JP2001294944A - Method for producing agglomerate including carbonaceous material - Google Patents

Method for producing agglomerate including carbonaceous material

Info

Publication number
JP2001294944A
JP2001294944A JP2000106469A JP2000106469A JP2001294944A JP 2001294944 A JP2001294944 A JP 2001294944A JP 2000106469 A JP2000106469 A JP 2000106469A JP 2000106469 A JP2000106469 A JP 2000106469A JP 2001294944 A JP2001294944 A JP 2001294944A
Authority
JP
Japan
Prior art keywords
carbonaceous
carbonaceous material
volume
carbon material
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000106469A
Other languages
Japanese (ja)
Other versions
JP3502008B2 (en
Inventor
Akito Kasai
昭人 笠井
Yoshiyuki Matsui
良行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000106469A priority Critical patent/JP3502008B2/en
Publication of JP2001294944A publication Critical patent/JP2001294944A/en
Application granted granted Critical
Publication of JP3502008B2 publication Critical patent/JP3502008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which a high strength agglomerate including carbonaceous material is produced which is, chargable into a vertical furnace, such as blast furnace, cupola, without adding any binder and even reducing the consumption of a caking coal. SOLUTION: This producing method of the agglomerate including the carbonaceous material consists of a hot-forming of the mixture of a powder iron ore and a powder carbonaceous material at 250-550 deg.C. The carbonaceous material is constituted of one or more kinds of carbonaceous materials, and at least one kind of the carbonaceous material is the material having soft fusibility of log MF>1 (MF is Gieselei maximum fluidity), and the total volume ratio of the material having the soft fusibility is made to >=30% of the total mixture volume.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉、キューポラ
などの竪型炉用装入原料としての炭材内装塊成化物の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an agglomerated carbonaceous material as a raw material for a vertical furnace such as a blast furnace or a cupola.

【0002】[0002]

【従来の技術】高炉原料として、従来より用いられてき
た焼結鉱、ペレット、塊鉱石のほかに、固体炭材(例え
ば、石炭粉、コークス粉等)と粉鉱石または製鉄ダスト
(炭素、酸化鉄等の混合物)にバインダーを加えて冷間
成形された炭材内装コールドペレットあるいはブリケッ
ト(以下、炭材内装コールドペレット等)と称するもの
がある。そして炭材内装コールドペレット等は高炉に装
入するとガス利用率が向上することが報告〔井上ら:鉄
と鋼(1986)S885〕されており、高炉の生産性
の向上、燃料比の低減に寄与することが期待され、さら
には従来の焼結鉱やペレットの製造と異なり焼成燃料が
不要で排ガス処理も不要となるなどメリットは大きい。
また、炭材内装コールドペレット等をコークスとともに
キューポラなどの竪型炉に装入して還元・溶解して溶銑
を製造する提案もなされている。
2. Description of the Related Art In addition to sinter ore, pellets and lump ore conventionally used as blast furnace raw materials, solid carbonaceous materials (eg, coal powder, coke powder, etc.) and fine ore or ironmaking dust (carbon, oxidized Cold-formed carbon material-containing cold pellets or briquettes (hereinafter referred to as carbon-material-containing cold pellets) formed by adding a binder to a mixture of iron or the like. It has been reported that when carbon pellets and other cold pellets are charged into a blast furnace, the gas utilization rate is improved [Inoue et al .: Iron and Steel (1986) S885]. It is expected to contribute, and furthermore, unlike conventional production of sinters and pellets, there are significant advantages such as the elimination of fired fuel and exhaust gas treatment.
In addition, there has been proposed a method in which cold pellets or the like containing carbon material are charged together with coke into a vertical furnace such as a cupola and reduced and melted to produce hot metal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、炭材内
装コールドペレット等が搬送中や高炉、キューポラなど
の竪型炉への装入の際に粉化しないよう一定以上の強度
(圧潰強度で約500N/個以上)を確保する必要があ
り、通常、冷間成型に際してセメント類をバインダーと
して添加する方法が用いられている。この方法では、炭
材内装コールドペレット等が強度を発現するまで数日か
かるため広大な養生スペースを必要とし、さらには高炉
内等でスラグ比が上昇し通液性が悪化すること、セメン
ト類の結晶水が分解する際の吸熱による昇温遅れに伴い
還元が遅延すること等の問題が懸念される。一方、これ
らを改善するためセメント類以外のバインダーを用いた
場合には費用が高くコストメリットがなくなる。
However, a certain strength (crushing strength of about 500 N) is used so that the cold pellets with carbonaceous material and the like are not powdered during transportation or charging into a vertical furnace such as a blast furnace or a cupola. / Or more), and a method of adding cements as a binder during cold forming is generally used. In this method, it takes a few days for the carbon material-containing cold pellets and the like to develop strength, so a vast curing space is required.In addition, the slag ratio is increased in a blast furnace or the like, and the liquid permeability is deteriorated. There is a concern that the reduction may be delayed due to a delay in temperature rise due to endotherm when the crystal water is decomposed. On the other hand, when a binder other than cements is used to improve these, the cost is high and the cost merit is lost.

【0004】一方、本願出願人は、特開平11−092
833号において粉鉱石と粘結炭の混合物を熱間成型
後、脱ガスすることによりバインダーを添加せずとも高
強度の炭材内装塊成化物(ブリケット)を製造できる方
法を提案した。しかしながら、この方法では、粘結炭の
費用が高いため、たとえバインダーの費用が削減できて
も、コスト低減効果は小さいという問題点が残ってい
る。
On the other hand, the applicant of the present application has disclosed Japanese Patent Application Laid-Open No. H11-092.
No. 833 proposes a method capable of producing a high-strength carbonaceous material agglomerate (briquette) without adding a binder by hot forming and then degassing a mixture of fine ore and caking coal. However, in this method, since the cost of the caking coal is high, there remains a problem that even if the cost of the binder can be reduced, the cost reduction effect is small.

【0005】そこで、本発明は上記の問題を解決するた
めになされたもので、バインダーを添加することなく、
粘結炭の使用量を低減しても、高強度の炭材内装塊成化
物が製造できる方法を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned problems, and without adding a binder,
It is an object of the present invention to provide a method capable of producing a high-strength carbonaceous interior agglomerate even when the amount of caking coal used is reduced.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、粉状の
鉄鉱石と粉状の炭材との混合物を250〜550℃で熱
間成型して行う炭材内装塊成化物の製造方法であって、
前記炭材が1種類または2種類以上の炭材で構成され、
そのうちの少なくとも1種類の炭材がギーセラー最高流
動度MFがlogMF>1の軟化溶融性を有する炭材で
あり、かつその軟化溶融性を有する炭材の合計体積が前
記混合物の体積の30%以上であることを特徴とする炭
材内装塊成化物の製造方法である。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a method for producing a carbonaceous interior agglomerate, which is performed by hot-forming a mixture of a powdery iron ore and a powdery carbon material at 250 to 550 ° C. And
The carbon material is composed of one or more types of carbon materials,
At least one of the carbonaceous materials is a carbonaceous material having a softening and melting property with a maximum flowability MF of log MF> 1 and the total volume of the softening and melting carbonaceous material is 30% or more of the volume of the mixture. A method for producing a carbonaceous material interior agglomerate, characterized in that:

【0007】上記の軟化溶融性を有する炭材のギーセラ
ー最高流動度MFがlogMF>1.5であり、かつそ
の軟化溶融性を有する炭材の合計体積が前記混合物の体
積の20%以上である上記の炭材内装塊成化物の製造方
法である。また、粉状の鉄鉱石、製鉄ダストおよび粉状
の炭材の混合物を250〜550℃で熱間成型して行う
炭材内装塊成化物の製造方法であって、前記製鉄ダスト
の体積が前記混合物の体積の20%以下であり、前記炭
材が1種類または2種類以上の炭材で構成され、そのう
ちの少なくとも1種類の炭材がギーセラー最高流動度M
FがlogMF>1.5の軟化溶融性を有する炭材であ
り、かつその軟化溶融性を有する炭材の合計体積が前記
混合物の体積の30%以上であることを特徴とする炭材
内装塊成化物の製造方法である。
The maximum flowability MF of the above-mentioned carbon material having softening and melting properties is logMF> 1.5, and the total volume of the carbon material having softening and melting properties is 20% or more of the volume of the mixture. This is a method for producing the carbonaceous interior agglomerate. Also, a method for producing a carbonaceous material interior agglomerate, which is performed by hot forming a mixture of powdery iron ore, ironmaking dust and powdery carbonaceous material at 250 to 550 ° C. 20% or less of the volume of the mixture, wherein the carbon material is composed of one or more carbon materials, and at least one of the carbon materials has a maximum flow rate
F is a carbon material having a softening and melting property of logMF> 1.5, and the total volume of the softening and melting carbon material is 30% or more of the volume of the mixture. This is a method for producing a compound.

【0008】軟化溶融性を有する炭材は約250℃を超
えると熱分解反応が始まり軟化溶融し、約550℃を超
えると固化する。したがって、この温度域で粉状鉄鉱石
に軟化溶融性を有する炭材を混合し加圧成型すると、粉
状鉄鉱石の粒子間の空隙に溶融した炭材が容易に浸入
し、粉状鉄鉱石同士を強固に連結する。粉状鉄鉱石の他
に軟化溶融しない炭材が混合されても、軟化溶融性を有
する炭材を混合し加圧成型すれば同様に強固な連結が形
成される。このため、バインダーが不要となり高炉内で
のスラグ量の増加を防止することができる。
A carbon material having softening and melting properties starts a thermal decomposition reaction when the temperature exceeds about 250 ° C., softens and melts, and solidifies when the temperature exceeds about 550 ° C. Therefore, when a carbon material having softening and melting properties is mixed with the powdered iron ore in this temperature range and pressed and molded, the molten carbon material easily penetrates into the voids between the particles of the powdered iron ore, and Strongly connect each other. Even if a carbon material that does not soften and melt is mixed in addition to the powdered iron ore, a strong connection is similarly formed by mixing a carbon material having softening and melting properties and press-molding. For this reason, a binder is not required, and an increase in the amount of slag in the blast furnace can be prevented.

【0009】また、炭材中に含まれている揮発分やター
ル分は、熱間成型時に大部分が脱揮および脱タールして
おり、塊成化物を高炉に装入してもタール分が揮発し、
ガス処理設備へ付着する問題は起こらない。
Most of the volatile and tar components contained in the carbonaceous material are devolatilized and detarred during hot forming, and even if the agglomerates are charged into a blast furnace, the tar content is reduced. Volatilizes,
The problem of sticking to the gas treatment equipment does not occur.

【0010】軟化溶融性を有する炭材として、ギーセラ
ー最高流動度MFがlogMF>1の炭材を用いる場合に
は、その軟化溶融性を有する炭材の体積を、熱間成型前
の粉状鉄鉱石と炭材との混合物の体積の30%以上とす
ることが好ましい。熱間成型前の混合物中の空隙率は3
0〜40%程度であり、熱間成型時に溶融した炭材が混
合物の空隙をほぼ埋めるので、炭材が固化した後、強固
な結合が得られる。
When a carbon material having a maximum flowability MF of log MF> 1 is used as the carbon material having a softening and melting property, the volume of the softening and melting carbon material is determined by the powdered iron ore before hot forming. The volume is preferably 30% or more of the volume of the mixture of the stone and the carbonaceous material. The porosity of the mixture before hot forming is 3
It is about 0 to 40%, and the carbon material melted at the time of hot forming almost fills the voids of the mixture, so that a strong bond is obtained after the carbon material solidifies.

【0011】軟化溶融性を有する炭材として、ギーセラ
ー最高流動度MFがlogMF>1.5、好ましくはlo
gMF>3の炭材を用いる場合には、その軟化溶融性を
有する炭材の体積は、上記の混合物の体積の20%以上
でよい。溶融した炭材は粘度が低く、その溶融した炭材
の内部から揮発分が発生することにより溶融した炭材が
膨張し、少ない炭材量で混合物の空隙を埋めることがで
きる。
[0011] As a carbon material having softening and melting properties, the maximum flowability MF of the ghee cellar is log MF> 1.5, preferably lo
When a carbon material having a gMF> 3 is used, the volume of the carbon material having softening and melting properties may be 20% or more of the volume of the mixture. The molten carbon material has a low viscosity, and the molten carbon material expands due to generation of volatiles from the inside of the molten carbon material, so that the voids of the mixture can be filled with a small amount of the carbon material.

【0012】粉状鉄鉱石の一部を製鉄ダストに置き換え
ることができる。ただし、製鉄ダストは非常に粒度が小
さく、製鉄ダスト粒子間の隙間には溶融した炭材は浸入
し難いので、製鉄ダストの配合率は体積割合で20%以
下に制限し、軟化溶融性を有する炭材としては、溶融時
の粘性の低いギーセラー最高流動度MFがlogMF>
1.5、好ましくはlogMF>3の炭材を体積割合で
30%以上とする必要がある。
Part of the fine iron ore can be replaced with iron making dust. However, since iron-made dust has a very small particle size and the molten carbon material does not easily enter gaps between the iron-made dust particles, the mixing ratio of iron-made dust is limited to 20% or less by volume and has softening and melting properties. As a carbonaceous material, the highest flow rate MF of the low viscosity viscous melter is log MF>
It is necessary to set the carbon material of 1.5, preferably logMF> 3 to 30% or more by volume.

【0013】なお、炭材の体積は、炭材粒子内の気孔を
含む見掛けの体積をいい、質量を見掛け比重で割って求
めることができる。鉄鉱石についても同様である。
The volume of the carbon material refers to an apparent volume including pores in the carbon material particles, and can be obtained by dividing the mass by the apparent specific gravity. The same applies to iron ore.

【0014】また、塊成化物中の固化した炭材は粉状鉄
鉱石(および製鉄ダスト)に密着し、固化した炭材と粉
状鉄鉱石(および製鉄ダスト)との接触面積が大きくな
る。そのため、塊成化物を、焼結鉱、ペレット、塊鉱石
等の従来の高炉原料とともに高炉に装入すると、従来の
高炉原料のみを装入した場合には反応が起こらなかった
低温域(700〜800℃程度)から、塊成化物中の炭
材と酸化鉄が見かけ上直接還元反応(FeO+C→Fe
+CO等)を開始する。直接還元反応により発生するC
Oガスは、塊成化物の間にある焼結鉱、ペレット、塊鉱
石等の原料の還元に利用され、ガス利用率が向上し、燃
料比が低下する。また、還元により生じたCO2ガス
は、塊成化物中に内装した炭材と優先して反応するため
炉頂から装入した塊コークスとは反応が抑制される結
果、コークスの粉発生量が低下し、高炉内の通気性が向
上する。
Further, the solidified carbonaceous material in the agglomerate adheres to the fine iron ore (and iron making dust), and the contact area between the solidified carbon material and the fine iron ore (and iron making dust) increases. Therefore, when the agglomerate is charged into a blast furnace together with conventional blast furnace raw materials such as sintered ore, pellets, ore ore, etc., when the conventional blast furnace raw material alone is charged, a reaction does not occur in a low temperature region (700 to 700). Approximately 800 ° C), the carbon material and iron oxide in the agglomerate apparently undergo a direct reduction reaction (FeO + C → Fe
+ CO etc.). C generated by direct reduction reaction
O gas is used for reducing raw materials such as sinter, pellets, and ore between agglomerates, thereby improving the gas utilization rate and decreasing the fuel ratio. In addition, the CO 2 gas generated by the reduction reacts preferentially with the carbon material contained in the agglomerate, so that the reaction with the lump coke charged from the furnace top is suppressed. And the air permeability in the blast furnace is improved.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0016】図1に本発明の実施に係わる炭材内装塊成
化物の製造フローの概念図を示す。鉄鉱石(および製鉄
ダスト)と、炭材のうち軟化溶融しない炭材(例えば、
コークス粉、一般炭、無煙炭、オイルコークス等)は、
必要な場合には粉砕して、74μm以下の粒子が70%
程度の粉状にする。炭材のうち、軟化溶融性を有する炭
材(例えば、粘結炭、SRC等)も上記の軟化溶融しな
い炭材ほど細かくする必要はないが、粉状鉄鉱石(およ
び製鉄ダスト)および軟化溶融しない炭材との混合状態
を良好に保つために1mm以下程度に粉砕するのが望ま
しい。
FIG. 1 shows a conceptual diagram of a production flow of a carbonaceous interior agglomerate according to an embodiment of the present invention. Iron ore (and ironmaking dust) and carbon materials that do not soften and melt (for example,
Coke powder, steam coal, anthracite, oil coke, etc.)
If necessary, pulverize to 70% of particles of 74 μm or less.
Make powder of degree. Of the carbonaceous materials, the carbonaceous material having softening and melting properties (eg, caking coal, SRC, etc.) does not need to be as fine as the above-mentioned softening and non-melting carbonaceous materials, but it does not require powdered iron ore (and iron-making dust) and softening and melting. It is desirable to pulverize it to about 1 mm or less in order to maintain a good mixed state with the non-carbonaceous material.

【0017】粉状の鉄鉱石と炭材の乾燥・予熱に関して
は、炭材はロータリードライヤー等で200℃以下の温
度で乾燥し、付着水分を除去する。一方、鉄鉱石は、炭
材と混合したときに目標温度の250〜550℃となる
ように、ロータリーキルン等で400〜800℃程度に
予熱する。ただし、鉄鉱石の一部を置き換えて製鉄ダス
ト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケ
ール等)を用いる場合には、製鉄ダストは炭素や金属鉄
を含むため予熱すると燃焼するので、製鉄ダストは予熱
せずにそのまま混合して用いる。
Regarding the drying and preheating of the powdered iron ore and the carbonaceous material, the carbonaceous material is dried at a temperature of 200 ° C. or less by a rotary drier or the like to remove adhering moisture. On the other hand, iron ore is preheated to about 400 to 800 ° C. by a rotary kiln or the like so that the target temperature becomes 250 to 550 ° C. when mixed with the carbonaceous material. However, when ironmaking dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.) is used to replace a part of iron ore, since ironmaking dust contains carbon and metallic iron, it burns when preheated. Steelmaking dust is used as it is without preheating.

【0018】乾燥・予熱した炭材と鉄鉱石(および予熱
しない製鉄ダスト)との混合には、炭材の一部の過熱を
防止するために短時間で混合できるこの業種で常用され
ている、例えば二軸型のミキサーを用いる。また、ミキ
サーは成型温度を確保するために保温する。混合後の炭
材と鉄鉱石(および製鉄ダスト)は、例えば熱間成型用
の双ロール型成型機を用いて塊成化物(ブリケット)に
加圧成型する。加圧成型は塊成化物が成型機から高炉炉
頂装入までのハンドリングに耐え得るに十分な強度約5
00N/個(30mm×25mm×15mm程度の大き
さに対して)が得られるよう、成型加圧力を10kN/
cm以上、好ましくは20kN/cm以上とする。この
ようにして成型した塊成化物は、鉄鉱石(および製鉄ダ
スト)および軟化溶融しない炭材粒子間の空隙に、溶融
した軟化溶融性を有する炭材が浸入し、鉄鉱石(および
製鉄ダスト)および軟化溶融しない炭材の粒子同士を強
固に連結し、さらに、鉄鉱石(および製鉄ダスト)と溶
融・固化後の炭材との接触面積も大きくなっている。ま
た、ミキサーと成型機は密閉構造とし、ミキサーおよび
成型機で発生する炭材の熱分解ガスは炭化水素が主成分
であるので、このガスをエジェクター等を用いて吸引回
収し、回収したガスはロータリーキルン等の加熱燃料と
して利用する。
The mixing of the dried and preheated carbonaceous material with the iron ore (and non-preheated ironmaking dust) is commonly used in this industry, where the carbonaceous material can be mixed in a short time to prevent overheating. For example, a biaxial mixer is used. Also, the mixer is kept warm to secure the molding temperature. The mixed carbonaceous material and iron ore (and ironmaking dust) are pressure-formed into agglomerates (briquettes) using, for example, a twin-roll type forming machine for hot forming. Pressure molding has a strength of about 5 which is sufficient for the agglomerate to withstand handling from the molding machine to the top of the blast furnace.
In order to obtain 00N / piece (for a size of about 30 mm × 25 mm × 15 mm), the molding pressure is set to 10 kN /
cm or more, preferably 20 kN / cm or more. In the agglomerate formed in this manner, the molten carbonized material having softening and melting properties penetrates into the gaps between the iron ore (and the ironmaking dust) and the carbon material particles that do not soften and melt, and the iron ore (and the ironmaking dust) In addition, the particles of the carbon material that are not softened and melted are strongly connected to each other, and the contact area between the iron ore (and the ironmaking dust) and the carbon material after being melted and solidified is also increased. In addition, the mixer and the molding machine have a closed structure, and the pyrolysis gas of the carbon material generated by the mixer and the molding machine is mainly composed of hydrocarbons. Therefore, this gas is suctioned and collected using an ejector or the like. Used as heating fuel for rotary kilns.

【0019】成型後の塊成化物は、バンカー内で不活性
ガスにより冷却した後、バンカーから排出して篩い、篩
下の粉は再びミキサーに戻して原料として利用し、篩上
は目的とする高強度の高炉原料となる。
The formed agglomerates are cooled by an inert gas in a bunker, then discharged from the bunker and sieved. The powder under the sieve is returned to the mixer again to be used as a raw material. It becomes a high strength blast furnace raw material.

【0020】なお、特開平11−92833の発明で
は、成型後の塊成化物に残存する揮発分を減少するため
に脱ガス工程を設けているが、本発明においては必ずし
も脱ガス工程を必要としない。特開平11−92833
の発明の塊成化物は1200〜1400℃の高温雰囲気
の還元炉に装入されるため、残存する揮発分の急激な発
生による塊成化物の粉化を防止する目的で脱ガス工程を
設けたものであるのに対して、本発明の方法で製造され
た塊成化物は、高炉に装入され、高炉内で徐々に昇温さ
れるため、残存する揮発分も徐々に除去されるので塊成
化物の粉化は問題とならない。
In the invention of JP-A-11-92833, a degassing step is provided in order to reduce volatile components remaining in the agglomerate after molding. However, the present invention does not necessarily require a degassing step. do not do. JP-A-11-92833
Since the agglomerate of the invention of the invention is charged into a reduction furnace in a high-temperature atmosphere of 1200 to 1400 ° C., a degassing step is provided for the purpose of preventing the agglomerate from being powdered due to sudden generation of the remaining volatile components. On the other hand, the agglomerate produced by the method of the present invention is charged into a blast furnace and gradually heated in the blast furnace. Powdering of the compound is not a problem.

【0021】なお、鉄鉱石の一部を置き換えてZnを高
濃度に含有する製鉄ダストを用いる場合には、高炉内で
のZn循環による炉壁耐火物への付着等の問題が生じな
いよう使用量を制限する必要がある。
When ironmaking dust containing a high concentration of Zn is used to replace a part of the iron ore, the iron ore is used so as not to cause a problem such as adhesion to furnace wall refractories due to Zn circulation in the blast furnace. The amount needs to be limited.

【0022】[0022]

【実施例】以下の説明において、「粘結炭」とは、ギー
セラー最高流動度MF>10ddpm(logMF>
1)である石炭をいい、「一般炭」とは、MF<1dd
pmである石炭をいう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description, "coking coal" refers to the maximum flow rate MF> 10 ddpm (logMF>
1) refers to coal, and “steam coal” means MF <1dd
pm.

【0023】(実施例1)図2に本実施例に用いられた
熱間成型機の概要を示す。表1に示す一般炭Bおよび表
2に示す鉄鉱石Cに、ギーセラー最高流動度(MF)が
異なる粘結炭を、粘結炭30%、一般炭B20%、鉄鉱
石C50%の体積割合で、鉄鉱石Cのみを図示しない電
気炉で600〜700℃に予熱した後、オイルヒーター
で400〜500℃に保温されたミキサーに装入し混合
して440〜450℃とし、双ロール型成型機を用いて
ロール回転速度6rpm、成型圧力20〜28kN/c
mで30mm×25mm×15mmの卵形のブリケット
(塊成化物)に成型し、圧潰強度の変化を調べた。その
結果を図3に示す。なお、ギーセラー最高流動度はJI
S−M8801に基づいて測定した。また、各炭材と鉄
鉱石の体積は、それぞれの質量を、予めJIS−K21
51またはJIS−M8716の方法に準じて測定した
それぞれの見掛け密度で割ることにより求めた。
(Embodiment 1) FIG. 2 shows an outline of a hot forming machine used in this embodiment. Baking coals having different Geeseler maximum fluidity (MF) were added to steam coal B shown in Table 1 and iron ore C shown in Table 2 in a volume ratio of caking coal 30%, steam coal B 20%, and iron ore C 50%. After preheating only iron ore C to 600 to 700 ° C. in an electric furnace (not shown), the mixture was charged into a mixer kept at 400 to 500 ° C. by an oil heater and mixed to 440 to 450 ° C., and a twin-roll molding machine was used. Roll rotation speed 6 rpm, molding pressure 20 to 28 kN / c using
m was molded into an oval briquette (agglomerated product) of 30 mm × 25 mm × 15 mm, and the change in crushing strength was examined. The result is shown in FIG. The maximum flow rate of the gee cellar is JI
It was measured based on S-M8801. In addition, the volume of each of the carbonaceous materials and the iron ore is determined in advance by JIS-K21
It was determined by dividing by the respective apparent densities measured according to the method of 51 or JIS-M8716.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】図3に示すように、最高流動度(MF)が
高くなるにしたがって圧潰強度が高くなり、logMF
が約1以上で圧潰強度500N/個以上が得られること
を確認した。また、logMFが1.5以上になると圧
潰強度はほぼ一定となることも分かった。
As shown in FIG. 3, as the maximum flow rate (MF) increases, the crush strength increases, and log MF increases.
Was about 1 or more, and a crushing strength of 500 N / piece or more was obtained. It was also found that the crushing strength was substantially constant when logMF was 1.5 or more.

【0027】(実施例2)実施例1と同じく図2に示し
た熱間成型機を用いた。表1に示す粘結炭A、一般炭B
および表2に示す鉄鉱石Cを、鉄鉱石C50%、粘結炭
Aと一般炭Bの合計を50%の体積割合とし、粘結炭A
の体積割合を変更して、実施例1と同様の成型条件でブ
リケット(塊成化物)に成型し、圧潰強度の変化を調べ
た。その結果を図4に示す。なお、成型圧力については
20〜28kN/cmの他に29〜38kN/cmにつ
いても実施した。
Example 2 As in Example 1, the hot forming machine shown in FIG. 2 was used. Caking coal A and thermal coal B shown in Table 1.
And iron ore C shown in Table 2 was made into 50% by volume of iron ore C and 50% by volume of the total of caking coal A and general coal B, and caking coal A
Was changed into a briquette (agglomerate) under the same molding conditions as in Example 1, and the change in crushing strength was examined. FIG. 4 shows the results. In addition, about molding pressure, it implemented also about 29-38 kN / cm other than 20-28 kN / cm.

【0028】図4に示すように、粘結炭の体積割合を増
加するにしたがってブリケット(塊成化物)の圧潰強度
は上昇し、logMFが3以上の粘結炭(粘結炭A)を
体積割合で約20%以上混合することにより圧潰強度約
500N/個以上が得られることを確認した。なお、実
施例1で述べたように、logMFが1.5以上では圧
潰強度がほぼ一定となることから、logMFは必ずし
も3以上を必要とするものではなく、1.5以上あれば
よい。
As shown in FIG. 4, as the volume ratio of the caking coal increases, the crushing strength of the briquette (agglomerated material) increases, and the caking coal (caking coal A) having a log MF of 3 or more is obtained. It was confirmed that a crushing strength of about 500 N / piece or more can be obtained by mixing about 20% or more in proportion. As described in the first embodiment, since the crushing strength becomes almost constant when the log MF is 1.5 or more, the log MF does not necessarily need to be 3 or more, but may be 1.5 or more.

【0029】(実施例3)実施例1、2と同じく図2に
示した熱間成型機を用いた。表1に示す粘結炭A、表2
に示す鉄鉱石Cおよび表3に示す高炉乾ダストDを、混
合後の全Fe/C=3.2(一定)となるように粘結炭
Aの体積割合を変更し(それに応じて鉄鉱石Cと高炉乾
ダストDの体積割合を調整し)、実施例2と同様の成型
条件でブリケット(塊成化物)に成型し、圧潰強度の変
化を調べた。その結果を図5に示す。
Example 3 As in Examples 1 and 2, the hot forming machine shown in FIG. 2 was used. Caking coal A shown in Table 1, Table 2
The iron ore C shown in Table 3 and the blast furnace dry dust D shown in Table 3 were mixed and the volume ratio of caking coal A was changed so that the total Fe / C was 3.2 (constant) (corresponding to the iron ore). C and the blast furnace dry dust D were adjusted in volume) and molded into briquettes (agglomerated products) under the same molding conditions as in Example 2, and the change in crushing strength was examined. The result is shown in FIG.

【0030】[0030]

【表3】 [Table 3]

【0031】図5に示すように、鉄鉱石の一部を置き換
えて製鉄ダスト(高炉乾ダストD)を用いたとき、製鉄
ダスト(高炉乾ダストD)の配合率が体積割合で約20
%以下であれば、logMFが3以上の粘結炭(粘結炭
A)を体積割合で約30%以上混合することにより、適
正な加圧力29〜38kN/cmで成型すれば圧潰強度
500N/個が得られることを確認した。なお、実施例
2と同様に、粘結炭のlogMFは必ずしも3以上を必
要とするものではなく1.5以上あればよい。
As shown in FIG. 5, when ironmaking dust (blast furnace dry dust D) is used in place of a part of iron ore, the mixing ratio of ironmaking dust (blast furnace dry dust D) is about 20% by volume.
% Or less, the log MF is 3 or more caking coal (caking coal).
By mixing about 30% or more by volume of A), it was confirmed that a crushing strength of 500 N / piece can be obtained by molding with an appropriate pressure of 29 to 38 kN / cm. As in Example 2, the logMF of the caking coal does not necessarily need to be 3 or more, but may be 1.5 or more.

【0032】さらに、以上の実施例1〜3において製造
したブリケット(塊成化物)をJIS−M8712に基
づくタンブラー回転強度試験を行い、その試験時の−1
mm粉率と圧潰強度との関係を図6に示す。図6に示す
ように、圧潰強度が500N/個以上になると、−1m
m粉率は15質量%以下と少なくなり、高炉への装入時
のハンドリングに十分耐えることを確認した。
Further, the briquettes (agglomerated products) produced in the above Examples 1 to 3 were subjected to a tumbler rotational strength test based on JIS-M8712, and
FIG. 6 shows the relationship between the mm powder ratio and the crushing strength. As shown in FIG. 6, when the crushing strength becomes 500 N / piece or more, -1 m
The m powder ratio was reduced to 15% by mass or less, and it was confirmed that the powder was sufficiently resistant to handling when charged into a blast furnace.

【0033】[0033]

【発明の効果】以上より、本発明によれば、バインダー
を用いることなく、高価な粘結炭を低減しても高炉やキ
ューポラなどの竪型炉に装入しうる強度を確保できる炭
材内装塊成化物の製造方法を確立できた。これにより炭
材内装塊成化物の製造コストの低減が図れた。
As described above, according to the present invention, without using a binder, a carbon material interior that can secure sufficient strength to be charged in a vertical furnace such as a blast furnace or a cupola even if expensive caking coal is reduced. The production method of agglomerates could be established. As a result, the production cost of the carbonaceous interior agglomerate was reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に係わる炭材内装塊成化物の製造
フローの概念図である。
FIG. 1 is a conceptual diagram of a production flow of a carbonaceous material interior agglomerate according to an embodiment of the present invention.

【図2】本実施例に用いられた熱間成型機の概要を示す
図である。
FIG. 2 is a diagram showing an outline of a hot forming machine used in the present embodiment.

【図3】粘結炭の最高流動度(MF)と塊成化物の圧潰
強度との関係を示す図である。
FIG. 3 is a graph showing the relationship between the maximum fluidity (MF) of caking coal and the crushing strength of agglomerates.

【図4】鉄鉱石のみを用いる場合における、粘結炭の体
積割合とブリケット(塊成化物)の圧潰強度との関係を
示す図である。
FIG. 4 is a diagram showing the relationship between the volume ratio of caking coal and the crushing strength of briquettes (agglomerates) when only iron ore is used.

【図5】鉄鉱石の一部を置き換えて高炉乾ダストを用い
る場合における、粘結炭の体積割合とブリケット(塊成
化物)の圧潰強度との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the volume ratio of caking coal and the crushing strength of briquettes (agglomerates) when blast furnace dry dust is used by replacing part of iron ore.

【図6】ブリケット(塊成化物)のタンブラー回転強度
試験時の−1mm粉率と圧潰強度との関係を示す図であ
る。
FIG. 6 is a diagram showing the relationship between -1 mm powder ratio and crushing strength in a tumbler rotational strength test of briquettes (agglomerated products).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粉状の鉄鉱石と粉状の炭材との混合物を
250〜550℃で熱間成型して行う炭材内装塊成化物
の製造方法であって、前記炭材が1種類または2種類以
上の炭材で構成され、そのうちの少なくとも1種類の炭
材がギーセラー最高流動度MFがlogMF>1の軟化
溶融性を有する炭材であり、かつその軟化溶融性を有す
る炭材の合計体積が前記混合物の体積の30%以上であ
ることを特徴とする炭材内装塊成化物の製造方法。
1. A method for producing a carbonaceous interior agglomerate, comprising hot-forming a mixture of a powdery iron ore and a powdery carbon material at 250 to 550 ° C., wherein the carbon material is one type. Alternatively, at least one of the carbonaceous materials is a carbonaceous material having a softening / melting property of which the maximum flowability MF is logMF> 1 and at least one of the carbonaceous materials has a softening and melting property. A method for producing a carbonaceous interior agglomerate, wherein the total volume is 30% or more of the volume of the mixture.
【請求項2】 請求項1に記載の発明において、前記軟
化溶融性を有する炭材のギーセラー最高流動度MFがl
ogMF>1.5であり、かつその軟化溶融性を有する
炭材の合計体積が前記混合物の体積の20%以上である
ことを特徴とする炭材内装塊成化物の製造方法。
2. The carbonized material having softening and melting properties according to claim 1, wherein the maximum flow rate MF of the gee cellar is l.
A method for producing an agglomerate of carbonaceous material interior, characterized in that ogMF> 1.5 and the total volume of the carbonaceous material having softening and melting properties is 20% or more of the volume of the mixture.
【請求項3】 粉状の鉄鉱石、製鉄ダストおよび粉状の
炭材との混合物を250〜550℃で熱間成型して行う
炭材内装塊成化物の製造方法であって、前記製鉄ダスト
の体積が前記混合物の体積の20%以下であり、前記炭
材が1種類または2種類以上の炭材で構成され、そのう
ちの少なくとも1種類の炭材がギーセラー最高流動度M
FがlogMF>1.5の軟化溶融性を有する炭材であ
り、かつその軟化溶融性を有する炭材の合計体積が前記
混合物の体積の30%以上であることを特徴とする炭材
内装塊成化物の製造方法。
3. A method for producing a carbonaceous material interior agglomerate, comprising hot-forming a mixture of powdery iron ore, ironmaking dust and powdery carbonaceous material at 250 to 550 ° C. Is not more than 20% of the volume of the mixture, and the carbonaceous material is composed of one or more types of carbonaceous materials, and at least one type of the carbonaceous materials has a maximum flow rate M
F is a carbon material having a softening and melting property of logMF> 1.5, and the total volume of the softening and melting carbon material is 30% or more of the volume of the mixture. A method for producing a compound.
JP2000106469A 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates Expired - Fee Related JP3502008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106469A JP3502008B2 (en) 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106469A JP3502008B2 (en) 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates

Publications (2)

Publication Number Publication Date
JP2001294944A true JP2001294944A (en) 2001-10-26
JP3502008B2 JP3502008B2 (en) 2004-03-02

Family

ID=18619630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106469A Expired - Fee Related JP3502008B2 (en) 2000-04-07 2000-04-07 Manufacturing method of carbonized interior agglomerates

Country Status (1)

Country Link
JP (1) JP3502008B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081238A1 (en) * 2003-03-10 2004-09-23 Kabushiki Kaisha Kobe Seiko Sho Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
JP2006241577A (en) * 2005-03-07 2006-09-14 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP2007211271A (en) * 2006-02-07 2007-08-23 Kobe Steel Ltd Method and equipment for manufacturing carbonaceous-material-containing agglomerate
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
KR20190089179A (en) 2016-12-28 2019-07-30 제이에프이 스틸 가부시키가이샤 Method for producing sintered ores

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005190A1 (en) 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081238A1 (en) * 2003-03-10 2004-09-23 Kabushiki Kaisha Kobe Seiko Sho Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
EP1602737A1 (en) * 2003-03-10 2005-12-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
EP1602737A4 (en) * 2003-03-10 2007-11-21 Kobe Steel Ltd Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
US7674314B2 (en) 2003-03-10 2010-03-09 Kobe Steel, Ltd. Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
JP2006241577A (en) * 2005-03-07 2006-09-14 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP4532313B2 (en) * 2005-03-07 2010-08-25 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP2007211271A (en) * 2006-02-07 2007-08-23 Kobe Steel Ltd Method and equipment for manufacturing carbonaceous-material-containing agglomerate
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
KR20190089179A (en) 2016-12-28 2019-07-30 제이에프이 스틸 가부시키가이샤 Method for producing sintered ores

Also Published As

Publication number Publication date
JP3502008B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
JP3004265B1 (en) Carbon material interior pellet and reduced iron production method
JP4996105B2 (en) Vertical coal interior agglomerates
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
CN104119939B (en) A kind of ironmaking hot pressing iron coke and preparation method thereof
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP3754553B2 (en) Agglomerated product for reduced iron and method for producing the same
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
KR101234388B1 (en) Process for production of direct-reduced iron
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP2001294944A (en) Method for producing agglomerate including carbonaceous material
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
WO2004061138A1 (en) Method for reducing chromium containing raw material
JP4718241B2 (en) Coke production method
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
JP4441461B2 (en) Manufacturing method of carbonized material agglomerates
JP3907467B2 (en) Molten metal manufacturing method
JP3863052B2 (en) Blast furnace raw material charging method
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP3863104B2 (en) Blast furnace operation method
JP3379360B2 (en) Hot metal production method
JP4031108B2 (en) Reduction method of reduced iron powder
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JP2011179090A (en) Method for producing granulated iron
JP4505074B2 (en) Method for producing metallurgical coke

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

R150 Certificate of patent or registration of utility model

Ref document number: 3502008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees