WO2012049974A1 - Process for production of reduced iron - Google Patents

Process for production of reduced iron Download PDF

Info

Publication number
WO2012049974A1
WO2012049974A1 PCT/JP2011/072310 JP2011072310W WO2012049974A1 WO 2012049974 A1 WO2012049974 A1 WO 2012049974A1 JP 2011072310 W JP2011072310 W JP 2011072310W WO 2012049974 A1 WO2012049974 A1 WO 2012049974A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
water
reduced iron
binder
kneading
Prior art date
Application number
PCT/JP2011/072310
Other languages
French (fr)
Japanese (ja)
Inventor
幸弘 上杉
直史 寺本
祐輝 ▲桑▼内
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BR112013008360A priority Critical patent/BR112013008360A2/en
Priority to KR1020137009208A priority patent/KR20130080844A/en
Priority to CN2011800491506A priority patent/CN103154276A/en
Publication of WO2012049974A1 publication Critical patent/WO2012049974A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/08Making spongy iron or liquid steel, by direct processes in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Definitions

  • the present invention relates to a method for producing reduced iron.
  • This application claims priority based on Japanese Patent Application No. 2010-231512 filed in Japan on October 14, 2010, the contents of which are incorporated herein by reference.
  • dust that is generated mainly in blast furnaces, converters, electric furnaces, melting furnaces, etc., containing iron as a main component is reused as a raw material.
  • the present invention has been made in view of the above problems, and the object of the present invention is to further improve the granulation property when agglomerating a mixture as a raw material for reduced iron. It is providing the manufacturing method of reduced iron.
  • the present invention employs the following aspects. (1) That is, in the method for producing reduced iron according to one embodiment of the present invention, water at 60 ° C. or more and 90 ° C. or less is added to a mixture containing an iron oxide raw material and a reducing material that are both in powder form and kneaded. A kneading step to perform; a granulation step to agglomerate the mixture after the kneading step to obtain an agglomerate; a reduction step to reduce the agglomerate after the granulation step to produce reduced iron; Have The moisture referred to in the present invention includes water and water vapor.
  • a binder soluble in water may be further added to the mixture.
  • the binder may be a liquid organic binder or a powdery organic binder.
  • the binder may be a powdered organic binder and a cereal starch selected from the group consisting of rice, tapioca, rye and corn.
  • the water content of the mixture may be 6% to 9% by adding the water.
  • the particle diameter of the mixture before kneading in the kneading step in the aspect described in (1) may be 70 ⁇ m to 500 ⁇ m with an 80% particle diameter under a sieve.
  • the water content of the mixture before the water is added in the kneading step in the aspect described in (1) may be 1% to 3%.
  • the mixture containing the iron oxide raw material and the reducing material when the mixture containing the iron oxide raw material and the reducing material is granulated, moisture of 60 ° C. or more and 90 ° C. or less is added to the mixture. Uniformity can be achieved, and the granulation property in the granulation step can be further improved.
  • the moisture includes water and water vapor.
  • FIG. 1 is an explanatory view for explaining an example of a manufacturing process of reduced iron.
  • Iron oxide raw materials such as iron dust and iron ore collected from each facility in the steelworks and reducing materials such as coal, coke, and fine carbon are stored in the hopper 11 and the like in advance.
  • the iron oxide raw material and the reducing material are blended so as to have a preset blending ratio, and then charged into the pulverizer 13.
  • a pulverizer 13 typified by a vibration mill such as a ball mill pulverizes the charged iron oxide raw material and the reducing material to a predetermined particle size while mixing.
  • the particle sizes of the iron oxide raw material and the reducing material after pulverization may be appropriately set according to values suitable for a reducing furnace such as a rotary hearth furnace and a rotary kiln used for producing reduced iron.
  • the mixture of the pulverized iron oxide raw material and the reducing material is conveyed to the kneader 15.
  • the kneader 15 receives and kneads the mixture pulverized to a predetermined particle size by the pulverizer 13.
  • the kneading machine 15 often performs a humidity conditioning process for adding water to the mixture until the water content is suitable for charging into a reduction furnace used for producing reduced iron.
  • An example of the kneading machine 15 is a mix muller, but various types of kneading machines can be used besides this.
  • the mixture kneaded by the kneader 15 is conveyed to the molding machine 17.
  • a molding machine 17 such as a pan pelletizer (dish granulator), a double roll compressor (briquette making machine), an extrusion molding machine, etc. accepts and molds a mixture containing an iron oxide raw material and a reducing material, such as pellets and briquettes. Agglomerates like Here, the agglomerated material refers to pellets, briquettes, extruded products that have been cut by extrusion molding, and granular materials / agglomerated materials such as mass-adjusted agglomerated materials.
  • the molding machine 17 agglomerates the mixture so that the mixture does not scatter in the furnace ascending gas flow when, for example, it is heated and charged into the melting furnace 23 after drying and heating reduction described later. .
  • the generated agglomerated material is charged into the dryer 19.
  • the dryer 19 receives the agglomerated material from the molding machine 17 and dries it.
  • the moisture content is suitable for the heating reduction process described later (in other words, the moisture content suitable for each reduction furnace used for producing reduced iron). : For example, 1% or less).
  • the agglomerated product adjusted to a predetermined moisture content is conveyed to a reduction furnace 21 described later.
  • a reduction furnace 21 such as a rotary hearth furnace (RHF) or a rotary kiln heats and reduces the charged agglomerate in a heating atmosphere using an LNG burner, a COG burner, or the like, and reduces the agglomerate. It will be iron.
  • the reducing furnace heats the agglomerate to, for example, about 1000 to 1300 ° C. to reduce the agglomerate and produce reduced iron.
  • the manufactured reduced iron is conveyed to the melting furnace 23.
  • the melting furnace 23 melts the reduced iron supplied from the reduction furnace 21 in the state of, for example, a high-temperature pellet to form molten iron.
  • generated by the melting furnace 23 is conveyed using a ladle etc., and after using a desulfurization and refining process, it is utilized as crude molten steel.
  • the method for producing reduced iron according to the present embodiment produces reduced iron by heating and reducing agglomerates formed by mixing an iron oxide raw material and a reducing material.
  • iron dust e.g., iron-containing cold material melting converter, refining converter, dust melting converter, etc. is generated and collected by a wet dust collector or the like). Converter dust, blast furnace dust, mill scale, electric furnace dust, etc.), non-ferrous smelting dust, and iron ore.
  • the reducing material according to the present embodiment for example, coal such as pulverized coal, carbon material such as coke, and fine carbon can be used.
  • the raw material mixture may not be agglomerated and powder may remain.
  • Such residual powder hinders the improvement of granulation performance in the granulation process. Therefore, as a result of intensive studies aimed at improving granulation properties in the granulation step, the present inventor added water at a temperature of 60 ° C. or higher and 90 ° C. or lower to the raw material mixture during the granulation step.
  • the inventors have conceived that it is possible to improve the granulation property in the granulation step.
  • the diffusion efficiency of moisture into the mixture is dramatically increased.
  • moisture penetrates deeper to a deeper depth, so that the strength of the agglomerated product to be produced can be further improved without increasing the amount of binder to be added.
  • FIG. 2 is a flowchart showing a flow of a method for producing reduced iron according to the present embodiment.
  • an iron oxide raw material selected from the group consisting of iron making dust and iron ore generated in the iron making process is mixed with the reducing material (step S101) and pulverized from the hopper 11.
  • the machine 13 is charged.
  • the pulverized coal used as the reducing material it is possible to use, for example, those having an 80% particle size of about 5 mm to 10 mm under a sieve and a water content of about 8 to 12%.
  • the blending ratio of the iron oxide raw material and the reducing material is adjusted in consideration of suitable conditions for obtaining good reduced iron in the reduction step described later. For example, it can be set to about 90:10.
  • This mixture has a particle size of, for example, about 4 mm when charged into the pulverizer.
  • the mixture of the iron oxide raw material and the reducing material is pulverized by the pulverizer 13 until the particle size becomes, for example, 70 ⁇ m to 500 ⁇ m (80% particle size under sieve), preferably 150 ⁇ m to 300 ⁇ m.
  • the particle size of the mixture By setting the particle size of the mixture to 70 ⁇ m to 500 ⁇ m, it becomes possible to produce reduced iron with a high metallization rate with a small variation in metallization rate (for example, about 6% or less), and the lower limit of the particle size By setting it as 70 micrometers, it becomes possible to suppress the explosion of the agglomerate in the reduction process.
  • the particle size of the mixture to 150 ⁇ m to 300 ⁇ m, it is possible to produce reduced iron with a high metallization rate with a very small variation in metallization rate (for example, about 3% or less).
  • a very small variation in metallization rate for example, about 3% or less.
  • step S103 it is preferable to adjust the water content of the mixture made of the iron oxide raw material and the reducing material to about 1% to 3%. By setting it as this moisture content, it becomes possible to hold
  • the pulverizer for pulverizing the mixture for example, a vibration mill such as a ball mill or a rod mill can be used.
  • the processing speed of the ball mill used for pulverization is appropriately set. That's fine.
  • the pulverization ratio is calculated from the target value of the particle diameter on the exit side of the vibration mill (ball mill) and the particle diameter on the entry side of the vibration mill. Then, by using the calculated grinding ratio and the theoretical capacity curve of the vibration mill at the target value of the moisture content on the exit side of the vibration mill, as described in Patent Document 1, It is possible to determine the processing speed.
  • the moisture content of the mixture at the time of charging the pulverizer is set to a value at which the vibration mill exhibits appropriate pulverizability. It becomes possible to hold, and it is not necessary to constantly change the control of the vibration mill during grinding. Moreover, even if the moisture content of the iron oxide raw material fluctuates due to various factors, the millability of the vibration mill is maintained at a suitable value by appropriately controlling the setting of the dryer 12 during drying before mixing. It becomes possible.
  • the pulverized mixture is charged into a kneader 15 such as a mix muller so that the water content becomes a value appropriate for kneading (for example, about 6 to 9%). And then kneaded (step S105). Further, when kneading the mixture, a predetermined binder may be added to the mixture in order to improve the strength of the agglomerated product to be produced.
  • a kneader 15 such as a mix muller so that the water content becomes a value appropriate for kneading (for example, about 6 to 9%).
  • a predetermined binder may be added to the mixture in order to improve the strength of the agglomerated product to be produced.
  • moisture having a temperature of 60 ° C. or more and 90 ° C. or less is used in order to adjust the moisture content of the mixture.
  • any binder can be used as long as it is soluble in water at 60 ° C. or higher and 90 ° C. or lower as the binder used in the kneading step.
  • a binder include a liquid organic binder and a powder organic binder.
  • liquid organic binders include molasses and lignin.
  • the powdery organic binder include starch of grains such as rice, tapioca, rye and corn.
  • these organic binders when the necessary moisture and binder addition in the kneading step are added as a slurry, the addition is viscous and does not mix well in the kneading step. Therefore, the powder form is better than the liquid form. Since the organic system is vaporized during the reduction and contributes to the improvement of the reduction, it is particularly preferable to use a powdery organic binder.
  • the solubility of the binder itself in water is improved, and as a result, the dispersion efficiency of the binder can be improved.
  • the binder itself reaches the entire mixture, and the strength of the agglomerated product to be produced can be further improved.
  • an inorganic binder such as cement, bentonite, fly ash and the like may be further added.
  • the amount of the binder added to the mixture it is possible to increase the strength of the agglomerated product to be produced, but from the viewpoint of production cost etc., the total mass of the mixture to be kneaded On the other hand, it is preferably 2% or less during drying.
  • a molding machine 17 such as a pan pelletizer (dish type granulator), a double roll compressor (briquette making machine), an extrusion molding machine (step). S107), resulting in an agglomerated product.
  • the produced agglomerated material is dried by the dryer 19, and has a moisture content of 1% or less, for example (step S109).
  • the agglomerated product after drying is charged into a reduction furnace 21 such as RHF and subjected to a reduction treatment.
  • the agglomerated product according to the present embodiment exhibits not only good granulation properties but also good crushing strength by using moisture at 60 ° C. or higher and 90 ° C. or lower in the kneading step. Therefore, the agglomerate is hardly broken in the reduction furnace 21 even in the reduction step, and the agglomerate can be sufficiently reduced.
  • the temperature in the reduction furnace 21 is set to about 1350 ° C., and the speed of the rotating bed is set so that the reduction process is completed in about 15 minutes. Is possible. By performing such a reduction treatment, it is possible to efficiently produce reduced iron that is difficult to break and has a high metalization rate.
  • the method for producing reduced iron it is possible not only to improve the granulation property in the granulation step but also to prevent cracking and to achieve a high metallization rate. It is possible to produce reduced iron. Therefore, it is possible to improve the oxygen intensity of the reduced iron melting converter, and it is possible to maintain hot metal productivity at a high level.
  • agglomerates were produced according to the procedure shown in FIG.
  • a ball mill (diameter ⁇ length: 3.3 m ⁇ 6.0 m, input amount: 40 ton / h, motor capacity: 700 KW, ball: 49 ton) is used, and the kneading step (step S105). ) Used a mix muller.
  • a double roll compressor was used, and in the drying step (Step S109), a band dryer was used.
  • ironworks dust containing converter dust and blast furnace dust was used as an iron oxide raw material, and coal was used as a reducing material.
  • the iron oxide raw material and the reducing material were mixed so that it might become mass ratio of 87:13, and it was set as the mixture.
  • the particle size of the mixture was 80 ⁇ m under sieve and 300 ⁇ m or less.
  • water was added so that the water content was 8.0%.
  • the difference between the examples and the comparative examples is the temperature of moisture used in the kneading step.
  • the water permeation time into the mixture corresponds to a water content of 8% with respect to this mixture after collecting 20 g of the mixture before mixing and mixing the iron oxide raw material and the reducing material at the above-mentioned ratio.
  • the temperature of the moisture to be added is five types of 0 ° C., 15 ° C., 60 ° C., 80 ° C. and 90 ° C., and in FIG. Show.
  • the use of moisture at temperatures of 60 ° C., 80 ° C., and 90 ° C. in the kneading process reduces the presence of lumps compared to when moisture at 15 ° C. is used.
  • the degree of decrease in the presence of lumps increases.
  • the use of moisture at a temperature of 90 ° C. in the kneading step reduces the amount of lumps to about 87% compared to when moisture at 15 ° C. is used.
  • This result shows that by using moisture at 60 ° C. or more and 90 ° C. or less (in this example, moisture at 60 ° C., 80 ° C. and 90 ° C.), the moisture diffuses more uniformly into the mixture, and the moisture in the mixture It is shown that the homogenization of the material is realized and the granulation property is improved.
  • the ratio of corn starch dissolved in water having a water temperature of 20 ° C. was 40%, whereas the ratio of dissolution in water having a water temperature of 60 ° C. was about
  • the dissolution rate was about 70% with respect to moisture having a water temperature of 80 ° C., and the dissolution rate was about 96% with respect to moisture having a water temperature of 90 ° C.
  • the agglomerate which measured crushing strength is the agglomerate manufactured by adding the water of the temperature of 15 degreeC, 60 degreeC, 80 degreeC, 90 degreeC, 120 degreeC, 160 degreeC, and 200 degreeC, respectively, and the said There are a total of 14 types of agglomerates prepared by further adding (externally adding) 1% corn starch to the mixture and adding moisture at the above temperature.
  • the crushing strength of the agglomerate produced by adding water at 90 ° C. was measured in the same manner.
  • the agglomerated material produced has an elliptical shape with a major axis of 20 to 30 mm.
  • the crushing strength is remarkably improved when the temperature of the added water is 60 ° C. or more both in the case where the binder is not added and in the case where the binder is added.
  • the temperature of the added water is 90 ° C. to 200 ° C. in both the case where the binder is not added and the case where the binder is added, the crushing strength has a substantially constant value. I understand.
  • the upper limit of the temperature of the water added to the mixture is determined by the kneading step and the heat resistance temperature of the equipment used in each step performed after the kneading step, the equipment restrictions of the steam supply equipment, etc., and the dissolution ratio in water in FIG. Since the temperature of water at 90 ° C. reaches nearly 100%, the temperature of water for improving the strength of the agglomerated product to be produced is optimally 60 ° C. or higher and 90 ° C. or lower.
  • the crushing strength of the agglomerated product in which the amount of binder added was reduced by 21% and water at 90 ° C. was added was the crushing strength when water at 15 ° C. was added to the mixture containing the binder. It can be seen that they have similar values. This result indicates that the amount of binder added can be controlled by adding water at 60 ° C. or higher and 90 ° C. or lower to the mixture, and the method for producing reduced iron according to the present embodiment is used. This suggests that it is possible to expand the range of operations for producing reduced iron.
  • the method for producing reduced iron of the present invention it is possible to further improve the granulation property when agglomerating a mixture as a raw material of reduced iron.

Abstract

This process for producing reduced iron comprises: a kneading step of adding water having a temperature of 60-90˚C inclusive to a mixture comprising a powdery iron oxide raw material and a powdery reducing material and kneading the resulting mixture; a granulation step of granulating the mixture obtained in the kneading step to produce a granulated material; and a reduction step of reducing the granulated material obtained in the granulating step to produce reduced iron.

Description

還元鉄の製造方法Method for producing reduced iron
 本発明は、還元鉄の製造方法に関する。
 本願は、2010年10月14日に、日本に出願された特願2010-231512号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing reduced iron.
This application claims priority based on Japanese Patent Application No. 2010-231512 filed in Japan on October 14, 2010, the contents of which are incorporated herein by reference.
 製銑や製鋼過程において高炉や転炉、電気炉、溶解炉等で発生する、鉄分が主成分であるダストを原料として再利用することが行われている。 In the steelmaking and steelmaking processes, dust that is generated mainly in blast furnaces, converters, electric furnaces, melting furnaces, etc., containing iron as a main component is reused as a raw material.
上記ダストのような固形含鉄冷材を原料として利用するために、収集された固形含鉄冷材である酸化鉄原料に対して還元材を混合したうえで混練し、その後、塊成化処理を経て塊成化物とし、さらにその後、この塊成化物を還元することで還元鉄を製造することが行われている(例えば、以下の特許文献1を参照。)。 In order to use the solid iron-containing cold material such as dust as a raw material, after mixing the reducing material to the iron oxide raw material that is the collected solid iron-containing cold material, kneaded, then through agglomeration treatment An agglomerated product is produced, and then the agglomerated product is reduced to produce reduced iron (see, for example, Patent Document 1 below).
日本国特開2009-97065号公報Japanese Unexamined Patent Publication No. 2009-97065
しかしながら、上記特許文献1に記載されているような還元鉄の製造方法においては、塊成化処理を実施する造粒工程時に、原料の混合物を塊成化しきれずに粉体が残留することがあり、更なる造粒性の向上を図る際の課題となっていた。 However, in the method for producing reduced iron as described in Patent Document 1 described above, a mixture of raw materials may not be agglomerated during the granulation process for agglomeration, and powder may remain. There was a problem when further improving the granulation property.
本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、還元鉄の原料となる混合物を塊成化する際に造粒性を更に向上させることが可能な、還元鉄の製造方法を提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to further improve the granulation property when agglomerating a mixture as a raw material for reduced iron. It is providing the manufacturing method of reduced iron.
 上記課題を解決するために、本発明は以下の態様を採用した。
(1)すなわち、本発明の一態様に係る還元鉄の製造方法は、共に粉状である酸化鉄原料及び還元材を含む混合物に対して60℃以上かつ90℃以下の水分を添加して混練する混練工程と;この混練工程後の前記混合物を塊成化して塊成化物とする造粒工程と;この造粒工程後の前記塊成化物を還元して還元鉄を生成する還元工程と;を有する。本発明で言う水分とは、水や水蒸気を包含している。
In order to solve the above problems, the present invention employs the following aspects.
(1) That is, in the method for producing reduced iron according to one embodiment of the present invention, water at 60 ° C. or more and 90 ° C. or less is added to a mixture containing an iron oxide raw material and a reducing material that are both in powder form and kneaded. A kneading step to perform; a granulation step to agglomerate the mixture after the kneading step to obtain an agglomerate; a reduction step to reduce the agglomerate after the granulation step to produce reduced iron; Have The moisture referred to in the present invention includes water and water vapor.
(2)上記(1)に記載の態様における前記混練工程では、前記混合物に対して、前記水分に可溶なバインダーを更に添加してもよい。 (2) In the kneading step according to the aspect described in (1) above, a binder soluble in water may be further added to the mixture.
(3)上記(2)の場合、前記バインダーを、液体状の有機系バインダー又は粉末状の有機系バインダーとしてもよい。 (3) In the case of (2) above, the binder may be a liquid organic binder or a powdery organic binder.
(4)上記(3)の場合、前記バインダーが、前記粉末状の有機系バインダーでかつ、米、タピオカ、ライ麦及びトウモロコシからなる群から選択される穀物のデンプンであってもよい。 (4) In the case of (3) above, the binder may be a powdered organic binder and a cereal starch selected from the group consisting of rice, tapioca, rye and corn.
(5)上記(1)に記載の態様における前記混練工程で、前記水分の添加により、前記混合物の水分含有率を6%~9%としてもよい。 (5) In the kneading step according to the aspect described in (1) above, the water content of the mixture may be 6% to 9% by adding the water.
(6)上記(1)に記載の態様における前記混練工程で混練される前における前記混合物の粒径を、篩下80%粒径で70μm~500μmとしてもよい。 (6) The particle diameter of the mixture before kneading in the kneading step in the aspect described in (1) may be 70 μm to 500 μm with an 80% particle diameter under a sieve.
(7)上記(1)に記載の態様における前記混練工程で前記水分が添加される前における前記混合物の水分含有率を、1%~3%としてもよい。 (7) The water content of the mixture before the water is added in the kneading step in the aspect described in (1) may be 1% to 3%.
 本発明の上記態様によれば、酸化鉄原料と還元材とを含む混合物を造粒する際にこの混合物に対して60℃以上かつ90℃以下の水分を添加するため、前記混合物中の水分の均一化を図ることが可能となり、造粒工程における造粒性を更に向上させることが可能となる。 According to the above aspect of the present invention, when the mixture containing the iron oxide raw material and the reducing material is granulated, moisture of 60 ° C. or more and 90 ° C. or less is added to the mixture. Uniformity can be achieved, and the granulation property in the granulation step can be further improved.
還元鉄の製造工程の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the manufacturing process of reduced iron. 本発明の一実施形態に係る還元鉄の製造方法の各工程を説明するための流れ図である。It is a flowchart for demonstrating each process of the manufacturing method of reduced iron which concerns on one Embodiment of this invention. 混合物への水分の浸透に要する時間を示したグラフである。It is the graph which showed the time required for the penetration | invasion of the water | moisture content to a mixture. 混合物中に存在するダマの割合を示したグラフである。It is the graph which showed the ratio of the lump which exists in a mixture. コーンスターチの水分への溶解割合の変化を示したグラフである。It is the graph which showed the change of the dissolution ratio to the water | moisture content of a corn starch. 塊成化物の乾燥後の強度の変化を示したグラフである。It is the graph which showed the change of the intensity | strength after drying of an agglomerate.
 以下に添付図面を参照しながら、本発明の一実施形態について詳細に説明する。なお、以下に説明で言う水分とは、水や水蒸気を包含している。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the moisture includes water and water vapor.
<還元鉄の製造工程について>
 本実施形態に係る還元鉄の製造方法について説明するに先立ち、図1を参照しながら、還元鉄の製造工程について、詳細に説明する。図1は、還元鉄の製造工程の一例を説明するための説明図である。
<About the manufacturing process of reduced iron>
Prior to describing the method for producing reduced iron according to the present embodiment, the production process of reduced iron will be described in detail with reference to FIG. Drawing 1 is an explanatory view for explaining an example of a manufacturing process of reduced iron.
製鉄所における各設備から収集された製鉄ダストや鉄鉱石等の酸化鉄原料と、石炭、コークス、微粒カーボン等の還元材とが、予め、ホッパー11等に格納されている。酸化鉄原料及び還元材は、予め設定された配合比となるように配合された上で、粉砕機13に装入される。 Iron oxide raw materials such as iron dust and iron ore collected from each facility in the steelworks and reducing materials such as coal, coke, and fine carbon are stored in the hopper 11 and the like in advance. The iron oxide raw material and the reducing material are blended so as to have a preset blending ratio, and then charged into the pulverizer 13.
 ボールミル等の振動ミルに代表される粉砕機13は、装入された酸化鉄原料及び還元材を、混合しながら所定の粒径となるまで粉砕する。粉砕後の酸化鉄原料及び還元材の粒径は、還元鉄の製造に用いられる回転炉床炉やロータリーキルン等の還元炉に適した値に応じて、適宜設定すればよい。粉砕後の酸化鉄原料及び還元材からなる混合物は、混練機15に運搬される。 A pulverizer 13 typified by a vibration mill such as a ball mill pulverizes the charged iron oxide raw material and the reducing material to a predetermined particle size while mixing. The particle sizes of the iron oxide raw material and the reducing material after pulverization may be appropriately set according to values suitable for a reducing furnace such as a rotary hearth furnace and a rotary kiln used for producing reduced iron. The mixture of the pulverized iron oxide raw material and the reducing material is conveyed to the kneader 15.
 混練機15は、粉砕機13により所定の粒径に粉砕された混合物を受け入れて混練する。また、混練機15は、混合物の混練に際して、還元鉄の製造に用いる還元炉に装入するのに適した水分量となるまで、混合物に加水を行う調湿処理を施すことが多い。混練機15の一例として、ミックスマラーを挙げることができるが、これ以外にも多様な種類の混練機を利用することが可能である。混練機15によって混練された混合物は、成型機17に搬送される。 The kneader 15 receives and kneads the mixture pulverized to a predetermined particle size by the pulverizer 13. In addition, the kneading machine 15 often performs a humidity conditioning process for adding water to the mixture until the water content is suitable for charging into a reduction furnace used for producing reduced iron. An example of the kneading machine 15 is a mix muller, but various types of kneading machines can be used besides this. The mixture kneaded by the kneader 15 is conveyed to the molding machine 17.
 パンペレタイザー(皿形造粒機)、ダブルロール圧縮機(ブリケット製造機)、押し出し成形機等である成型機17は、酸化鉄原料及び還元材を含む混合物を受け入れて成型し、例えばペレットやブリケットのような塊成化物とする。ここで、塊成化物とは、ペレット、ブリケット、押し出し成型して裁断した成型品、粒度調整された塊状物等の粒状物・塊状物をいう。成型機17は、後述する乾燥・加熱還元後、例えば熱間にて溶解炉23に装入する際に炉内上昇ガス流で飛散しないような大きさとなるように、上記混合物を塊成化する。生成された塊成化物は、乾燥機19へと装入される。 A molding machine 17 such as a pan pelletizer (dish granulator), a double roll compressor (briquette making machine), an extrusion molding machine, etc. accepts and molds a mixture containing an iron oxide raw material and a reducing material, such as pellets and briquettes. Agglomerates like Here, the agglomerated material refers to pellets, briquettes, extruded products that have been cut by extrusion molding, and granular materials / agglomerated materials such as mass-adjusted agglomerated materials. The molding machine 17 agglomerates the mixture so that the mixture does not scatter in the furnace ascending gas flow when, for example, it is heated and charged into the melting furnace 23 after drying and heating reduction described later. . The generated agglomerated material is charged into the dryer 19.
 乾燥機19は、成型機17からの塊成化物を受け入れて乾燥し、後述する加熱還元工程に適した水分含有率(換言すれば、還元鉄の製造に用いる還元炉ごとに適した水分含有率:例えば、1%以下)となるように調整する。所定の水分含有率に調整された塊成化物は、後述する還元炉21へと搬送される。 The dryer 19 receives the agglomerated material from the molding machine 17 and dries it. The moisture content is suitable for the heating reduction process described later (in other words, the moisture content suitable for each reduction furnace used for producing reduced iron). : For example, 1% or less). The agglomerated product adjusted to a predetermined moisture content is conveyed to a reduction furnace 21 described later.
 例えば回転炉床炉(Rotary Hearth Furnace:RHF)やロータリーキルン等のような還元炉21は、装入された塊成化物を、LNGバーナーやCOGバーナー等を用いた加熱雰囲気で加熱及び還元し、還元鉄とする。還元炉は、塊成化物を例えば1000~1300℃程度まで加熱することで塊成化物の還元処理を行い、還元鉄を製造する。製造された還元鉄は、溶解炉23へと搬送される。 For example, a reduction furnace 21 such as a rotary hearth furnace (RHF) or a rotary kiln heats and reduces the charged agglomerate in a heating atmosphere using an LNG burner, a COG burner, or the like, and reduces the agglomerate. It will be iron. The reducing furnace heats the agglomerate to, for example, about 1000 to 1300 ° C. to reduce the agglomerate and produce reduced iron. The manufactured reduced iron is conveyed to the melting furnace 23.
 溶解炉23は、例えば高温ペレット等の状態で還元炉21より供給される還元鉄を溶解して、溶銑とする。このようにして溶解炉23で生成された溶銑は、取鍋等を用いて搬送され、脱硫・精錬処理を施された後に、粗溶鋼として利用される。 The melting furnace 23 melts the reduced iron supplied from the reduction furnace 21 in the state of, for example, a high-temperature pellet to form molten iron. Thus, the hot metal produced | generated by the melting furnace 23 is conveyed using a ladle etc., and after using a desulfurization and refining process, it is utilized as crude molten steel.
<還元鉄の製造方法について>
 以上の説明を踏まえ、以下では、本実施形態に係る還元鉄の製造方法について、詳細に説明する。
<About the manufacturing method of reduced iron>
Based on the above description, the method for producing reduced iron according to the present embodiment will be described in detail below.
[本実施形態に係る還元鉄の製造方法の概略]
 本実施形態に係る還元鉄の製造方法は、前述のように、酸化鉄原料と還元材とを混合して成型した塊成化物を加熱・還元処理することで、還元鉄を製造する。本実施形態に係る酸化鉄原料としては、製鉄ダスト(例えば、含鉄冷材溶解用転炉、精錬用転炉及びダスト溶解用転炉等で発生し、湿式集塵装置等にて集塵された転炉ダストや、高炉ダストや、ミルスケールや、電気炉ダスト等)、非鉄製錬ダスト及び鉄鉱石のうちから適宜選択することができる。また、本実施形態に係る還元材としては、例えば、粉石炭等の石炭や、コークスや、微粒カーボン等の炭材を用いることが可能である。
[Outline of reduced iron production method according to this embodiment]
As described above, the method for producing reduced iron according to the present embodiment produces reduced iron by heating and reducing agglomerates formed by mixing an iron oxide raw material and a reducing material. As the iron oxide raw material according to the present embodiment, iron dust (e.g., iron-containing cold material melting converter, refining converter, dust melting converter, etc. is generated and collected by a wet dust collector or the like). Converter dust, blast furnace dust, mill scale, electric furnace dust, etc.), non-ferrous smelting dust, and iron ore. Further, as the reducing material according to the present embodiment, for example, coal such as pulverized coal, carbon material such as coke, and fine carbon can be used.
 ここで、本実施形態の還元鉄の製造工程において、造粒機を用いた造粒工程時に、原料の混合物を塊成化しきれずに粉体が残留することがあった。このような粉体の残留は、造粒工程における造粒性を向上させるにあたっての妨げとなる。そこで、本発明者は、造粒工程における造粒性の向上を目的として鋭意検討を行った結果、造粒工程時に、60℃以上かつ90℃以下の温度の水分を原料の混合物に添加することで、造粒工程における造粒性を向上させることが可能であることに想到した。 Here, in the production process of reduced iron according to the present embodiment, during the granulation process using the granulator, the raw material mixture may not be agglomerated and powder may remain. Such residual powder hinders the improvement of granulation performance in the granulation process. Therefore, as a result of intensive studies aimed at improving granulation properties in the granulation step, the present inventor added water at a temperature of 60 ° C. or higher and 90 ° C. or lower to the raw material mixture during the granulation step. Thus, the inventors have conceived that it is possible to improve the granulation property in the granulation step.
 以下で詳細に説明するように、本発明者による検討の結果、造粒工程において60℃以上かつ90℃以下の水分を利用することで、表面張力が低くなり、親水性が増加して、分子の運動が活発となり、分子間の斥力となり酸化鉄原料及び還元材を含む混合物に対する水分の浸透性を向上させることが可能となり、混合物への水分の拡散効率を飛躍的に向上させることが可能となることが明らかとなった。このような拡散効率の向上により、酸化鉄原料及び還元材を含む混合物中に存在する水分の分布を従来よりも均一化することが可能となり、造粒時における造粒性を向上させることが可能となる。 As will be described in detail below, as a result of the study by the present inventors, by using moisture at 60 ° C. or higher and 90 ° C. or lower in the granulation step, the surface tension is lowered, the hydrophilicity is increased, It becomes possible to improve the moisture diffusion efficiency into the mixture by increasing the movement of the water, making it possible to improve the water permeability to the mixture containing the iron oxide raw material and the reducing material. It became clear that By improving the diffusion efficiency like this, it becomes possible to make the distribution of moisture present in the mixture containing the iron oxide raw material and the reducing material more uniform than before, and improve the granulation properties during granulation. It becomes.
 更に、本発明者による検討の結果、造粒工程時において60℃以上かつ90℃以下の温度の水分を利用することで、造粒性の向上のみならず、製造される塊成化物の強度を従来よりも向上させることが可能であることも判明した。先に説明したような還元鉄の製造方法においては、塊成化物の強度を向上させるために、酸化物原料及び還元材からなる混合物に対して、各種のバインダーを添加することが行われてきた。しかしながら、本実施形態に係る還元鉄の製造方法のように、造粒工程において60℃以上かつ90℃以下の温度の水分を混合物に添加することで、混合物への水分の拡散効率が飛躍的に向上されることにより、より深くまで水分が瞬間的に浸透するので、添加するバインダーの量を増やすことなく、製造される塊成化物の強度を更に向上させることが可能となる。また、造粒工程において60℃以上かつ90℃以下の水分を添加することに加え、混合物に対して更にバインダーを添加することで、製造される塊成化物の強度をより一層向上させることが可能となる。 Furthermore, as a result of the study by the present inventor, by using moisture at a temperature of 60 ° C. or higher and 90 ° C. or lower during the granulation step, not only the granulation property is improved, but also the strength of the agglomerated product to be produced is increased. It has also been found that it is possible to improve compared to the prior art. In the method for producing reduced iron as described above, various binders have been added to the mixture of the oxide raw material and the reducing material in order to improve the strength of the agglomerated material. . However, like the method for producing reduced iron according to the present embodiment, by adding moisture at a temperature of 60 ° C. or more and 90 ° C. or less to the mixture in the granulation step, the diffusion efficiency of moisture into the mixture is dramatically increased. By being improved, moisture penetrates deeper to a deeper depth, so that the strength of the agglomerated product to be produced can be further improved without increasing the amount of binder to be added. In addition to adding moisture at 60 ° C or higher and 90 ° C or lower in the granulation step, it is possible to further improve the strength of the agglomerated product produced by adding a binder to the mixture. It becomes.
[本実施形態に係る還元鉄の製造方法の流れ]
 以下では、上述のような知見に基づく本実施形態に係る還元鉄の製造方法の流れの一例を、図2を参照しながら詳細に説明する。図2は、本実施形態に係る還元鉄の製造方法の流れを示した流れ図である。
[Flow of reduced iron production method according to this embodiment]
Below, an example of the flow of the manufacturing method of the reduced iron based on this embodiment based on the above knowledge is demonstrated in detail, referring FIG. FIG. 2 is a flowchart showing a flow of a method for producing reduced iron according to the present embodiment.
 本実施形態に係る還元鉄の製造方法では、まず、製鉄プロセスで発生する製鉄ダスト及び鉄鉱石からなる群より選択される酸化鉄原料が、還元材と混合され(ステップS101)、ホッパー11から粉砕機13へと装入される。上記還元材として用いられる粉石炭として、例えば、篩下80%粒径が5mm~10mm程度であり、水分含有率が8~12%程度であるものを使用することが可能である。また、酸化鉄原料と還元材との配合比率は、後述する還元工程において良好な還元鉄を得るために好適な条件を考慮して調整されるが、酸化鉄原料と還元材との質量比を、例えば90:10程度とすることが可能である。この混合物は、粉砕機へと装入される時点で、例えば4mm程度の粒径を有している。 In the method for producing reduced iron according to the present embodiment, first, an iron oxide raw material selected from the group consisting of iron making dust and iron ore generated in the iron making process is mixed with the reducing material (step S101) and pulverized from the hopper 11. The machine 13 is charged. As the pulverized coal used as the reducing material, it is possible to use, for example, those having an 80% particle size of about 5 mm to 10 mm under a sieve and a water content of about 8 to 12%. Further, the blending ratio of the iron oxide raw material and the reducing material is adjusted in consideration of suitable conditions for obtaining good reduced iron in the reduction step described later. For example, it can be set to about 90:10. This mixture has a particle size of, for example, about 4 mm when charged into the pulverizer.
 酸化鉄原料と還元材との混合物は、続いて、粉砕機13により例えば70μm~500μmの粒径(篩下80%粒径)となるまで、好ましくは150μm~300μmの粒径となるまで、粉砕される(ステップS103)。混合物の粒径を、70μm~500μmとすることで、金属化率のばらつきが小さい(例えば、6%程度以下)高金属化率の還元鉄を製造することが可能となり、粒径の下限値を70μmとすることで、還元工程における塊成化物の爆裂を抑制することが可能となる。また、混合物の粒径を150μm~300μmとすることで、金属化率のばらつきが極めて小さい(例えば、3%程度以下)高金属化率の還元鉄を製造することができ、粒径の下限値を150μmとすることで、還元工程における塊成化物の爆裂を回避することができる。 Subsequently, the mixture of the iron oxide raw material and the reducing material is pulverized by the pulverizer 13 until the particle size becomes, for example, 70 μm to 500 μm (80% particle size under sieve), preferably 150 μm to 300 μm. (Step S103). By setting the particle size of the mixture to 70 μm to 500 μm, it becomes possible to produce reduced iron with a high metallization rate with a small variation in metallization rate (for example, about 6% or less), and the lower limit of the particle size By setting it as 70 micrometers, it becomes possible to suppress the explosion of the agglomerate in the reduction process. Also, by setting the particle size of the mixture to 150 μm to 300 μm, it is possible to produce reduced iron with a high metallization rate with a very small variation in metallization rate (for example, about 3% or less). By setting the thickness to 150 μm, explosion of the agglomerated material in the reduction process can be avoided.
 また、この粉砕工程(ステップS103)において、酸化鉄原料及び還元材からなる混合物の水分含有率を、約1%~3%程度に調整することが好ましい。かかる水分含有率とすることで、後述する混練工程において、良好な混錬性を保持することが可能となる。 In the pulverization step (step S103), it is preferable to adjust the water content of the mixture made of the iron oxide raw material and the reducing material to about 1% to 3%. By setting it as this moisture content, it becomes possible to hold | maintain favorable kneadability in the kneading | mixing process mentioned later.
 混合物を粉砕する粉砕機として、例えば、ボールミルやロッドミル等の振動ミルを使用することが可能である。ボールミル等の振動ミルの出側において、混合物の粒径を上述の範囲とし、混合物の水分含有率を約1%~3%とするためには、粉砕に用いるボールミル等の処理速度を適宜設定すればよい。例えば、まず、振動ミル(ボールミル)の出側での粒径の目標値と、振動ミルの入側における粒径とから粉砕比を算出する。そして、算出した粉砕比と、特許文献1に記載されているような、振動ミルの出側における水分含有率の目標値での振動ミルの粉砕能力理論曲線とを利用することで、振動ミルの処理速度を決定することが可能である。 As the pulverizer for pulverizing the mixture, for example, a vibration mill such as a ball mill or a rod mill can be used. In order to keep the particle size of the mixture in the above range and the water content of the mixture to about 1% to 3% on the exit side of a vibration mill such as a ball mill, the processing speed of the ball mill used for pulverization is appropriately set. That's fine. For example, first, the pulverization ratio is calculated from the target value of the particle diameter on the exit side of the vibration mill (ball mill) and the particle diameter on the entry side of the vibration mill. Then, by using the calculated grinding ratio and the theoretical capacity curve of the vibration mill at the target value of the moisture content on the exit side of the vibration mill, as described in Patent Document 1, It is possible to determine the processing speed.
 また、本実施形態における還元鉄の製造方法においては、混合前に酸化鉄原料を乾燥することにより、粉砕機装入時における混合物の水分含有率を、振動ミルが適正な粉砕性を示す値に保持することが可能となり、粉砕時の振動ミルの制御を絶えず変更する必要がなくなる。また、酸化鉄原料の水分含有率が、様々な要因により上下したとしても、混合前の乾燥時に乾燥機12の設定を適切に制御することにより、振動ミルの粉砕性を好適な値に維持することが可能となる。 Further, in the method for producing reduced iron in the present embodiment, by drying the iron oxide raw material before mixing, the moisture content of the mixture at the time of charging the pulverizer is set to a value at which the vibration mill exhibits appropriate pulverizability. It becomes possible to hold, and it is not necessary to constantly change the control of the vibration mill during grinding. Moreover, even if the moisture content of the iron oxide raw material fluctuates due to various factors, the millability of the vibration mill is maintained at a suitable value by appropriately controlling the setting of the dryer 12 during drying before mixing. It becomes possible.
 混合物の粉砕が終了すると、粉砕された混合物は、ミックスマラー等の混練機15へと装入されて、水分含有率が混練に適正な値(例えば、6~9%程度)となるように加水された後に混練される(ステップS105)。また、混合物を混練する際に、製造される塊成化物の強度の向上を図るために、混合物に対して、所定のバインダーを添加してもよい。 When the pulverization of the mixture is completed, the pulverized mixture is charged into a kneader 15 such as a mix muller so that the water content becomes a value appropriate for kneading (for example, about 6 to 9%). And then kneaded (step S105). Further, when kneading the mixture, a predetermined binder may be added to the mixture in order to improve the strength of the agglomerated product to be produced.
 ここで、先に説明したように、本実施形態に係る還元鉄の製造方法では、混合物の水分含有率を調整するために、60℃以上かつ90℃以下の温度を持つ水分を利用する。このような水分を利用することで、混合物に対する水分の浸透性を向上させることが可能となり、混合物への水分の拡散効率を飛躍的に向上させることができる。その結果、混合物中に存在する水分を更に均一化することが可能となり、造粒時における造粒性を向上させることが可能となる。 Here, as described above, in the method for producing reduced iron according to the present embodiment, moisture having a temperature of 60 ° C. or more and 90 ° C. or less is used in order to adjust the moisture content of the mixture. By utilizing such moisture, it becomes possible to improve the permeability of moisture to the mixture, and the diffusion efficiency of moisture into the mixture can be dramatically improved. As a result, it becomes possible to further homogenize the water present in the mixture and improve the granulation properties during granulation.
 また、本実施形態に係る還元鉄の製造方法では、水分含有率を調整するための加湿処理に60℃以上かつ90℃以下の水分を利用することで、造粒性の向上のみならず、製造される塊成化物の強度を、飛躍的に向上させることが可能となる。従って、本実施形態に係る還元鉄の製造方法によれば、添加するバインダーの量を増加させることなく、製造される塊成化物の強度の増強を図ることが可能となる。 Moreover, in the manufacturing method of reduced iron which concerns on this embodiment, not only the improvement of granulation property but manufacturing is performed by using the water | moisture content of 60 degreeC or more and 90 degrees C or less for the humidification process for adjusting a moisture content rate. It is possible to dramatically improve the strength of the agglomerated product. Therefore, according to the manufacturing method of reduced iron which concerns on this embodiment, it becomes possible to aim at the reinforcement | strengthening of the agglomerated material manufactured, without increasing the quantity of the binder to add.
 混練工程で用いられるバインダーは、60℃以上かつ90℃以下の水分に可溶のものであれば、任意のものを使用することが可能である。このようなバインダーとして、液体状の有機系バインダーや、粉末状の有機系バインダーを挙げることができる。液体状の有機系バインダーの例としては、糖蜜やリグニン等がある。また、粉末状の有機系バインダーの例としては、米、タピオカ、ライ麦、トウモロコシ等の穀物のデンプン等がある。これらの有機系バインダーのうち、混練工程に於ける必要水分とバインダー添加をスラリー添加した場合、粘性添加になり、混練工程で良く混ざらないので、液体状よりは、粉末状の方が良い。有機系は還元時に気化し、還元向上にも寄与するため、特に、粉末状の有機系バインダーを利用することが好ましい。 Any binder can be used as long as it is soluble in water at 60 ° C. or higher and 90 ° C. or lower as the binder used in the kneading step. Examples of such a binder include a liquid organic binder and a powder organic binder. Examples of liquid organic binders include molasses and lignin. Examples of the powdery organic binder include starch of grains such as rice, tapioca, rye and corn. Among these organic binders, when the necessary moisture and binder addition in the kneading step are added as a slurry, the addition is viscous and does not mix well in the kneading step. Therefore, the powder form is better than the liquid form. Since the organic system is vaporized during the reduction and contributes to the improvement of the reduction, it is particularly preferable to use a powdery organic binder.
 60℃以上かつ90℃以下の水分に可溶のバインダーを利用することで、バインダー自体の水分への溶解性が向上することとなり、その結果、バインダーの分散効率を向上させることができる。その結果、バインダー自体が混合物の全体に行き渡るようになり、製造される塊成化物の強度を更に向上させることが可能となる。 By using a binder that is soluble in water at 60 ° C. or higher and 90 ° C. or lower, the solubility of the binder itself in water is improved, and as a result, the dispersion efficiency of the binder can be improved. As a result, the binder itself reaches the entire mixture, and the strength of the agglomerated product to be produced can be further improved.
 また、上記有機系バインダーに加えて、更に、セメント、ベントナイト、フライアッシュ等の無機系バインダーを更に添加してもよい。 Further, in addition to the organic binder, an inorganic binder such as cement, bentonite, fly ash and the like may be further added.
 なお、混合物に添加されるバインダーの量について、添加すればするほど、製造される塊成化物の強度増強を図ることが可能であるが、製造コスト等の観点から、混練される混合物の全体質量に対して、乾燥時に於いて2%以下とすることが好ましい。 In addition, as the amount of the binder added to the mixture, it is possible to increase the strength of the agglomerated product to be produced, but from the viewpoint of production cost etc., the total mass of the mixture to be kneaded On the other hand, it is preferably 2% or less during drying.
 混練機15による混練が終了すると、混合物はパンペレタイザー(皿型造粒機)、ダブルロール圧縮機(ブリケット製造機)、押し出し成形機等である成型機17に装入されて造粒され(ステップS107)、塊成化物となる。 When the kneading by the kneading machine 15 is completed, the mixture is charged and granulated in a molding machine 17 such as a pan pelletizer (dish type granulator), a double roll compressor (briquette making machine), an extrusion molding machine (step). S107), resulting in an agglomerated product.
 生成された塊成化物は、乾燥機19により乾燥処理され、例えば1%以下の水分含有率となる(ステップS109)。乾燥が終了した塊成化物は、RHF等の還元炉21へと装入され、還元処理が施される。本実施形態に係る塊成化物は、混練工程において60℃以上かつ90℃以下の水分を用いることで、良好な造粒性を示すのみならず良好な圧壊強度を示す。そのため、還元工程においても還元炉21内で塊成化物が割れることが少なく、塊成化物を十分に還元することができる。例えば、還元炉21としてRHFを使用する場合には、例えば、還元炉21内の温度を1350℃程度に設定し、約15分で還元処理が完了するように、回転床の速度を設定することが可能である。かかる還元処理を行うことで、割れにくく、かつ、高金属化率を有する還元鉄を効率よく製造することが可能である。 The produced agglomerated material is dried by the dryer 19, and has a moisture content of 1% or less, for example (step S109). The agglomerated product after drying is charged into a reduction furnace 21 such as RHF and subjected to a reduction treatment. The agglomerated product according to the present embodiment exhibits not only good granulation properties but also good crushing strength by using moisture at 60 ° C. or higher and 90 ° C. or lower in the kneading step. Therefore, the agglomerate is hardly broken in the reduction furnace 21 even in the reduction step, and the agglomerate can be sufficiently reduced. For example, when using RHF as the reduction furnace 21, for example, the temperature in the reduction furnace 21 is set to about 1350 ° C., and the speed of the rotating bed is set so that the reduction process is completed in about 15 minutes. Is possible. By performing such a reduction treatment, it is possible to efficiently produce reduced iron that is difficult to break and has a high metalization rate.
 以上説明したように、本実施形態に係る還元鉄の製造方法によれば、造粒工程における造粒性の向上を図ることが可能となるだけでなく、割れにくく、かつ、高金属化率を有する還元鉄を製造することが可能である。そのため、還元鉄溶解用転炉の酸素原単位を向上させることが可能であり、さらには、溶銑の生産性を高位に維持することが可能となる。 As described above, according to the method for producing reduced iron according to the present embodiment, it is possible not only to improve the granulation property in the granulation step but also to prevent cracking and to achieve a high metallization rate. It is possible to produce reduced iron. Therefore, it is possible to improve the oxygen intensity of the reduced iron melting converter, and it is possible to maintain hot metal productivity at a high level.
 以下では、実施例及び比較例を示しながら、本発明に係る還元鉄の製造方法について、更に説明を行う。なお、以下に示す実施例は、あくまでも本発明の一具体例であって、本発明が以下に示す実施例のみに限定されるわけではない。 Hereinafter, the method for producing reduced iron according to the present invention will be further described with reference to Examples and Comparative Examples. In addition, the Example shown below is an example of this invention to the last, Comprising: This invention is not necessarily limited only to the Example shown below.
 以下で説明する実施例及び比較例では、図2に示した手順に従って、塊成化物の製造を行った。なお、粉砕工程(ステップS103)では、ボールミル(直径×長さ:3.3m×6.0m、投入量:40ton/h、モーター容量:700KW、ボール:49ton)を使用し、混練工程(ステップS105)では、ミックスマラーを使用した。また、造粒工程(ステップS107)では、ダブルロール圧縮機を使用し、乾燥工程(ステップS109)では、バンド乾燥機を使用した。 In the examples and comparative examples described below, agglomerates were produced according to the procedure shown in FIG. In the pulverization step (step S103), a ball mill (diameter × length: 3.3 m × 6.0 m, input amount: 40 ton / h, motor capacity: 700 KW, ball: 49 ton) is used, and the kneading step (step S105). ) Used a mix muller. In the granulation step (Step S107), a double roll compressor was used, and in the drying step (Step S109), a band dryer was used.
 なお、以下で説明する実施例及び比較例では、転炉ダスト及び高炉ダストを含む製鉄所ダストを酸化鉄原料として使用し、石炭を還元材として使用した。また、以下で説明する実施例及び比較例では、酸化鉄原料と還元材とを、87:13の質量比となるように混合して、混合物とした。混合物の粒径は、篩下80%粒径で300μm以下であった。また、混練工程における加水処理では、水分含有率が8.0%となるように、水分を添加した。以下の例において実施例と比較例との違いは、混練工程において用いた水分の温度である。 In Examples and Comparative Examples described below, ironworks dust containing converter dust and blast furnace dust was used as an iron oxide raw material, and coal was used as a reducing material. Moreover, in the Example and comparative example demonstrated below, the iron oxide raw material and the reducing material were mixed so that it might become mass ratio of 87:13, and it was set as the mixture. The particle size of the mixture was 80 μm under sieve and 300 μm or less. In addition, in the water treatment in the kneading step, water was added so that the water content was 8.0%. In the following examples, the difference between the examples and the comparative examples is the temperature of moisture used in the kneading step.
[混合物への水分の浸透時間について]
 まず、図3を参照しながら、混合物への水分の浸透時間の変化について説明する。
 混合物への水分の浸透時間は、上述の割合で酸化鉄原料及び還元材が混合された、加水及び混練前の混合物20gを採取したうえで、この混合物に対して水分含有率8%に相当する水分を添加した場合に、添加した水分が混合物に浸透しきるまでの時間を計測することで測定した。ここで、添加する水分の温度は、0℃、15℃、60℃、80℃及び90℃の5種類とし、図3では、15℃の水分が浸透しきるまでの時間を基準とした相対時間を示している。
[Moisture penetration time into the mixture]
First, with reference to FIG. 3, the change in the water penetration time into the mixture will be described.
The water permeation time into the mixture corresponds to a water content of 8% with respect to this mixture after collecting 20 g of the mixture before mixing and mixing the iron oxide raw material and the reducing material at the above-mentioned ratio. When moisture was added, the time until the added moisture completely penetrated into the mixture was measured. Here, the temperature of the moisture to be added is five types of 0 ° C., 15 ° C., 60 ° C., 80 ° C. and 90 ° C., and in FIG. Show.
 図3を参照すると明らかなように、氷水内の0℃の水分を添加した場合には、15℃の水分を添加した場合に比べて、混合物への水分の浸透時間が増加していることがわかる。また、60℃、80℃及び90℃の水分を添加した場合には、15℃の水分を添加した場合に比べて混合物への水分の浸透時間が減少しており、水分の温度が高くなるほど、浸透時間は減少していることがわかる。図3に示したように、90℃の水分を混合物に添加することで、15℃の水分を添加する場合に比べて60%の時間で水分が浸透し、混合物への水分の浸透時間を40%削減できたことがわかる。このように、60℃以上かつ90℃以下の水分(本例では60℃、80℃及び90℃の水分)を混合物に添加することで、混合物への水分の浸透時間を、大幅に削減することが可能となる。 As is apparent from FIG. 3, when water at 0 ° C. in ice water is added, the water penetration time into the mixture is increased compared to when water at 15 ° C. is added. Recognize. In addition, when water at 60 ° C., 80 ° C., and 90 ° C. was added, the time for water penetration into the mixture decreased compared to when water at 15 ° C. was added, and the higher the water temperature, It can be seen that the infiltration time decreases. As shown in FIG. 3, by adding water at 90 ° C. to the mixture, the water penetrates in 60% of the time compared to the case of adding water at 15 ° C., and the water penetration time into the mixture is 40%. % Can be seen. In this way, by adding moisture of 60 ° C. or higher and 90 ° C. or lower (in this example, moisture of 60 ° C., 80 ° C., and 90 ° C.) to the mixture, the time for water penetration into the mixture is significantly reduced. Is possible.
[ダマの存在割合について]
 続いて、図4を参照しながら、混練後(かつ造粒前)での混合物中に存在するダマの割合の変化について説明する。なお、以下の説明において、「ダマ」とは、混合物をふるい分けした際に残った粒径が5mm以上の塊を示す。本実施例では、15℃、60℃、80℃及び90℃の4種類の温度の水分を添加した、混練後(かつ造粒前)の混合物を採取し、その後ふるい分けして、5mm以上の粒径を有する水分を含有したダマの総重量を計測した。図4では、混練工程において温度が15℃の水分を添加した場合のダマの重量を基準とした場合の割合を示している。
[Dama presence ratio]
Next, a change in the ratio of lumps present in the mixture after kneading (and before granulation) will be described with reference to FIG. In the following description, “dama” refers to a lump having a particle size of 5 mm or more remaining when the mixture is sieved. In the present example, a mixture after kneading (and before granulation) to which water at four temperatures of 15 ° C., 60 ° C., 80 ° C., and 90 ° C. was added was collected, and then sieved to obtain a particle of 5 mm or more. The total weight of lumps containing water having a diameter was measured. FIG. 4 shows a ratio based on the weight of the lump when water having a temperature of 15 ° C. is added in the kneading step.
 図4から明らかなように、混練工程において温度が60℃、80℃及び90℃の水分を利用することで、ダマの存在割合が、15℃の水分を利用したときと比べて減少しており、かつ、水分の温度が高くなるほど、ダマの存在割合の減少度合いが大きいことがわかる。また、混練工程において温度が90℃の水分を利用することで、ダマの存在割合が、15℃の水分を利用したときに比べて約87%まで減少していることがわかる。かかる結果は、60℃以上かつ90℃以下の水分(本例では60℃、80℃及び90℃の水分)を利用することで、水分が混合物に対してより均一に拡散し、混合物中の水分の均一化が実現され、造粒性が向上したことを示している。 As is apparent from FIG. 4, the use of moisture at temperatures of 60 ° C., 80 ° C., and 90 ° C. in the kneading process reduces the presence of lumps compared to when moisture at 15 ° C. is used. In addition, it can be seen that as the temperature of moisture increases, the degree of decrease in the presence of lumps increases. In addition, it can be seen that the use of moisture at a temperature of 90 ° C. in the kneading step reduces the amount of lumps to about 87% compared to when moisture at 15 ° C. is used. This result shows that by using moisture at 60 ° C. or more and 90 ° C. or less (in this example, moisture at 60 ° C., 80 ° C. and 90 ° C.), the moisture diffuses more uniformly into the mixture, and the moisture in the mixture It is shown that the homogenization of the material is realized and the granulation property is improved.
[コーンスターチの溶解割合について]
 次に、本実施例において、有機系バインダーとして利用したコーンスターチに関して、水分への溶解割合が水分の温度の変化によりどのように変化するのかを、実際に測定した。かかる測定において、5.0gのコーンスターチを500mLの水分(水分の温度は、20℃、60℃、80℃、90℃の4種類)に対して添加し、溶け残った溶質量(g)を測定することで、溶解割合を算出した。
[Corn starch dissolution rate]
Next, in this example, with respect to corn starch used as an organic binder, it was actually measured how the rate of dissolution in water changes due to changes in the temperature of water. In this measurement, 5.0 g of corn starch was added to 500 mL of moisture (water temperature was 4 types of 20 ° C., 60 ° C., 80 ° C., and 90 ° C.), and the dissolved mass (g) remaining undissolved was measured. Thus, the dissolution rate was calculated.
 得られた結果を、図5に示す。図5から明らかなように、水分の温度が20℃の水分に対して溶解したコーンスターチの割合は40%であったのに対し、水分の温度が60℃の水分に対しては溶解割合が約48%となり、水分の温度が80℃の水分に対しては溶解割合が約70%となり、水分の温度が90℃の水分に対しては溶解割合が約96%となった。 The obtained results are shown in FIG. As is clear from FIG. 5, the ratio of corn starch dissolved in water having a water temperature of 20 ° C. was 40%, whereas the ratio of dissolution in water having a water temperature of 60 ° C. was about The dissolution rate was about 70% with respect to moisture having a water temperature of 80 ° C., and the dissolution rate was about 96% with respect to moisture having a water temperature of 90 ° C.
 かかる結果は、混練工程において添加する水分の温度を60℃以上かつ90℃以下とすることで、バインダー自身の水分への溶解性が向上することを示しており、バインダーが水分に溶解することで、バインダーの分散効率が向上することを示している。 This result shows that the solubility of the binder itself in the water is improved by setting the temperature of the water added in the kneading step to 60 ° C. or more and 90 ° C. or less, and the binder is dissolved in the water. This shows that the dispersion efficiency of the binder is improved.
[塊成化物の強度の変化について]
 次に、上述のような工程に則して製造した複数種類の塊成化物について、乾燥後における圧壊強度を測定した。圧壊強度の測定は、JIS Z-8841に規定される強度測定方法のうち、圧壊強度の測定方法に則して実施した。
[Changes in strength of agglomerates]
Next, the crushing strength after drying was measured for a plurality of types of agglomerates produced according to the above-described process. The crushing strength was measured according to the crushing strength measuring method among the strength measuring methods specified in JIS Z-8841.
 なお、圧壊強度を測定した塊成化物は、15℃、60℃、80℃、90℃、120℃、160℃、200℃の温度の水分をそれぞれ添加して製造した塊成化物、及び、上記混合物に対して1%のコーンスターチを更に添加(外添)し、上記温度の水分を添加して製造した塊成化物、の計14種類である。また、これらの例以外にも、バインダーの添加量を13%削減した混合物に対して90℃の水分を添加して製造した塊成化物、及び、バインダーの添加量を21%削減した混合物に対して90℃の水分を添加して製造した塊成化物についても、同様に圧壊強度を測定した。なお、製造した塊成化物は、長径が20~30mmの楕円形状を有している。 In addition, the agglomerate which measured crushing strength is the agglomerate manufactured by adding the water of the temperature of 15 degreeC, 60 degreeC, 80 degreeC, 90 degreeC, 120 degreeC, 160 degreeC, and 200 degreeC, respectively, and the said There are a total of 14 types of agglomerates prepared by further adding (externally adding) 1% corn starch to the mixture and adding moisture at the above temperature. In addition to these examples, an agglomerated product produced by adding moisture at 90 ° C. to a mixture in which the amount of binder added is reduced by 13%, and a mixture in which the amount of binder added is reduced by 21%. The crushing strength of the agglomerate produced by adding water at 90 ° C. was measured in the same manner. The agglomerated material produced has an elliptical shape with a major axis of 20 to 30 mm.
 得られた結果を、図6に示す。なお、図6では、バインダーの添加されていない混合物に対して15℃の水分を添加した場合の塊成化物の圧壊強度を1とした相対強度を示している。 The obtained results are shown in FIG. In addition, in FIG. 6, the relative intensity | strength which set the crushing intensity | strength of the agglomerate at the time of adding a 15 degreeC water | moisture content with respect to the mixture in which the binder is not added to 1 is shown.
 図6から明らかなように、バインダーを添加しなかった場合、及び、バインダーを添加した場合の双方において、添加した水分の温度が60℃以上である場合に、圧壊強度が顕著に向上していることがわかる。このように、混練工程において60℃以上の水分を添加することによって、造粒工程における造粒性の向上のみならず、製造される塊成化物の強度を向上させることが可能であることがわかる。また、バインダーを添加しなかった場合、及び、バインダーを添加した場合の双方において、添加した水分の温度が90℃~200℃である場合には、圧壊強度がほぼ一定の値となっていることがわかる。混合物に添加される水分の温度の上限は、混練工程や混練工程の後に実施される各工程で使用される設備の耐熱温度や蒸気供給設備の設備制約等と図5の水分への溶解割合が90℃の水分の温度で100%近くに達していることから、製造される塊成化物の強度を向上させる水分の温度は60℃以上かつ90℃以下が最適である。 As is clear from FIG. 6, the crushing strength is remarkably improved when the temperature of the added water is 60 ° C. or more both in the case where the binder is not added and in the case where the binder is added. I understand that. Thus, it can be seen that by adding moisture at 60 ° C. or higher in the kneading step, it is possible to improve not only the granulation property in the granulation step but also the strength of the agglomerated product to be produced. . In addition, when the temperature of the added water is 90 ° C. to 200 ° C. in both the case where the binder is not added and the case where the binder is added, the crushing strength has a substantially constant value. I understand. The upper limit of the temperature of the water added to the mixture is determined by the kneading step and the heat resistance temperature of the equipment used in each step performed after the kneading step, the equipment restrictions of the steam supply equipment, etc., and the dissolution ratio in water in FIG. Since the temperature of water at 90 ° C. reaches nearly 100%, the temperature of water for improving the strength of the agglomerated product to be produced is optimally 60 ° C. or higher and 90 ° C. or lower.
 次に、バインダーが添加された混合物に対して15℃の水分を添加した場合の強度と、バインダーの添加量を削減した混合物に対して90℃の水分を添加した場合の強度とに着目する。図6から明らかなように、同じ90℃の水分を添加した塊成化物間では、バインダーの添加量を削減することにより、圧壊強度の低下がみられる。しかしながら、バインダーの添加量を13%削減して90℃の水分を添加した塊成化物の圧壊強度は、バインダーを含む混合物に対して80℃の水分を添加した場合の圧壊強度と同程度の値を有しており、バインダーの添加量を21%削減して90℃の水分を添加した塊成化物の圧壊強度は、バインダーを含む混合物に対して15℃の水分を添加した場合の圧壊強度と同程度の値を有していることがわかる。この結果は、60℃以上かつ90℃以下の水分を混合物に対して添加することで、バインダーの添加量を制御可能であることを示しており、本実施形態に係る還元鉄の製造方法を用いることで、還元鉄を製造するための操業の幅を広げることが可能であることを示唆している。 Next, attention is focused on the strength when water at 15 ° C. is added to the mixture to which the binder is added, and the strength when water at 90 ° C. is added to the mixture with the added amount of the binder reduced. As is clear from FIG. 6, between the agglomerates to which the same 90 ° C. moisture was added, a reduction in the crushing strength was observed by reducing the amount of binder added. However, the crushing strength of the agglomerated material in which the amount of binder added is reduced by 13% and water at 90 ° C. is added is the same value as the crushing strength when water at 80 ° C. is added to the mixture containing the binder. The crushing strength of the agglomerated product in which the amount of binder added was reduced by 21% and water at 90 ° C. was added was the crushing strength when water at 15 ° C. was added to the mixture containing the binder. It can be seen that they have similar values. This result indicates that the amount of binder added can be controlled by adding water at 60 ° C. or higher and 90 ° C. or lower to the mixture, and the method for producing reduced iron according to the present embodiment is used. This suggests that it is possible to expand the range of operations for producing reduced iron.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例のみに限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to only such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 本発明の還元鉄の製造方法によれば、還元鉄の原料となる混合物を塊成化する際に造粒性を更に向上させることが可能となる。 According to the method for producing reduced iron of the present invention, it is possible to further improve the granulation property when agglomerating a mixture as a raw material of reduced iron.
 11  ホッパー
12  乾燥機
 13  粉砕機
 15  混練機
 17  成型機
 19  乾燥機
 21  還元炉
 23  溶解炉
DESCRIPTION OF SYMBOLS 11 Hopper 12 Dryer 13 Crusher 15 Kneading machine 17 Molding machine 19 Dryer 21 Reduction furnace 23 Melting furnace

Claims (7)

  1.  共に粉状である酸化鉄原料及び還元材を含む混合物に対して60℃以上かつ90℃以下の水分を添加して混練する混練工程と;
     この混練工程後の前記混合物を塊成化して塊成化物とする造粒工程と;
     この造粒工程後の前記塊成化物を還元して還元鉄を生成する還元工程と;
    を有することを特徴とする、還元鉄の製造方法。
    A kneading step of adding and kneading water at 60 ° C. or higher and 90 ° C. or lower to a mixture containing an iron oxide raw material and a reducing material both in powder form;
    A granulation step of agglomerating the mixture after the kneading step into an agglomerated product;
    A reduction step of reducing the agglomerated product after the granulation step to produce reduced iron;
    A method for producing reduced iron, comprising:
  2.  前記混練工程では、前記混合物に対して、前記水分に可溶なバインダーを更に添加することを特徴とする、請求項1に記載の還元鉄の製造方法。 The method for producing reduced iron according to claim 1, wherein in the kneading step, a binder soluble in moisture is further added to the mixture.
  3.  前記バインダーは、液体状の有機系バインダー又は粉末状の有機系バインダーであることを特徴とする、請求項2に記載の還元鉄の製造方法。 3. The method for producing reduced iron according to claim 2, wherein the binder is a liquid organic binder or a powder organic binder.
  4.  前記バインダーは、前記粉末状の有機系バインダーであり、米、タピオカ、ライ麦及びトウモロコシからなる群から選択される穀物のデンプンであることを特徴とする、請求項3に記載の還元鉄の製造方法。 The method for producing reduced iron according to claim 3, wherein the binder is the powdery organic binder, and is a starch of grains selected from the group consisting of rice, tapioca, rye and corn. .
  5.  前記混練工程で、前記水分の添加により、前記混合物の水分含有率を6%~9%とすることを特徴とする、請求項1に記載の還元鉄の製造方法。 The method for producing reduced iron according to claim 1, wherein in the kneading step, the water content of the mixture is adjusted to 6% to 9% by the addition of the water.
  6.  前記混練工程で混練される前における前記混合物の粒径が、篩下80%粒径で70μm~500μmであることを特徴とする、請求項1に記載の還元鉄の製造方法。 2. The method for producing reduced iron according to claim 1, wherein the particle size of the mixture before kneading in the kneading step is 70 μm to 500 μm with an 80% particle size under sieve.
  7.  前記混練工程で前記水分が添加される前における前記混合物の水分含有率が、1%~3%であることを特徴とする、請求項1に記載の還元鉄の製造方法。 The method for producing reduced iron according to claim 1, wherein the water content of the mixture before the water is added in the kneading step is 1% to 3%.
PCT/JP2011/072310 2010-10-14 2011-09-29 Process for production of reduced iron WO2012049974A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112013008360A BR112013008360A2 (en) 2010-10-14 2011-09-29 reduced iron fabrication method
KR1020137009208A KR20130080844A (en) 2010-10-14 2011-09-29 Process for production of reduced iron
CN2011800491506A CN103154276A (en) 2010-10-14 2011-09-29 Process for production of reduced iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-231512 2010-10-14
JP2010231512A JP5423645B2 (en) 2010-10-14 2010-10-14 Method for producing reduced iron

Publications (1)

Publication Number Publication Date
WO2012049974A1 true WO2012049974A1 (en) 2012-04-19

Family

ID=45938205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072310 WO2012049974A1 (en) 2010-10-14 2011-09-29 Process for production of reduced iron

Country Status (5)

Country Link
JP (1) JP5423645B2 (en)
KR (1) KR20130080844A (en)
CN (1) CN103154276A (en)
BR (1) BR112013008360A2 (en)
WO (1) WO2012049974A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244920B2 (en) * 2014-01-09 2017-12-13 新日鐵住金株式会社 Method and apparatus for heating and drying cement-containing molded product
CN104498709A (en) * 2014-11-20 2015-04-08 湖北丹江口市宝洲冶金材料有限公司 Organic binder and steel mill pipe ash pressed pellet produced by the same
CN104357656A (en) * 2014-11-20 2015-02-18 湖北丹江口市宝洲冶金材料有限公司 Organic adhesive and blast furnace ironmaking pellet prepared from same
KR20200000676A (en) * 2018-06-25 2020-01-03 주식회사 포스코 Fe-CONTAINING BRIQUETTES AND MANUFACTURING METHOD THEREOF
JP7445122B2 (en) 2020-03-18 2024-03-07 日本製鉄株式会社 Method for producing agglomerates and method for producing reduced iron

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342315A (en) * 1986-08-05 1988-02-23 Kobe Steel Ltd Smelting-reduction of ore
JPS6383205A (en) * 1986-09-29 1988-04-13 Nkk Corp Operation of blast furnace
JPH11193423A (en) * 1997-10-30 1999-07-21 Kobe Steel Ltd Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
JP2001303115A (en) * 2000-04-25 2001-10-31 Nippon Steel Corp Method for operating rotary hearth type reduction furnace and reducing facility of metallic oxide
JP2002206120A (en) * 2000-10-30 2002-07-26 Nippon Steel Corp Pellet for use in reducing furnace, its manufacturing method, and method for reducing oxidized metal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762913B2 (en) * 1994-02-25 1998-06-11 株式会社神戸製鋼所 Method for reducing agglomerates of fine iron ore with a solid reducing agent
WO2002036836A1 (en) * 2000-10-30 2002-05-10 Nippon Steel Corporation Metal oxide-containing green pellet for reducing furnace, method for production thereof, method for reduction thereof, and reduction facilities
JP4299548B2 (en) * 2003-01-23 2009-07-22 新日本製鐵株式会社 Method for reducing metal oxide and method for concentrating zinc and lead
JP4348387B2 (en) * 2007-10-19 2009-10-21 新日本製鐵株式会社 Method for producing pre-reduced iron
JP2010196148A (en) * 2009-02-27 2010-09-09 Nippon Steel Corp Iron raw material and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342315A (en) * 1986-08-05 1988-02-23 Kobe Steel Ltd Smelting-reduction of ore
JPS6383205A (en) * 1986-09-29 1988-04-13 Nkk Corp Operation of blast furnace
JPH11193423A (en) * 1997-10-30 1999-07-21 Kobe Steel Ltd Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
JP2001303115A (en) * 2000-04-25 2001-10-31 Nippon Steel Corp Method for operating rotary hearth type reduction furnace and reducing facility of metallic oxide
JP2002206120A (en) * 2000-10-30 2002-07-26 Nippon Steel Corp Pellet for use in reducing furnace, its manufacturing method, and method for reducing oxidized metal

Also Published As

Publication number Publication date
JP5423645B2 (en) 2014-02-19
JP2012082493A (en) 2012-04-26
KR20130080844A (en) 2013-07-15
CN103154276A (en) 2013-06-12
BR112013008360A2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
US7438730B2 (en) Method of producing iron oxide pellets
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
CN101003851A (en) Method for producing high titanium type acid pellet vanadium titanium by chain grate - rotary kiln
US8419824B2 (en) Method for producing briquette, method for producing reduced metal, and method for separating zinc or lead
WO2012049974A1 (en) Process for production of reduced iron
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JPH11193423A (en) Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
JP2007169780A (en) Process for producing sintered ore
RU2449024C2 (en) Method for obtaining direct-reduced iron
CN106414778A (en) Production method of granular metallic iron
JPH1112624A (en) Formation of reduced iron-producing raw material
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP6326074B2 (en) Carbon material interior ore and method for producing the same
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
JP7119856B2 (en) Method for smelting oxide ore
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2014181369A (en) Method of producing reduced iron
JP2011111662A (en) Method for producing molded raw material for producing reduced iron
JPS60248831A (en) Manufacture of uncalcined lump ore
JP2023019428A (en) Smelting method for nickel oxide ore
JP2022092451A (en) Method for smelting nickel oxide ore
JP2022083866A (en) Method for smelting oxide ore
JP5043533B2 (en) Method for drying humidified dust and method for producing reduced iron

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180049150.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137009208

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832412

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013008360

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013008360

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130405