JPH1192833A - Agglomerate for reduced iron and its production - Google Patents

Agglomerate for reduced iron and its production

Info

Publication number
JPH1192833A
JPH1192833A JP8154098A JP8154098A JPH1192833A JP H1192833 A JPH1192833 A JP H1192833A JP 8154098 A JP8154098 A JP 8154098A JP 8154098 A JP8154098 A JP 8154098A JP H1192833 A JPH1192833 A JP H1192833A
Authority
JP
Japan
Prior art keywords
reduced iron
agglomerate
apparent density
carbonaceous material
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8154098A
Other languages
Japanese (ja)
Other versions
JP3754553B2 (en
Inventor
Haruhisa Iwakiri
治久 岩切
Yoshimichi Takenaka
芳通 竹中
Shoken Shimizu
正賢 清水
Akiji Shirouchi
章治 城内
Kazuya Miyagawa
一也 宮川
Osamu Tsushimo
修 津下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP08154098A priority Critical patent/JP3754553B2/en
Publication of JPH1192833A publication Critical patent/JPH1192833A/en
Application granted granted Critical
Publication of JP3754553B2 publication Critical patent/JP3754553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of an agglomerate for reduced iron which shortens the reducing time of fine ore in the agglomerate, and further, shortens the melting time of the reduced iron after reducing and prevents reoxidation of the reduced iron. SOLUTION: The agglomerate for reduced iron is composed of mixed material of powdery ore and carbonaceous material and the apparent density is >=2.3 g/cm<3> . Further, the apparent density of the reduced iron after reducing is >=2 g/cm<3> . The producing method of the reduced iron is executed by recovering gas generated in a heat mixing process of the races materials of the agglomerate, pressure forming and degassing processes thereof and to prevent the reoxidation of the reduced iron, by blowing this recovered gas into reduced end stage zoge in a reducing furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭材内装塊成化物
中の粉鉱石を還元して還元鉄を製造する技術分野に属
し、詳しくは、炭材内装塊成化物の見掛け密度を大きく
し還元時間を短縮し、さらに還元後の還元鉄の見掛け密
度を大きくし製銑、製鋼工程における溶解時間を短縮す
る還元鉄用塊成化物および還元鉄の再酸化を防止する還
元鉄の製造方法の技術分野に属するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of producing reduced iron by reducing fine ore in an agglomerated carbonaceous material agglomerate. A method for producing reduced iron that reduces the reduction time, further increases the apparent density of the reduced iron after reduction, reduces the melting time in the ironmaking and steelmaking processes, and prevents reoxidation of the reduced iron. It belongs to the technical field.

【0002】[0002]

【従来の技術】還元鉄の製造方法としてはミドレックス
法がよく知られており、この方法によれば天然ガスから
変成した還元性ガスを羽口から吹き込み、シャフト炉中
を上昇させることによって、炉内に充填された鉄鉱石や
酸化鉄ペレットを還元して還元鉄を得ることができる。
ただし、この方法では燃料としてコストの高い天然ガス
を大量に供給する必要がある。
2. Description of the Related Art As a method for producing reduced iron, the Midrex method is well known. According to this method, a reducing gas transformed from natural gas is blown from a tuyere and raised in a shaft furnace, whereby Reduced iron ore or iron oxide pellets filled in the furnace can be reduced to obtain reduced iron.
However, this method requires a large amount of expensive natural gas to be supplied as fuel.

【0003】そこで近年では、上記天然ガスに替えて比
較的安価な石炭を還元剤として使用することのできる還
元鉄製造プロセスが注目されている。例えば、米国特許
第3443931 号には、粉鉱石と炭材とを混合してペレット
化し、高温雰囲気下で加熱還元することにより還元鉄を
製造するプロセスが記載されている。この方法によれ
ば、還元剤が石炭ベースであることの他にも、粉鉱石を
直接使用できること、高速還元が可能であること、製品
中の炭素含有量を調整することができる等の利点を有し
ている。
[0003] In recent years, attention has been paid to a reduced iron production process in which relatively inexpensive coal can be used as a reducing agent instead of the natural gas. For example, U.S. Pat. No. 3,443,931 describes a process for producing reduced iron by mixing and ore fines and a carbonaceous material into pellets and reducing them by heating under a high-temperature atmosphere. According to this method, in addition to the fact that the reducing agent is based on coal, there are advantages such as the ability to directly use fine ore, high-speed reduction, and the ability to adjust the carbon content in the product. Have.

【0004】[0004]

【発明が解決しようとする課題】このプロセスでは高温
還元炉における上面からの輻射熱により塊成化物(ペレ
ット、ブリケット等)を加熱しているので原料層の高さ
が制限され、したがって、生産性を向上させるには、還
元反応の反応速度自体を高める必要がある。しかし、還
元鉄用の塊成化物の還元速度は、塊成化物内の伝熱に律
速されるため、生産性を向上しようとして、塊成化物内
の伝熱限界以上に還元炉の温度を上げると、塊成化物は
表面から溶融して炉内での固着や炉体損傷の問題を引き
起こす。
In this process, the agglomerates (pellets, briquettes, etc.) are heated by radiant heat from the upper surface of the high-temperature reduction furnace, so that the height of the raw material layer is limited, and therefore the productivity is reduced. To improve it, it is necessary to increase the reaction rate itself of the reduction reaction. However, since the reduction rate of agglomerates for reduced iron is limited by the heat transfer in the agglomerates, raise the temperature of the reduction furnace above the heat transfer limit in the agglomerates in order to improve productivity. Then, the agglomerate melts from the surface and causes sticking in the furnace and damage to the furnace body.

【0005】還元鉄用の塊成化物は、粉鉱石と還元剤で
ある炭材(石炭など)およびバインダーを混合して、造
粒機で粒状化するペレット、あるいは成形機で塊成化す
るブリケット等がある。これらの方法で成形した還元鉄
用の塊成化物は、図14(a) に示すように多孔質体であり
炭材と粉鉱石との接触面積は小さく、したがって、熱伝
導性が悪く還元速度が低い。還元速度を高める方法とし
て、還元過程で炭材と粉鉱石との接触面積を大きくする
ために、還元炉内での炭材の軟化溶融時の最高流動度が
0.8以上である炭材内装ペレットが特願平9-174732号に
提案されている。
[0005] The agglomerate for reduced iron is obtained by mixing fine ore with a carbon material (such as coal) as a reducing agent and a binder, and pelletizing with a granulator or briquetting with a compacting machine. Etc. The agglomerate for reduced iron formed by these methods is a porous body as shown in Fig. 14 (a) and has a small contact area between the carbonaceous material and the fine ore. Is low. In order to increase the contact area between the carbonaceous material and the fine ore in the reduction process, the maximum flow rate during softening and melting of the carbonaceous material in the reduction furnace is a method to increase the reduction rate.
Carbonaceous interior pellets of 0.8 or more are proposed in Japanese Patent Application No. 9-147732.

【0006】しかし、上記の方法では、塊成化物の成形
時にバインダーが必要であり、このバインダーは還元鉄
の品位を低下させることにもなる。また、軟化溶融時の
最高流動度が高い炭材は揮発分を多く含有しており、こ
の種の炭材を用いることは揮発分が抜ける過程で塊成化
物を膨れさせ割れの原因になる。また、図14(a) に示す
ように多孔質体である塊成化物は見掛け密度が小さく、
このため、還元後に生成される還元鉄の見掛け密度も小
さくなる。還元鉄の見掛け密度が小さいと、還元鉄の溶
解に際して、還元鉄が溶解炉中のスラグ上に浮き、還元
鉄の溶解に長時間を要するという問題がある。
[0006] However, in the above method, a binder is required at the time of forming the agglomerate, and this binder also lowers the quality of reduced iron. In addition, the carbon material having the highest maximum fluidity during softening and melting contains a large amount of volatile matter, and the use of this kind of carbon material causes swelling of agglomerates in the process of removing volatile matter, which causes cracking. Also, as shown in FIG. 14 (a), the agglomerate which is a porous body has a small apparent density,
Therefore, the apparent density of the reduced iron generated after the reduction is also reduced. If the apparent density of the reduced iron is small, the reduced iron floats on the slag in the melting furnace when dissolving the reduced iron, and there is a problem that it takes a long time to dissolve the reduced iron.

【0007】また、塊成化物中の粉鉱石は還元がほぼ終
了した時点から焼結が始まり、還元鉄は強度が高まる。
しかし、操業温度の制約により、還元中の履歴時間が短
いと焼結不足となり還元鉄の強度が低く、還元炉からの
排出等のハンドリング工程で破壊粉化が起こり、製品歩
留りが低下するという問題がある。さらに、還元炉内で
は、熱源としてバーナーを燃焼させているため、塊成化
物の還元により生成された還元鉄の燃焼ガスによる再酸
化を防止することも還元鉄中の金属鉄の生産性を高める
上からも重要である。この再酸化も焼結不足の還元鉄の
方が進み易いといえる。
[0007] In addition, sintering of the fine ore in the agglomerate starts when the reduction is almost completed, and the reduced iron has an increased strength.
However, due to the restriction of operating temperature, if the hysteresis time during reduction is short, sintering is insufficient, the strength of the reduced iron is low, and destruction powdering occurs in the handling process such as discharge from the reduction furnace, which lowers the product yield. There is. Furthermore, since the burner is burned as a heat source in the reduction furnace, preventing the reoxidation of the reduced iron generated by the reduction of agglomerates by the combustion gas also increases the productivity of metallic iron in the reduced iron. It is important from above. It can be said that this reoxidation is easier for the reduced iron which is insufficiently sintered.

【0008】本発明は、上記の問題を解決するためにな
されたもので、塊成化物の見掛け密度を大きくし、塊成
化物中の粉鉱石の還元時間を短縮し、しかも焼結を容易
にし、さらに還元後の還元鉄の見掛け密度を大きくし、
溶解時間を短縮する還元鉄用の塊成化物および還元鉄の
再酸化を防止する還元鉄の製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been made to increase the apparent density of agglomerates, shorten the reduction time of fine ore in the agglomerates, and facilitate sintering. , Further increase the apparent density of reduced iron after reduction,
It is an object of the present invention to provide an agglomerate for reduced iron that shortens the dissolution time and a method for producing reduced iron that prevents reoxidation of reduced iron.

【0009】[0009]

【課題を解決するための手段】その要旨は、粉鉱石と炭
材との混合物からなり、かつ見掛け密度が2.3g/cm3以上
である還元鉄用塊成化物である。
SUMMARY OF THE INVENTION The gist of the invention is a reduced iron agglomerate made of a mixture of fine ore and carbonaceous material and having an apparent density of 2.3 g / cm 3 or more.

【0010】粉鉱石と炭材を混合し、 260〜550 ℃の温
度域で成形圧20〜150MPaで熱間成形した後、成形温度範
囲で 5分間以上の脱ガス処理を行なうことを特徴とする
見掛け密度が2.3g/cm3以上である還元鉄用塊成化物の製
造方法である。
It is characterized in that fine ore is mixed with carbonaceous material, hot-formed at a forming pressure of 20 to 150 MPa in a temperature range of 260 to 550 ° C., and then degassed for 5 minutes or more in a forming temperature range. This is a method for producing an agglomerate for reduced iron having an apparent density of 2.3 g / cm 3 or more.

【0011】炭材が、揮発分が16%以上、ギーセラー流
動度が 2DDPM以上の粘結炭である上記の見掛け密度が2.
3g/cm3以上の還元鉄用塊成化物の製造方法である。
[0011] The carbon material is a caking coal having a volatile content of 16% or more and a ghee cellar fluidity of 2DDPM or more.
This is a method for producing an agglomerate for reduced iron of 3 g / cm 3 or more.

【0012】炭材が、揮発分が16%以下の非粘結炭およ
び/または加熱により軟化しない炭材を粘結炭と混合し
ギーセラー流動度が20DDPM以上にした炭材である上記の
見掛け密度が2.3g/cm3以上の還元鉄用塊成化物の製造方
法である。
The above apparent density, wherein the carbonaceous material is a non-caking coal having a volatile content of 16% or less and / or a carbonaceous material which is not softened by heating and mixed with a caking coal to give a gee cellar fluidity of 20 DDPM or more. Is a method for producing an agglomerate for reduced iron of 2.3 g / cm 3 or more.

【0013】炭材が、揮発分が35%以上の非粘結炭また
は揮発分が40%以上、灰分が 5%以下、硫黄分が 0.3%
以下の褐炭である上記の見掛け密度が2.3g/cm3以上の還
元鉄用塊成化物の製造方法である。
[0013] The carbon material is a non-coking coal having a volatile content of 35% or more or a volatile content of 40% or more, an ash content of 5% or less, and a sulfur content of 0.3%.
This is a method for producing the following lignite agglomerates for reduced iron having an apparent density of 2.3 g / cm 3 or more.

【0014】還元後の還元鉄の見掛け密度が2g/cm3以上
である上記の還元鉄用塊成化物である。
The reduced iron agglomerate described above, wherein the reduced iron has an apparent density of 2 g / cm 3 or more after reduction.

【0015】塊成化物の原料の加熱混合工程、加圧成形
工程および脱ガス工程で発生するガスを回収し、この回
収ガスを還元炉の還元末期ゾーンに吹き込み還元鉄の再
酸化を防止する還元鉄の製造方法である。
[0015] The gas generated in the heating and mixing step, the pressure forming step, and the degassing step of the raw material of the agglomerate is recovered, and the recovered gas is blown into a reduction terminal zone of the reduction furnace to prevent reoxidation of the reduced iron. It is a method of producing iron.

【0016】還元剤である炭材は、炭種によって 260℃
を超えると乾留反応が始まり軟化溶融し、 550℃を超え
ると固化する。この温度域で粉鉱石と炭材を混合し加圧
成形すると、粉鉱石粒子間の空隙に溶融した炭材が容易
に浸入し、粉鉱石同士を強固に連結する。このため、バ
インダーが不要となり還元鉄の品位を高めることができ
る。本発明では、この軟化溶融性を有する炭材を用い
る。
The carbon material as the reducing agent is 260 ° C. depending on the type of coal.
If the temperature exceeds 550 ° C., a dry distillation reaction starts and the material softens and melts. When the fine ore and the carbonaceous material are mixed and pressed under this temperature range, the molten carbonaceous material easily penetrates into the voids between the fine ore particles, and the fine ore is strongly connected to each other. For this reason, a binder is not required, and the quality of reduced iron can be improved. In the present invention, a carbon material having this softening and melting property is used.

【0017】また、 260〜550 ℃の温度域で熱間成形し
た塊成化物を、この成形温度範囲で、 5分間以上の脱ガ
ス処理を行うことによって、塊成化物中の炭材からの揮
発分を抜き塊成化物の強度を高め、還元中の塊成化物の
膨れによる割れを防止することができる。脱ガス処理後
の塊成化物の見掛け密度は揮発分が抜けた分、収縮する
ため、脱ガス処理前の塊成化物の見掛け密度とほとんど
変わらない。しかし、脱ガス処理を行うことによって、
還元過程での塊成化物の膨れがなくなり還元後の還元鉄
の見掛け密度は大きくなる。したがって、還元鉄を溶解
する際に、還元鉄の見掛け密度は溶解炉中のスラグの見
掛け密度よりも大きくなり、還元鉄は速やかにスラグ中
に沈み込み溶解が促進され、溶解時の生産性が向上す
る。とくに電気炉製錬において効果を発揮する。
The agglomerate formed by hot forming in the temperature range of 260 to 550 ° C. is degassed for 5 minutes or more in the forming temperature range to volatilize the carbonized material in the agglomerate. It is possible to increase the strength of the agglomerate by removing the component and prevent cracking due to swelling of the agglomerate during reduction. The apparent density of the agglomerate after the degassing treatment shrinks due to the loss of volatile components, and thus is almost the same as the apparent density of the agglomerate before the degassing treatment. However, by performing degassing,
The agglomerates in the reduction process no longer swell, and the apparent density of reduced iron after reduction increases. Therefore, when dissolving the reduced iron, the apparent density of the reduced iron becomes larger than the apparent density of the slag in the melting furnace, and the reduced iron quickly sinks into the slag to promote dissolution, thereby increasing the productivity during melting. improves. Especially effective in electric furnace smelting.

【0018】揮発分が16%以上、ギーセラー流動度が 2
DDPM以上の粘結炭を炭材として用いる場合は、 350〜55
0 ℃の温度域で熱間成形するが、ギーセラー流動度の最
高流動温度に比例させて成形温度を変えることが好まし
い。熱間成形時の成形圧力は19.6MPa以上、147.1MPa以
下で行い、成形後の脱ガス処理は成形温度範囲で 5分間
以上行なう。なお、脱ガス速度を上げるために、脱ガス
・固化槽の温度を上げて、成形温度以上、600 ℃以下の
温度範囲で脱ガス処理を行なうこともできる。このよう
にして、見掛け密度が2.3g/cm3以上の還元鉄用塊成化物
を得ることができる。
The volatile content is 16% or more,
When using caking coal of DDPM or more, 350-55
Although hot forming is performed in a temperature range of 0 ° C., it is preferable to change the forming temperature in proportion to the maximum flow temperature of the Giesser flow rate. The forming pressure during hot forming is 19.6MPa or more and 147.1MPa or less, and the degassing treatment after forming is performed for 5 minutes or more in the forming temperature range. In order to increase the degassing rate, the temperature of the degassing / solidification tank may be increased, and the degassing treatment may be performed in the temperature range from the molding temperature to 600 ° C. In this way, an agglomerate for reduced iron having an apparent density of 2.3 g / cm 3 or more can be obtained.

【0019】揮発分が16%以下の非粘結炭および/また
は加熱により軟化しない炭材を炭材として用いる場合
は、揮発分が16%以上の粘結炭と混合し、ギーセラー流
動度の加重平均値が20DDPM以上となるように調整した炭
材を用い、 350〜550 ℃の温度域で熱間成形するが、ギ
ーセラー流動度の最高流動温度に比例させて成形温度を
変えることが好ましい。熱間成形時の成形圧力は 40MPa
以上、150MPa以下で行い、成形後の脱ガス処理は成形温
度範囲で 5分間以上行なう。なお、脱ガス速度をあげる
ために、成形温度以上、600 ℃以下の温度範囲で脱ガス
処理を行なうこともできる。このようにして、見掛け密
度が2.3g/cm3以上の還元鉄用塊成化物を得ることができ
る。
When a non-coking coal having a volatile content of 16% or less and / or a carbon material which does not soften by heating is used as the carbon material, the non-caking coal having a volatile content of 16% or more is mixed with the coking coal, and the greaser fluidity is weighted. Using a carbon material adjusted to have an average value of 20 DDPM or more, hot forming is performed in a temperature range of 350 to 550 ° C., and it is preferable to change the forming temperature in proportion to the maximum flow temperature of the Giesler flow rate. Molding pressure during hot forming is 40MPa
Above, it is performed at 150 MPa or less, and the degassing treatment after molding is performed for 5 minutes or more in the molding temperature range. In order to increase the degassing rate, degassing can be performed in a temperature range from the molding temperature to 600 ° C. In this way, an agglomerate for reduced iron having an apparent density of 2.3 g / cm 3 or more can be obtained.

【0020】炭材が、揮発分が35%以上の非粘結炭また
は揮発分が40%以上、灰分が 5%以下、硫黄分が 0.3%
以下の褐炭を炭材として用いる場合は、非粘結炭および
褐炭の分解開始温度の 260〜450 ℃の温度域で熱間成形
する。熱間成形時の成形圧力は 20MPa以上、150MPa以下
で行い、成形後の脱ガス処理は成形温度範囲で 5分間以
上行なう。なお、脱ガス速度をあげるために、成形温度
以上、500 ℃以下の温度範囲で脱ガス処理を行なうこと
もできる。また、褐炭の灰分を 5%以下、硫黄分を 0.3
%以下に限定した理由は、品位の高い還元鉄を得るため
である。このようにして、見掛け密度が2.3g/cm3以上の
還元鉄用塊成化物を得ることができる。
The carbon material is a non-coking coal having a volatile content of 35% or more or a volatile content of 40% or more, an ash content of 5% or less, and a sulfur content of 0.3%
When the following lignite is used as the carbonaceous material, it is hot-formed in a temperature range of 260 to 450 ° C., which is the decomposition starting temperature of non-coking coal and lignite. The forming pressure during hot forming should be 20MPa or more and 150MPa or less, and degassing after forming should be performed for 5 minutes or more in the forming temperature range. In order to increase the degassing rate, degassing can be performed at a temperature in the range from the molding temperature to 500 ° C. In addition, the ash content of lignite is less than 5% and the sulfur content is 0.3%.
The reason for limiting to less than or equal to% is to obtain high quality reduced iron. In this way, an agglomerate for reduced iron having an apparent density of 2.3 g / cm 3 or more can be obtained.

【0021】したがって、塊成化物中の炭材は粉鉱石に
密着し、炭材と鉱石との接触面積が大きくなるととも
に、見掛け密度も大きくなる。このため、塊成化物内の
熱伝導性も向上し塊成化物中の粉鉱石の炭材による直接
還元が促進され、還元時間も短縮される。また、塊成化
物の見掛け密度が大きいため、塊成化物内のCO分圧が高
められるので、粉鉱石のCOによるガス還元も促進され
る。
Therefore, the carbonaceous material in the agglomerate adheres to the fine ore, the contact area between the carbonaceous material and the ore increases, and the apparent density also increases. For this reason, the thermal conductivity in the agglomerate is also improved, the direct reduction of the fine ore in the agglomerate by the carbonaceous material is promoted, and the reduction time is shortened. Further, since the apparent density of the agglomerate is large, the partial pressure of CO in the agglomerate is increased, so that the gas reduction of the fine ore by CO is promoted.

【0022】還元促進により、還元炉内の滞留時間が等
しい場合は、還元終了後の炉内滞留時間が延び、その
分、還元鉄の焼結が促進され還元鉄の強度が増大し、か
つ再酸化に対し反応しにくくなる。この結果、還元炉か
らの排出等のハンドリング工程で、還元鉄の破壊粉化が
起こりにくくなり、製品歩留りが向上し、還元鉄中の金
属鉄分の酸化減耗が少ない。
When the residence time in the reduction furnace is equal due to the reduction promotion, the residence time in the furnace after the reduction is extended, the sintering of the reduced iron is accelerated and the strength of the reduced iron increases, and It becomes difficult to react to oxidation. As a result, in the handling step such as discharge from the reduction furnace, the destruction and pulverization of the reduced iron is less likely to occur, the product yield is improved, and the oxidation loss of the metallic iron in the reduced iron is small.

【0023】塊成化物の原料の加熱混合工程、加圧成形
工程および脱ガス工程で発生するガスは、タール質等の
重質炭化水素であるので、このガスを回収して還元炉の
還元末期ゾーンに吹き込むことによって、還元鉄が触媒
となってガス改質が行なわれCO、H2を富化して還元末期
ゾーンの雰囲気を還元性に調整し還元鉄の再酸化を防止
することができる。このようにして得られた還元後の塊
成化物(還元鉄)の見掛け密度は2g/cm3以上である。
The gas generated in the step of heating and mixing the raw material of the agglomerate, the step of pressing and the step of degassing are heavy hydrocarbons such as tar and the like. By blowing into the zone, the reduced iron acts as a catalyst to perform gas reforming, thereby enriching CO and H 2 , adjusting the atmosphere in the end-of-reduction zone to reducibility, and preventing reoxidation of reduced iron. The apparent density of the reduced agglomerate (reduced iron) thus obtained is 2 g / cm 3 or more.

【0024】[0024]

【発明の実施の形態】以下に、本発明をさらに詳細に説
明する。図1に本発明に係わる還元鉄の製造プロセスの
概念図の一例を示す。図に示すように、まず炭材と鉱石
を粉砕機で粉砕する。鉱石と揮発分が16%以下の非粘結
炭は74μm 以下の粒子が70%以上になるように粉砕す
る。揮発分が16%以上の粘結炭、非粘結炭、褐炭は粒度
に特に制限はないが、鉱石等との混合状態を良好に保つ
ために 1mm以下に粉砕するのが望ましい。粉砕後の鉱石
と炭材の乾燥・予熱に関しては、炭材は水分変動による
鉱石との混合時の温度変動を少なくするために、ロータ
リードライヤーで 200℃以下の温度で乾燥し、付着水分
を除去する。一方、鉱石は、炭材と混合した時に目標成
形温度になるように、ロータリーキルンで予熱する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. FIG. 1 shows an example of a conceptual diagram of a process for producing reduced iron according to the present invention. As shown in the figure, first, carbonaceous material and ore are pulverized by a pulverizer. Ore and non-coking coal with a volatile content of 16% or less are pulverized so that particles of 74μm or less become 70% or more. The particle size of caking coal, non-caking coal and lignite with a volatile content of 16% or more is not particularly limited, but it is preferable to grind it to 1 mm or less in order to maintain a good mixed state with ore. Regarding drying and preheating of ore and carbon material after pulverization, the carbon material is dried with a rotary drier at a temperature of 200 ° C or less to remove adhering moisture in order to reduce temperature fluctuation when mixing with ore due to moisture fluctuation. I do. On the other hand, the ore is preheated in a rotary kiln so as to reach the target forming temperature when mixed with the carbonaceous material.

【0025】乾燥・予熱した鉱石と炭材の混合には、炭
材の一部の過熱を防止するために短時間で混合できるこ
の業種で常用されている、例えば二軸型のミキサーを用
いる。また、ミキサーは成形温度を確保するために保温
する。混合後の鉱石と炭材は、押し込み機付き熱間成形
用の成形機を用いて塊成化物(ブリケット)に加圧成形
する。加圧成形は塊成化物がハンドリングに耐え得るに
十分な強度が得られればよく、したがって、成形加圧力
は 20MPa以上とする。このようにして成形した塊成化物
は、図14(b) に示すように、鉱石粒子間の空隙に溶融し
た炭材が浸入し、鉱石同士を強固に連結し、また、炭材
と鉱石との接触面積も大きくなっている。また、ミキサ
ーと成形機は密閉構造とし、ミキサーおよび成形機で発
生するガスをエジェクター等を用いて吸引回収し、回収
したガスは還元炉の還元末期ゾーンに吹き込まれ還元ガ
スとして利用される。
For mixing the dried or preheated ore and the carbonaceous material, for example, a two-shaft mixer commonly used in this industry, which can be mixed in a short time to prevent overheating of the carbonaceous material, is used. Also, the mixer is kept warm to secure the molding temperature. The ore and the carbonaceous material after mixing are pressed into agglomerates (briquettes) using a hot forming machine with an indenter. In the pressure molding, it is sufficient that the agglomerate has sufficient strength to withstand handling. Therefore, the molding pressure is 20 MPa or more. As shown in FIG. 14 (b), the agglomerate formed in this way, as shown in FIG. 14 (b), melted carbon material penetrates into the gaps between the ore particles, firmly connects the ores, and also forms the carbonaceous material with the ore. Are also large. Further, the mixer and the molding machine have a closed structure, and the gas generated by the mixer and the molding machine is sucked and collected by using an ejector or the like, and the collected gas is blown into a reduction terminal zone of the reduction furnace to be used as a reducing gas.

【0026】成形後の塊成化物は、炭材には熱可塑性が
残り、かつ揮発分が多量に残っている。これをこのまま
還元炉に装入すると、揮発分の発生により塊成化物は膨
張し、場合によっては亀裂が入り粉化する。これを防止
し、塊成化物の強度を高めるために、成形温度付近ある
いはそれ以上の温度に保持した脱ガス・固化槽に塊成化
物を装入し炭材を固化させ、同時に揮発分も減少させ
る。揮発分を抜いた塊成化物は、図14(c) に示すよう
に、揮発分が抜けたガス穴(微細な気孔)が認められ
る。このようにして製造された塊成化物の見掛け密度は
2.3g/cm3以上である。したがって、この脱ガス・固化処
理は、塊成化物の崩壊を防止し、密度の高い還元鉄を得
るために重要な工程である。このようにして得られた塊
成化物は脱ガス・固化槽から出た後、篩るわれ、篩上は
還元炉に装入され、篩下の粉は原料として再びミキサー
に戻される。
In the agglomerate after molding, thermoplasticity remains in the carbonaceous material and a large amount of volatile matter remains. When this is charged into the reduction furnace as it is, the agglomerates expand due to the generation of volatile components, and in some cases, cracks enter and become powdery. In order to prevent this and increase the strength of the agglomerate, the agglomerate is charged into a degassing / solidification tank maintained at a temperature near or above the molding temperature to solidify the carbonaceous material and at the same time reduce the volatile content Let it. As shown in FIG. 14 (c), the agglomerate from which volatile components have been removed has gas holes (fine pores) from which volatile components have been removed. The apparent density of the agglomerate produced in this way is
2.3 g / cm 3 or more. Therefore, this degassing and solidifying treatment is an important step for preventing the agglomeration of the agglomerates and obtaining reduced-density iron. The agglomerate thus obtained exits the degassing / solidifying tank and is then sieved, the upper part of the sieve is charged into a reduction furnace, and the powder under the sieve is returned to the mixer again as a raw material.

【0027】ミキサー、成形機、脱ガス・固化槽で発生
する炭材の熱分解ガスは、炭化水素が主成分である。こ
れをエジェクターなどにより吸引捕集する。エジェクタ
ーには還元炉の排ガスの一部をブロアーで昇圧して用い
る。吸引ガスの配管等は 500℃程度に保温し、タール分
の付着を防止する。回収した熱分解ガスは還元炉に吹き
込まれ、炉内の雰囲気調整の還元ガスとして、また燃料
として利用される。
The pyrolysis gas of the carbonaceous material generated in the mixer, the molding machine and the degassing / solidifying tank is mainly composed of hydrocarbons. This is collected by suction using an ejector or the like. For the ejector, a part of the exhaust gas from the reduction furnace is used after being pressurized with a blower. Keep the suction gas piping at about 500 ° C to prevent tar adhesion. The recovered pyrolysis gas is blown into a reduction furnace and used as a reducing gas for adjusting the atmosphere in the furnace and as a fuel.

【0028】脱ガス・固化槽から排出され、篩にかけら
れた塊成化物は還元炉に 400〜500℃程度の温度でホッ
トチャージされる。ホットチャージされた塊成化物は、
バーナーの燃焼による熱などで1200〜1400℃に加熱され
た炉内で還元される。また、回収した熱分解ガスは、炉
内で改質されCO、H2を富化して、還元鉄の金属化率を高
める仕上げ還元用に、還元炉の還元末期ゾーンに吹き込
まれ還元ガスとして利用する。
The agglomerates discharged from the degassing / solidifying tank and sieved are hot-charged to a reducing furnace at a temperature of about 400 to 500 ° C. Hot-charged agglomerates are:
It is reduced in a furnace heated to 1200 to 1400 ° C by heat from the burner combustion. Further, the recovered pyrolysis gas, CO reformed in a furnace and enriched H 2, utilized for finishing reduction to increase the metallization degree of the reduced iron, as a blown into the last stage of reduction zone of the reduction furnace the reduction gas I do.

【0029】還元され還元炉から排出された塊成化物
(還元鉄)は空気を遮断したバケットに一旦装入し、そ
の後、鉄源として転炉あるいは電気炉に装入して溶解す
る。また、還元炉から排出された塊成化物(還元鉄)は
熱間で成形し、ホットブリケット還元鉄とすることもで
きる。
The agglomerate (reduced iron) reduced and discharged from the reduction furnace is once charged into a bucket in which air is shut off, and then charged into a converter or an electric furnace as an iron source to be melted. Also, the agglomerate (reduced iron) discharged from the reduction furnace can be hot-formed to obtain hot briquette reduced iron.

【0030】[0030]

【実施例1】表1に示す炭材A〜Dおよび褐炭と表2に
示す粉鉱石を、炭材22%、粉鉱石78%の割合で混合した
後、成形温度を変化させて 44MPaの成形圧で体積約3cm3
のブリケット (塊成化物) に成形し、見掛け密度の変化
を調べた。その結果を図2に示す。表1に示す炭材A〜
Dは揮発分16%以上の粘結炭である。なお、最高流動度
はJIS M8801 に基づいて測定した。
Example 1 After mixing carbonaceous materials A to D and lignite shown in Table 1 with fine ore shown in Table 2 at a ratio of 22% of carbonaceous material and 78% of fine ore, the forming temperature was changed and the forming temperature was changed to 44 MPa. Approximately 3cm 3 in pressure
Was formed into a briquette (agglomerate), and the change in apparent density was examined. The result is shown in FIG. Carbon materials A to Table 1
D is a caking coal having a volatile content of 16% or more. The maximum flow rate was measured based on JIS M8801.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】図2に示すように、成形温度が高くなるに
したがって見掛け密度が高くなり、最高点に達した後、
さらに成形温度が高くなると見掛け密度は急激に低下す
る。これは成形温度が高くなると炭材からのガス発生が
多くなり、ブリケットがこのガス圧力に対抗すること
と、また、熱分解により炭材が急激に熱可塑性を失うこ
とのためである。褐炭の場合は、熱分解の始まる 250℃
付近から加圧成形により見掛け密度が高くなり始め、 4
50℃を過ぎると見掛け密度が2.3g/cm3以上の塊成化物を
得ることができなくなり、場合によっては成形も不可能
となる。
As shown in FIG. 2, as the molding temperature increases, the apparent density increases, and after reaching the highest point,
Further, as the molding temperature increases, the apparent density sharply decreases. This is because the higher the molding temperature, the more gas is generated from the carbon material, and the briquette opposes this gas pressure, and the carbon material rapidly loses thermoplasticity due to thermal decomposition. In case of lignite, pyrolysis starts at 250 ℃
The apparent density began to increase by pressure molding from around 4
If the temperature exceeds 50 ° C., agglomerates having an apparent density of 2.3 g / cm 3 or more cannot be obtained, and in some cases, molding becomes impossible.

【0034】成形可能温度範囲および最適成形温度と炭
材の揮発分との関係を図3に示す。褐炭を含めて揮発分
に比例して最適成形温度(ブリケットの見掛け密度が最
も高くなる成形温度)は 400から540 ℃の範囲で変化
し、揮発分が高くなるほど成形温度を低くする必要があ
る。この場合、揮発分が 1%増えるごとに 4.6℃成形温
度を下げるのが目安となる。揮発分16%以上の粘結炭に
ついて見ると、ギーセラー流動性試験装置で炭材が流動
性を保持する温度と時間との関係を図4に示している
が、炭材温度が 550℃になるといずれの炭種も流動性保
持時間が 5分以下となる。また、炭材がチャー化すると
粘結性を全く失い成形物が得られなくなる。このため加
熱から成形に至るまでの流動性保持時間が短いと成形の
安定性に欠けるため、実用上は成形温度を 550℃以下に
するのが望ましい。
FIG. 3 shows the relationship between the moldable temperature range, the optimum molding temperature and the volatile matter of the carbonaceous material. The optimum molding temperature (the molding temperature at which the apparent density of briquettes is highest) varies in the range of 400 to 540 ° C in proportion to the volatile matter including lignite, and the molding temperature needs to be lowered as the volatile matter increases. In this case, the guideline is to lower the molding temperature by 4.6 ° C every time the volatile matter increases by 1%. Looking at caking coal with a volatile content of 16% or more, Fig. 4 shows the relationship between temperature and time at which the carbon material retains fluidity with the Giesler fluidity tester. When the carbon material temperature reaches 550 ° C, Both coal types have a fluidity retention time of 5 minutes or less. In addition, when the carbon material is charred, the caking property is lost at all and a molded product cannot be obtained. For this reason, if the fluidity retention time from heating to molding is short, the stability of molding is lacking, so that the molding temperature is desirably set to 550 ° C. or less in practical use.

【0035】揮発分16%以下の非粘結炭および加熱によ
り軟化しない炭材の場合は、熱可塑性のある炭材と混合
して加熱成形することにより高密度のブリケットを得る
ことができる。図5は、表1に示す炭材Cと粉コークス
を混合したものを、表2に示す粉鉱石と混合し、成形圧
44MPa、成形温度 450℃で成形したときの炭材混合物の
流動度(炭材の最高流動度の加重平均値)とブリケット
の圧潰強度との関係を示したものである。図5に示すよ
うに、見掛け密度はいずれも2.3g/cm3より高い値を示し
ているが、圧潰強度は炭材の流動度に強く影響され、回
転炉床炉に装入するまでのハンドリングに耐える必要な
強度10kg/Pを考慮すると、炭材混合物の流動度は20DDPM
(1.3logDDPM)以上が必要である。
In the case of non-caking coal having a volatile content of 16% or less and a carbon material which does not soften by heating, a high density briquette can be obtained by mixing with a thermoplastic carbon material and performing heat molding. FIG. 5 shows that the mixture of the carbonaceous material C and the coke breeze shown in Table 1 was mixed with the fine ore shown in Table 2 and the molding pressure was reduced.
It shows the relationship between the fluidity of the carbonaceous material mixture (weighted average of the maximum fluidity of the carbonaceous material) and the crushing strength of briquettes when molded at 44 MPa and a molding temperature of 450 ° C. As shown in FIG. 5, the handling of up While any apparent density indicates a value higher than 2.3 g / cm 3, crush strength is strongly influenced by the fluidity of the carbonaceous material is charged into the rotary hearth furnace Taking into account the required strength of 10kg / P to withstand the flow rate of the carbonaceous material mixture is 20DDPM
(1.3logDDPM) or more is required.

【0036】揮発分35%以上の非粘結炭および褐炭は粘
結炭で用いられる指標では熱可塑性を示すことができな
い。褐炭などは常温ないしは比較的低い温度で成形した
場合、粒子が塑性変形しにくいためかなり高圧で成形し
てもスプリングバックを起こしブリケットが崩壊するこ
とがある。これを 150℃以上の温度で成形するとスプリ
ングバックを起こすことなくブリケットを得ることがで
き、図2に示すように、温度とともにブリケットの見掛
け密度が高くなり、成形温度 260℃以上で見掛け密度2.
3g/cm3以上のブリケットが得られるようになる。また、
44MPaの圧力で成形したブリケットの強度は、図6に示
すように、成形温度に比例して高くなり、 150℃以上で
は、いずれも必要とする強度の10kg/P以上の圧潰強度を
示した。なお、図6は表1に示す褐炭と表2に示す粉鉱
石を、褐炭22%、粉鉱石78%の割合で混合した後、成形
温度を変化させて 44MPaの加圧力で体積約3cm3のブリケ
ットに成形したものの圧潰強度を示したものである。
Non-coking coal and brown coal having a volatile content of 35% or more cannot show thermoplasticity by the index used for caking coal. When brown coal or the like is molded at room temperature or at a relatively low temperature, the particles are unlikely to be plastically deformed, so even if molded at a considerably high pressure, springback occurs and briquettes may collapse. When this is molded at a temperature of 150 ° C. or more, briquettes can be obtained without causing springback. As shown in FIG. 2, the apparent density of the briquette increases with the temperature, and the apparent density increases at a molding temperature of 260 ° C. or more.
Briquettes of 3 g / cm 3 or more can be obtained. Also,
As shown in FIG. 6, the strength of briquettes molded at a pressure of 44 MPa increased in proportion to the molding temperature. At 150 ° C. or higher, the required crushing strength was 10 kg / P or more. FIG. 6 shows that the lignite shown in Table 1 and the fine ore shown in Table 2 were mixed at a ratio of 22% of brown coal and 78% of fine ore, and the molding temperature was changed to obtain a volume of about 3 cm 3 at a pressure of 44 MPa. It shows the crushing strength of what was formed into briquettes.

【0037】粘結炭に対して、褐炭は灰分、硫黄分の低
いものが豊富に存在するので、炭材に褐炭を用いること
で、高品位の還元鉄を得ることができる。ちなみに、表
1に示す褐炭26%と表2に示す粉鉱石74%を混合し、熱
間成形して得られたブリケットを還元して得られた還元
ブリケットの性状を表3に示す。表3に示すように、褐
炭を用いた場合(表中のB)は、粘結炭を用いた場合
(表中のA)と比較して金属化率は変わらないが、S は
約 1/3に低下し還元ブリケットの品質を改善することが
できる。
[0037] Compared with caking coal, lignite is rich in low ash and sulfur content, so high-grade reduced iron can be obtained by using lignite as a carbon material. Incidentally, the properties of the reduced briquettes obtained by mixing 26% of the lignite shown in Table 1 and 74% of the fine ore shown in Table 2 and reducing the briquettes obtained by hot forming are shown in Table 3. As shown in Table 3, when lignite is used (B in the table), the metallization ratio is not different from that when coking coal is used (A in the table), but S is about 1 / 3 to improve the quality of reduced briquettes.

【0038】[0038]

【表3】 [Table 3]

【0039】図7に炭種を変えたときの成形圧とブリケ
ットの見掛け密度との関係を、図8に炭種を変えたとき
の成形圧とブリケットの圧潰強度との関係を示す。図7
に示すように、成形圧が 39MPaまでは成形圧とともにブ
リケットの見掛け密度は急激に増加し、炭種によって見
掛け密度は若干異なるが、成形圧 54MPa以上では見掛け
密度はほとんど変化しなくなる。炭材に粘結炭を使用す
る場合は、経済性、生産性を考慮すると見掛け密度2.7g
/cm3以上のブリケットを得るには成形圧は39〜88MPa が
適当である。また、高い見掛け密度を必要とせず、見掛
け密度2.3g/cm3、圧潰強度10kg/P以上を得るには、成形
圧は 20MPaあれば十分である(図8参照)。この結果
は、粘結炭のみを使用した場合は通常のコークス化と同
様に膨張を押さえ過度に多孔質にならなければ、ある程
度の強度を確保することができることを示している。一
方、熱可塑性を全く示さない粉コークスを粘結炭に混合
して使用したときは、粘結炭を粉鉱石および粉コークス
粒子と強固に連結させる必要があるために成形圧を高め
る必要がある。例えば、図8に示すように、表1に示す
粉コークス60%と炭材C40%とを混合した炭材(流動
度:30DDPM)を使用した場合は、成形圧は 39MPaを必要
とした。
FIG. 7 shows the relationship between the molding pressure and the apparent density of briquettes when the type of coal is changed, and FIG. 8 shows the relationship between the molding pressure and the crushing strength of the briquettes when the type of coal is changed. FIG.
As shown in the figure, the apparent density of briquettes increases rapidly with the forming pressure up to 39MPa, and the apparent density differs slightly depending on the type of coal. However, the apparent density hardly changes at a forming pressure of 54MPa or more. When caking coal is used as the carbonaceous material, the apparent density is 2.7 g in consideration of economy and productivity.
In order to obtain briquettes of not less than / cm 3 , the molding pressure is suitably from 39 to 88 MPa. A molding pressure of 20 MPa is sufficient to obtain an apparent density of 2.3 g / cm 3 and a crushing strength of 10 kg / P or more without requiring a high apparent density (see FIG. 8). This result indicates that when only caking coal is used, a certain degree of strength can be ensured unless expansion is suppressed and excessive porousness is obtained as in the case of ordinary coking. On the other hand, when coke breeze showing no thermoplasticity is mixed with caking coal and used, it is necessary to increase the molding pressure because it is necessary to firmly couple caking coal with fine ore and coke fine particles. . For example, as shown in FIG. 8, when a carbon material (flow rate: 30 DDPM) obtained by mixing 60% of coke breeze and 40% of carbon material C shown in Table 1 was used, the molding pressure required 39 MPa.

【0040】粘結炭は加熱すると軟化し粉鉱石粒子を強
固に連結する性質を有するが、この温度ではまだ多量に
揮発分を保有しており、この温度で回転炉床炉に装入す
ると熱可塑性のる炭材は発生ガスによりブリケット内部
のガス圧が高くなり、膨張あるいは亀裂を生じて崩壊
し、回転炉床炉運転上の問題となるとともに、粉状の還
元鉄、見掛け密度の低い還元鉄となる。この現象は、炭
材が熱可塑性を保持していると同時に発生ガスがブリケ
ット内部から外部へ放出されにくいために起こる。粘結
炭を軟化溶融温度域で保持すると緩やかに炭化が進行
し、揮発分の一部がガス化して可塑性を失うとともに炭
材部分の強度が高くなる。この時、炭材には揮発分が50
%程度残っているが、図14(c) に示すように、脱ガスに
よる気孔がブリケットに発生し、これ以降回転炉床炉に
装入しても揮発分および還元反応に伴う発生ガスはこの
気孔から容易にブリケット内部から外部へ放出されるた
めに、膨れや亀裂が発生せず密度の高い還元鉄が得られ
る。軟化状態保持時間(流動性保持時間)は図4に示し
たように、温度が高いほど短くなり、 400〜550 ℃の範
囲では 3〜40分程度である。したがって、脱ガス処理は
成形温度付近で 5分以上40分程度まで行なう必要があ
る。
The caking coal softens when heated and has the property of firmly connecting the fine ore particles. However, at this temperature, it still has a large amount of volatile matter, and when it is charged into the rotary hearth furnace at this temperature, it becomes hot. Generated gas increases the gas pressure inside the briquette due to the generated gas, which causes expansion or cracking and collapses, causing problems in the operation of the rotary hearth furnace, reducing powdered iron, reducing reduced apparent density Becomes iron. This phenomenon occurs because the generated gas is not easily released from the inside of the briquette to the outside while the carbon material retains thermoplasticity. When the caking coal is kept in the softening and melting temperature range, the carbonization proceeds slowly, and a part of the volatile components is gasified to lose the plasticity and the strength of the carbon material portion is increased. At this time, the volatile matter is 50
%, But as shown in Fig. 14 (c), pores are generated in the briquette due to degassing, and the volatile gas and the gas generated due to the reduction reaction remain in this state even when charged into a rotary hearth furnace. Since the briquettes are easily released from the inside to the outside from the pores, reduced iron having high density without swelling or cracking can be obtained. As shown in FIG. 4, the softening state holding time (fluidity holding time) becomes shorter as the temperature becomes higher, and is about 3 to 40 minutes in the range of 400 to 550 ° C. Therefore, it is necessary to perform the degassing process near the molding temperature for 5 minutes to 40 minutes.

【0041】[0041]

【実施例2】表2に示す化学組成の粉鉱石と表4に示す
化学組成の炭材を、粉鉱石78%、炭材22%の割合で混合
した後、 450℃に加熱し 39MPaの加圧力で体積 2〜5 cm
3 のブリケット (塊成化物) に熱間成形した。また、比
較例として、表2および表4に示す化学組成の粉鉱石78
%と炭材22%にバインダーとしてベントナイト 1%を外
数で添加し、造粒機で体積 2cm3 のペレットに成形し
た。本発明の熱間成形したブリケットと比較例の乾燥後
のペレット(以下、ペレットと言う)について、見掛け
密度を比較した。その結果を図9に示す。
Example 2 Fine ore having the chemical composition shown in Table 2 and carbonaceous material having the chemical composition shown in Table 4 were mixed in a ratio of 78% finer ore and 22% carbonaceous material, and then heated to 450 ° C and heated to 39 MPa. Volume 2-5 cm by pressure
It was hot-formed into briquettes (agglomerated products) of No. 3 . As a comparative example, fine ore 78 having the chemical composition shown in Tables 2 and 4 was used.
% And 22% of carbonaceous material, 1% of bentonite was added as a binder, and the mixture was formed into pellets having a volume of 2 cm 3 by a granulator. The apparent densities of the hot-formed briquettes of the present invention and the pellets (hereinafter referred to as pellets) of the comparative examples after drying were compared. FIG. 9 shows the result.

【0042】[0042]

【表4】 [Table 4]

【0043】図9に示すように、ペレットの見掛け密度
は2.0g/cm3であり、これと比較して熱間成形したブリケ
ットの見掛け密度は2.8g/cm3で、約40%大きくなってい
る。この理由は、前述のように、熱間成形したブリケッ
トは 450℃で軟化溶融した炭材が加圧成形により鉱石粒
子間に浸入し、空隙を埋めることによるものである(図
14(b) 参照)。
As shown in FIG. 9, the apparent density of the pellets is 2.0 g / cm 3 , and the apparent density of the hot-formed briquettes is 2.8 g / cm 3 , which is about 40% larger. I have. The reason for this is that, as described above, in the hot-formed briquettes, the carbon material softened and melted at 450 ° C penetrates between the ore particles by pressure molding and fills the voids.
14 (b)).

【0044】さらに、上記の熱間成形したブリケットを
450℃で、30分間の脱ガス処理を行った。脱ガス処理を
行うことにより、熱間成形したブリケット中の炭材から
揮発分が抜け、 2〜3 %(炭材として約10〜15%)減量
する。しかし、ブリケットの見掛け密度は、前述のよう
に、脱ガス処理前のブリケットの見掛け密度とほとんど
変わらない。これにより炭材部分には気孔が生成し、還
元時にブリケット内に発生するガスが抜けやすくなる
(図14(c) 参照)。したがって、還元過程におけるブリ
ケット内に発生するガスに起因する膨れによる割れを防
止することができる。
Further, the hot-formed briquette is
Degassing was performed at 450 ° C. for 30 minutes. By performing the degassing treatment, the volatile matter is released from the carbon material in the hot-formed briquette, and the weight is reduced by 2 to 3% (about 10 to 15% as the carbon material). However, the apparent density of the briquette is almost the same as the apparent density of the briquette before degassing, as described above. As a result, pores are generated in the carbonaceous material portion, and gas generated in the briquette at the time of reduction is easily released (see FIG. 14 (c)). Therefore, it is possible to prevent cracking due to blistering caused by gas generated in the briquette during the reduction process.

【0045】次に、見掛け密度と体積を変えた脱ガス処
理を行った熱間成形ブリケットとペレットについて、13
00℃に保持した還元炉で還元試験を行った。その結果を
図10に示す。図から明らかなように、同一体積では塊成
化物の見掛け密度が大きくなるにしたがって、還元時間
は短くなっている。したがって、見掛け密度が大きくな
った分、生産性が向上する。これらを、回転炉床炉で還
元した場合の生産性は図11に示すように、塊成化物の見
掛け密度に比例して高くなる。図11によれば、塊成化物
の見掛け密度が0.1g/cm3大きくなると、回転炉床炉にお
ける生産性は 5.5kg/m2h高くなる。したがって、請求項
1で塊成化物の見掛け密度を2.3g/cm3以上に限定した理
由はここにある。なお、図10の縦軸は粉鉱石が98%還元
されるまでの時間(秒)である。また、図11の縦軸は炉
床 1m2、 1時間当たりの金属化率の98%還元鉄の生産量
(t) である。
Next, hot-formed briquettes and pellets subjected to degassing with different apparent densities and volumes were examined for 13%.
A reduction test was performed in a reduction furnace maintained at 00 ° C. The result is shown in FIG. As is clear from the figure, at the same volume, as the apparent density of the agglomerate increases, the reduction time decreases. Therefore, productivity is improved by an increase in apparent density. The productivity when these are reduced in a rotary hearth furnace increases in proportion to the apparent density of agglomerates, as shown in FIG. According to FIG. 11, when the apparent density of the agglomerate increases by 0.1 g / cm 3, the productivity in the rotary hearth furnace increases by 5.5 kg / m 2 h. Therefore, the reason why the apparent density of the agglomerate is limited to 2.3 g / cm 3 or more in claim 1 is as follows. The vertical axis in FIG. 10 is the time (seconds) until the fine ore is reduced by 98%. In addition, the vertical axis in Fig. 11 is the hearth 1m 2 , the amount of 98% reduced iron production per hour
(t).

【0046】図12に還元前の塊成化物の見掛け密度と還
元鉄の見掛け密度との関係を示す。図に示すように、還
元鉄の見掛け密度は還元前の塊成化物の見掛け密度が大
きくなると、それにほぼ比例して大きくなる。また、熱
間成形ブリケットに 500℃で30分間の脱ガス処理を行う
と、還元過程でのブリケットの膨れがなくなり、還元鉄
の見掛け密度は大きくなる。このように、熱間成形した
ブリケットに脱ガス処理を行うことにより還元鉄の見掛
け密度を2g/cm3以上にすることができる。還元鉄の見掛
け密度を2g/cm3以上にすることにより、図13に示すよう
に、次工程の還元鉄を溶解する際に、還元鉄の見掛け密
度は溶解炉中のスラグの見掛け密度よりも大きくなり、
還元鉄は速やかにスラグ中に沈み込み溶解が促進され、
溶解時の生産性が向上する。
FIG. 12 shows the relationship between the apparent density of agglomerates before reduction and the apparent density of reduced iron. As shown in the figure, the apparent density of reduced iron increases almost in proportion to the apparent density of agglomerates before reduction. Further, if the hot formed briquette is subjected to degassing at 500 ° C. for 30 minutes, the briquette does not swell during the reduction process, and the apparent density of the reduced iron increases. Thus, by performing degassing on the hot-formed briquettes, the apparent density of the reduced iron can be made 2 g / cm 3 or more. By making the apparent density of the reduced iron 2 g / cm 3 or more, as shown in FIG. 13, when dissolving the reduced iron in the next step, the apparent density of the reduced iron is smaller than the apparent density of the slag in the melting furnace. Get bigger,
Reduced iron quickly sinks into the slag and promotes dissolution,
The productivity during dissolution is improved.

【0047】図13は見掛け密度1.6g/cm3と2.4g/cm3の還
元鉄を坩堝で溶解試験した結果である。通常溶融スラグ
の密度は2g/cm3程度であり、これよりも還元鉄の見掛け
密度が小さいと、図13(a) に示すように、還元鉄はスラ
グの表面に浮き、溶解が遅れる。一方、還元鉄の見掛け
密度が溶融スラグの密度よりも大きいと、図13(b) に示
すように、還元鉄は速やかにスラグ中に沈み込み溶解が
促進される。試験の結果、見掛け密度が1.6g/cm3の場合
の還元鉄の溶解速度は 0.5kg/minで、見掛け密度が2.4g
/cm3の場合の還元鉄の溶解速度は2kg/min である。この
ように、還元鉄の見掛け密度を溶解炉中のスラグの見掛
け密度よりも大きくすることによって、溶解速度は4倍
向上している。したがって、請求項6で還元鉄の見掛け
密度を2g/cm3以上に限定した理由はここにある。
FIG. 13 shows the results of dissolution tests of reduced iron having apparent densities of 1.6 g / cm 3 and 2.4 g / cm 3 in a crucible. Normally, the density of the molten slag is about 2 g / cm 3. If the apparent density of the reduced iron is lower than this, as shown in FIG. 13 (a), the reduced iron floats on the surface of the slag and dissolution is delayed. On the other hand, if the apparent density of the reduced iron is higher than the density of the molten slag, as shown in FIG. 13 (b), the reduced iron quickly sinks into the slag to promote dissolution. The results of the test, the dissolution rate of the reduced iron when the apparent density is 1.6 g / cm 3 at 0.5 kg / min, an apparent density of 2.4g
The dissolution rate of reduced iron at / cm 3 is 2 kg / min. Thus, by making the apparent density of the reduced iron larger than the apparent density of the slag in the melting furnace, the melting rate is improved four times. Therefore, the reason for limiting the apparent density of reduced iron to 2 g / cm 3 or more in claim 6 is here.

【0048】[0048]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、還元過程での炭材の揮発分に起因する
塊成化物の割れを防止し、塊成化物中の粉鉱石の還元時
間を短縮し、さらに還元後の還元鉄の溶解時間を短縮す
ることができる塊成化物を得ることができる。また、還
元炉内での還元鉄の再酸化も防止することができる。
As is apparent from the above description,
According to the present invention, it is possible to prevent cracking of agglomerates caused by volatiles of carbonaceous materials in the reduction process, shorten the reduction time of fine ore in the agglomerates, and further dissolve time of reduced iron after reduction. Can be obtained. Also, reoxidation of reduced iron in the reduction furnace can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる還元鉄の製造プロセスの概念図
の一例である。
FIG. 1 is an example of a conceptual diagram of a process for producing reduced iron according to the present invention.

【図2】表1に示す炭材を22%と表2に示す粉鉱石を78
%の割合で混合した後、成形温度を変化させて塊成化物
に成形したときの、成形温度と塊成化物の見掛け密度と
の関係を示す図である。
[Fig. 2] 22% of carbonaceous material shown in Table 1 and 78 of fine ore shown in Table 2
5 is a diagram showing the relationship between the molding temperature and the apparent density of the agglomerate when the agglomerate is formed by changing the forming temperature after mixing at a% ratio.

【図3】成形可能温度範囲および最適成形温度と炭材の
揮発分との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a moldable temperature range, an optimal molding temperature, and a volatile content of a carbon material.

【図4】ギーセラー流動性試験装置で炭材が流動性を保
持する温度と時間との関係を示す図である。
FIG. 4 is a diagram showing the relationship between temperature and time at which a carbonaceous material maintains fluidity in a ghee cellar fluidity test device.

【図5】表1に示す炭材Cと粉コークスを混合したもの
を、表2に示す粉鉱石と混合し、成形圧力 44MPa、成形
温度 450℃で成形したときの炭材混合物の流動度とブリ
ケットの圧潰強度との関係を示す図である。
FIG. 5 shows the flowability of the carbonaceous material mixture obtained by mixing a mixture of carbonaceous material C and coke breeze shown in Table 1 with a fine ore shown in Table 2 and molding at a molding pressure of 44 MPa and a molding temperature of 450 ° C. It is a figure which shows the relationship with the crushing strength of a briquette.

【図6】表1に示す褐炭と表2に示す粉鉱石を、褐炭22
%、粉鉱石78%の割合で混合し、成形温度を変化させて
44MPaの加圧力で成形したときの成形温度とブリケット
の圧潰強度との関係を示す図である。
FIG. 6 shows lignite shown in Table 1 and fine ore shown in Table 2
% And fine ore at a rate of 78%, changing the molding temperature
FIG. 4 is a diagram showing the relationship between the molding temperature and the crushing strength of briquettes when molded at a pressure of 44 MPa.

【図7】炭種を変えたときの成形圧とブリケットの見掛
け密度との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the molding pressure and the apparent density of briquettes when the type of coal is changed.

【図8】炭種を変えたときの成形圧とブリケットの圧潰
強度との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the molding pressure and the crushing strength of briquettes when the type of coal is changed.

【図9】本発明の熱間成形したブリケットと比較例の乾
燥後の生ペレットについての見掛け密度の比較例を示す
図である。
FIG. 9 is a diagram showing a comparative example of apparent densities of hot-formed briquettes of the present invention and dried green pellets of a comparative example.

【図10】見掛け密度の大きさを変えた脱ガス処理を行な
った熱間成形ブリケットとペレットについて、1300℃に
保持した還元炉で還元試験を行なった結果を示す図であ
る。
FIG. 10 is a diagram showing the results of a reduction test performed in a reduction furnace maintained at 1300 ° C. on hot-formed briquettes and pellets that have been subjected to degassing with different apparent densities.

【図11】図10に示した塊成化物を回転炉床炉で還元した
場合の生産性を示す図である。
11 is a diagram showing productivity when the agglomerate shown in FIG. 10 is reduced in a rotary hearth furnace.

【図12】還元前の塊成化物の見掛け密度と還元鉄の見掛
け密度との関係を示す図である。
FIG. 12 is a graph showing the relationship between the apparent density of agglomerates before reduction and the apparent density of reduced iron.

【図13】見掛け密度1.6g/cm3と2.4g/cm3の還元鉄を坩堝
で溶解試験した結果を示す図である。
FIG. 13 is a diagram showing the results of dissolution tests of reduced iron having apparent densities of 1.6 g / cm 3 and 2.4 g / cm 3 in a crucible.

【図14】塊成化物の内部組織の模式図で、(a) は従来の
塊成化物、(b) は本発明の熱間成形塊成化物、(c) は本
発明の熱間成形塊成化物の脱ガス処理後の内部組織の模
式図である。
FIG. 14 is a schematic view of the internal structure of the agglomerate, where (a) is a conventional agglomerate, (b) is a hot-formed agglomerate of the present invention, and (c) is a hot-formed agglomerate of the present invention. It is a schematic diagram of the internal structure after the degassing process of the formation material.

フロントページの続き (72)発明者 城内 章治 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 宮川 一也 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 津下 修 大阪府大阪市中央区備後町4丁目1番3号 株式会社神戸製鋼所大阪支社内Continued on the front page (72) Inventor Shoji Shirouchi 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Inside Kobe Steel Co., Ltd. Kakogawa Works (72) Inventor Kazuya Miyagawa 1 Kanazawacho Kakogawa City, Hyogo Prefecture Kobe Steel Co., Ltd. Inside the Kakogawa Works (72) Inventor Osamu Tsushita 4-3-1, Bingo-cho, Chuo-ku, Osaka-shi, Osaka Kobe Steel, Ltd.Osaka branch office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粉鉱石と炭材との混合物からなり、かつ
見掛け密度が2.3g/cm3以上であることを特徴とする還元
鉄用塊成化物。
1. An agglomerate for reduced iron comprising a mixture of fine ore and carbonaceous material and having an apparent density of 2.3 g / cm 3 or more.
【請求項2】 粉鉱石と炭材を混合し、 260〜550 ℃の
温度域で成形圧20〜150MPaで熱間成形した後、成形温度
範囲で 5分間以上の脱ガス処理を行なうことを特徴とす
る見掛け密度が2.3g/cm3以上である還元鉄用塊成化物の
製造方法。
2. The method is characterized in that fine ore and carbonaceous material are mixed, hot-formed at a molding pressure of 20 to 150 MPa in a temperature range of 260 to 550 ° C., and then degassed for 5 minutes or more in a forming temperature range. A method for producing an agglomerate for reduced iron having an apparent density of 2.3 g / cm 3 or more.
【請求項3】 炭材が、揮発分が16%以上、ギーセラー
流動度が 2DDPM以上の粘結炭である請求項2記載の還元
鉄用塊成化物の製造方法。
3. The method for producing an agglomerated product for reduced iron according to claim 2, wherein the carbonaceous material is a caking coal having a volatile content of 16% or more and a ghee cellar fluidity of 2DDPM or more.
【請求項4】 炭材が、揮発分が16%以下の非粘結炭お
よび/または加熱により軟化しない炭材を、前記粘結炭
と混合しギーセラー流動度を20DDPM以上にした炭材であ
る請求項2記載の還元鉄用塊成化物の製造方法。
4. A carbonaceous material in which a non-caking coal having a volatile content of 16% or less and / or a carbonaceous material which does not soften by heating is mixed with the caking coal to have a Gieseller fluidity of 20 DDPM or more. A method for producing an agglomerate for reduced iron according to claim 2.
【請求項5】 炭材が、揮発分が35%以上の非粘結炭ま
たは揮発分が40%以上、灰分が 5%以下、硫黄分が 0.3
%以下の褐炭である請求項2記載の還元鉄用塊成化物の
製造方法。
5. The carbonaceous material is a non-coking coal having a volatile content of 35% or more or a volatile content of 40% or more, an ash content of 5% or less, and a sulfur content of 0.3% or less.
The method for producing an agglomerate for reduced iron according to claim 2, which is lignite of not more than 10%.
【請求項6】 還元後の還元鉄の見掛け密度が2g/cm3
上である請求項1記載の還元鉄用塊成化物。
6. The agglomerate for reduced iron according to claim 1, wherein the apparent density of the reduced iron after reduction is 2 g / cm 3 or more.
【請求項7】 塊成化物の原料の加熱混合工程、加圧成
形工程および脱ガス工程で発生するガスを回収し、この
回収ガスを還元炉の還元末期ゾーンに吹き込み還元鉄の
再酸化を防止することを特徴とする還元鉄の製造方法。
7. The gas generated in the heating and mixing step, the pressure forming step and the degassing step of the raw material of the agglomerate is recovered, and the recovered gas is blown into the last stage of the reduction furnace to prevent reoxidation of the reduced iron. A method for producing reduced iron.
JP08154098A 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same Expired - Fee Related JP3754553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08154098A JP3754553B2 (en) 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19581297 1997-07-22
JP9-195812 1997-07-22
JP08154098A JP3754553B2 (en) 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1192833A true JPH1192833A (en) 1999-04-06
JP3754553B2 JP3754553B2 (en) 2006-03-15

Family

ID=26422559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08154098A Expired - Fee Related JP3754553B2 (en) 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same

Country Status (1)

Country Link
JP (1) JP3754553B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105452A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Method for producing reduced metal
US6986801B2 (en) 2001-09-14 2006-01-17 Nippon Steel Corporation Method of producing reduced iron compacts in rotary hearth-type reducing furnace, reduced iron compacts, and method of producing molten iron using them
JP2006241577A (en) * 2005-03-07 2006-09-14 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP2006257479A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Method for producing reduced iron
JP2007211271A (en) * 2006-02-07 2007-08-23 Kobe Steel Ltd Method and equipment for manufacturing carbonaceous-material-containing agglomerate
WO2008146734A1 (en) 2007-05-28 2008-12-04 Kabushiki Kaisha Kobe Seiko Sho Method for production of carbon composite metal oxide briquette
WO2010041770A1 (en) 2008-10-10 2010-04-15 新日本製鐵株式会社 Blast furnace operating method using carbon-containing unfired pellets
JP2010236081A (en) * 2009-03-12 2010-10-21 Kobe Steel Ltd Method of manufacturing carbonaceous material-containing agglomerate
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153946A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153945A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
WO2014119647A1 (en) * 2013-02-01 2014-08-07 株式会社神戸製鋼所 Manufacturing method for reduced iron
KR101501756B1 (en) * 2010-12-15 2015-03-18 미드렉스 테크놀리지스, 인코오포레이티드 Method and system for producing direct reducing iron and/or hot metal using brown coal
JP2017101323A (en) * 2015-12-02 2017-06-08 ポスコPosco Carbon-containing agglomerate ore, manufacturing method and manufacturing apparatus of carbon-containing agglomerate ore
US9976806B2 (en) 2013-10-30 2018-05-22 Posco Burning apparatus and method for manufacturing reduced iron using the same
JPWO2023053661A1 (en) * 2021-09-29 2023-04-06

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986801B2 (en) 2001-09-14 2006-01-17 Nippon Steel Corporation Method of producing reduced iron compacts in rotary hearth-type reducing furnace, reduced iron compacts, and method of producing molten iron using them
JP2003105452A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Method for producing reduced metal
JP2006241577A (en) * 2005-03-07 2006-09-14 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP2006257479A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Method for producing reduced iron
JP4600102B2 (en) * 2005-03-16 2010-12-15 Jfeスチール株式会社 Method for producing reduced iron
JP2007211271A (en) * 2006-02-07 2007-08-23 Kobe Steel Ltd Method and equipment for manufacturing carbonaceous-material-containing agglomerate
WO2008146734A1 (en) 2007-05-28 2008-12-04 Kabushiki Kaisha Kobe Seiko Sho Method for production of carbon composite metal oxide briquette
US8636824B2 (en) 2007-05-28 2014-01-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Production method for carbonaceous material-containing metal oxide briquettes
EP2615185A1 (en) 2007-05-28 2013-07-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Production method for carbonaceous material-containing metal oxide briquettes
WO2010041770A1 (en) 2008-10-10 2010-04-15 新日本製鐵株式会社 Blast furnace operating method using carbon-containing unfired pellets
JP2010236081A (en) * 2009-03-12 2010-10-21 Kobe Steel Ltd Method of manufacturing carbonaceous material-containing agglomerate
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
KR101501756B1 (en) * 2010-12-15 2015-03-18 미드렉스 테크놀리지스, 인코오포레이티드 Method and system for producing direct reducing iron and/or hot metal using brown coal
JP2012153945A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153946A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
WO2014119647A1 (en) * 2013-02-01 2014-08-07 株式会社神戸製鋼所 Manufacturing method for reduced iron
CN104955964A (en) * 2013-02-01 2015-09-30 株式会社神户制钢所 Manufacturing method for reduced iron
CN104955964B (en) * 2013-02-01 2017-07-04 株式会社神户制钢所 The manufacture method of reduced iron
US10017836B2 (en) 2013-02-01 2018-07-10 Kobe Steel, Ltd. Method for producing reduced iron
US9976806B2 (en) 2013-10-30 2018-05-22 Posco Burning apparatus and method for manufacturing reduced iron using the same
JP2017101323A (en) * 2015-12-02 2017-06-08 ポスコPosco Carbon-containing agglomerate ore, manufacturing method and manufacturing apparatus of carbon-containing agglomerate ore
JPWO2023053661A1 (en) * 2021-09-29 2023-04-06
WO2023053661A1 (en) * 2021-09-29 2023-04-06 Jfeスチール株式会社 Method for producing agglomerated raw material

Also Published As

Publication number Publication date
JP3754553B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US6129777A (en) Method of producing reduced iron agglomerates
JPH1192833A (en) Agglomerate for reduced iron and its production
JP3004265B1 (en) Carbon material interior pellet and reduced iron production method
US5807420A (en) Process for reduction of iron with solid fuel objects as amended by exam
RU2507275C2 (en) Production method of agglomerates from fine iron carrier
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
JP4996105B2 (en) Vertical coal interior agglomerates
JP4487564B2 (en) Ferro-coke manufacturing method
KR20050107504A (en) Process for producing reduced matal and agglomerate with carbonaceous material incorporated therein
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
JP2004211179A (en) Method of reducing chromium-containing raw material
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP2006328236A (en) Manufacturing process of coke and manufacturing process of molded coal used for it
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP5052866B2 (en) Method for producing blast furnace coke
JP4843445B2 (en) Manufacturing method of carbonized material agglomerates
JP3863104B2 (en) Blast furnace operation method
JP4031108B2 (en) Reduction method of reduced iron powder
JP3515831B2 (en) Manufacturing method of heated charging coal for coke oven

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees