JP3754553B2 - Agglomerated product for reduced iron and method for producing the same - Google Patents

Agglomerated product for reduced iron and method for producing the same Download PDF

Info

Publication number
JP3754553B2
JP3754553B2 JP08154098A JP8154098A JP3754553B2 JP 3754553 B2 JP3754553 B2 JP 3754553B2 JP 08154098 A JP08154098 A JP 08154098A JP 8154098 A JP8154098 A JP 8154098A JP 3754553 B2 JP3754553 B2 JP 3754553B2
Authority
JP
Japan
Prior art keywords
reduced iron
apparent density
reduction
molding
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08154098A
Other languages
Japanese (ja)
Other versions
JPH1192833A (en
Inventor
治久 岩切
芳通 竹中
正賢 清水
章治 城内
一也 宮川
修 津下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP08154098A priority Critical patent/JP3754553B2/en
Publication of JPH1192833A publication Critical patent/JPH1192833A/en
Application granted granted Critical
Publication of JP3754553B2 publication Critical patent/JP3754553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭材内装塊成化物中の粉鉱石を還元して還元鉄を製造する技術分野に属し、詳しくは、炭材内装塊成化物の見掛け密度を大きくし還元時間を短縮するとともに還元炉内での還元鉄の再酸化を防止し、さらに還元後の還元鉄の見掛け密度を大きくし製銑、製鋼工程における溶解時間を短縮する還元鉄用塊成化物およびの製造方法の技術分野に属するものである。
【0002】
【従来の技術】
還元鉄の製造方法としてはミドレックス法がよく知られており、この方法によれば天然ガスから変成した還元性ガスを羽口から吹き込み、シャフト炉中を上昇させることによって、炉内に充填された鉄鉱石や酸化鉄ペレットを還元して還元鉄を得ることができる。ただし、この方法では燃料としてコストの高い天然ガスを大量に供給する必要がある。
【0003】
そこで近年では、上記天然ガスに替えて比較的安価な石炭を還元剤として使用することのできる還元鉄製造プロセスが注目されている。例えば、米国特許第3443931 号には、粉鉱石と炭材とを混合してペレット化し、高温雰囲気下で加熱還元することにより還元鉄を製造するプロセスが記載されている。この方法によれば、還元剤が石炭ベースであることの他にも、粉鉱石を直接使用できること、高速還元が可能であること、製品中の炭素含有量を調整することができる等の利点を有している。
【0004】
【発明が解決しようとする課題】
このプロセスでは高温還元炉における上面からの輻射熱により塊成化物(ペレット、ブリケット等)を加熱しているので原料層の高さが制限され、したがって、生産性を向上させるには、還元反応の反応速度自体を高める必要がある。しかし、還元鉄用の塊成化物の還元速度は、塊成化物内の伝熱に律速されるため、生産性を向上しようとして、塊成化物内の伝熱限界以上に還元炉の温度を上げると、塊成化物は表面から溶融して炉内での固着や炉体損傷の問題を引き起こす。
【0005】
還元鉄用の塊成化物は、粉鉱石と還元剤である炭材(石炭など)およびバインダーを混合して、造粒機で粒状化するペレット、あるいは成形機で塊成化するブリケット等がある。これらの方法で成形した還元鉄用の塊成化物は、図14(a) に示すように多孔質体であり炭材と粉鉱石との接触面積は小さく、したがって、熱伝導性が悪く還元速度が低い。還元速度を高める方法として、還元過程で炭材と粉鉱石との接触面積を大きくするために、還元炉内での炭材の軟化溶融時の最高流動度が 0.8以上である炭材内装ペレットが特願平9-174732号に提案されている。
【0006】
しかし、上記の方法では、塊成化物の成形時にバインダーが必要であり、このバインダーは還元鉄の品位を低下させることにもなる。また、軟化溶融時の最高流動度が高い炭材は揮発分を多く含有しており、この種の炭材を用いることは揮発分が抜ける過程で塊成化物を膨れさせ割れの原因になる。また、図14(a) に示すように多孔質体である塊成化物は見掛け密度が小さく、このため、還元後に生成される還元鉄の見掛け密度も小さくなる。還元鉄の見掛け密度が小さいと、還元鉄の溶解に際して、還元鉄が溶解炉中のスラグ上に浮き、還元鉄の溶解に長時間を要するという問題がある。
【0007】
また、塊成化物中の粉鉱石は還元がほぼ終了した時点から焼結が始まり、還元鉄は強度が高まる。しかし、操業温度の制約により、還元中の履歴時間が短いと焼結不足となり還元鉄の強度が低く、還元炉からの排出等のハンドリング工程で破壊粉化が起こり、製品歩留りが低下するという問題がある。さらに、還元炉内では、熱源としてバーナーを燃焼させているため、塊成化物の還元により生成された還元鉄の燃焼ガスによる再酸化を防止することも還元鉄中の金属鉄の生産性を高める上からも重要である。この再酸化も焼結不足の還元鉄の方が進み易いといえる。
【0008】
本発明は、上記の問題を解決するためになされたもので、塊成化物の見掛け密度を大きくし、塊成化物中の粉鉱石の還元時間を短縮し、しかも焼結を容易にし、還元炉内での還元鉄の再酸化を防止するとともに、さらに還元後の還元鉄の見掛け密度を大きくし、溶解時間を短縮する還元鉄用の塊成化物およびの製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1に記載の発明は、粉鉱石と、揮発分が 16 %以上でギーセラー流動度が 2DDPM 以上の粘結炭である炭材と、を混合し、350〜550 ℃の温度域で19.6147.1MPaの成形圧にて熱間成形した後、成形温度範囲で 5分間以上の脱ガス処理を行なうことを特徴とする見掛け密度が2.3〜2.8g/cm3である還元鉄用塊成化物の製造方法である。
【0010】
【0011】
【0012】
請求項2に記載の発明は、粉鉱石と、揮発分が16%以下の非粘結炭および/または加熱により軟化しない炭材揮発分が16%以上の粘結炭混合しギーセラー流動度を20DDPM以上にした炭材と、を混合し、 350 550 ℃の温度域で 40 150MPa の成形圧にて熱間成形した後、成形温度範囲で 5 分間以上の脱ガス処理を行なうことを特徴とする見掛け密度が2.3〜2.8g/cm3である還元鉄用塊成化物の製造方法である。
【0013】
請求項3に記載の発明は、粉鉱石と、揮発分が35%以上の非粘結炭または揮発分が40%以上、灰分が 5%以下、硫黄分が 0.3%以下の褐炭である炭材と、を混合し、 260 450 ℃の温度域で 20 150MPa の成形圧にて熱間成形した後、成形温度範囲で 5 分間以上の脱ガス処理を行なうことを特徴とする見掛け密度が2.3 2.8g/cm 3 である還元鉄用塊成化物の製造方法である。
【0014】
請求項4に記載の発明は、請求項1〜3のいずれかに記載の方法により製造される、還元後の還元鉄の見掛け密度が2g/cm3以上である還元鉄用塊成化物である。
【0015】
【0016】
還元剤である炭材は、炭種によって 260℃を超えると乾留反応が始まり軟化溶融し、 550℃を超えると固化する。この温度域で粉鉱石と炭材を混合し加圧成形すると、粉鉱石粒子間の空隙に溶融した炭材が容易に浸入し、粉鉱石同士を強固に連結する。このため、バインダーが不要となり還元鉄の品位を高めることができる。本発明では、この軟化溶融性を有する炭材を用いる。
【0017】
また、 260〜550 ℃の温度域で熱間成形した塊成化物を、この成形温度範囲で、 5分間以上の脱ガス処理を行うことによって、塊成化物中の炭材からの揮発分を抜き塊成化物の強度を高め、還元中の塊成化物の膨れによる割れを防止することができる。脱ガス処理後の塊成化物の見掛け密度は揮発分が抜けた分、収縮するため、脱ガス処理前の塊成化物の見掛け密度とほとんど変わらない。しかし、脱ガス処理を行うことによって、還元過程での塊成化物の膨れがなくなり還元後の還元鉄の見掛け密度は大きくなる。したがって、還元鉄を溶解する際に、還元鉄の見掛け密度は溶解炉中のスラグの見掛け密度よりも大きくなり、還元鉄は速やかにスラグ中に沈み込み溶解が促進され、溶解時の生産性が向上する。とくに電気炉製錬において効果を発揮する。
【0018】
揮発分が16%以上、ギーセラー流動度が 2DDPM以上の粘結炭を炭材として用いる場合は、 350〜550 ℃の温度域で熱間成形するが、ギーセラー流動度の最高流動温度に比例させて成形温度を変えることが好ましい。熱間成形時の成形圧力は 19.6MPa以上、147.1MPa以下で行い、成形後の脱ガス処理は成形温度範囲で 5分間以上行なう。なお、脱ガス速度を上げるために、脱ガス・固化槽の温度を上げて、成形温度以上、600 ℃以下の温度範囲で脱ガス処理を行なうこともできる。このようにして、見掛け密度が2.3g/cm3以上の還元鉄用塊成化物を得ることができる。
【0019】
揮発分が16%以下の非粘結炭および/または加熱により軟化しない炭材を炭材として用いる場合は、揮発分が16%以上の粘結炭と混合し、ギーセラー流動度の加重平均値が20DDPM以上となるように調整した炭材を用い、 350〜550 ℃の温度域で熱間成形するが、ギーセラー流動度の最高流動温度に比例させて成形温度を変えることが好ましい。熱間成形時の成形圧力は 40MPa以上、150MPa以下で行い、成形後の脱ガス処理は成形温度範囲で 5分間以上行なう。なお、脱ガス速度をあげるために、成形温度以上、600 ℃以下の温度範囲で脱ガス処理を行なうこともできる。このようにして、見掛け密度が2.3g/cm3以上の還元鉄用塊成化物を得ることができる。
【0020】
炭材が、揮発分が35%以上の非粘結炭または揮発分が40%以上、灰分が 5%以下、硫黄分が 0.3%以下の褐炭を炭材として用いる場合は、非粘結炭および褐炭の分解開始温度の 260〜450 ℃の温度域で熱間成形する。熱間成形時の成形圧力は 20MPa以上、150MPa以下で行い、成形後の脱ガス処理は成形温度範囲で 5分間以上行なう。なお、脱ガス速度をあげるために、成形温度以上、500 ℃以下の温度範囲で脱ガス処理を行なうこともできる。また、褐炭の灰分を 5%以下、硫黄分を 0.3%以下に限定した理由は、品位の高い還元鉄を得るためである。このようにして、見掛け密度が2.3g/cm3以上の還元鉄用塊成化物を得ることができる。
【0021】
したがって、塊成化物中の炭材は粉鉱石に密着し、炭材と鉱石との接触面積が大きくなるとともに、見掛け密度も大きくなる。このため、塊成化物内の熱伝導性も向上し塊成化物中の粉鉱石の炭材による直接還元が促進され、還元時間も短縮される。また、塊成化物の見掛け密度が大きいため、塊成化物内のCO分圧が高められるので、粉鉱石のCOによるガス還元も促進される。
【0022】
還元促進により、還元炉内の滞留時間が等しい場合は、還元終了後の炉内滞留時間が延び、その分、還元鉄の焼結が促進され還元鉄の強度が増大し、かつ再酸化に対し反応しにくくなる。この結果、還元炉からの排出等のハンドリング工程で、還元鉄の破壊粉化が起こりにくくなり、製品歩留りが向上し、還元鉄中の金属鉄分の酸化減耗が少ない。
【0023】
塊成化物の原料の加熱混合工程、加圧成形工程および脱ガス工程で発生するガスは、タール質等の重質炭化水素であるので、このガスを回収して還元炉の還元末期ゾーンに吹き込むことによって、還元鉄が触媒となってガス改質が行なわれCO、H2を富化して還元末期ゾーンの雰囲気を還元性に調整し還元鉄の再酸化を防止することができる。このようにして得られた還元後の塊成化物(還元鉄)の見掛け密度は2g/cm3以上である。
【0024】
【発明の実施の形態】
以下に、本発明をさらに詳細に説明する。
図1に本発明に係わる還元鉄の製造プロセスの概念図の一例を示す。図に示すように、まず炭材と鉱石を粉砕機で粉砕する。鉱石と揮発分が16%以下の非粘結炭は74μm 以下の粒子が70%以上になるように粉砕する。揮発分が16%以上の粘結炭、非粘結炭、褐炭は粒度に特に制限はないが、鉱石等との混合状態を良好に保つために 1mm以下に粉砕するのが望ましい。粉砕後の鉱石と炭材の乾燥・予熱に関しては、炭材は水分変動による鉱石との混合時の温度変動を少なくするために、ロータリードライヤーで 200℃以下の温度で乾燥し、付着水分を除去する。一方、鉱石は、炭材と混合した時に目標成形温度になるように、ロータリーキルンで予熱する。
【0025】
乾燥・予熱した鉱石と炭材の混合には、炭材の一部の過熱を防止するために短時間で混合できるこの業種で常用されている、例えば二軸型のミキサーを用いる。また、ミキサーは成形温度を確保するために保温する。混合後の鉱石と炭材は、押し込み機付き熱間成形用の成形機を用いて塊成化物(ブリケット)に加圧成形する。加圧成形は塊成化物がハンドリングに耐え得るに十分な強度が得られればよく、したがって、成形加圧力は 20MPa以上とする。このようにして成形した塊成化物は、図14(b) に示すように、鉱石粒子間の空隙に溶融した炭材が浸入し、鉱石同士を強固に連結し、また、炭材と鉱石との接触面積も大きくなっている。また、ミキサーと成形機は密閉構造とし、ミキサーおよび成形機で発生するガスをエジェクター等を用いて吸引回収し、回収したガスは還元炉の還元末期ゾーンに吹き込まれ還元ガスとして利用される。
【0026】
成形後の塊成化物は、炭材には熱可塑性が残り、かつ揮発分が多量に残っている。これをこのまま還元炉に装入すると、揮発分の発生により塊成化物は膨張し、場合によっては亀裂が入り粉化する。これを防止し、塊成化物の強度を高めるために、成形温度付近あるいはそれ以上の温度に保持した脱ガス・固化槽に塊成化物を装入し炭材を固化させ、同時に揮発分も減少させる。揮発分を抜いた塊成化物は、図14(c) に示すように、揮発分が抜けたガス穴(微細な気孔)が認められる。このようにして製造された塊成化物の見掛け密度は2.3g/cm3以上である。したがって、この脱ガス・固化処理は、塊成化物の崩壊を防止し、密度の高い還元鉄を得るために重要な工程である。このようにして得られた塊成化物は脱ガス・固化槽から出た後、篩るわれ、篩上は還元炉に装入され、篩下の粉は原料として再びミキサーに戻される。
【0027】
ミキサー、成形機、脱ガス・固化槽で発生する炭材の熱分解ガスは、炭化水素が主成分である。これをエジェクターなどにより吸引捕集する。エジェクターには還元炉の排ガスの一部をブロアーで昇圧して用いる。吸引ガスの配管等は 500℃程度に保温し、タール分の付着を防止する。回収した熱分解ガスは還元炉に吹き込まれ、炉内の雰囲気調整の還元ガスとして、また燃料として利用される。
【0028】
脱ガス・固化槽から排出され、篩にかけられた塊成化物は還元炉に 400〜500 ℃程度の温度でホットチャージされる。ホットチャージされた塊成化物は、バーナーの燃焼による熱などで1200〜1400℃に加熱された炉内で還元される。また、回収した熱分解ガスは、炉内で改質されCO、H2を富化して、還元鉄の金属化率を高める仕上げ還元用に、還元炉の還元末期ゾーンに吹き込まれ還元ガスとして利用する。
【0029】
還元され還元炉から排出された塊成化物(還元鉄)は空気を遮断したバケットに一旦装入し、その後、鉄源として転炉あるいは電気炉に装入して溶解する。また、還元炉から排出された塊成化物(還元鉄)は熱間で成形し、ホットブリケット還元鉄とすることもできる。
【0030】
【実施例1】
表1に示す炭材A〜Dおよび褐炭と表2に示す粉鉱石を、炭材22%、粉鉱石78%の割合で混合した後、成形温度を変化させて 44MPaの成形圧で体積約3cm3のブリケット (塊成化物) に成形し、見掛け密度の変化を調べた。その結果を図2に示す。表1に示す炭材A〜Dは揮発分16%以上の粘結炭である。なお、最高流動度はJIS M8801 に基づいて測定した。
【0031】
【表1】

Figure 0003754553
【0032】
【表2】
Figure 0003754553
【0033】
図2に示すように、成形温度が高くなるにしたがって見掛け密度が高くなり、最高点に達した後、さらに成形温度が高くなると見掛け密度は急激に低下する。これは成形温度が高くなると炭材からのガス発生が多くなり、ブリケットがこのガス圧力に対抗することと、また、熱分解により炭材が急激に熱可塑性を失うことのためである。褐炭の場合は、熱分解の始まる 250℃付近から加圧成形により見掛け密度が高くなり始め、 450℃を過ぎると見掛け密度が2.3g/cm3以上の塊成化物を得ることができなくなり、場合によっては成形も不可能となる。
【0034】
成形可能温度範囲および最適成形温度と炭材の揮発分との関係を図3に示す。褐炭を含めて揮発分に比例して最適成形温度(ブリケットの見掛け密度が最も高くなる成形温度)は 400から540 ℃の範囲で変化し、揮発分が高くなるほど成形温度を低くする必要がある。この場合、揮発分が 1%増えるごとに 4.6℃成形温度を下げるのが目安となる。揮発分16%以上の粘結炭について見ると、ギーセラー流動性試験装置で炭材が流動性を保持する温度と時間との関係を図4に示しているが、炭材温度が 550℃になるといずれの炭種も流動性保持時間が 5分以下となる。また、炭材がチャー化すると粘結性を全く失い成形物が得られなくなる。このため加熱から成形に至るまでの流動性保持時間が短いと成形の安定性に欠けるため、実用上は成形温度を 550℃以下にするのが望ましい。
【0035】
揮発分16%以下の非粘結炭および加熱により軟化しない炭材の場合は、熱可塑性のある炭材と混合して加熱成形することにより高密度のブリケットを得ることができる。図5は、表1に示す炭材Cと粉コークスを混合したものを、表2に示す粉鉱石と混合し、成形圧 44MPa、成形温度 450℃で成形したときの炭材混合物の流動度(炭材の最高流動度の加重平均値)とブリケットの圧潰強度との関係を示したものである。図5に示すように、見掛け密度はいずれも2.3g/cm3より高い値を示しているが、圧潰強度は炭材の流動度に強く影響され、回転炉床炉に装入するまでのハンドリングに耐える必要な強度10kg/Pを考慮すると、炭材混合物の流動度は20DDPM(1.3logDDPM)以上が必要である。
【0036】
揮発分35%以上の非粘結炭および褐炭は粘結炭で用いられる指標では熱可塑性を示すことができない。褐炭などは常温ないしは比較的低い温度で成形した場合、粒子が塑性変形しにくいためかなり高圧で成形してもスプリングバックを起こしブリケットが崩壊することがある。これを 150℃以上の温度で成形するとスプリングバックを起こすことなくブリケットを得ることができ、図2に示すように、温度とともにブリケットの見掛け密度が高くなり、成形温度 260℃以上で見掛け密度2.3g/cm3以上のブリケットが得られるようになる。また、 44MPaの圧力で成形したブリケットの強度は、図6に示すように、成形温度に比例して高くなり、 150℃以上では、いずれも必要とする強度の10kg/P以上の圧潰強度を示した。なお、図6は表1に示す褐炭と表2に示す粉鉱石を、褐炭22%、粉鉱石78%の割合で混合した後、成形温度を変化させて 44MPaの加圧力で体積約3cm3のブリケットに成形したものの圧潰強度を示したものである。
【0037】
粘結炭に対して、褐炭は灰分、硫黄分の低いものが豊富に存在するので、炭材に褐炭を用いることで、高品位の還元鉄を得ることができる。ちなみに、表1に示す褐炭26%と表2に示す粉鉱石74%を混合し、熱間成形して得られたブリケットを還元して得られた還元ブリケットの性状を表3に示す。表3に示すように、褐炭を用いた場合(表中のB)は、粘結炭を用いた場合(表中のA)と比較して金属化率は変わらないが、S は約 1/3に低下し還元ブリケットの品質を改善することができる。
【0038】
【表3】
Figure 0003754553
【0039】
図7に炭種を変えたときの成形圧とブリケットの見掛け密度との関係を、図8に炭種を変えたときの成形圧とブリケットの圧潰強度との関係を示す。図7に示すように、成形圧が 39MPaまでは成形圧とともにブリケットの見掛け密度は急激に増加し、炭種によって見掛け密度は若干異なるが、成形圧 54MPa以上では見掛け密度はほとんど変化しなくなる。炭材に粘結炭を使用する場合は、経済性、生産性を考慮すると見掛け密度2.7g/cm3以上のブリケットを得るには成形圧は39〜88MPa が適当である。また、高い見掛け密度を必要とせず、見掛け密度2.3g/cm3、圧潰強度10kg/P以上を得るには、成形圧は 20MPaあれば十分である(図8参照)。この結果は、粘結炭のみを使用した場合は通常のコークス化と同様に膨張を押さえ過度に多孔質にならなければ、ある程度の強度を確保することができることを示している。一方、熱可塑性を全く示さない粉コークスを粘結炭に混合して使用したときは、粘結炭を粉鉱石および粉コークス粒子と強固に連結させる必要があるために成形圧を高める必要がある。例えば、図8に示すように、表1に示す粉コークス60%と炭材C40%とを混合した炭材(流動度:30DDPM)を使用した場合は、成形圧は 39MPaを必要とした。
【0040】
粘結炭は加熱すると軟化し粉鉱石粒子を強固に連結する性質を有するが、この温度ではまだ多量に揮発分を保有しており、この温度で回転炉床炉に装入すると熱可塑性のる炭材は発生ガスによりブリケット内部のガス圧が高くなり、膨張あるいは亀裂を生じて崩壊し、回転炉床炉運転上の問題となるとともに、粉状の還元鉄、見掛け密度の低い還元鉄となる。この現象は、炭材が熱可塑性を保持していると同時に発生ガスがブリケット内部から外部へ放出されにくいために起こる。粘結炭を軟化溶融温度域で保持すると緩やかに炭化が進行し、揮発分の一部がガス化して可塑性を失うとともに炭材部分の強度が高くなる。この時、炭材には揮発分が50%程度残っているが、図14(c) に示すように、脱ガスによる気孔がブリケットに発生し、これ以降回転炉床炉に装入しても揮発分および還元反応に伴う発生ガスはこの気孔から容易にブリケット内部から外部へ放出されるために、膨れや亀裂が発生せず密度の高い還元鉄が得られる。軟化状態保持時間(流動性保持時間)は図4に示したように、温度が高いほど短くなり、 400〜550 ℃の範囲では 3〜40分程度である。したがって、脱ガス処理は成形温度付近で 5分以上40分程度まで行なう必要がある。
【0041】
【実施例2】
表2に示す化学組成の粉鉱石と表4に示す化学組成の炭材を、粉鉱石78%、炭材22%の割合で混合した後、 450℃に加熱し 39MPaの加圧力で体積 2〜5 cm3 のブリケット (塊成化物) に熱間成形した。また、比較例として、表2および表4に示す化学組成の粉鉱石78%と炭材22%にバインダーとしてベントナイト 1%を外数で添加し、造粒機で体積 2cm3 のペレットに成形した。本発明の熱間成形したブリケットと比較例の乾燥後のペレット(以下、ペレットと言う)について、見掛け密度を比較した。その結果を図9に示す。
【0042】
【表4】
Figure 0003754553
【0043】
図9に示すように、ペレットの見掛け密度は2.0g/cm3であり、これと比較して熱間成形したブリケットの見掛け密度は2.8g/cm3で、約40%大きくなっている。この理由は、前述のように、熱間成形したブリケットは 450℃で軟化溶融した炭材が加圧成形により鉱石粒子間に浸入し、空隙を埋めることによるものである(図14(b) 参照)。
【0044】
さらに、上記の熱間成形したブリケットを 450℃で、30分間の脱ガス処理を行った。脱ガス処理を行うことにより、熱間成形したブリケット中の炭材から揮発分が抜け、 2〜3 %(炭材として約10〜15%)減量する。しかし、ブリケットの見掛け密度は、前述のように、脱ガス処理前のブリケットの見掛け密度とほとんど変わらない。これにより炭材部分には気孔が生成し、還元時にブリケット内に発生するガスが抜けやすくなる(図14(c) 参照)。したがって、還元過程におけるブリケット内に発生するガスに起因する膨れによる割れを防止することができる。
【0045】
次に、見掛け密度と体積を変えた脱ガス処理を行った熱間成形ブリケットとペレットについて、1300℃に保持した還元炉で還元試験を行った。その結果を図10に示す。図から明らかなように、同一体積では塊成化物の見掛け密度が大きくなるにしたがって、還元時間は短くなっている。したがって、見掛け密度が大きくなった分、生産性が向上する。これらを、回転炉床炉で還元した場合の生産性は図11に示すように、塊成化物の見掛け密度に比例して高くなる。図11によれば、塊成化物の見掛け密度が0.1g/cm3大きくなると、回転炉床炉における生産性は 5.5kg/m2h高くなる。したがって、請求項1で塊成化物の見掛け密度を2.3g/cm3以上に限定した理由はここにある。なお、図10の縦軸は粉鉱石が98%還元されるまでの時間(秒)である。また、図11の縦軸は炉床 1m2、 1時間当たりの金属化率の98%還元鉄の生産量(t) である。
【0046】
図12に還元前の塊成化物の見掛け密度と還元鉄の見掛け密度との関係を示す。図に示すように、還元鉄の見掛け密度は還元前の塊成化物の見掛け密度が大きくなると、それにほぼ比例して大きくなる。また、熱間成形ブリケットに 500℃で30分間の脱ガス処理を行うと、還元過程でのブリケットの膨れがなくなり、還元鉄の見掛け密度は大きくなる。このように、熱間成形したブリケットに脱ガス処理を行うことにより還元鉄の見掛け密度を2g/cm3以上にすることができる。還元鉄の見掛け密度を2g/cm3以上にすることにより、図13に示すように、次工程の還元鉄を溶解する際に、還元鉄の見掛け密度は溶解炉中のスラグの見掛け密度よりも大きくなり、還元鉄は速やかにスラグ中に沈み込み溶解が促進され、溶解時の生産性が向上する。
【0047】
図13は見掛け密度1.6g/cm3と2.4g/cm3の還元鉄を坩堝で溶解試験した結果である。通常溶融スラグの密度は2g/cm3程度であり、これよりも還元鉄の見掛け密度が小さいと、図13(a) に示すように、還元鉄はスラグの表面に浮き、溶解が遅れる。一方、還元鉄の見掛け密度が溶融スラグの密度よりも大きいと、図13(b) に示すように、還元鉄は速やかにスラグ中に沈み込み溶解が促進される。試験の結果、見掛け密度が1.6g/cm3の場合の還元鉄の溶解速度は 0.5kg/minで、見掛け密度が2.4g/cm3の場合の還元鉄の溶解速度は2kg/min である。このように、還元鉄の見掛け密度を溶解炉中のスラグの見掛け密度よりも大きくすることによって、溶解速度は4倍向上している。したがって、請求項で還元鉄の見掛け密度を2g/cm3以上に限定した理由はここにある。
【0048】
【発明の効果】
以上述べたところから明らかなように、本発明によれば、還元過程での炭材の揮発分に起因する塊成化物の割れを防止し、塊成化物中の粉鉱石の還元時間を短縮し、さらに還元後の還元鉄の溶解時間を短縮することができる塊成化物を得ることができる。また、還元炉内での還元鉄の再酸化も防止することができる。
【図面の簡単な説明】
【図1】本発明に係わる還元鉄の製造プロセスの概念図の一例である。
【図2】表1に示す炭材を22%と表2に示す粉鉱石を78%の割合で混合した後、成形温度を変化させて塊成化物に成形したときの、成形温度と塊成化物の見掛け密度との関係を示す図である。
【図3】成形可能温度範囲および最適成形温度と炭材の揮発分との関係を示す図である。
【図4】ギーセラー流動性試験装置で炭材が流動性を保持する温度と時間との関係を示す図である。
【図5】表1に示す炭材Cと粉コークスを混合したものを、表2に示す粉鉱石と混合し、成形圧力 44MPa、成形温度 450℃で成形したときの炭材混合物の流動度とブリケットの圧潰強度との関係を示す図である。
【図6】表1に示す褐炭と表2に示す粉鉱石を、褐炭22%、粉鉱石78%の割合で混合し、成形温度を変化させて 44MPaの加圧力で成形したときの成形温度とブリケットの圧潰強度との関係を示す図である。
【図7】炭種を変えたときの成形圧とブリケットの見掛け密度との関係を示す図である。
【図8】炭種を変えたときの成形圧とブリケットの圧潰強度との関係を示す図である。
【図9】本発明の熱間成形したブリケットと比較例の乾燥後の生ペレットについての見掛け密度の比較例を示す図である。
【図10】見掛け密度の大きさを変えた脱ガス処理を行なった熱間成形ブリケットとペレットについて、1300℃に保持した還元炉で還元試験を行なった結果を示す図である。
【図11】図10に示した塊成化物を回転炉床炉で還元した場合の生産性を示す図である。
【図12】還元前の塊成化物の見掛け密度と還元鉄の見掛け密度との関係を示す図である。
【図13】見掛け密度1.6g/cm3と2.4g/cm3の還元鉄を坩堝で溶解試験した結果を示す図である。
【図14】塊成化物の内部組織の模式図で、(a) は従来の塊成化物、(b) は本発明の熱間成形塊成化物、(c) は本発明の熱間成形塊成化物の脱ガス処理後の内部組織の模式図である。[0001]
BACKGROUND OF THE INVENTION
  The present invention belongs to the technical field of producing reduced iron by reducing fine ore in an agglomerated carbonaceous material agglomerated material. Specifically, the apparent density of the agglomerated carbonaceous material agglomerated material is increased.TheReduce reduction timeAnd prevent reoxidation of reduced iron in the reduction furnaceIn addition, the apparent density of the reduced iron after the reduction is increased to reduce the melting time in the steelmaking and steelmaking processes,SoBelongs to the technical field of the manufacturing method.
[0002]
[Prior art]
As a method for producing reduced iron, the Midrex method is well known. According to this method, reducing gas transformed from natural gas is blown from the tuyere and raised in the shaft furnace to fill the furnace. Reduced iron can be obtained by reducing iron ore and iron oxide pellets. However, in this method, it is necessary to supply a large amount of high-cost natural gas as fuel.
[0003]
Therefore, in recent years, attention has been paid to a reduced iron production process in which relatively inexpensive coal can be used as a reducing agent instead of the natural gas. For example, U.S. Pat. No. 3,443,931 describes a process for producing reduced iron by mixing fine ore and a carbonaceous material into pellets, and heat-reducing in a high temperature atmosphere. According to this method, in addition to the fact that the reducing agent is based on coal, there are advantages such as being able to directly use fine ore, being capable of high-speed reduction, and being able to adjust the carbon content in the product. Have.
[0004]
[Problems to be solved by the invention]
In this process, the agglomerates (pellets, briquettes, etc.) are heated by the radiant heat from the upper surface in the high-temperature reduction furnace, so the height of the raw material layer is limited. Therefore, to improve productivity, the reaction of the reduction reaction Need to increase the speed itself. However, since the reduction rate of the agglomerate for reduced iron is controlled by the heat transfer in the agglomerate, the temperature of the reduction furnace is raised above the heat transfer limit in the agglomerate in an attempt to improve productivity. The agglomerated material melts from the surface and causes problems such as sticking in the furnace and damage to the furnace body.
[0005]
Agglomerates for reduced iron include pellets that are granulated with a granulator or briquettes that are agglomerated with a molding machine by mixing fine ore with a reducing agent such as a coal (such as coal) and a binder. . The agglomerates for reduced iron formed by these methods are porous as shown in Fig. 14 (a), and the contact area between the carbonaceous material and the fine ore is small.Therefore, the thermal conductivity is poor and the reduction rate is low. Is low. In order to increase the reduction rate, in order to increase the contact area between the carbonaceous material and the fine ore during the reduction process, a carbonaceous material-incorporated pellet with a maximum fluidity of 0.8 or more when softened and melted in the reduction furnace is used. This is proposed in Japanese Patent Application No.9-174732.
[0006]
However, the above method requires a binder at the time of forming the agglomerated material, and this binder also reduces the quality of the reduced iron. In addition, a carbon material having a high maximum fluidity at the time of softening and melting contains a large amount of volatile matter, and using this type of carbon material causes the agglomerate to swell and cause cracking in the process of removing the volatile matter. Further, as shown in FIG. 14 (a), the agglomerated material which is a porous body has a small apparent density, and therefore the apparent density of the reduced iron produced after the reduction is also small. When the apparent density of the reduced iron is small, there is a problem that when the reduced iron is dissolved, the reduced iron floats on the slag in the melting furnace, and it takes a long time to dissolve the reduced iron.
[0007]
In addition, the powdered ore in the agglomerated material begins to be sintered at the time when the reduction is almost completed, and the reduced iron has an increased strength. However, due to the operating temperature limitation, if the history time during reduction is short, the sintering will be insufficient and the strength of reduced iron will be low, causing fracture powdering in the handling process such as discharge from the reduction furnace, resulting in a decrease in product yield. There is. Furthermore, since the burner is burned as a heat source in the reduction furnace, preventing reoxidation of the reduced iron produced by the reduction of the agglomerates by the combustion gas also increases the productivity of metallic iron in the reduced iron. It is also important from the top. It can be said that this reoxidation also proceeds more easily with reduced-sintered reduced iron.
[0008]
  The present invention was made in order to solve the above-mentioned problems, increases the apparent density of the agglomerated material, shortens the reduction time of the fine ore in the agglomerated material, and facilitates the sintering,While preventing reoxidation of reduced iron in the reduction furnace,Furthermore, agglomerates for reduced iron that increase the apparent density of reduced iron after reduction and shorten the dissolution time, andSoIt aims at providing the manufacturing method of.
[0009]
[Means for Solving the Problems]
  Invention of Claim 1With fine oreVolatiles 16 More than% 2DDPM It is more caking coalCharcoalWhen,Mix and350In the temperature range of ~ 550 ℃19.6~147.1MPa forming pressureAtAfter hot forming, the apparent density is 2.3 to 2.8 g / cm, characterized by degassing for 5 minutes or more in the forming temperature rangeThreeIt is a manufacturing method of the agglomerated material for reduced iron which is.
[0010]
[0011]
[0012]
  The invention according to claim 2 is a fine ore,Non-caking coal with a volatile content of 16% or less and / or charcoal that does not soften by heatingInCoking coal with a volatile content of 16% or moreTheCarbon material with mixed Gieseller fluidity of 20DDPM or higherAnd 350 ~ 550 In the temperature range of 40 ~ 150MPa After hot forming at a molding pressure of Five It is characterized by degassing for more than a minuteApparent density 2.3 ~ 2.8g / cmThreeIt is a manufacturing method of the agglomerated material for reduced iron which is.
[0013]
  The invention according to claim 3 is a fine ore,Non-caking coal with a volatile content of 35% or more or lignite with a volatile content of 40% or more, ash content of 5% or less, and sulfur content of 0.3% or lessMixed with charcoal, 260 ~ 450 In the temperature range of 20 ~ 150MPa After hot forming at a molding pressure of Five It is characterized by degassing for more than a minuteApparent density 2.3~ 2.8g / cm Three IsIt is a manufacturing method of the agglomerated material for reduced iron.
[0014]
  Invention of Claim 4 is manufactured by the method in any one of Claims 1-3,The apparent density of reduced iron after reduction is 2g / cmThreeThat's itReturnIt is an agglomerate for the original iron.
[0015]
[0016]
The carbonaceous material, which is a reducing agent, begins to dry distillation when it exceeds 260 ° C depending on the coal type, and softens and melts when it exceeds 550 ° C. When the powdered ore and the carbonaceous material are mixed and pressure-molded in this temperature range, the molten carbonaceous material easily penetrates into the gaps between the powdered ore particles, and the powdered ore is firmly connected to each other. For this reason, a binder is unnecessary and the quality of reduced iron can be improved. In the present invention, this softening and melting carbon material is used.
[0017]
In addition, agglomerates hot-formed in a temperature range of 260 to 550 ° C are degassed for 5 minutes or longer in this molding temperature range to remove volatile matter from the carbonaceous material in the agglomerates. It is possible to increase the strength of the agglomerated material and prevent cracking due to swelling of the agglomerated material during reduction. The apparent density of the agglomerated product after the degassing treatment shrinks as much as the volatile matter is removed, and therefore, the apparent density of the agglomerated product before the degassing treatment is almost the same. However, by performing the degassing treatment, the agglomerates are not swollen during the reduction process, and the apparent density of the reduced iron after reduction is increased. Therefore, when the reduced iron is melted, the apparent density of the reduced iron becomes larger than the apparent density of the slag in the melting furnace, and the reduced iron quickly sinks into the slag and the melting is accelerated, and the productivity at the time of melting is increased. improves. Especially effective in electric furnace smelting.
[0018]
When caking coal with a volatile content of 16% or more and a Gieseller flow rate of 2DDPM or more is used as a carbonaceous material, hot forming is performed in the temperature range of 350 to 550 ° C. It is preferable to change the molding temperature. The forming pressure during hot forming should be 19.6MPa or more and 147.1MPa or less, and the degassing after forming should be done for 5 minutes or more at the forming temperature range. In order to increase the degassing rate, the degassing / solidifying tank can be raised in temperature and the degassing treatment can be carried out in the temperature range from the molding temperature to 600 ° C. In this way, the apparent density is 2.3 g / cmThreeThe agglomerated product for reduced iron can be obtained.
[0019]
When using non-caking coal with a volatile content of 16% or less and / or a charcoal material that is not softened by heating as a charcoal material, it is mixed with caking coal with a volatile content of 16% or more, and the weighted average value of Gieseller fluidity A carbon material adjusted to 20 DDPM or more is used, and hot forming is performed in a temperature range of 350 to 550 ° C., but it is preferable to change the forming temperature in proportion to the maximum flow temperature of the Gieseller flow rate. The forming pressure during hot forming should be 40MPa or more and 150MPa or less, and the degassing after forming should be done for 5 minutes or more at the forming temperature range. In order to increase the degassing rate, the degassing treatment can be performed in the temperature range from the molding temperature to 600 ° C. In this way, the apparent density is 2.3 g / cmThreeThe agglomerated product for reduced iron can be obtained.
[0020]
When using non-caking coal with a volatile content of 35% or more or lignite with a volatile content of 40% or more, ash content of 5% or less, and sulfur content of 0.3% or less as the carbon material, Hot forming is performed in the temperature range of 260 to 450 ° C, the decomposition start temperature of lignite. The forming pressure during hot forming is 20 MPa or more and 150 MPa or less, and the degassing after forming is performed for 5 minutes or more within the forming temperature range. In order to increase the degassing rate, the degassing treatment can be performed in a temperature range from the molding temperature to 500 ° C. The reason for limiting the ash content of brown coal to 5% or less and the sulfur content to 0.3% or less is to obtain high-quality reduced iron. In this way, the apparent density is 2.3 g / cmThreeThe agglomerated product for reduced iron can be obtained.
[0021]
Therefore, the carbonaceous material in the agglomerated material is in close contact with the powdered ore, increasing the contact area between the carbonaceous material and the ore and increasing the apparent density. For this reason, the thermal conductivity in the agglomerated material is also improved, the direct reduction of the fine ore in the agglomerated material by the carbonaceous material is promoted, and the reduction time is shortened. In addition, since the apparent density of the agglomerated material is large, the CO partial pressure in the agglomerated material is increased, so that gas reduction of the fine ore by CO is also promoted.
[0022]
If the residence time in the reduction furnace is the same due to the reduction promotion, the residence time in the furnace after the reduction is extended, the reduction of the reduced iron is promoted by that amount, and the strength of the reduced iron is increased. It becomes difficult to react. As a result, in the handling process such as discharge from the reducing furnace, the reduced iron is less likely to be broken and pulverized, the product yield is improved, and the oxidized iron is less oxidized and depleted in the reduced iron.
[0023]
Since the gas generated in the heating and mixing process, pressure molding process and degassing process of the agglomerated material is heavy hydrocarbon such as tar, this gas is recovered and blown into the final reduction zone of the reduction furnace As a result, reduced iron is used as a catalyst for gas reforming and CO, H2To reduce the reoxidation of the reduced iron by adjusting the atmosphere in the final reduction zone to be reducible. The apparent density of the agglomerated material (reduced iron) after reduction thus obtained is 2 g / cm.ThreeThat's it.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in further detail below.
FIG. 1 shows an example of a conceptual diagram of a process for producing reduced iron according to the present invention. As shown in the figure, the carbonaceous material and ore are first pulverized by a pulverizer. Ore and non-caking coal with a volatile content of 16% or less are pulverized so that particles of 74 μm or less become 70% or more. There are no particular restrictions on the particle size of caking coal, non-caking coal, or lignite with a volatile content of 16% or more, but it is desirable to grind to 1 mm or less in order to maintain a good mixed state with ore. Regarding drying and preheating of the ore and carbonaceous material after pulverization, the carbonaceous material is dried at a temperature of 200 ° C or less with a rotary dryer in order to reduce the temperature fluctuation when mixing with the ore due to moisture fluctuation, to remove the adhering moisture. To do. On the other hand, the ore is preheated with a rotary kiln so that the target forming temperature is reached when mixed with the carbonaceous material.
[0025]
For mixing the dried or preheated ore and the carbonaceous material, for example, a biaxial mixer commonly used in this industry that can be mixed in a short time to prevent overheating of a part of the carbonaceous material is used. In addition, the mixer is kept warm to ensure the molding temperature. The mixed ore and carbon material are pressure-molded into an agglomerated product (briquette) using a molding machine for hot forming with an indenter. The pressure molding is sufficient if the agglomerate has sufficient strength to withstand handling, and therefore the molding pressure is 20 MPa or more. As shown in FIG. 14 (b), the agglomerated material thus formed penetrates into the voids between the ore particles, and the ores are firmly connected to each other. The contact area is also increased. Also, the mixer and the molding machine have a sealed structure, and the gas generated by the mixer and the molding machine is sucked and collected using an ejector or the like, and the collected gas is blown into the reduction end zone of the reduction furnace and used as the reducing gas.
[0026]
The agglomerated material after molding remains thermoplastic in the carbon material and a large amount of volatile matter remains. When this is charged into the reduction furnace as it is, the agglomerated material expands due to the generation of volatile matter, and cracks may enter into powder in some cases. In order to prevent this and increase the strength of the agglomerated material, the agglomerated material is charged into a degassing / solidification tank maintained at or above the molding temperature to solidify the carbonaceous material, and at the same time the volatile matter is reduced. Let As shown in FIG. 14 (c), the agglomerated material from which the volatile matter has been removed has gas holes (fine pores) from which the volatile matter has been removed. The apparent density of the agglomerates thus produced is 2.3 g / cmThreeThat's it. Therefore, this degassing / solidification process is an important process for preventing collapse of the agglomerated material and obtaining high-density reduced iron. The agglomerated product thus obtained is removed from the degassing / solidification tank and then sieved. The sieve is charged into a reduction furnace, and the powder under the sieve is returned to the mixer again as a raw material.
[0027]
The pyrolysis gas of the carbonaceous material generated in the mixer, molding machine, degassing / solidification tank is mainly composed of hydrocarbons. This is sucked and collected by an ejector or the like. For the ejector, a part of the exhaust gas from the reduction furnace is pressurized with a blower and used. Keep the suction gas piping at about 500 ° C to prevent tar deposits. The recovered pyrolysis gas is blown into a reduction furnace and used as a reducing gas for adjusting the atmosphere in the furnace and as a fuel.
[0028]
The agglomerate discharged from the degassing / solidification tank and sieved is hot-charged at a temperature of about 400-500 ° C in the reduction furnace. The hot-charged agglomerate is reduced in a furnace heated to 1200 to 1400 ° C. by heat from combustion of a burner or the like. In addition, the recovered pyrolysis gas is reformed in the furnace, and CO, H2For finishing reduction, which enriches the metallization rate of reduced iron and is blown into the final reduction zone of the reduction furnace, it is used as reducing gas.
[0029]
The agglomerated product (reduced iron) that has been reduced and discharged from the reduction furnace is once charged in a bucket from which air has been shut off, and then charged into a converter or electric furnace as an iron source to be melted. Moreover, the agglomerate (reduced iron) discharged | emitted from the reduction furnace can be shape | molded hot, and can also be used as hot briquette reduced iron.
[0030]
[Example 1]
After mixing the charcoal materials A to D and lignite shown in Table 1 and the fine ore shown in Table 2 at a ratio of 22% charcoal and 78% fine ore, the molding temperature was changed to a volume of about 3cm at a molding pressure of 44MPa.ThreeWas formed into a briquette (agglomerated material) and the change in apparent density was examined. The result is shown in FIG. Carbonaceous materials A to D shown in Table 1 are caking coal having a volatile content of 16% or more. The maximum fluidity was measured based on JIS M8801.
[0031]
[Table 1]
Figure 0003754553
[0032]
[Table 2]
Figure 0003754553
[0033]
As shown in FIG. 2, the apparent density increases as the molding temperature increases, and after reaching the highest point, the apparent density rapidly decreases as the molding temperature further increases. This is because when the molding temperature increases, gas generation from the carbon material increases, the briquette counters this gas pressure, and the carbon material suddenly loses thermoplasticity due to thermal decomposition. In the case of lignite, the apparent density starts to increase due to pressure molding from around 250 ° C where pyrolysis begins, and after 450 ° C the apparent density becomes 2.3g / cm.ThreeThe above agglomerates cannot be obtained, and in some cases, molding is impossible.
[0034]
FIG. 3 shows the relationship between the moldable temperature range and the optimum molding temperature and the volatile content of the carbonaceous material. The optimum molding temperature (the molding temperature at which the briquette apparent density is highest) varies in the range of 400 to 540 ° C in proportion to the volatile content including brown coal, and the molding temperature needs to be lowered as the volatile content increases. In this case, the guideline is to lower the 4.6 ° C molding temperature for every 1% increase in volatile content. Looking at caking coal with a volatile content of 16% or more, Fig. 4 shows the relationship between the temperature at which the charcoal retains fluidity and the time in the Gieseller fluidity test device. When the charcoal temperature reaches 550 ° C, All coal types have a fluidity retention time of 5 minutes or less. Further, when the charcoal is char, the caking property is completely lost and a molded product cannot be obtained. For this reason, if the fluidity retention time from heating to molding is short, the molding stability is insufficient. Therefore, in practice, the molding temperature is desirably 550 ° C. or lower.
[0035]
In the case of a non-caking coal having a volatile content of 16% or less and a carbon material that is not softened by heating, a high-density briquette can be obtained by mixing with a carbon material having thermoplasticity and heat-molding. FIG. 5 shows the fluidity of the carbonaceous material mixture when the carbonaceous material C and powdered coke shown in Table 1 are mixed with the fine ore shown in Table 2 and molded at a molding pressure of 44 MPa and a molding temperature of 450 ° C. This shows the relationship between the weighted average value of the maximum fluidity of the carbon material and the crushing strength of the briquettes. As shown in FIG. 5, the apparent density is 2.3 g / cm for both.ThreeAlthough higher values are shown, the crushing strength is strongly influenced by the flow rate of the carbonaceous material, and considering the strength of 10 kg / P that can withstand handling until charging into the rotary hearth furnace, the flow of the carbonaceous material mixture The degree should be 20DDPM (1.3logDDPM) or higher.
[0036]
Non-caking coal and lignite with a volatile content of 35% or more cannot exhibit thermoplasticity with the index used in caking coal. When brown coal or the like is molded at room temperature or at a relatively low temperature, the particles are difficult to be plastically deformed, and even if molded at a considerably high pressure, the springback may occur and the briquette may collapse. When this is molded at a temperature of 150 ° C or higher, briquettes can be obtained without causing a springback. As shown in Fig. 2, the apparent density of the briquettes increases with the temperature, and the apparent density of 2.3g at a molding temperature of 260 ° C or higher. /cmThreeThe above briquettes can be obtained. In addition, the strength of briquettes molded at a pressure of 44 MPa increases in proportion to the molding temperature, as shown in Fig. 6. At 150 ° C or higher, the required strength is 10 kg / P or higher. It was. Fig. 6 shows that the lignite shown in Table 1 and the pulverized ore shown in Table 2 were mixed in a ratio of 22% lignite and 78% pulverized ore, and then the molding temperature was changed to a volume of about 3cm at 44MPa.ThreeIt shows the crushing strength of what was molded into a briquette.
[0037]
Since lignite has abundant ash and sulfur content compared to caking coal, high quality reduced iron can be obtained by using lignite as the charcoal. Incidentally, Table 3 shows the properties of the reduced briquettes obtained by mixing 26% lignite shown in Table 1 and 74% fine ore shown in Table 2 and reducing the briquettes obtained by hot forming. As shown in Table 3, when lignite is used (B in the table), the metallization rate is not changed compared to when caking coal is used (A in the table), but S is about 1 / The quality of the reduced briquettes can be improved to 3.
[0038]
[Table 3]
Figure 0003754553
[0039]
FIG. 7 shows the relationship between the forming pressure when the coal type is changed and the apparent density of the briquette, and FIG. 8 shows the relationship between the forming pressure when the coal type is changed and the crushing strength of the briquette. As shown in FIG. 7, the apparent density of the briquettes increases rapidly with the molding pressure up to 39 MPa, and the apparent density slightly varies depending on the coal type, but the apparent density hardly changes at the molding pressure of 54 MPa or more. When caking coal is used as the charcoal material, the apparent density is 2.7g / cm in consideration of economy and productivity.ThreeA molding pressure of 39 to 88 MPa is appropriate for obtaining the above briquettes. Also, high apparent density is not required, apparent density 2.3g / cmThreeIn order to obtain a crushing strength of 10 kg / P or more, a molding pressure of 20 MPa is sufficient (see Fig. 8). This result shows that when only caking coal is used, a certain degree of strength can be ensured if the expansion is not suppressed and excessively porous as in the case of ordinary coking. On the other hand, when powdered coke that shows no thermoplasticity is mixed with caking coal, it is necessary to increase the molding pressure because caking coal needs to be firmly connected to the powdered ore and powdered coke particles. . For example, as shown in FIG. 8, when using a carbonaceous material (fluidity: 30DDPM) in which 60% of powdered coke and carbonaceous material C40% shown in Table 1 are mixed, a molding pressure of 39 MPa was required.
[0040]
Although caking coal softens when heated, it has the property of firmly connecting fine ore particles, but at this temperature it still retains a large amount of volatiles, and when it is charged into a rotary hearth furnace at this temperature, it becomes thermoplastic. The carbonaceous material has a high gas pressure inside the briquette due to the generated gas, which expands or cracks and collapses, causing problems in the operation of the rotary hearth furnace, and it becomes powdered reduced iron and reduced iron with a low apparent density. . This phenomenon occurs because the generated gas is difficult to be released from the inside of the briquette at the same time that the carbon material retains thermoplasticity. When the caking coal is held in the softening and melting temperature range, carbonization proceeds slowly, and a part of the volatile matter is gasified to lose plasticity and the strength of the carbonaceous material portion is increased. At this time, approximately 50% of the volatile matter remains in the charcoal, but as shown in Fig. 14 (c), pores due to degassing occur in the briquette, and after that, even if charged in the rotary hearth furnace. Since the volatile matter and the generated gas accompanying the reduction reaction are easily released from the inside of the briquette to the outside from the pores, reduced iron having a high density can be obtained without causing blistering or cracking. As shown in FIG. 4, the softened state holding time (fluidity holding time) is shorter as the temperature is higher, and is about 3 to 40 minutes in the range of 400 to 550 ° C. Therefore, it is necessary to perform the degassing treatment at around the molding temperature for 5 to 40 minutes.
[0041]
[Example 2]
After mixing the fine ore with the chemical composition shown in Table 2 and the charcoal with the chemical composition shown in Table 4 at a ratio of 78% fine ore and 22% charcoal, the mixture is heated to 450 ° C with a pressure of 39 MPa and a volume of 2 ~ 5 cmThree Hot formed into a briquette (agglomerated material). In addition, as a comparative example, 1% bentonite as a binder was added to 78% fine ore having the chemical composition shown in Tables 2 and 4 and 22% carbonaceous material as a binder, and the volume was set to 2 cm with a granulator.Three Into pellets. The apparent densities of the hot-formed briquettes of the present invention and the dried pellets of the comparative example (hereinafter referred to as pellets) were compared. The result is shown in FIG.
[0042]
[Table 4]
Figure 0003754553
[0043]
As shown in FIG. 9, the apparent density of the pellet is 2.0 g / cmThreeCompared with this, the apparent density of hot-formed briquette is 2.8 g / cmThreeIt is about 40% larger. This is because, as mentioned above, hot-formed briquettes are softened and melted at 450 ° C, and carbonaceous materials penetrate between the ore particles by pressure forming to fill the voids (see Fig. 14 (b)). ).
[0044]
Further, the hot-formed briquette was degassed at 450 ° C. for 30 minutes. By performing degassing treatment, volatile matter escapes from the carbonaceous material in the hot-formed briquettes, reducing the amount by 2-3% (approximately 10-15% as the carbonaceous material). However, as described above, the apparent density of the briquette is almost the same as the apparent density of the briquette before the degassing process. As a result, pores are generated in the carbonaceous material portion, and the gas generated in the briquette during reduction is easily released (see FIG. 14 (c)). Therefore, it is possible to prevent cracking due to blistering caused by the gas generated in the briquette during the reduction process.
[0045]
Next, a reduction test was conducted in a reduction furnace maintained at 1300 ° C. for hot-formed briquettes and pellets that had been degassed with different apparent densities and volumes. The results are shown in FIG. As is apparent from the figure, the reduction time is shortened as the apparent density of the agglomerated material increases at the same volume. Therefore, the productivity is improved by the increase in the apparent density. When these are reduced in a rotary hearth furnace, the productivity increases in proportion to the apparent density of the agglomerated material, as shown in FIG. According to FIG. 11, the apparent density of the agglomerates is 0.1 g / cmThreeIncreasing the productivity in the rotary hearth furnace is 5.5kg / m2h higher. Therefore, the apparent density of the agglomerated material in claim 1 is 2.3 g / cm.ThreeThis is the reason for the above limitation. In addition, the vertical axis | shaft of FIG. 10 is time (second) until a fine ore is reduced 98%. The vertical axis in Fig. 11 represents the hearth 1m2The production rate of 98% reduced iron with metallization rate per hour (t).
[0046]
FIG. 12 shows the relationship between the apparent density of the agglomerates before reduction and the apparent density of reduced iron. As shown in the figure, when the apparent density of the agglomerated product before reduction increases, the apparent density of the reduced iron increases substantially in proportion thereto. In addition, if the hot-formed briquette is degassed at 500 ° C. for 30 minutes, the briquette does not swell during the reduction process, and the apparent density of the reduced iron increases. In this way, the apparent density of reduced iron is reduced to 2 g / cm2 by degassing the hot-formed briquettes.ThreeThis can be done. Apparent density of reduced iron 2g / cmThreeBy doing the above, as shown in FIG. 13, when the reduced iron in the next step is melted, the apparent density of the reduced iron becomes larger than the apparent density of the slag in the melting furnace, and the reduced iron is quickly contained in the slag. Sinking and dissolution are promoted, and productivity at the time of dissolution is improved.
[0047]
  Figure 13 shows an apparent density of 1.6 g / cmThreeAnd 2.4g / cmThreeIt is the result of having carried out the dissolution test of the reduced iron of this with the crucible. Usually the density of molten slag is 2g / cmThreeIf the apparent density of the reduced iron is smaller than this, the reduced iron floats on the surface of the slag and the dissolution is delayed as shown in FIG. 13 (a). On the other hand, when the apparent density of the reduced iron is larger than the density of the molten slag, as shown in FIG. 13 (b), the reduced iron quickly sinks into the slag and promotes dissolution. As a result of the test, the apparent density is 1.6g / cmThreeIn this case, the dissolution rate of reduced iron is 0.5 kg / min and the apparent density is 2.4 g / cm.ThreeIn this case, the dissolution rate of reduced iron is 2 kg / min. Thus, by making the apparent density of the reduced iron larger than the apparent density of the slag in the melting furnace, the melting rate is improved four times. Therefore, the claims4The apparent density of reduced iron is 2g / cmThreeThis is the reason for the above limitation.
[0048]
【The invention's effect】
As is apparent from the above description, according to the present invention, cracking of the agglomerated material due to the volatile matter of the carbonaceous material during the reduction process is prevented, and the reduction time of the fine ore in the agglomerated material is shortened. Furthermore, an agglomerated product that can shorten the dissolution time of the reduced iron after the reduction can be obtained. Moreover, reoxidation of the reduced iron in the reduction furnace can be prevented.
[Brief description of the drawings]
FIG. 1 is an example of a conceptual diagram of a process for producing reduced iron according to the present invention.
FIG. 2 shows the molding temperature and agglomeration when 22% of the carbonaceous materials shown in Table 1 and the fine ore shown in Table 2 are mixed at a ratio of 78%, and then molded into an agglomerate by changing the molding temperature. It is a figure which shows the relationship with the apparent density of a compound.
FIG. 3 is a diagram showing the relationship between the moldable temperature range and the optimum molding temperature and the volatile content of the carbonaceous material.
FIG. 4 is a diagram showing a relationship between temperature and time at which a carbonaceous material maintains fluidity in a Gieseller fluidity test apparatus.
FIG. 5 shows the fluidity of the carbonaceous material mixture when the mixture of carbonaceous material C and powdered coke shown in Table 1 is mixed with the fine ore shown in Table 2 and molded at a molding pressure of 44 MPa and a molding temperature of 450 ° C. It is a figure which shows the relationship with the crushing strength of a briquette.
[Fig. 6] Fig. 6 shows the molding temperature when lignite shown in Table 1 and pulverized ore shown in Table 2 are mixed in a ratio of 22% lignite and 78% pulverized ore, and the molding temperature is changed and molding is performed at a pressure of 44 MPa. It is a figure which shows the relationship with the crushing strength of a briquette.
FIG. 7 is a diagram showing the relationship between the molding pressure and the apparent density of briquettes when the coal type is changed.
FIG. 8 is a diagram showing the relationship between the molding pressure and the briquette crushing strength when the coal type is changed.
FIG. 9 is a view showing a comparative example of the apparent density of the hot-formed briquette of the present invention and the green pellets after drying of the comparative example.
FIG. 10 is a diagram showing the results of a reduction test performed in a reduction furnace maintained at 1300 ° C. for hot-formed briquettes and pellets that have been degassed with different apparent densities.
FIG. 11 is a diagram showing productivity when the agglomerated material shown in FIG. 10 is reduced in a rotary hearth furnace.
FIG. 12 is a diagram showing the relationship between the apparent density of agglomerated material before reduction and the apparent density of reduced iron.
[Figure 13] Apparent density 1.6 g / cmThreeAnd 2.4g / cmThreeIt is a figure which shows the result of having melt-tested the reduced iron of this with the crucible.
FIG. 14 is a schematic diagram of the internal structure of an agglomerated material, where (a) is a conventional agglomerated material, (b) is a hot-formed agglomerated material of the present invention, and (c) is a hot-formed agglomerated material of the present invention. It is a schematic diagram of the internal structure | tissue after the degassing process of a chemical compound.

Claims (4)

粉鉱石と、揮発分が 16 %以上でギーセラー流動度が 2DDPM 以上の粘結炭である炭材と、を混合し、350〜550 ℃の温度域で19.6147.1MPaの成形圧にて熱間成形した後、成形温度範囲で 5分間以上の脱ガス処理を行なうことを特徴とする見掛け密度が2.3〜2.8g/cm3である還元鉄用塊成化物の製造方法。 Mixing fine ore with carbonaceous material that is caking coal with a volatile content of 16 % or more and a Gieseler fluidity of 2DDPM or more, and hot at a molding pressure of 19.6 to 147.1 MPa at a temperature range of 350 to 550 ° C A method for producing an agglomerated product for reduced iron having an apparent density of 2.3 to 2.8 g / cm 3 , characterized by performing degassing for 5 minutes or more in a molding temperature range after molding. 粉鉱石と、揮発分が16%以下の非粘結炭および/または加熱により軟化しない炭材揮発分が16%以上の粘結炭混合しギーセラー流動度を20DDPM以上にした炭材と、を混合し、 350 550 ℃の温度域で 40 150MPa の成形圧にて熱間成形した後、成形温度範囲で 5 分間以上の脱ガス処理を行なうことを特徴とする見掛け密度が 2.3 2.8g/cm 3 である還元鉄用塊成化物の製造方法。Pulverized ore, non-caking coal with a volatile content of 16% or less, and / or a charcoal material that has a volatile content of 16% or more mixed with a charcoal material that does not soften by heating, and has a Gieseler flow rate of 20 DDPM or more , were mixed, the mixture was hot-molded at a molding pressure of 40 ~ 150 MPa in a temperature range of 350 ~ 550 ° C., ~ apparent density 2.3 and performing degassing treatment more than 5 minutes at a molding temperature range 2.8 g / cm 3 and a method of manufacturing a reduced iron for the agglomerate. 粉鉱石と、揮発分が35%以上の非粘結炭または揮発分が40%以上、灰分が 5%以下、硫黄分が 0.3%以下の褐炭である炭材と、を混合し、 260 450 ℃の温度域で 20 150MPa の成形圧にて熱間成形した後、成形温度範囲で 5 分間以上の脱ガス処理を行なうことを特徴とする見掛け密度が 2.3 2.8g/cm 3 である還元鉄用塊成化物の製造方法。 And fine ore, volatile content 35% or more of the non-tacky coals or volatile content 40%, ash content of 5% or less, sulfur content and mixed with carbonaceous material is 0.3% or less lignite, and 260 to 450 Reduction with an apparent density of 2.3 to 2.8 g / cm 3 , characterized by performing degassing for 5 minutes or more in the molding temperature range after hot forming at a molding pressure of 20 to 150 MPa in the temperature range of ° C. A method for producing iron agglomerates. 請求項1〜のいずれかに記載の方法により製造される、還元後の還元鉄の見掛け密度が2g/cm3以上である還元鉄用塊成化物。An agglomerated product for reduced iron produced by the method according to any one of claims 1 to 3 , wherein the apparent density of the reduced iron after reduction is 2 g / cm 3 or more.
JP08154098A 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same Expired - Fee Related JP3754553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08154098A JP3754553B2 (en) 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-195812 1997-07-22
JP19581297 1997-07-22
JP08154098A JP3754553B2 (en) 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1192833A JPH1192833A (en) 1999-04-06
JP3754553B2 true JP3754553B2 (en) 2006-03-15

Family

ID=26422559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08154098A Expired - Fee Related JP3754553B2 (en) 1997-07-22 1998-03-27 Agglomerated product for reduced iron and method for producing the same

Country Status (1)

Country Link
JP (1) JP3754553B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635256B2 (en) 2001-09-14 2005-04-06 新日本製鐵株式会社 Reduction method of iron oxide
JP2003105452A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Method for producing reduced metal
JP4532313B2 (en) * 2005-03-07 2010-08-25 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP4600102B2 (en) * 2005-03-16 2010-12-15 Jfeスチール株式会社 Method for producing reduced iron
JP4996103B2 (en) * 2006-02-07 2012-08-08 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
EP2172571B1 (en) 2007-05-28 2016-09-28 Kabushiki Kaisha Kobe Seiko Sho Method for production of carbon composite metal oxide briquette
CN102177256B (en) 2008-10-10 2013-08-21 新日铁住金株式会社 Blast furnace operating method using carbon-containing unfired pellets
JP5411615B2 (en) * 2009-03-12 2014-02-12 株式会社神戸製鋼所 Manufacturing method of carbonized material agglomerates
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
US8999033B2 (en) * 2010-12-15 2015-04-07 Midrex Technologies, Inc. Method and system for producing direct reduced iron and/or hot metal using brown coal
JP5613575B2 (en) * 2011-01-26 2014-10-22 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials
JP5613576B2 (en) * 2011-01-26 2014-10-22 株式会社神戸製鋼所 Method for producing agglomerates for blast furnace raw materials
JP2014167164A (en) 2013-02-01 2014-09-11 Kobe Steel Ltd Method for manufacturing reduced iron
US9976806B2 (en) 2013-10-30 2018-05-22 Posco Burning apparatus and method for manufacturing reduced iron using the same
KR20170064815A (en) * 2015-12-02 2017-06-12 주식회사 포스코 Carbon composite metal oxide briquette, method for manufacturing carbon composite metal oxide briquette and manufacturing apparatus thereof
JP7420283B2 (en) * 2021-09-29 2024-01-23 Jfeスチール株式会社 Manufacturing method of agglomerated raw material

Also Published As

Publication number Publication date
JPH1192833A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
JP3754553B2 (en) Agglomerated product for reduced iron and method for producing the same
US6129777A (en) Method of producing reduced iron agglomerates
JP3004265B1 (en) Carbon material interior pellet and reduced iron production method
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
JP4996105B2 (en) Vertical coal interior agglomerates
JP4487564B2 (en) Ferro-coke manufacturing method
KR20070044507A (en) Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
JP2004211179A (en) Method of reducing chromium-containing raw material
US8906336B2 (en) Blast furnace metallurgical coal substitute products and method
JP4718241B2 (en) Coke production method
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
KR20120070300A (en) Method and apparatus for manufacturing partially-carbonized coal briquettes, and apparatus for manufacturing molten irons
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP2006152432A (en) Method for producing molten iron
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
US3642465A (en) Process for the production of highly prereduced oxide pellets
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
AU2003202538B8 (en) Method for making reduced iron
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP3863104B2 (en) Blast furnace operation method
JP4031108B2 (en) Reduction method of reduced iron powder
KR20160078181A (en) Coal briquettes and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees