開示された発明では、成形後の塊成化物に残存する揮発分を減少するために脱ガス工程を設けているが、本発明においては必ずしも脱ガス工程を必要としない。特開平11−92833号公報に開示された発明に係る塊成化物は1200〜1400℃の高温雰囲気の還元炉に装入されるため、残存する揮発分の急激な発生による塊成化物の爆裂を防止する目的で脱ガス工程を設けたものであるのに対して、本発明の方法で製造された塊成化物は、高炉に装入され、高炉内で徐々に昇温されるため、残存する揮発分も徐々に除去されるので塊成化物の爆裂は問題とならない。   In the invention disclosed in JP-A-11-92833, a degassing step is provided in order to reduce the volatile matter remaining in the agglomerated product after molding, but in the present invention, the degassing step is not necessarily performed. do not need. Since the agglomerate according to the invention disclosed in JP-A-11-92833 is charged into a reduction furnace having a high temperature atmosphere of 1200 to 1400 ° C., explosion of the agglomerate due to rapid generation of remaining volatile matter is prevented. While the degassing step is provided for the purpose of preventing, the agglomerate produced by the method of the present invention is charged into the blast furnace and gradually heated in the blast furnace, and therefore remains. Volatile matter is also removed gradually, so agglomeration explosion is not a problem.

図3に本実施例で用いた熱間成形機の概要を示す。表1に示す粉状石炭および表2に示す粉状鉄鉱石を、22:78の質量割合で、粉状鉄鉱石のみを図示しない電気炉で600〜700℃に予熱した後、オイルヒータで400〜500℃に保温されたミキサに装入し混合して400〜500℃とし、ミキサ内における保持時間は7〜27minの間で種々変更し、双ロール型成形機を用いてロール回転速度6rpm、成形圧力20〜29kN/cmで30mm×25mm×15mmの卵形のブリケット(塊成化物)に成形した。上記保持時間20min以下のブリケットを発明例、20min超えのブリケットを比較例とする。   FIG. 3 shows an outline of the hot forming machine used in this example. The powdered coal shown in Table 1 and the powdered iron ore shown in Table 2 are preheated to 600 to 700 ° C. in an electric furnace (not shown) at a mass ratio of 22:78, and then 400 by an oil heater. It is charged in a mixer kept at ˜500 ° C. and mixed to 400 to 500 ° C., and the holding time in the mixer is variously changed between 7 to 27 min. Using a twin roll type molding machine, the roll rotation speed is 6 rpm, Molded into an oval briquette (agglomerated product) of 30 mm × 25 mm × 15 mm at a molding pressure of 20-29 kN / cm. The briquette having a holding time of 20 min or less is referred to as an invention example, and the briquette exceeding 20 min is referred to as a comparative example.

なお、粉状石炭のギーセラ最高流動度MFはJIS M8801に基づいて測定した。

Figure 0004490735
Figure 0004490735
The Giesera maximum fluidity MF of powdered coal was measured based on JIS M8801.
Figure 0004490735
Figure 0004490735

[参考例]
また、参考例として、上記実施例と同じ粉状鉄鉱石と粉状石炭を、上記実施例と同じ質量割合で用い、バインダとしてコーンスターチを粉状鉄鉱石と粉状石炭との合計量に対する外数で4質量%添加し混合した後、上記の双ロール型成形機を用いて冷間で、ロール回転速度6rpm、成形圧力25kN/cmで30mm×25mm×15mmの卵形のブリケット(塊成化物)に成形した。
[Reference example]
In addition, as a reference example, the same powder iron ore and powdered coal as in the above example are used at the same mass ratio as in the above example, and corn starch as a binder is an external number relative to the total amount of powdered iron ore and powdered coal. After adding 4% by mass and mixing, in the cold using the above-mentioned twin roll type molding machine, an egg-shaped briquette (agglomerated product) of 30 mm × 25 mm × 15 mm at a roll rotation speed of 6 rpm and a molding pressure of 25 kN / cm Molded into.

(気孔率分布の測定結果)
上記保持時間が7minである発明例のブリケットと、参考例のブリケットとをそれぞれ樹脂埋めしたのち二分して断面を研磨し、その断面内で、ブリケットの中心を通り、かつ成形加圧方向に沿う直線上の気孔率分布を画像解析により測定した。
(Measurement result of porosity distribution)
The briquette of the invention example having the holding time of 7 min and the briquette of the reference example are filled with resin and then divided into two parts, and the cross section is polished. In the cross section, through the center of the briquette and along the pressing direction The porosity distribution on the straight line was measured by image analysis.

図4に、測定結果を、ブリケットの中心からの相対距離と相対気孔率との関係に標準化して示す。なお、相対距離1.0の位置がブリケット表面に相当し、相対気孔率1.0はブリケットの中心から表面までの気孔率の測定値を算術平均したものに相当する。   FIG. 4 shows the measurement results normalized to the relationship between the relative distance from the center of the briquette and the relative porosity. Note that the position at a relative distance of 1.0 corresponds to the briquette surface, and the relative porosity of 1.0 corresponds to an arithmetic average of measured values of the porosity from the center to the surface of the briquette.

同図(a)に示すように、参考例の冷間成形したブリケットでは、気孔率(相対気孔率)は中心で最も高く、表面に近づくほど低下しており、表面近傍が極端に緻密化しているのがわかる。また、εW/εCの値は0.668となり、上記式(1)を満たしていない。 As shown in the figure (a), in the cold-formed briquette of the reference example, the porosity (relative porosity) is the highest at the center and decreases as it approaches the surface, and the vicinity of the surface is extremely densified. I can see that The value of ε W / ε C is 0.668, which does not satisfy the above formula (1).

一方、同図(b)に示すように、発明例のブリケットでは、気孔率(相対気孔率)の値にバラツキが見られるものの、同図(a)のような中心から表面に向かって気孔率が低下する傾向は認められず、断面内において気孔率が平均化しているのがわかる。また、εW/εCの値は1.205となり、上記式(1)を満たしている。 On the other hand, as shown in FIG. 5B, the briquette of the invention example shows a variation in porosity (relative porosity), but the porosity from the center toward the surface as shown in FIG. No tendency to decrease is observed, and it can be seen that the porosity is averaged in the cross section. Further, the value of ε W / ε C is 1.205, which satisfies the above formula (1).

(塊歩留の測定結果)
つぎに、ブリケットを高炉内に装入し加熱した際の爆裂の有無を調査するため、実施例(発明例+比較例)および参考例のブリケットそれぞれについて、1200℃、N2雰囲気中に10min間保持した後に取り出し、元のブリケット形状を維持している試料の個数割合を測定し、これを塊歩留とした。
(Measurement result of mass yield)
Next, in order to investigate the presence or absence of explosion when the briquette is charged in the blast furnace and heated, each of the briquette of the example (invention example + comparative example) and the reference example is 1200 ° C. in an N 2 atmosphere for 10 min. After being held, the sample was taken out, and the ratio of the number of samples maintaining the original briquette shape was measured.

図5に、εW/εCと塊歩留との関係を示す。同図から明らかなように、参考例の冷間成形のブリケットでは、εW/εCは0.33〜0.71の範囲にあり、塊歩留は88質量%を下回っている。 FIG. 5 shows the relationship between ε W / ε C and mass yield. As is apparent from the figure, in the cold-formed briquette of the reference example, ε W / ε C is in the range of 0.33 to 0.71, and the lump yield is less than 88% by mass.

また、比較例の保持時間20min超えの熱間成形の場合、そもそも成形自体が不能で塊状化できなかったものが多く、成形できたものでもεW/εCは0.5〜0.7の範囲にあり、塊歩留は80質量%を下回っている。 Further, in the case of hot forming with a holding time exceeding 20 minutes in the comparative example, there are many cases where the forming itself was impossible and could not be agglomerated in the first place, and even if formed, ε W / ε C was 0.5 to 0.7. The mass yield is below 80% by mass.

これに対し、発明例の保持時間20min以下の熱間成形のブリケットでは、εW/εCが0.91〜1.24の範囲にあり、塊歩留は92質量%以上と高い値を示しており、爆裂による粉化の問題は生じないものと考えられる。 On the other hand, in the hot-formed briquettes having a holding time of 20 min or less in the inventive example, ε W / ε C is in the range of 0.91 to 1.24, and the mass yield is as high as 92% by mass or more. Therefore, it is considered that there is no problem of pulverization due to explosion.

(圧潰強度の測定結果)
実施例(発明例+比較例)のブリケットについて、冷間における圧潰強度を測定した。図6に、ミキサ内における混合物の保持時間とブリケット(炭材内装塊成化物)の圧潰強度との関係を示す。同図から明らかなように、ブリケット(炭材内装塊成化物)の圧潰強度は、保持時間7〜16minの範囲では900〜1000N以上と非常に高い値を維持しているのに対し、16minを超えると低下し始め、20minで高炉用装入物として必要十分な強度約50Nとなり、20minを超えるとさらに低下し、高炉用装入物としては強度不足となっている(なお、成形自体が不能で塊状化できなかった場合、圧潰強度は0Nとして表示した。)。
(Results of crushing strength measurement)
About the briquette of an Example (invention example + comparative example), the crushing strength in cold was measured. FIG. 6 shows the relationship between the retention time of the mixture in the mixer and the crushing strength of the briquette (carbonaceous material agglomerated material). As is clear from the figure, the crushing strength of briquettes (carbon material interior agglomerates) maintains an extremely high value of 900 to 1000 N or more in the range of the holding time of 7 to 16 min, whereas 16 min. When it exceeds 20 minutes, the strength starts to decrease to about 50 N, which is necessary and sufficient for a blast furnace charge, and when it exceeds 20 minutes, the strength further decreases and the strength for a blast furnace charge is insufficient (note that molding itself is impossible) The crushing strength was displayed as 0 N when it could not be agglomerated.

本発明の実施に係る炭材内装塊成化物の製造フローの概念図である。It is a conceptual diagram of the manufacture flow of the carbonaceous material interior agglomerate which concerns on implementation of this invention. 昇温+保持の温度条件下における粉状炭材のギーセラ流動度の経時変化を示すグラフ図である。It is a graph which shows a time-dependent change of the Giesera fluidity | liquidity of a powdery carbon material on temperature conditions of temperature rising + holding | maintenance. 実施例で用いた熱間成形機の概要を示すフロー図である。It is a flowchart which shows the outline | summary of the hot forming machine used in the Example. ブリケットの中心からの相対距離と相対気孔率との関係を示すグラフ図である。It is a graph which shows the relationship between the relative distance from the center of a briquette, and a relative porosity. εW/εCと塊歩留との関係を示すグラフ図である。It is a graph which shows the relationship between (epsilon) W / (epsilon) C and a lump yield. ミキサ内における混合物の保持時間と炭材内装塊成化物の圧潰強度との関係を示すグラフ図である。It is a graph which shows the relationship between the retention time of the mixture in a mixer, and the crushing strength of a carbonaceous material agglomerate.

符号の説明Explanation of symbols

1:ロータリドライヤ
2:ロータリキルン
3:ミキサ
4:成形機
5:バンカ
A:粉状炭材(粉状石炭)
B:粉状鉄含有原料(粉状鉄鉱石)
C:混合物
D:炭材内装塊成化物(ブリケット)

1: Rotary dryer 2: Rotary kiln 3: Mixer 4: Molding machine 5: Bunker A: Powdered carbon material (powdered coal)
B: Powdered iron-containing raw material (powdered iron ore)
C: Mixture D: Carbonaceous material agglomerate (briquette)

Claims (1)

粉状鉄鉱石、高炉ダスト、転炉ダスト、電気炉ダストおよびミルスケールよりなる群から選ばれた1種または2種以上の粉状鉄含有原料を400〜800℃に加熱し、軟化溶融性を有する粉状炭材を250℃未満(ただし、93℃以下を除く)で乾燥し、ついで前記粉状鉄鉱石と前記粉状炭材とをミキサで混合して250〜550℃の混合物とするとともに、この混合物の前記ミキサ内における滞留時間を1min以上20minとし、その後この混合物を成形機で熱間成形することにより、下式の関係が成り立つ炭材内装塊成化物を製造することを特徴とする炭材内装塊成化物の製造方法。
式 εW/εC≧0.8
ここに、εCは、前記炭材内装塊成化物の中心を通る断面内において、当該炭材内装塊成化物の中心から半径の1/2の位置までの気孔率分布を算術平均して求めた平均気孔率であり、εWは、前記炭材内装塊成化物の中心を通る断面内において、当該炭材内装塊成化物の半径の1/2の位置から表面までの気孔率分布を算術平均して求めた平均気孔率である。
One or more powdery iron-containing raw materials selected from the group consisting of powdered iron ore, blast furnace dust, converter dust, electric furnace dust, and mill scale are heated to 400 to 800 ° C., and softened and melted. the powdery carbonaceous materials below 250 ° C. with (except for 93 ° C. or less) and dried, then the said powdery carbonaceous material and the powdery iron ore with a mixture of mixture to 250 to 550 ° C. in the mixer The residence time of the mixture in the mixer is set to 1 min or more and 20 min, and then the mixture is hot-molded by a molding machine to produce a carbonaceous material agglomerate satisfying the following relationship: A method for producing a carbonized material agglomerated material.
Formula ε W / ε C ≧ 0.8
Here, ε C is obtained by arithmetically averaging the porosity distribution from the center of the carbonaceous material agglomerated material to a position at a half of the radius in a cross section passing through the center of the carbonized material agglomerated material. Ε W is the average porosity of the carbonaceous material agglomerated material in the cross section passing through the center of the carbonaceous material agglomerated material, and calculates the porosity distribution from the position of the radius of the carbonaceous material agglomerated material to the surface. The average porosity obtained by averaging.
JP2004167189A 2004-06-04 2004-06-04 Manufacturing method of carbonized material agglomerates Expired - Fee Related JP4490735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167189A JP4490735B2 (en) 2004-06-04 2004-06-04 Manufacturing method of carbonized material agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167189A JP4490735B2 (en) 2004-06-04 2004-06-04 Manufacturing method of carbonized material agglomerates

Publications (2)

Publication Number Publication Date
JP2005344181A JP2005344181A (en) 2005-12-15
JP4490735B2 true JP4490735B2 (en) 2010-06-30

Family

ID=35496826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167189A Expired - Fee Related JP4490735B2 (en) 2004-06-04 2004-06-04 Manufacturing method of carbonized material agglomerates

Country Status (1)

Country Link
JP (1) JP4490735B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996103B2 (en) * 2006-02-07 2012-08-08 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP5578057B2 (en) * 2010-12-14 2014-08-27 新日鐵住金株式会社 Porous unevenly-distributed fired pellet and method for producing the same
BR112016000103B1 (en) 2013-07-10 2020-05-12 Jfe Steel Corporation GRANULATED PARTICLES CONTAINING CARBON MATERIAL TO MANUFACTURE SINTERED ORE, AND METHODS TO PRODUCE THE SAME AND TO PRODUCE SINTERIZED ORE
CN104726630A (en) * 2015-03-25 2015-06-24 甘肃酒钢集团宏兴钢铁股份有限公司 High-alkalinity composite metallized pellet for converter and production process thereof
KR102233326B1 (en) 2016-06-22 2021-03-26 제이에프이 스틸 가부시키가이샤 Manufacturing method of carbon material embedded sintered ore
WO2018123750A1 (en) 2016-12-28 2018-07-05 Jfeスチール株式会社 Sintered ore manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129140A (en) * 2001-08-10 2003-05-08 Nippon Steel Corp Method for manufacturing molded article designed for reducing rotary hearth

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028049B1 (en) * 1970-12-26 1975-09-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129140A (en) * 2001-08-10 2003-05-08 Nippon Steel Corp Method for manufacturing molded article designed for reducing rotary hearth

Also Published As

Publication number Publication date
JP2005344181A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4996105B2 (en) Vertical coal interior agglomerates
JP3004265B1 (en) Carbon material interior pellet and reduced iron production method
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
JP2004269978A (en) Production method of reduced metal and carbon material-containing agglomerate
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
KR101302765B1 (en) Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method
KR101234388B1 (en) Process for production of direct-reduced iron
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
JP4718241B2 (en) Coke production method
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP4441461B2 (en) Manufacturing method of carbonized material agglomerates
JP5365044B2 (en) Ferro-coke manufacturing method
JP4265422B2 (en) Production method of coal for coke oven charging
JP4600102B2 (en) Method for producing reduced iron
JP2010285684A (en) Method for producing agglomerated ore including carbonaceous material to be used for vertical furnace
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP5365043B2 (en) Ferro-coke manufacturing method
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP3863104B2 (en) Blast furnace operation method
JP4078285B2 (en) Blast furnace operation method
JP2011179090A (en) Method for producing granulated iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees