JP2007211271A - Method and equipment for manufacturing carbonaceous-material-containing agglomerate - Google Patents

Method and equipment for manufacturing carbonaceous-material-containing agglomerate Download PDF

Info

Publication number
JP2007211271A
JP2007211271A JP2006030134A JP2006030134A JP2007211271A JP 2007211271 A JP2007211271 A JP 2007211271A JP 2006030134 A JP2006030134 A JP 2006030134A JP 2006030134 A JP2006030134 A JP 2006030134A JP 2007211271 A JP2007211271 A JP 2007211271A
Authority
JP
Japan
Prior art keywords
powdered
mixture
agglomerated
raw material
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006030134A
Other languages
Japanese (ja)
Other versions
JP4996103B2 (en
Inventor
Yoshiyuki Nagase
佳之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006030134A priority Critical patent/JP4996103B2/en
Publication of JP2007211271A publication Critical patent/JP2007211271A/en
Application granted granted Critical
Publication of JP4996103B2 publication Critical patent/JP4996103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glanulating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing carbonaceous-material-containing agglomerates by which, when preparing a mixture of a powdery iron containing raw material and a powdery carbonaceous material having softening and melting properties, a raw material yield and an energy efficiency can be improved by decreasing the scattering loss of raw material powder using simple facilities. <P>SOLUTION: A dried powdery iron containing raw material B and a carbonaceous material B having softening and melting properties are mixed under heating in a vertical mixing tank 3 to prepare a mixture C of 250 to 550°C. The mixture C is hot formed using a twin-roll type forming machine 4, and the resultant formed material D is held in a shaft furnace 5 at a temperature between hot forming temperature to 800°C to remove volatile components and tar components remaining in the formed material. By this method, the carbonaceous-material-containing agglomerates E can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉、キューポラなどの竪型炉用装入原料として用いることができる炭材内装塊成化物の製造方法および製造装置に関する。   The present invention relates to a method and an apparatus for producing an agglomerated carbonaceous material agglomerated material that can be used as a raw material for vertical furnaces such as blast furnaces and cupolas.

本発明者らは、高炉、キューポラなどの竪型炉用装入原料として用いることを目的として、粉鉱石(粉状鉄含有原料)と軟化溶融性を有する炭材の混合物を熱間成形することにより、従来の炭材内装コールドペレット等のようにセメントなどのバインダを添加せずとも高強度が得られる炭材内装塊成化物を開発した。   The present inventors hot-mold a mixture of fine ore (a powdered iron-containing raw material) and a soft and meltable carbon material for the purpose of using as a raw material for vertical furnaces such as blast furnaces and cupolas. Has developed an agglomerated carbonaceous material agglomerate that can provide high strength without the addition of a binder such as cement, as in the case of conventional cold pellets with an internal carbonaceous material.

このような炭材内装塊成化物は、例えば図2に示すような工程で製造できる。すなわち、粉状鉄鉱石Bをロータリキルン102で400〜800℃に加熱するとともに、軟化溶融性を有する粉状炭材Aを別途ロータリドライヤ1で軟化溶融が起こらない250℃未満の温度で乾燥したのち、この粉状炭材Aと粉状鉄鉱石Bとを二軸型のミキサ103で混合して粉状炭材Aが軟化溶融する温度である250〜550℃の混合物Cとする。そして、この混合物Cを双ロール型成形機4で熱間成形してブリケット化することにより炭材内装塊成化物Eが得られる(特許文献1,2参照)。   Such a carbonaceous material agglomerated material can be produced, for example, by a process as shown in FIG. That is, the powdered iron ore B was heated to 400 to 800 ° C. with the rotary kiln 102, and the powdered carbon material A having soft melting property was separately dried at a temperature of less than 250 ° C. at which the softening and melting did not occur with the rotary dryer 1. After that, the powdered carbon material A and the powdered iron ore B are mixed by a biaxial mixer 103 to obtain a mixture C of 250 to 550 ° C., which is a temperature at which the powdered carbon material A is softened and melted. And the carbonaceous material agglomerate E is obtained by carrying out the hot forming of this mixture C with the twin roll type molding machine 4, and briquetting (refer patent document 1, 2).

上記方法(装置)では、混合物Cの昇温を粉状鉄鉱石Bの顕熱を用いて行うことを技術思想としているが、その後の発明者らの検討により以下の問題が生じることがわかった。   In the above method (apparatus), the technical idea is to raise the temperature of the mixture C using the sensible heat of the pulverized iron ore B, but it has been found that the following problems arise due to the investigations by the inventors. .

すなわち、粉状石炭などの軟化溶融性を有する粉状炭材を400〜800℃に加熱された高温の粉状鉄鉱石と混合すると、炭材粒子の一部が急速に昇温することに伴い、揮発分が急激にガス化して一気に放出されるため、混合粉が突沸して原料粉(粉状鉄鉱石および粉状炭材を総称したものを意味する。「原料」も同じ意。)が多量に飛散するとともに、混合粉にガスが巻き込まれて粉状鉄鉱石から粉状炭材への伝熱が阻害され、原料歩留の低下やエネルギのロスを招くことがわかった。   That is, when a powdered carbon material having softening and melting properties such as powdered coal is mixed with a high-temperature powdered iron ore heated to 400 to 800 ° C., a part of the carbon material particles rapidly rise in temperature. Since the volatile component is rapidly gasified and released at once, the mixed powder bumps into the raw material powder (which means a generic term for powdered iron ore and powdered carbonaceous material. "Material" also has the same meaning). It was found that a large amount of gas was scattered and gas was involved in the mixed powder, which hindered heat transfer from the powdered iron ore to the powdered carbonaceous material, resulting in a decrease in raw material yield and energy loss.

また、飛散した原料粉は回収して再度原料として用いることにより原料歩留の改善は可能なものの、原料粉を回収するための工程(設備)が別途必要となり、工程が複雑になり設備コストの上昇につながる問題がある。
特許3502011号公報 特許3502008号公報
Although the scattered raw material powder can be recovered and used again as a raw material, the yield of the raw material can be improved. However, a separate process (equipment) for recovering the raw material powder is required, which complicates the process and reduces the equipment cost. There is a problem that leads to a rise.
Japanese Patent No. 3502011 Japanese Patent No. 3502008

そこで、本発明は、粉状鉄鉱石などの粉状鉄含有原料と粉状石炭などの軟化溶融性を有する粉状炭材との混合物を作製する際において、簡易な設備にて原料粉の飛散ロスを低減することにより、原料歩留およびエネルギ効率を改善しうる炭材内装塊成化物の製造方法を提供することを目的とする。   Therefore, the present invention, when producing a mixture of powdered iron-containing raw materials such as powdered iron ore and powdered carbon materials having soft melting properties such as powdered coal, scattering of the raw material powder with simple equipment It aims at providing the manufacturing method of the carbonaceous material agglomerate which can improve raw material yield and energy efficiency by reducing loss.

請求項1に記載の発明は、粉状鉄含有原料と軟化溶融性を有する粉状炭材とを加熱しつつ混合して350〜550℃の混合物とする加熱混合工程と、前記混合物を熱間成形して炭材内装塊成化物となす熱間成形工程とを備えたことを特徴とする炭材内装塊成化物の製造方法である。   The invention according to claim 1 is a heating and mixing step in which a powdered iron-containing raw material and a powdered carbon material having softening and melting properties are heated and mixed to form a mixture at 350 to 550 ° C., and the mixture is heated. A method for producing an agglomerated carbonaceous material agglomerated material comprising a hot forming step of forming a carbonized material agglomerated material.

請求項2に記載の発明は、前記加熱混合工程における処理時間を10〜120sとする請求項1に記載の炭材内装塊成化物の製造方法である。   Invention of Claim 2 is a manufacturing method of the carbon material interior agglomerated product of Claim 1 which sets the processing time in the said heating and mixing process to 10 to 120 s.

請求項3に記載の発明は、粉状鉄含有原料と軟化溶融性を有する粉状炭材とを処理時間10〜120sの間で加熱しつつ混合して350〜550℃の混合物を作製する加熱混合設備と、前記混合物を熱間成形して炭材内装塊成化物を作製する成形設備とを備えたことを特徴とする炭材内装塊成化物の製造装置である。   The invention according to claim 3 is a heating process in which a powdery iron-containing raw material and a softened and meltable powdered carbon material are mixed while being heated for a treatment time of 10 to 120 s to produce a mixture at 350 to 550 ° C. An apparatus for producing an agglomerated carbonaceous material agglomerated material, comprising a mixing facility and a molding facility for hot-molding the mixture to produce an agglomerated carbonaceous material agglomerated material.

なお、「軟化溶融性を有する粉状炭材」とは、logMF(ここに、MFはギーセラ最高流動度である。)が1.0以上の石炭、SRC、タイヤチップ、プラスチック、アスファルト、タールなど軟化溶融性を有する炭素質物質を少なくとも1種含むものであって、粉状のものの総称である。なお、この「軟化溶融性を有する粉状炭材」は、上記軟化溶融性を有する炭素質物質に加えて、さらにコークス、一般炭、無煙炭、オイルコークスなど軟化溶融性を実質的に有しない炭素質物質を1種以上混合したものであってもよい。また、「粉状鉄含有原料」とは、鉄鉱石、製鉄ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケールなど)など主として酸化鉄を含有する原料、またはこれらの原料の2種以上の混合物であって、粉状のものの総称である。   “Powdered carbon material having soft melting property” means coal, SRC, tire chip, plastic, asphalt, tar, etc. whose log MF (where MF is Giesera maximum fluidity) is 1.0 or more. It is a generic term for powders that contain at least one carbonaceous material having soft melting properties. This “powdered carbonaceous material having softening and melting properties” includes carbon having substantially no softening and melting properties, such as coke, steaming coal, anthracite, and oil coke, in addition to the carbonaceous material having softening and melting properties. It may be a mixture of one or more substances. “Powdered iron-containing raw material” means a raw material mainly containing iron oxide such as iron ore and iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.), or two or more of these raw materials It is a general term for a mixture of powders.

本発明によれば、粉状鉄含有原料と軟化溶融性を有する粉状炭材との混合物を作製する際において、従来のように粉状炭材に高温の粉状鉄含有原料を混ぜ込むのではなく、粉状鉄含有原料と粉状炭材とを混合しつつ所定温度まで加熱するため、炭材粒子が均質に昇温され、揮発分の急激なガス化が抑制されるため、原料粉の突沸が防止されて原料粉の飛散が抑制されるとともに、混合粉へのガスの巻き込みが抑制されて伝熱効率が向上することにより、原料歩留およびエネルギ効率が大幅に改善されるようになった。   According to the present invention, when preparing a mixture of a powdered iron-containing raw material and a soft powdery carbonaceous material, a high-temperature powdered iron-containing raw material is mixed into the powdered carbonaceous material as in the past. Instead, the powdered iron-containing raw material and the powdered carbonaceous material are heated to a predetermined temperature while being mixed, so that the carbonaceous material particles are heated uniformly and the rapid gasification of volatile matter is suppressed. As a result, the yield of the raw material and the energy efficiency are greatly improved by suppressing the scattering of the raw material powder and suppressing the entrainment of gas in the mixed powder and improving the heat transfer efficiency. It was.

(実施形態)
図1に本発明の一実施形態に係る炭材内装塊成化物(以下、単に「塊成化物」ともいう。)の製造フローの概念図を示す。なお、上記従来技術で説明した図2と共通する装置および物質には同じ符号を用いた。以下、粉状鉄含有原料として粉状鉄鉱石を代表例として説明する。炭材のうち軟化溶融性を有する炭材(例えば、粘結炭、SRC等)は、粉状鉄鉱石および軟化溶融性を実質的に有しない炭材との混合状態を良好に保つために1mm以下程度に粉砕するのが望ましい。また、上記軟化溶融性を有する炭材との充填性を上げるため、鉄鉱石と、炭材のうち軟化溶融性を実質的に有しない炭材(例えば、コークス粉、一般炭、無煙炭、オイルコークス等)は、必要な場合には粉砕して使用する。粉砕粒度は、その上限は成形が可能な粒度であるが、下限は特に限定されないものの、軟化溶融性を有する炭材と同程度が望ましい。
(Embodiment)
FIG. 1 shows a conceptual diagram of a manufacturing flow of a carbonaceous material-incorporated agglomerated product (hereinafter also simply referred to as “agglomerated product”) according to an embodiment of the present invention. In addition, the same code | symbol was used for the apparatus and substance which are common in FIG. 2 demonstrated by the said prior art. Hereinafter, powder iron ore will be described as a representative example as a powder iron-containing raw material. Among the carbon materials, a carbon material having soft melting property (for example, caking coal, SRC, etc.) is 1 mm in order to maintain a good mixed state with the powdered iron ore and the carbon material substantially not having soft melting property. It is desirable to grind to the following extent. Moreover, in order to improve the filling property with the above-mentioned softening and melting carbonaceous material, iron ore and a carbonaceous material that does not substantially have softening and melting property (for example, coke powder, general coal, anthracite, oil coke). Etc.) should be crushed and used if necessary. Although the upper limit of the pulverized particle size is a particle size that can be molded, the lower limit is not particularly limited, but it is preferably about the same as that of a carbon material having softening and melting properties.

〔炭材乾燥加熱工程〕
このようにして粒度調整された粉状炭材Aは、炭材乾燥加熱設備(例えば、ロータリドライヤ)1で、炭材Aが実質的に軟化溶融しない350℃以下の温度で乾燥・加熱し、付着水分を除去する。ここで、粉状炭材Aの乾燥加熱温度は、従来技術(特許文献1,2参照)では炭材が軟化溶融しない「250℃未満」としていたが、発明者らのその後の検討により「350℃」まで乾燥加熱温度を上昇させても炭材は実質上軟化溶融しないことが判明したため、「350℃以下」とした。
[Carbon material drying heating process]
The powdery carbonaceous material A thus adjusted in particle size is dried and heated at a temperature of 350 ° C. or less at which the carbonaceous material A is not substantially softened and melted in the carbonaceous material drying heating facility (for example, a rotary dryer) 1. Remove adhering moisture. Here, the drying heating temperature of the powdered carbon material A was “less than 250 ° C.” in which the carbon material is not softened and melted in the prior art (see Patent Documents 1 and 2). Even when the drying heating temperature was raised to “° C.”, it was found that the carbonaceous material was not substantially softened and melted.

〔鉱石乾燥加熱工程〕
また、粉状鉄鉱石Bも、鉱石乾燥加熱設備(例えば、ロータリドライヤ)2で350℃以下の温度で乾燥・加熱し、付着水分を除去する。ここで、粉状鉄鉱石の乾燥加熱温度を350℃以下としたのは、粉状炭材と混合したときに粉状炭材が急速に軟化溶融しないようにするためである。
[Ore drying heating process]
Further, the powdered iron ore B is also dried and heated at a temperature of 350 ° C. or less with an ore drying heating facility (for example, a rotary dryer) 2 to remove adhering moisture. Here, the reason why the drying heating temperature of the powdered iron ore is set to 350 ° C. or less is to prevent the powdered carbonaceous material from rapidly softening and melting when mixed with the powdered carbonaceous material.

〔加熱混合工程〕
乾燥した粉状炭材Aと粉状鉄鉱石Bとの混合には、加熱混合設備として、粉状炭材Aの無機化および/または炭材軟化による不要な造粒を抑制するために短時間で混合できるこの業種で常用されている、例えば竪形混合槽3を用いる。この竪形混合槽3は混合物Cを成形温度である350〜550℃まで加熱するため例えば外熱式の加熱機構を備えたものとする。
[Heat mixing process]
For mixing the dried powdered carbon material A and the powdered iron ore B, as a heating and mixing facility, a short time is required to suppress unnecessary granulation due to mineralization and / or softening of the carbonaceous material. For example, a bowl-shaped mixing tank 3 that is commonly used in this type of industry can be used. The vertical mixing tank 3 is provided with, for example, an external heating type heating mechanism in order to heat the mixture C to a molding temperature of 350 to 550 ° C.

竪形混合槽3内における処理時間は10〜120sの範囲とするのが好ましい。10s未満では混合時間が不足して均質な混合物が得られなくなることおよび混合物からの脱気が不十分となることにより、次工程の熱間成形時に混合物に成形圧力が十分に伝わらず成形された塊成化物に割れが発生したり強度不足が生じたりしやすい。他方120sを超えると混合物からの脱気は十分に行われるものの、加熱により軟化溶融した、バインダとしての炭材同士が凝集・融着して大きな塊を形成してしまうため、竪形混合槽3からの排出が阻害されたり、次工程の熱間成形時においてこのような大きな塊の存在により成形圧力が十分に伝わらずやはり塊成化物の強度不足が生じたりしやすい。これに対し、処理時間を10〜120sの範囲とすると、均質な混合物が得られ、脱気が十分に行われるとともに、大きな塊も生成せず、また炭材のバインダとしての作用も十分に得られるため、次工程の熱間成形時に成形圧力が十分に伝達され高強度の塊成化物が得られることとなる。   The treatment time in the vertical mixing tank 3 is preferably in the range of 10 to 120 s. If it is less than 10 s, the mixing time is insufficient and a homogeneous mixture cannot be obtained, and degassing from the mixture becomes insufficient, so that the molding pressure is not sufficiently transmitted to the mixture during the hot forming of the next step. The agglomerated material is likely to crack or lack strength. On the other hand, if it exceeds 120 s, the mixture is sufficiently degassed, but the carbonaceous material as the binder softened and melted by heating aggregates and fuses together to form a large lump. Elimination of the agglomerated material is likely to be hindered due to the presence of such large lumps and the molding pressure not being sufficiently transmitted during the subsequent hot forming. On the other hand, when the processing time is in the range of 10 to 120 s, a homogeneous mixture is obtained, deaeration is sufficiently performed, large lumps are not generated, and a function of the carbonaceous material as a binder is sufficiently obtained. Therefore, the molding pressure is sufficiently transmitted at the time of hot forming in the next step, and a high-strength agglomerated product is obtained.

〔熱間成形工程〕
このようにして得られた粉状炭材Aと粉状鉄鉱石Bからなる混合物Cは、成形設備として例えば熱間成形用の双ロール型成形機4を用いて加圧成形し、成形物Dとなす。加圧成形は、成形物Dを熱処理して得られた塊成化物Eが成形機4から竪型炉(例えば、高炉)への装入までのハンドリングに耐え得るに十分な強度である0.5kN/個以上が得られるよう、成形加圧力を10kN/cm以上とする。
[Hot forming process]
The mixture C composed of the powdered carbon material A and the powdered iron ore B thus obtained is pressure-molded using, for example, a hot roll twin-roll molding machine 4 as a molding facility, and a molded product D And The pressure molding has a strength sufficient to allow the agglomerate E obtained by heat-treating the molded product D to withstand handling from the molding machine 4 to charging into a vertical furnace (for example, a blast furnace). The molding pressure is set to 10 kN / cm or more so that 5 kN / piece or more is obtained.

このようにして成形された成形物Dは、粉状鉄鉱石Bの空隙に、溶融した軟化溶融性を有する炭材Aが浸入し、この炭材Aが潤滑剤として作用して、成形物Dの表面に加えられた成形加圧力が成形物Dの内部にまでほぼ均一に及ぶため、表面近傍のみが圧密されることが防止され、成形物D内の気孔率分布が平均化され、加熱時に爆裂が起こらない塊成化物Eが得られる。   In the molded product D thus molded, the melted softening and melting carbon material A enters the voids of the powdered iron ore B, and this carbon material A acts as a lubricant to form the molded product D. Since the molding pressure applied to the surface of the material extends almost uniformly to the inside of the molded product D, it is prevented that only the vicinity of the surface is consolidated, the porosity distribution in the molded product D is averaged, and during heating, An agglomerate E in which no explosion occurs is obtained.

また、固化後の炭材Aは、粉状鉄鉱石Bの粒子同士を強固に連結するとともに、粉状鉄鉱石Bとの接触面積も大きくなっており、このようにして得られた塊成化物Eは、高強度で、かつ被還元性に優れたものとなる。   In addition, the carbonized material A after solidification firmly connects the particles of the powdered iron ore B and has a large contact area with the powdered iron ore B, and the agglomerates obtained in this way. E has high strength and excellent reducibility.

〔熱処理工程〕
この成形物Dを上記熱間成形温度(250〜550℃)以上800℃以下の温度に調整した熱処理設備(例えば、シャフト炉)5内に装入し、成形物D中に残存する揮発分およびタール分を除去し、炭材を固化させる。これにより、成形物Dが熱処理されて得られた塊成化物Eが竪型炉に装入されて加熱された際に、もはや炭材が軟化することがなく塊成化物Eの強度が維持されるとともに、タール分が多量に発生することがなく竪型炉の排ガス系統にタールが固着する等のトラブルの発生を防止できる。シャフト炉5内温度の下限を成形温度としたのは成形温度を下回ると揮発分やタール分の除去は非常に困難となるためであり、上限を800℃としたのは成形物D中の鉄分がシャフト炉5内で不必要に還元されて塊成化物Hの強度が低下してしまうのを防止するためである。また、揮発分やタール分の除去を促進するために、シャフト炉5内を負圧に制御することも有効な手段の一つである。
[Heat treatment process]
The molded product D was charged into a heat treatment facility (for example, a shaft furnace) 5 adjusted to a temperature of the hot molding temperature (250 to 550 ° C.) or higher and 800 ° C. or lower, and the volatile matter remaining in the molded product D and Remove tar and solidify charcoal. Thereby, when the agglomerated product E obtained by heat-treating the molded product D is charged in the vertical furnace and heated, the carbonaceous material is no longer softened and the strength of the agglomerated product E is maintained. In addition, a large amount of tar is not generated, and trouble such as tar sticking to the exhaust gas system of the vertical furnace can be prevented. The lower limit of the temperature in the shaft furnace 5 is set as the molding temperature because if the temperature is lower than the molding temperature, it is very difficult to remove volatile components and tar components, and the upper limit is set to 800 ° C. This is to prevent the strength of the agglomerated material H from being reduced unnecessarily in the shaft furnace 5. Further, in order to promote the removal of volatile matter and tar content, it is one of effective means to control the inside of the shaft furnace 5 to a negative pressure.

シャフト炉5で熱処理された塊成化物Hは、熱いまま大気中に排出すると発火や燃焼のおそれがあるため、シャフト炉5の下部で窒素ガスなどの不活性ガスにより400℃以下まで冷却してから排出するのが望ましい。   The agglomerate H heat-treated in the shaft furnace 5 may be ignited or burnt if discharged into the atmosphere while being hot. Therefore, the agglomerate H may be cooled to 400 ° C. or lower with an inert gas such as nitrogen gas at the bottom of the shaft furnace 5. It is desirable to discharge from.

なお、ロータリドライヤ1、竪形混合槽3、成形機4およびシャフト炉5は外部からの大気(酸素)の侵入を防止する構造とし、これらの設備で発生する炭材Aの熱分解ガス(揮発分)は炭化水素が主成分であるので、このガスをエジェクタ等を用いて吸引回収し、回収したガスはロータリキルン2等の加熱燃料として利用する。なお、このガス中には粉塵や高沸点タールなどの有害成分も含有されるため、排ガス処理設備(例えば、安水スクラバ)9により除塵・清浄後に用いるのが望ましい。   The rotary dryer 1, the vertical mixing tank 3, the molding machine 4 and the shaft furnace 5 have a structure that prevents the entry of air (oxygen) from the outside, and the pyrolytic gas (volatilization) of the carbonaceous material A generated in these facilities. Since the main component is hydrocarbon, the gas is sucked and recovered using an ejector or the like, and the recovered gas is used as a heating fuel for the rotary kiln 2 or the like. In addition, since harmful components such as dust and high boiling point tar are contained in this gas, it is desirable to use it after dust removal and cleaning by an exhaust gas treatment facility (for example, a water-resistant scrubber) 9.

(変形例)
上記実施形態では、炭材乾燥加熱設備および鉱石乾燥加熱設備としてロータリドライヤを例示したが、流動層式ドライヤ、チューブドライヤ、外熱式多筒型ロータリドライヤ、気流式ドライヤ、流動層式ドライヤなどを用いてもよく、これらを複数組み合わせて用いてもよい。
(Modification)
In the above embodiment, the rotary dryer is exemplified as the carbonaceous material drying heating equipment and the ore drying heating equipment, but a fluidized bed dryer, a tube dryer, an externally heated multi-cylinder rotary dryer, an airflow dryer, a fluidized bed dryer, etc. You may use, and you may use combining these two or more.

また、上記実施形態では、炭材乾燥加熱設備および鉱石乾燥加熱設備を両方とも設けた例を示したが、これらの設備は必ずしも必須の設備ではなく、いずれか一方のみ設けてもよく、あるいは両方とも省略することも可能である。   Moreover, in the said embodiment, although the example which provided both the carbonaceous material drying heating equipment and the ore drying heating equipment was shown, these equipment is not necessarily essential equipment, and only one or both may be provided. Both can be omitted.

また、上記実施形態では、加熱混合設備として竪型混合槽を例示したが、横型容器回転型混合機(ドラムミキサなど)や横型容器固定軸混合型混合機(例えば、パドルミキサ、リボンミキサ)などを用いてもよく、これらを複数組み合わせて用いてもよい。また、連続式の混合方式だけでなく、混合槽の前段にホッパを設置し断続的に稼動させるバッチ式の混合形方式を採用してもよく、さらに連続式とバッチ式とを組み合わせて用いてもよい。   In the above embodiment, the vertical mixing tank is exemplified as the heating and mixing equipment, but a horizontal container rotating mixer (such as a drum mixer) or a horizontal container fixed shaft mixing mixer (for example, a paddle mixer or a ribbon mixer) is used. These may be used in combination. In addition to the continuous mixing method, a batch type mixing method in which a hopper is installed upstream of the mixing tank and operated intermittently may be adopted. Also good.

また、上記実施形態では、竪型混合槽の加熱機構として外熱式のものを例示したが、燃焼ガスなどを熱源とする内熱式のものを用いてもよい。   Further, in the above embodiment, the external heating type is illustrated as the heating mechanism of the vertical mixing tank, but an internal heating type using combustion gas or the like as a heat source may be used.

また、上記実施形態では、成形設備として双ロール型成形機を例示したが、打錠機などを用いてもよい。   Moreover, in the said embodiment, although the twin roll type molding machine was illustrated as a shaping | molding equipment, you may use a tableting machine etc.

また、上記実施形態では、竪形混合槽と双ロール型成形機との組み合わせを例示したが、この組み合わせに代えて、粉状鉄鉱石と粉状炭材とを加熱しつつ混合したのち連続的に圧縮成形して押し出す、外熱式の加熱機構を備えた押出し機(例えば、単軸混練型エクストルーダ、複軸混練型エクストルーダ)と、前記押し出された成形物を所定の長さごとに切断して炭材内装塊成化物を作製するカッターとの組み合わせで構成してもよい。   Moreover, in the said embodiment, although the combination of the vertical mixing tank and the twin roll type | mold molding machine was illustrated, it replaces with this combination and is continuous after mixing a powdered iron ore and a powdered carbonaceous material while heating. Extruders (for example, single-screw kneading extruders and multi-shaft kneading extruders) equipped with an external heating type heating mechanism that are compressed and extruded into the same, and the extruded products are cut into predetermined lengths. You may comprise by the combination with the cutter which produces a carbon material interior agglomerate.

また、上記実施形態では、熱処理設備としてシャフト炉を例示したが、ロータリキルン、回転炉床炉、外熱式多筒型キルン、外熱式および/または内熱式横型容器固定軸回転型加熱炉、バッチ炉などを用いてもよく、これらを複数組み合わせて用いてもよい。   In the above embodiment, the shaft furnace is exemplified as the heat treatment equipment. However, the rotary kiln, the rotary hearth furnace, the external heating type multi-tube kiln, the external heating type and / or the internal heating type horizontal container fixed shaft rotary heating furnace. A batch furnace or the like may be used, or a combination of these may be used.

また、上記実施形態では、熱処理工程を設けた例を示したが、竪型炉における炭材内装塊成化物の使用量が少ない場合等は、竪型炉内でのタール発生総量も少なくなるので、熱処理工程を省略してもよい。なお、本発明方法で製造された炭材内装塊成化物は、竪型炉に装入された際、炉内で徐々に昇温されるので、たとえ内部に揮発分が残存していても、揮発分は徐々に除去されるため塊成化物が爆裂するおそれはない。   Moreover, although the example which provided the heat processing process was shown in the said embodiment, when the usage-amount of the carbonaceous material agglomerated material in a vertical furnace is small, since the total amount of tar generation in a vertical furnace also decreases. The heat treatment step may be omitted. In addition, the carbonaceous material agglomerate produced by the method of the present invention is gradually heated in the furnace when charged into the vertical furnace, so even if volatile matter remains inside, Volatiles are gradually removed, so there is no risk of the agglomerates exploding.

また、上記実施形態では、シャフト炉の下部に冷却部を設けた例を示したが、シャフト炉と別に冷却設備を設けてもよい。   Moreover, although the example which provided the cooling part in the lower part of the shaft furnace was shown in the said embodiment, you may provide cooling equipment separately from a shaft furnace.

本発明に係る炭材内装塊成化物は、高炉、キューポラなどの竪型炉用装入原料、すなわち鉄源として用いることを想定したものであるため、通常は、粉状炭材より粉状鉄含有原料の配合割合を高くして製造する。しかしながら、粉状鉄含有原料より粉状炭材の配合割合を高くしても、本発明方法により塊成化物を製造できることが明らかである。このようにして得られる炭材配合割合の高い塊成化物は、フェロコークスを製造するための原料としてコークス炉に装入して用いることが可能である。   The carbonaceous agglomerate according to the present invention is assumed to be used as a raw material for vertical furnaces such as blast furnaces and cupolas, that is, used as an iron source. Manufacture by increasing the blending ratio of the contained raw materials. However, it is clear that an agglomerate can be produced by the method of the present invention even if the blending ratio of the powdered carbonaceous material is higher than that of the powdered iron-containing raw material. The agglomerated material having a high carbonaceous material blend ratio obtained in this manner can be used by being charged into a coke oven as a raw material for producing ferro-coke.

[発明例1]
本発明の効果を確認するため、以下のラボ実験を実施した。粉状鉄鉱石としては、リオドセ鉱シンターフィード(リオドセSF)を1.4mm以下に篩い分けたものを用いた。いっぽう粉状石炭としては、logMF=3.4の流動性を有する石炭をボールミルにて1mm以下に粉砕したものを用いた。
[Invention Example 1]
In order to confirm the effect of the present invention, the following laboratory experiment was conducted. As the powdered iron ore, the one obtained by sieving the riodoce ore sinter feed (riodose SF) to 1.4 mm or less was used. On the other hand, as the powdery coal, coal having a fluidity of logMF = 3.4 pulverized to 1 mm or less with a ball mill was used.

そして、粉状鉄鉱石約15gと粉状鉄鉱石約4gを、電熱ヒータを巻き付けて420℃に保持した鉄製容器(内径20mm、高さ40mm)内に装入し、熱電対を攪拌棒として用いて15〜120sの間で種々混合時間(加熱混合機における処理時間に相当)を変更して攪拌混合して混合物を作製し、これを直ちに圧潰強度試験機にて成形圧力800kgf/cm(≒78.5MPa)の荷重にて直径d=20mm,高さh=20mmのタブレット状の炭材内装塊成化物に成形した。混合物の温度は上記攪拌混合に用いた熱電対で測定したが、混合物の熱容量は上記容器の熱容量に比較して十分小さいため、上記混合時間の範囲(25〜120s)においては、混合完了時の混合物の温度は原料装入前の容器温度である420℃にほぼ一致した。 Then, about 15 g of powdered iron ore and about 4 g of powdered iron ore are charged into an iron container (inner diameter 20 mm, height 40 mm) wound around an electric heater and held at 420 ° C., and a thermocouple is used as a stirring rod. Various mixing times (corresponding to the processing time in the heating mixer) were changed between 15 to 120 s, and the mixture was stirred and mixed to prepare a mixture, which was immediately subjected to a molding pressure of 800 kgf / cm 2 (≈ It was molded into a tablet-like carbon material agglomerate having a diameter d = 20 mm and a height h = 20 mm under a load of 78.5 MPa. Although the temperature of the mixture was measured with the thermocouple used for the stirring and mixing, the heat capacity of the mixture was sufficiently small compared to the heat capacity of the container. Therefore, in the mixing time range (25 to 120 s), the mixing was completed. The temperature of the mixture almost coincided with the container temperature of 420 ° C. before charging the raw materials.

そして、このようにして成形されたタブレットを室温まで冷却した後、コンクリートの引張強度試験方法(JIS−A1113)に準じて、上記圧潰強度試験機にてタブレットの直径方向に圧縮荷重を掛けて破壊荷重Pを測定し、これをσ=2P/(πdh)の関係式を用いてタブレット高さ方向の引張強度σに換算した。   And after cooling the tablet shape | molded in this way to room temperature, according to the tensile strength test method (JIS-A1113) of concrete, it applies a compressive load to the diameter direction of a tablet with the said crushing strength tester, and destroys The load P was measured and converted into the tensile strength σ in the tablet height direction using the relational expression of σ = 2P / (πdh).

ここで、別途、粉状鉱石や粉状石炭の種類、粉状鉱石と粉状石炭の配合割合、成形温度などを種々変更して作製したブリケット(30mm×25mm×17mmの卵形)の圧潰強度と、同じ原料を用いて同じ配合で同じ成形温度にて成形したタブレットの引張強度との相関関係を調査した結果、図3に示すように、両者の間に強い線形関係が成立することが確認された。したがって、ラボ実験で求めたタブレットの引張強度によりブリケット(塊成化物)の圧潰強度を評価できることが明らかである。   Here, the crushing strength of briquettes (30 mm x 25 mm x 17 mm oval) prepared by variously changing the types of powdered ore and powdered coal, the blending ratio of powdered ore and powdered coal, molding temperature, etc. As a result of investigating the correlation between the tensile strength of tablets molded at the same molding temperature using the same ingredients and at the same molding temperature, it was confirmed that a strong linear relationship was established between them as shown in FIG. It was done. Therefore, it is clear that the crushing strength of the briquette (agglomerated material) can be evaluated by the tensile strength of the tablet obtained in the laboratory experiment.

図4に加熱混合機における混合時間(処理時間)とタブレットの引張強度との関係を示す。同図に示すように、タブレットの引張強度(すなわち、ブリケットの圧潰強度)は、当初、混合時間の増加とともに上昇するが、混合時間60sで最高値を示し、さらに混合時間を延長すると低下するのがわかる。なお、混合時間15〜120sの間では、タブレットの引張強度は5kgf/cm(≒0.5MPa)以上が得られ、ブリケットの圧潰強度に換算すると100kgf(≒1kN)以上が得られることとなる。したがって、本発明で規定するように、粉状鉄鉱石と粉状炭材とを10〜120sの処理時間で加熱しつつ混合して350〜550℃の混合物とし、これを熱間成形して塊成化物を製造することにより、高炉など竪形炉への装入時のハンドリングに問題のない50kgf(0.5kN)以上の圧潰強度を有する塊成化物が確実に得られることがわかった。 FIG. 4 shows the relationship between the mixing time (processing time) in the heating mixer and the tensile strength of the tablet. As shown in the figure, the tablet tensile strength (ie, briquette crushing strength) initially increases with an increase in mixing time, but shows a maximum value at a mixing time of 60 s, and further decreases when the mixing time is extended. I understand. In the mixing time of 15 to 120 s, the tablet has a tensile strength of 5 kgf / cm 2 (≈0.5 MPa) or more, and when converted to a briquette crushing strength, 100 kgf (≈1 kN) or more is obtained. . Therefore, as specified in the present invention, the powdered iron ore and the powdered carbon material are mixed with heating at a processing time of 10 to 120 s to form a mixture at 350 to 550 ° C., and this is hot-molded to form a lump. It was found that an agglomerated product having a crushing strength of 50 kgf (0.5 kN) or more, which has no problem in handling at the time of charging into a vertical furnace such as a blast furnace, can be obtained by manufacturing the agglomerated material.

また、原料歩留を評価する指標として下記式(1)で定義される回収率を用いたが、本発明例1では回収率は93%が得られ、加熱混合時における原料粉の飛散ロスは小さく、高い原料歩留が得られることが確認できた。   Moreover, although the recovery rate defined by the following formula (1) was used as an index for evaluating the raw material yield, a recovery rate of 93% was obtained in Example 1 of the present invention, and the scattering loss of the raw material powder during heating and mixing was It was confirmed that the raw material yield was small and high.

回収率(%)=(タブレットの質量)/(粉状鉱石の質量+粉状石炭の質量)×100 …式(1)   Recovery rate (%) = (Mass of tablet) / (Mass of powdered ore + Mass of powdered coal) × 100 Formula (1)

[発明例2]
次に、粉状石炭の種類を種々変更するとともに、容器温度350〜500℃、混合時間30〜90sの間で種々変更して、上記発明例1と同様のタブレット成形によるラボ実験を実施した。
[Invention Example 2]
Next, while changing the kind of powdered coal variously and changing variously between container temperature 350-500 degreeC and mixing time 30-90s, the laboratory experiment by the same tablet shaping | molding as the said invention example 1 was implemented.

実験結果を図5に粉状石炭の流動性とタブレットの引張強度との関係で示す。同図に示すように、粉状石炭の種類によりタブレットの引張強度にバラツキが見られるものの、logMFが1.0以上の粉状石炭を用いることにより、タブレットの引張強度は3kgf/cm(≒0.3Mpa)以上が得られる。したがって、ブリケット(塊成化物)の圧潰強度に換算すると50kgf(≒0.5kN)以上が得られ、高炉などの竪型炉への装入時のハンドリングに問題のない高強度の塊成化物が得られることが確認できた。また、上記式(1)で定義される回収率は90〜95%の範囲であり、上記発明例1と同様、高い原料歩留が得られることが確認できた。 An experimental result is shown in FIG. 5 by the relationship between the fluidity | liquidity of powdered coal, and the tensile strength of a tablet. As shown in the figure, although the tablet tensile strength varies depending on the type of powdered coal, by using powdered coal having a log MF of 1.0 or more, the tablet tensile strength is 3 kgf / cm 2 (≈ 0.3 Mpa) or more is obtained. Therefore, when converted to the crushing strength of briquettes (agglomerated materials), 50 kgf (≈0.5 kN) or more is obtained, and a high-strength agglomerated material that does not have a problem in handling during charging into a vertical furnace such as a blast furnace. It was confirmed that it was obtained. Moreover, the recovery rate defined by the above formula (1) is in the range of 90 to 95%, and it was confirmed that a high raw material yield was obtained as in the above-described Invention Example 1.

[比較例1]
上記発明例1と同じ原料の組み合わせを用い、容器温度は300℃、混合時間は30sとし、上記発明例1と同様の方法によりタブレットの成形を試みたが、成形は不能であった。混合物の温度(すなわち、成形温度)が本発明の規定する350〜550℃に達していないため、粉状石炭の軟化溶融が不十分なことによりバインダとしての機能が発揮できなかったものと考えられる。
[Comparative Example 1]
The same raw material combination as in Invention Example 1 was used, the container temperature was 300 ° C., the mixing time was 30 s. Since the temperature of the mixture (that is, the molding temperature) does not reach 350 to 550 ° C. defined in the present invention, it is considered that the function as a binder could not be exhibited due to insufficient softening and melting of powdered coal. .

[比較例2]
混合物の昇温を粉状鉄鉱石の顕熱を用いて行う従来法を模擬するため、上記発明例1で使用したラボ実験装置と原料粉を用い、200℃に保持した容器に粉状石炭を装入した後に、別の加熱炉で700℃に加熱した粉状鉄鉱石を投入するラボ実験を実施した。
[Comparative Example 2]
In order to simulate the conventional method in which the temperature of the mixture is raised using the sensible heat of powdered iron ore, the powdered coal is placed in a container maintained at 200 ° C. using the laboratory experimental apparatus and raw material powder used in Invention Example 1 above. After charging, a laboratory experiment was conducted in which powdered iron ore heated to 700 ° C. in another heating furnace was added.

その結果、粉状鉄鉱石を投入し混合し始めた直後にガスが噴出して突沸が生じ、原料粉が多量に吹きこぼれた。上記式(1)で定義される回収率は70%となり、上記発明例1,2に比べ非常に低い値であった。   As a result, immediately after the powdered iron ore was introduced and mixed, gas was blown out, bumping occurred, and a large amount of raw material powder was blown out. The recovery rate defined by the above formula (1) was 70%, which was a very low value as compared with Invention Examples 1 and 2.

また、混合後の混合物の温度は400℃であったことから、下記式(2)で算出された伝熱効率は約30%と非常に低い値となった。なお、このように伝熱効率が著しく低い値となったのは、突沸により吹きこぼれた原料粉の大部分が、熱源となるべき粉状鉄鉱石であることによるものである。   Moreover, since the temperature of the mixture after mixing was 400 ° C., the heat transfer efficiency calculated by the following formula (2) was a very low value of about 30%. The reason why the heat transfer efficiency is extremely low in this way is that most of the raw material powder spilled by bumping is powdered iron ore that should serve as a heat source.

伝熱効率(%)=[粉状石炭の質量×石炭比熱×(400℃−200℃)]/[粉状鉄鉱石の質量×鉄鉱石比熱×(700℃−400℃)]×100 …式(2)
ここに、石炭比熱=1.05MJ/(kg・K)、鉄鉱石比熱=0.63MJ/(kg・K)とした。
Heat transfer efficiency (%) = [mass of powdered coal × coal specific heat × (400 ° C.−200 ° C.)] / [Mass of powdered iron ore × specific heat of iron ore × (700 ° C.−400 ° C.)] × 100 Formula ( 2)
Here, the specific heat of coal was 1.05 MJ / (kg · K) and the specific heat of iron ore was 0.63 MJ / (kg · K).

本発明の実施に係る炭材内装塊成化物の製造フローの概念図である。It is a conceptual diagram of the manufacture flow of the carbonaceous material interior agglomerate which concerns on implementation of this invention. 従来法による炭材内装塊成化物の製造フローの概念図である。It is a conceptual diagram of the manufacture flow of the carbonaceous material agglomerate by the conventional method. タブレットの引張強度とブリケットの圧潰強度との関係を示すグラフ図である。It is a graph which shows the relationship between the tensile strength of a tablet, and the crushing strength of a briquette. 発明例1における、混合時間とタブレットの引張強度との関係を示すグラフ図である。In invention example 1, it is a graph which shows the relationship between mixing time and the tensile strength of a tablet. 発明例2における、粉状石炭の流動性とタブレットの引張強度との関係を示すグラフ図である。It is a graph which shows the relationship between the fluidity | liquidity of powdered coal and the tensile strength of a tablet in the example 2 of an invention.

符号の説明Explanation of symbols

1:炭材乾燥加熱設備(ロータリドライヤ)
2:鉱石乾燥加熱設備(ロータリドライヤ)
3:加熱混合設備(竪形混合槽)
4:成形設備(双ロール型成形機)
5:熱処理設備(シャフト炉)
9:排ガス処理設備(安水スクラバ)
A:粉状炭材(粉状石炭)
B:粉状鉄含有原料(粉状鉄鉱石)
C:混合物
D:成形物
E:炭材内装塊成化物
1: Carbon material drying and heating equipment (rotary dryer)
2: Ore drying heating equipment (rotary dryer)
3: Heating and mixing equipment (vertical mixing tank)
4: Molding equipment (twin roll molding machine)
5: Heat treatment equipment (shaft furnace)
9: Exhaust gas treatment facility (Ansui scrubber)
A: Powdered carbon material (powdered coal)
B: Powdered iron-containing raw material (powdered iron ore)
C: Mixture D: Molded product E: Carbon material interior agglomerated material

Claims (3)

粉状鉄含有原料と軟化溶融性を有する粉状炭材とを加熱しつつ混合して350〜550℃の混合物とする加熱混合工程と、前記混合物を熱間成形して炭材内装塊成化物となす熱間成形工程とを備えたことを特徴とする炭材内装塊成化物の製造方法。   A heating and mixing step of heating and mixing a powdered iron-containing raw material and a soft and meltable powdered carbon material into a mixture at 350 to 550 ° C., and hot-molding the mixture to form an agglomerated carbon material material A method for producing an agglomerated carbonaceous material agglomerated material comprising a hot forming step. 前記加熱混合工程における処理時間を10〜120sとする請求項1に記載の炭材内装塊成化物の製造方法。   The method for producing an agglomerated carbonaceous material agglomerated product according to claim 1, wherein a treatment time in the heating and mixing step is 10 to 120 s. 粉状鉄含有原料と軟化溶融性を有する粉状炭材とを処理時間10〜120sの間で加熱しつつ混合して350〜550℃の混合物を作製する加熱混合設備と、前記混合物を熱間成形して炭材内装塊成化物を作製する成形設備とを備えたことを特徴とする炭材内装塊成化物の製造装置。   A heating and mixing equipment for mixing a powdered iron-containing raw material and a powdered carbonaceous material having softening and melting properties while heating them for a treatment time of 10 to 120 s to produce a mixture at 350 to 550 ° C., and hot mixing the mixture An apparatus for producing an agglomerated carbonaceous material agglomerated material, comprising a molding facility for forming agglomerated carbonaceous material agglomerated material.
JP2006030134A 2006-02-07 2006-02-07 Manufacturing method of carbonized material agglomerates Expired - Fee Related JP4996103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030134A JP4996103B2 (en) 2006-02-07 2006-02-07 Manufacturing method of carbonized material agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030134A JP4996103B2 (en) 2006-02-07 2006-02-07 Manufacturing method of carbonized material agglomerates

Publications (2)

Publication Number Publication Date
JP2007211271A true JP2007211271A (en) 2007-08-23
JP4996103B2 JP4996103B2 (en) 2012-08-08

Family

ID=38489973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030134A Expired - Fee Related JP4996103B2 (en) 2006-02-07 2006-02-07 Manufacturing method of carbonized material agglomerates

Country Status (1)

Country Link
JP (1) JP4996103B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153946A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153945A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192833A (en) * 1997-07-22 1999-04-06 Kobe Steel Ltd Agglomerate for reduced iron and its production
JP2001294944A (en) * 2000-04-07 2001-10-26 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2001303143A (en) * 2000-04-24 2001-10-31 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2005344181A (en) * 2004-06-04 2005-12-15 Kobe Steel Ltd Agglomerate including carbonaceous material and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192833A (en) * 1997-07-22 1999-04-06 Kobe Steel Ltd Agglomerate for reduced iron and its production
JP2001294944A (en) * 2000-04-07 2001-10-26 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2001303143A (en) * 2000-04-24 2001-10-31 Kobe Steel Ltd Method for producing agglomerate including carbonaceous material
JP2005344181A (en) * 2004-06-04 2005-12-15 Kobe Steel Ltd Agglomerate including carbonaceous material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153946A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153945A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace

Also Published As

Publication number Publication date
JP4996103B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4996105B2 (en) Vertical coal interior agglomerates
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
JP2009052141A (en) Method for reducing electric furnace dust
BR102019023195A2 (en) iron ore fines agglomerate production process and the agglomerate product
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP2004211179A (en) Method of reducing chromium-containing raw material
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP5365044B2 (en) Ferro-coke manufacturing method
JP4441461B2 (en) Manufacturing method of carbonized material agglomerates
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP2006152432A (en) Method for producing molten iron
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP5365043B2 (en) Ferro-coke manufacturing method
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
JP2023019428A (en) Smelting method for nickel oxide ore
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4843445B2 (en) Manufacturing method of carbonized material agglomerates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees