JP5365044B2 - Ferro-coke manufacturing method - Google Patents

Ferro-coke manufacturing method Download PDF

Info

Publication number
JP5365044B2
JP5365044B2 JP2008082520A JP2008082520A JP5365044B2 JP 5365044 B2 JP5365044 B2 JP 5365044B2 JP 2008082520 A JP2008082520 A JP 2008082520A JP 2008082520 A JP2008082520 A JP 2008082520A JP 5365044 B2 JP5365044 B2 JP 5365044B2
Authority
JP
Japan
Prior art keywords
molding
ferro
coke
raw material
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008082520A
Other languages
Japanese (ja)
Other versions
JP2009235222A (en
Inventor
孝思 庵屋敷
英和 藤本
泉 下山
喜代志 深田
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008082520A priority Critical patent/JP5365044B2/en
Publication of JP2009235222A publication Critical patent/JP2009235222A/en
Application granted granted Critical
Publication of JP5365044B2 publication Critical patent/JP5365044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel method for efficiently producing ferro coke considering improvement of a molding yield in a molding process for agglomeration of raw materials. <P>SOLUTION: When ferro coke is produced by carbonizing a molded material prepared by molding a molding raw material containing coal 20, an iron source raw material 21 and a binder, the molded material after molding is sieved by a sieve 3 to separate a ferro coke producing molded material and a powder portion from each other, and the ferro coke producing molded material is carbonized by a carbonization furnace 4, while the powder portion is conveyed by a powder portion conveying line 7 to be used as the molding raw material of the molded material. Preferably, the grain size of the powder portion is 6 mm or less, 3-15 mass% of the powder portion is used as the molding raw material based on the total amount of the coal and the iron source raw material, and the molded material is molded by using a double-roll molding machine 2. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、鉄鉱石等の鉄源原料と、石炭とを原料として冶金用のフェロコークスを製造するフェロコークスの製造方法に関する。   The present invention relates to a ferro-coke manufacturing method for manufacturing ferro-coke for metallurgy using iron source materials such as iron ore and coal as raw materials.

高炉の操業を効率よく行うために、石炭をコークス炉で乾留してコークスを製造し、コークスを高炉に投入することが行われている。高炉内でのコークスには、高炉内の通気をよくするためのスペーサーの役割、還元材としての役割、熱源としての役割などがある。近年、コークスの反応性を向上させるという観点から、石炭に鉄鉱石を混合して冶金用のフェロコークスを得る技術が知られている(例えば、特許文献1参照。)。フェロコークス原料を、石炭リッチの配合比にするか、鉄鉱石リッチの配合比にするかは、コークス代替を目指すか、鉄源として利用するかによって任意に定められている。   In order to efficiently operate the blast furnace, coal is carbonized in a coke oven to produce coke, and the coke is thrown into the blast furnace. Coke in the blast furnace has a role of a spacer for improving ventilation in the blast furnace, a role as a reducing material, a role as a heat source, and the like. In recent years, from the viewpoint of improving the reactivity of coke, a technique for obtaining ferro-coke for metallurgy by mixing iron ore with coal is known (see, for example, Patent Document 1). Whether the ferro-coke raw material has a coal-rich composition ratio or an iron ore-rich composition ratio is arbitrarily determined depending on whether it is intended to replace coke or is used as an iron source.

このフェロコークスを製造する工程において、石炭および鉄鉱石を成型機で塊成化する必要がある。塊成化する方法として、原料にバインダーを添加して常温で成型する方法と250℃以上の高温で石炭を軟化溶融させ、バインダーを添加せずに石炭の粘結性を利用して成型する方法がある。前者の方法としては、石炭、鉄鉱石およびバインダーを混練機で混練し、その後、常温で成型する方法が知られている(例えば、特許文献2参照。)。後者の方法としては、石炭および鉄鉱石を混合し、250℃以上に急速加熱して加圧成型する方法が知られている(例えば、特許文献3参照。)。塊成化された成型物は、乾留炉で乾留され、フェロコークスが製造される。
特開2005‐15700号公報 (特許請求の範囲) 特開昭64‐81889号公報 (第2頁) 特開2005‐53986号公報 (請求項3)
In the process of manufacturing this ferro-coke, it is necessary to agglomerate coal and iron ore with a molding machine. The agglomeration method includes adding a binder to the raw material and molding at room temperature, and softening and melting coal at a high temperature of 250 ° C. or higher, and molding using the caking property of the coal without adding the binder There is. As the former method, a method is known in which coal, iron ore and a binder are kneaded with a kneader and then molded at room temperature (for example, see Patent Document 2). As the latter method, there is known a method in which coal and iron ore are mixed, rapidly heated to 250 ° C. or higher and press-molded (see, for example, Patent Document 3). The agglomerated molded product is carbonized in a carbonization furnace to produce ferrocoke.
JP 2005-15700 A (Claims) JP-A-64-81889 (Page 2) Japanese Patent Laying-Open No. 2005-53986 (Claim 3)

上述のようにフェロコークスの製造には、原料を塊成化する成型工程と、その後、塊成化された成型物を乾留してフェロコークスの製品を得る工程とがある。フェロコークスを製造するに際して、塊成化後の成型物のハンドリング強度が高いと共に、高炉に投入されるため乾留後のフェロコークスの製品強度も高いことが要求されるが、製造コストという点では成型工程での成型歩留まりが重要となる。しかし、上記特許文献1〜3では、成型する温度、使用する原料の種類、副原料の検討が行われているが、成型歩留まりを考慮した検討がなされてない。   As described above, the production of ferro-coke includes a molding step in which raw materials are agglomerated and a step in which ferro-coke products are obtained by dry distillation of the agglomerated molded product. When manufacturing ferro-coke, it is required that the strength of the molded product after agglomeration is high and that the product strength of ferro-coke after dry distillation is high because it is put into a blast furnace. The molding yield in the process is important. However, in Patent Documents 1 to 3 described above, the temperature to be molded, the type of raw material to be used, and the auxiliary raw materials have been studied, but no consideration has been given to the molding yield.

そこで本発明では、原料を塊成化する成型工程における成型歩留まりの向上を考慮した、効率的な新たなフェロコークスの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an efficient new ferro-coke production method in consideration of improvement in molding yield in a molding process for agglomerating raw materials.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)石炭、鉄源原料およびバインダーを含む成型用原料を成型した成型物を乾留してフェロコークスを製造する際に、
成型後の成型物を篩い分けして、フェロコークス製造用成型物と粉状部とに分離し、前記フェロコークス製造用成型物を乾留し、前記粉状部を前記成型物の成型用原料として用いることを特徴とするフェロコークスの製造方法。
(2)粉状部の粒径が6mm以下であることを特徴とする(1)に記載のフェロコークスの製造方法。
(3)石炭と鉄源原料との合計量に対して、3質量%〜15質量%の粉状部を、成型用原料として用いることを特徴とする(1)または(2)に記載のフェロコークスの製造方法。
(4)ダブルロール成型機を用いて成型物を成型することを特徴とする(1)ないし(3)のいずれかに記載のフェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) When producing a ferro-coke by dry-distilling a molding obtained by molding a molding raw material containing coal, an iron source raw material and a binder,
The molded product after molding is sieved and separated into a molded product for ferrocoke production and a powdered part, the molded product for ferrocoke production is dry distilled, and the powdered part is used as a raw material for molding the molded product. A method for producing ferro-coke, characterized by being used.
(2) The method for producing ferro-coke according to (1), wherein the particle size of the powdery part is 6 mm or less.
(3) Ferro according to (1) or (2), wherein a powdery part of 3% by mass to 15% by mass is used as a raw material for molding with respect to the total amount of coal and iron source material. Coke production method.
(4) The method for producing ferro-coke according to any one of (1) to (3), wherein a molded product is molded using a double roll molding machine.

本発明によれば、乾留前の成型物から粉状部を除去するので、廃炭、廃鉱石となる原料がなくなり、成型歩留まりの向上を考慮した効率的なフェロコークスの製造を行うことができる。   According to the present invention, since the powdery part is removed from the molded product before dry distillation, there is no raw material that becomes waste coal or waste ore, and efficient ferro-coke can be produced in consideration of improvement in molding yield. .

また、ダブルロール成型を行うことで、成型物からの粉状部の分離が容易になり、篩い効率が向上し効率的な成型を行うことができる。   Moreover, by performing double roll molding, separation of the powdery part from the molded product is facilitated, sieving efficiency is improved, and efficient molding can be performed.

以下、図面に基づいて本発明のフェロコークスの製造方法の一実施形態を説明する。図1はフェロコークスの製造設備を示す概略図である。石炭20および鉄源原料21は粉砕機(図示せず。)にて所定の粒度以下に粉砕された後、所定の割合で配合される。例えば石炭は3mm以下に、鉄源原料は0.5mm以下に粉砕される。そして、例えば石炭60〜90質量%、鉄源原料10〜40質量%の割合で配合される。鉄源原料21としては、主に鉄鉱石が使用されるが、鉄鉱石の替わりに高炉ダスト、転炉ダスト、圧延スラッジなどの製鉄所無いで副生する鉄源原料を用いてもよい。本実施形態においては、鉄源原料21として鉄鉱石を用いるものとする。   Hereinafter, an embodiment of a method for producing ferro-coke of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a ferro-coke manufacturing facility. The coal 20 and the iron source material 21 are pulverized to a predetermined particle size or less by a pulverizer (not shown) and then blended at a predetermined ratio. For example, coal is crushed to 3 mm or less, and iron source material is crushed to 0.5 mm or less. And it mix | blends in the ratio of 60-90 mass% of coal, and 10-40 mass% of iron source raw materials, for example. As the iron source material 21, iron ore is mainly used, but instead of the iron ore, an iron source material that is produced as a by-product without ironworks such as blast furnace dust, converter dust, and rolling sludge may be used. In this embodiment, iron ore is used as the iron source material 21.

配合された石炭、鉄鉱石は攪拌機1に投入される。攪拌機1には、バインダータンク5よりバインダーが添加される。バインダーには通常使用されるSOP(軟ピッチ)、中ピッチ、PDA(プロパン脱瀝アスファルト)、ASP(アスファルトピッチ)などが使用され、1種類もしくは2種類以上を併用して使用することもできる。   The blended coal and iron ore are put into the stirrer 1. A binder is added to the stirrer 1 from a binder tank 5. As the binder, SOP (soft pitch), medium pitch, PDA (propane desulfurized asphalt), ASP (asphalt pitch), or the like, which are usually used, are used, and one kind or two or more kinds can be used in combination.

図2に、攪拌機1部分をより詳細に示す。攪拌機1は、成型用原料が装入される容器本体8と、この容器本体8の内部に設けられて成型用原料を攪拌する攪拌羽根9と、を有する。石炭および鉄鉱石の分散性を考えると、スクリュー式の攪拌機よりも高速回転する攪拌羽根9で攪拌する攪拌機1を用いることが望ましい。容器本体8の周囲には、加熱部として高温オイルまたは高圧水蒸気が流れ込むジャケット10が設けられる。ジャケット10は、成型用原料が120℃〜240℃の範囲になるように容器本体8を加熱する。攪拌されて得られた混合原料は、排出部11から排出される。   FIG. 2 shows the agitator 1 portion in more detail. The stirrer 1 includes a container main body 8 in which a forming raw material is charged, and a stirring blade 9 provided inside the container main body 8 for stirring the forming raw material. Considering the dispersibility of coal and iron ore, it is desirable to use a stirrer 1 that stirs with a stirring blade 9 that rotates at a higher speed than a screw stirrer. A jacket 10 into which high-temperature oil or high-pressure steam flows is provided as a heating unit around the container body 8. The jacket 10 heats the container body 8 so that the molding raw material is in the range of 120 ° C to 240 ° C. The mixed raw material obtained by stirring is discharged from the discharge unit 11.

バインダーは、石炭および鉄鉱石を攪拌機1に投入すると同時に、もしくは攪拌の最中にバインダータンク5から添加される。   The binder is added from the binder tank 5 at the same time as charging the stirrer 1 with coal and iron ore or during stirring.

図1に示されるように、攪拌機1から排出された混合原料は、高圧成型機であるダブルロール成型機2で高圧成型される。ダブルロール成型機2は攪拌機1からの排出直後に混合原料を成型する。   As shown in FIG. 1, the mixed raw material discharged from the stirrer 1 is high-pressure molded by a double roll molding machine 2 which is a high-pressure molding machine. The double roll molding machine 2 molds the mixed raw material immediately after discharging from the stirrer 1.

このため、ダブルロール成型機2の成型温度は攪拌機1の攪拌温度に近いものである。ダブルロール成型機2自体は、必ずしも加熱機構を有する必要はない。   For this reason, the molding temperature of the double roll molding machine 2 is close to the stirring temperature of the stirrer 1. The double roll molding machine 2 itself does not necessarily have a heating mechanism.

図3に、ダブルロール成型機2をより詳細に示す。ダブルロール成型機2は、互いに反対方向に回転する一対の成型ロール12を有し、一対の成型ロール12の接触箇所で混合原料が加圧成型される。図4に、成型ロール12の斜視図を示す。図4に示されるように、成型ロール12の外周面には凹み13が形成されていて、凹み13の形状の成型物22が成型される。成型物のサイズは特に限定されるものではなく、3〜95cm程度、好ましくは6〜60cm程度である。高炉での使用状態によって、必要とされる成型サイズは異なる。 FIG. 3 shows the double roll molding machine 2 in more detail. The double roll molding machine 2 has a pair of molding rolls 12 that rotate in directions opposite to each other, and the mixed raw material is pressure-molded at a contact point between the pair of molding rolls 12. FIG. 4 shows a perspective view of the forming roll 12. As shown in FIG. 4, a recess 13 is formed on the outer peripheral surface of the molding roll 12, and a molded product 22 having the shape of the recess 13 is molded. The size of the molded product is not particularly limited, and is about 3 to 95 cm 3 , preferably about 6 to 60 cm 3 . The required molding size varies depending on the state of use in the blast furnace.

図1に示されるように、ダブルロール成型機2で成型された成型物は、篩い3でフェロコークス製造用成型物と粉状部(未成型物)とに分離され、篩い上のフェロコークス製造用成型物は、フェロコークス製造用成型物搬送ライン6から次工程の乾留炉4に搬送される。篩い下の粉状部(未成型物)は、乾留炉4に搬送されると乾留炉内で装入物の棚つりを生じさせたり、乾留炉内の通気性を悪化させたりする原因となり、乾留工程に支障をきたす。そこで本発明では、粉状部を粉状部搬送ライン7から攪拌機1へ搬送し、成型用原料として再利用する。成型物の粉状部を成型用原料として再利用することにより、見かけ成型歩留まりが100%となり、効率的な成型を実現することができる。篩い3の篩い目は特に限定されるものではないが、フェロコークス製造用成型物が篩い上に残る篩い目が好ましく、そのサイズは成型物の成型サイズによって異なる。好ましくはは粒径10mm以下が篩い下となるような篩い目、さらに好ましくは粒径6mm以下の粉状部が篩い下となるような篩い目がよい。   As shown in FIG. 1, the molded product molded by the double roll molding machine 2 is separated by a sieve 3 into a ferro-coke production molding and a powdery part (unmolded product), and the ferro-coke production on the sieve. The molded product is conveyed from the ferro-coke production molded product conveyance line 6 to the dry distillation furnace 4 in the next step. When the powdery part (unmolded material) under the sieve is transported to the dry distillation furnace 4, it causes racking of the charge in the dry distillation furnace or causes the air permeability in the dry distillation furnace to deteriorate. It interferes with the dry distillation process. Therefore, in the present invention, the powdery part is conveyed from the powdery part conveyance line 7 to the stirrer 1 and reused as a forming raw material. By reusing the powdery part of the molded product as a raw material for molding, the apparent molding yield becomes 100% and efficient molding can be realized. Although the sieve mesh of the sieve 3 is not particularly limited, a sieve mesh in which the molded product for producing ferrocoke remains on the sieve is preferable, and the size varies depending on the molding size of the molded product. Preferably, a sieve with a particle size of 10 mm or less is sieved, more preferably a sieve with a powdery part with a particle size of 6 mm or less is sieved.

成型用原料として再利用される成型物の粉状部は、攪拌機1に添加されるが、その添加量は石炭20および鉄源原料21に対し、3〜15質量%程度、好ましくは5〜12質量%程度である。粉状部の添加量が石炭および鉄源原料に対し、3質量%未満では粉状部の残量が多くなり、成型用原料として再添加するまでに時間がかかる。その結果、粉状部の温度が下がりバインダーと共に粉状部が固まりとなり、再添加するためには、粉砕などの新たな工程が必要となるので、効率的に成型工程を行うことができない。一方、粉状部の添加量が石炭および鉄源原料に対し15質量%より多い場合は、成型物のハンドリング強度が低くなり、より多くのバインダーを必要とするので好ましくない。   The powdery portion of the molded product that is reused as the molding material is added to the stirrer 1, and the amount added is about 3 to 15% by mass, preferably 5 to 12%, based on the coal 20 and the iron source material 21. It is about mass%. If the addition amount of the powdery part is less than 3% by mass with respect to the coal and iron source material, the remaining amount of the powdery part increases, and it takes time to re-add as a raw material for molding. As a result, the temperature of the powdery part decreases and the powdery part becomes solid together with the binder, and a new process such as pulverization is required for re-addition. Therefore, the molding process cannot be performed efficiently. On the other hand, when the addition amount of the powdery part is more than 15% by mass with respect to the coal and the iron source material, the handling strength of the molded product is lowered and more binder is required, which is not preferable.

成型歩留まりを向上させるための効率的な成型方法として、成型物の粉状部を成型用原料として再利用するために、実験的にフェロコークスを製造し、その品質評価を行った。   As an efficient molding method for improving the molding yield, ferro-coke was experimentally produced and its quality was evaluated in order to reuse the powdery part of the molded product as a raw material for molding.

フェロコークスは以下の方法で製造した。まず、フェロコークス用原料の調整を行い、石炭はジョークラッシャーで粒径3mm以下(−3mm)に調整したものを使用し、この石炭に粒径0.5mm以下(−0.5mm)にロールミルで粉砕した鉄鉱石を30質量%の割合で配合した。石炭には平均最大反射率が0.70%の微粘炭(石炭1)と平均最大反射率が1.70%の非粘炭(石炭2)を50質量%ずつ配合した配合炭を用いた。鉄鉱石には、カラジャス鉱石を用いた。鉄鉱石の性状を表1に、石炭の性状を表2示す。   Ferro-coke was produced by the following method. First, the raw material for ferro-coke was adjusted, and the coal was adjusted to a particle size of 3 mm or less (-3 mm) with a jaw crusher, and this coal was adjusted to a particle size of 0.5 mm or less (-0.5 mm) with a roll mill. The pulverized iron ore was blended at a ratio of 30% by mass. Coal blended with 50 wt% each of cohesive coal (Coal 1) with an average maximum reflectance of 0.70% and non-coking coal (Coal 2) with an average maximum reflectance of 1.70% was used. . Carajas ore was used as the iron ore. Table 1 shows the properties of iron ore and Table 2 shows the properties of coal.

Figure 0005365044
Figure 0005365044

Figure 0005365044
Figure 0005365044

上記の石炭および鉄鉱石を攪拌機に投入し、加熱攪拌し、原料排出直前に軟ピッチを5質量%添加した。さらに攪拌を続け180℃で混合原料を排出した。排出した原料をダブルロール成型機により6cm3の成型物に成型した。成型物は、6mmの篩いでフェロコークス製造用成型物と粉状部に篩い分け、篩い上のフェロコークス製造用成型物は乾留温度900℃で2時間乾留し、フェロコークスを得た(粉状部の添加量0質量%に相当)。 The above coal and iron ore were charged into a stirrer, heated and stirred, and 5% by mass of soft pitch was added immediately before the raw material was discharged. Furthermore, stirring was continued and the mixed raw material was discharged at 180 ° C. The discharged raw material was molded into a 6 cm 3 molded product by a double roll molding machine. The molded product was sieved into a ferro-coke manufacturing molded product and a powdery part with a 6 mm sieve, and the ferro-coke manufacturing molded product on the sieve was subjected to carbonization at a carbonization temperature of 900 ° C. for 2 hours to obtain ferro-coke (powdered) Equivalent to 0% by weight of part).

次に、成型直後に篩い分けを行い、篩い下として得られた粉状部を直ちに、成型用原料のうち石炭、鉄鉱石の合計量に対し、5質量%、10質量%、15質量%、20質量%添加し、上記と同様に成型した。成型物は同様に乾留温度900℃で2時間乾留し、フェロコークスを得た。   Next, sieving is performed immediately after molding, and the powdery part obtained as the sieving is immediately 5% by mass, 10% by mass, 15% by mass with respect to the total amount of coal and iron ore among the raw materials for molding, 20% by mass was added and molded in the same manner as described above. Similarly, the molded product was carbonized at a carbonization temperature of 900 ° C. for 2 hours to obtain ferrocoke.

それぞれの場合について、I型ドラム試験装置(内径130mmΦ×700mmの筒状)を用いて、成型物の強度とフェロコークスの強度とを測定した。1分間に20回転の回転速度で、成型物の強度は、30回転させた後の6mm以上の残存率(DI30/6)により、フェロコークスについては、600回転させた後の6mm以上の残存率(DI600/6)により強度評価を行った。図5に成型物の強度を、図6に乾留後のフェロコークス強度の測定結果を示す。   In each case, the strength of the molded product and the strength of the ferro-coke were measured using an I-type drum test apparatus (cylindrical shape having an inner diameter of 130 mmΦ × 700 mm). At a rotational speed of 20 revolutions per minute, the strength of the molded product is 6 mm or more after 30 revolutions (DI30 / 6). For ferro-coke, the residual rate after 6 revolutions is 6 mm or more. The strength was evaluated according to (DI600 / 6). FIG. 5 shows the strength of the molded product, and FIG. 6 shows the measurement results of the ferro-coke strength after dry distillation.

図5によれば、成型用原料に成型物の粉状部を添加した成型物強度は、粉状部未添加に比べ、粉状部の添加量と共に若干減少する傾にあるが、15質量%まではハンドリング強度として十分であることが分かる。また、図6によれば、乾留後のフェロコークス強度は、成型物強度と同様に、粉状部を20質量%添加したものでは、強度低下が大きいことが分かる。   According to FIG. 5, the strength of the molded product obtained by adding the powdery part of the molded product to the raw material for molding tends to slightly decrease with the addition amount of the powdery part, compared with 15% by mass. It turns out that it is enough as handling intensity until. Moreover, according to FIG. 6, as for the ferro-coke intensity | strength after dry distillation, it turns out that an intensity | strength fall is large in what added 20 mass% of powdery parts similarly to molded object intensity | strength.

更に、成型物から篩い分けした粉状部を成型用原料として、成型物を成型してから2時間後に、成型用原料のうち石炭、鉄鉱石の合計量に対し、5質量%、10質量%、15質量%、20質量%添加し、上記と同様に成型した。図7に上記と同様に測定した成型物の強度を示す。   Furthermore, using the powdery part sieved from the molded product as a raw material for molding, 2 hours after molding the molded product, 5% by mass, 10% by mass with respect to the total amount of coal and iron ore in the raw material for molding 15% by mass and 20% by mass were added and molded in the same manner as described above. FIG. 7 shows the strength of the molded product measured in the same manner as described above.

図7によれば、成型2時間後の粉状部を添加した場合は、成型直後の粉状部を添加したものに比べ強度の低下が大きい。これは、成型機によって一度圧密された成型用原料がバインダーと共に冷却され、凝集物として攪拌機に投入されるため、成型用原料が不均一化し、且つバインダーの分散性が悪化するためと考えられる。   According to FIG. 7, when the powdery part 2 hours after molding is added, the decrease in strength is greater than that of the powdery part added immediately after molding. This is presumably because the molding raw material once compacted by the molding machine is cooled together with the binder and charged as an agglomerate into the stirrer, so that the molding raw material becomes non-uniform and the dispersibility of the binder deteriorates.

以上のように成型直後の成型物の粉状部を所定量、成型用原料として使用することで、見かけの成型歩留まりを向上させ、効率的な成型を行うことができる。その結果、原料を浪費することがなくなり、製造コストを低くすることができる。   As described above, by using a predetermined amount of the powdered portion of the molded product immediately after molding as a molding raw material, the apparent molding yield can be improved and efficient molding can be performed. As a result, the raw material is not wasted and the manufacturing cost can be reduced.

フェロコークスの製造設備を示す概略図。Schematic which shows the manufacturing equipment of ferro-coke. 攪拌機部分の説明図。Explanatory drawing of a stirrer part. ダブルロール成型機の説明図。Explanatory drawing of a double roll molding machine. ダブルロール成型機の成型ロールの斜視図。The perspective view of the forming roll of a double roll forming machine. 成型物の強度に及ぼす粉状部の添加量の影響を示すグラフ(成型直後)。The graph which shows the influence of the addition amount of the powdery part which acts on the intensity | strength of a molding (immediately after shaping | molding). フェロコークスの強度に及ぼす粉状部の添加量の影響を示すグラフ。The graph which shows the influence of the addition amount of the powdery part on the intensity | strength of ferro-coke. 成型物の強度に及ぼす粉状部の添加量の影響を示すグラフ(成型2時間後)。The graph which shows the influence of the addition amount of the powdery part which acts on the intensity | strength of a molding (2 hours after shaping | molding).

符号の説明Explanation of symbols

1 高速攪拌機
2 ダブルロール成型機
3 篩い
4 乾留炉
5 バインダータンク
6 フェロコークス製造用成型物搬送ライン
7 粉状部搬送ライン
8 容器本体
9 攪拌羽根
10 ジャケット
11 排出部
12 成型ロール
13 凹み
20 石炭
21 鉄源原料
22 成型物
DESCRIPTION OF SYMBOLS 1 High-speed stirrer 2 Double roll molding machine 3 Sieve 4 Dry distillation furnace 5 Binder tank 6 Molded material conveyance line for ferro-coke production 7 Powdery part conveyance line 8 Container body 9 Stirring blade 10 Jacket 11 Discharge part 12 Molding roll 13 Depression 20 Coal 21 Iron source material 22 Molded product

Claims (3)

石炭、鉄源原料およびバインダーを含む成型用原料を成型した成型物を乾留してフェロコークスを製造する際に、
成型後の成型物を篩い分けして、フェロコークス製造用成型物と粉状部とに分離し、
前記フェロコークス製造用成型物を乾留し、
前記石炭と前記鉄源原料との合計量に対して、3〜15質量%の前記粉状部を前記成型用原料として用いることを特徴とするフェロコークスの製造方法。
When producing ferro-coke by dry-distilling a molded product obtained by molding a molding material containing coal, iron source material and binder,
The molded product after molding is sieved and separated into a molded product for ferrocoke production and a powdery part,
Carbonizing the molded product for ferro-coke production,
Method for producing a ferro-coke, which comprises using the total amount of the iron source material and the coal, the powder portion in the 3 to 15 wt% as before KiNaru type raw material.
粉状部の粒径が6mm以下であることを特徴とする請求項1に記載のフェロコークスの製造方法。   The method for producing ferro-coke according to claim 1, wherein the particle size of the powdery part is 6 mm or less. ダブルロール成型機を用いて成型物を成型することを特徴とする請求項1または請求項に記載のフェロコークスの製造方法。 The method for producing ferro-coke according to claim 1 or 2 , wherein a molding is molded using a double roll molding machine.
JP2008082520A 2008-03-27 2008-03-27 Ferro-coke manufacturing method Active JP5365044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082520A JP5365044B2 (en) 2008-03-27 2008-03-27 Ferro-coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082520A JP5365044B2 (en) 2008-03-27 2008-03-27 Ferro-coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2009235222A JP2009235222A (en) 2009-10-15
JP5365044B2 true JP5365044B2 (en) 2013-12-11

Family

ID=41249584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082520A Active JP5365044B2 (en) 2008-03-27 2008-03-27 Ferro-coke manufacturing method

Country Status (1)

Country Link
JP (1) JP5365044B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827624B (en) * 2011-06-14 2014-12-03 鞍钢股份有限公司 Ferrocoke and its production method
JP5928708B2 (en) * 2012-05-08 2016-06-01 Jfeスチール株式会社 Ferro-coke manufacturing equipment and ferro-coke manufacturing method
JP5842843B2 (en) * 2013-03-01 2016-01-13 Jfeスチール株式会社 Ferro-coke manufacturing method
JP6151169B2 (en) * 2013-03-01 2017-06-21 Jfeスチール株式会社 Ferro-coke manufacturing method and manufacturing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011956B2 (en) * 2005-11-28 2012-08-29 Jfeスチール株式会社 Ferro-coke and method for producing sintered ore
JP5011955B2 (en) * 2005-11-30 2012-08-29 Jfeスチール株式会社 Ferro-coke manufacturing method
JP4935133B2 (en) * 2006-03-17 2012-05-23 Jfeスチール株式会社 Ferro-coke and method for producing sintered ore
JP4853090B2 (en) * 2006-04-12 2012-01-11 Jfeスチール株式会社 Ferro-coke manufacturing method and apparatus

Also Published As

Publication number Publication date
JP2009235222A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
EP2678121B1 (en) Pelletization and calcination of green coke
JP4996105B2 (en) Vertical coal interior agglomerates
WO2011034195A1 (en) Process for producing ferro coke
KR101405478B1 (en) Method for manufacturing coal bruquettes and apparatus for the same
JP5571345B2 (en) Method for producing briquettes, method for producing reduced metals, and method for separating zinc or lead
KR101302765B1 (en) Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method
JP5365044B2 (en) Ferro-coke manufacturing method
JPH0121855B2 (en)
JP2009052141A (en) Method for reducing electric furnace dust
JP4853090B2 (en) Ferro-coke manufacturing method and apparatus
US20230203607A1 (en) Biomass Direct Reduced Iron
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP5365043B2 (en) Ferro-coke manufacturing method
JP6273983B2 (en) Blast furnace operation method using reduced iron
JP5402785B2 (en) Granulation method of molded product
JP6151169B2 (en) Ferro-coke manufacturing method and manufacturing apparatus
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
JP5842843B2 (en) Ferro-coke manufacturing method
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP2013221187A (en) Method for producing agglomerate
JP2007063605A (en) Method for manufacturing carbonaceous-material-containing agglomerate
JP5463571B2 (en) Method of agglomerating iron raw material and its agglomeration equipment
JP5303855B2 (en) Method for producing coke for blast furnace using waste plastic
JP2005097665A (en) Reduced metal raw material agglomerate and its producing method, and method for producing reduced metal
JP5980403B1 (en) Method for producing carbon-containing molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250