JPS6383205A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPS6383205A
JPS6383205A JP22802686A JP22802686A JPS6383205A JP S6383205 A JPS6383205 A JP S6383205A JP 22802686 A JP22802686 A JP 22802686A JP 22802686 A JP22802686 A JP 22802686A JP S6383205 A JPS6383205 A JP S6383205A
Authority
JP
Japan
Prior art keywords
blast furnace
ore
pellets
furnace
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22802686A
Other languages
Japanese (ja)
Other versions
JPH0422961B2 (en
Inventor
Hiroshi Saito
斉藤 汎
Noboru Sakamoto
登 坂本
Yoshito Iwata
岩田 嘉人
Yotaro Ono
大野 陽太郎
Hideomi Yanaka
谷中 秀臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22802686A priority Critical patent/JPS6383205A/en
Publication of JPS6383205A publication Critical patent/JPS6383205A/en
Publication of JPH0422961B2 publication Critical patent/JPH0422961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the reduction and porosity of agglomerated ore and to quicken gas reduction in a blast furnace by coating pellet surface of granular iron ore by granular solid fuel and charging continuously the calcinated agglomerated ore having the specific grain size into the blast furnace. CONSTITUTION:Flux is added and mixed to the granular iron ore to pelletize and the granular solid fuel is coated on the pellet surface. This green pellet is calcinated in an endless shifting grate type calcination furnace. By this calcination, the calcined pelletizing agglomerated ore having bigger than 4mm grain size and irregular shape is obtd. The agglomerated ore obtd. has characteristics, such as excellent reduction, high porosity, high shatter strength, etc., and is continuously charged into the blast furnace as main raw material. In this way, the fuel ratio and furnace height are lowered and the utilizing ratio for gas is improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、還元性状の優れた焼成塊成鉱特に複数個の
焼成ペレットの不規則形状の集合体からなる塊成鉱を主
原料として、高炉に連続的に装入する高炉操業方法に関
するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a method for producing a blast furnace using calcined agglomerate having excellent reducing properties, particularly agglomerate consisting of an irregularly shaped aggregate of a plurality of calcined pellets, as a main raw material. This relates to a method of operating a blast furnace in which blast furnaces are continuously charged.

〔従来技術〕[Prior art]

近来、高炉又は直接還元用原料として、主原料である粉
粒状鉄鉱石に媒溶剤を添加混合し、得られた混合物を造
粒し、焼成してなる焼成ペレットが用いられる乙とが多
くなってきた。
Recently, as a raw material for blast furnace or direct reduction, fired pellets, which are made by adding and mixing a solvent to powdered granular iron ore, which is the main raw material, and granulating and firing the resulting mixture, have been increasingly used. Ta.

このような焼成ペレットの性状改善のために、従来から
種々の方法が研究されている。
Various methods have been studied to improve the properties of such fired pellets.

例えば特開昭58−9936号には、粒径5m以下を主
要粒度とする粉粒状鉄鉱石に、媒溶剤と粉粒状固体燃料
とを添加し、これらを混合し、得られた混合物を成形し
て、10〜20閣の粒径の生ペレットを調製し、該生ペ
レットを、上向き乾燥ゾーン、下向き乾燥ゾーン、点火
ゾーン及び焼成ゾーンを有する無端移動グレート式焼成
炉に装入して、該焼成炉により連続的に焼成ペレットを
製造することからなる方法が開示されている。
For example, in JP-A No. 58-9936, a solvent and a solid fuel powder are added to powdery iron ore whose main particle size is 5 m or less, these are mixed, and the resulting mixture is molded. Then, raw pellets with a particle size of 10 to 20 mm are prepared, and the raw pellets are charged into an endless moving grate kiln having an upward drying zone, a downward drying zone, an ignition zone, and a firing zone, and the fired pellets are heated. A method is disclosed which consists in producing calcined pellets continuously in a furnace.

然しなから、上記方法は、主原料である粉粒状鉄鉱石の
粒径について配慮されておらず、5IIII!1以下の
幅広い粒径の粉粒状鉄鉱石を使用している。
However, the above method does not take into consideration the particle size of the powdered granular iron ore, which is the main raw material, and 5III! Powdered iron ore with a wide range of particle sizes of 1 or less is used.

従って、主原料中に粗粒鉄鉱石が多い場合は、生ペレッ
トの調製工程において生ペレットがよく固まらないため
、焼成工程において生ペレットが崩壊しやすく、一方、
主原料中に微粉鉄鉱石が多い場合は、焼成工程において
、生ペレッ1−巾から蒸発する水分の逃げる空間がない
ため、化ベレットが水蒸気爆発を起こして崩壊しやすく
なる等の問題がある。
Therefore, if there is a large amount of coarse-grained iron ore in the main raw material, the green pellets will not harden well during the preparation process of the green pellets, and the green pellets will easily disintegrate during the firing process.
If there is a large amount of fine iron ore in the main raw material, there is no space for the moisture that evaporates from the raw pellet width to escape during the firing process, so there are problems such as the pellets becoming more likely to cause a steam explosion and disintegrate.

このため上記方法は、このような生ペレットの崩壊を防
止するために、無端移動グレート式焼成炉(こおいて、
化ベレットをその下方から上方に向けて上向き乾燥し次
いでその上方から下方に向けて下向き乾燥しているが、
このような上向き乾燥及び下向き乾燥を行なった場合は
、化ベレットの乾燥のなめに多くのエネルギーが必要と
なり、コスト高となる。
Therefore, in the above method, in order to prevent such disintegration of raw pellets, an endless moving grate type kiln
The pellet is dried upward from the bottom to the top, and then dried downward from the top to the bottom.
When such upward drying and downward drying are performed, a large amount of energy is required to dry the pellets, resulting in high costs.

更に上記方法における生ペレットの粒径は10〜20m
mであって大きい。生ベレッI・の粒径が大きいと次の
ような問題が起こる。
Furthermore, the particle size of the raw pellets in the above method is 10 to 20 m.
m and large. If the particle size of raw beret I is large, the following problems occur.

(1)生ペレットを乾燥し次いで焼成するときに、化ベ
レットの表面の昇温速度と中心部の昇温速度との差が大
きくなるため、生ペレッ1へが崩壊しやすい。
(1) When the raw pellets are dried and then fired, the difference between the temperature increase rate on the surface of the pellet and the temperature increase rate in the center becomes large, so that the raw pellets 1 are easily disintegrated.

(2)−個の焼成ペレットの粒径は、生ペレットの粒径
と同じであるから、上記のような粒径の焼成ペレットを
高炉用原料として使用すると、高炉内において、還元ガ
スが焼成ぺ1/ツトの中心まで浸透するまでの時間が長
くなる。この結果、焼成ペレッ1−の還元性が劣化し、
且つ上記還元性の劣化によって、1000℃以上の温度
領域での収縮性即ち高温軟化性状が劣化する。
(2) The grain size of the fired pellets is the same as the grain size of the raw pellets, so when fired pellets with the above particle size are used as raw material for a blast furnace, reducing gas flows into the fired pellets in the blast furnace. 1/It takes longer to penetrate to the center of the tube. As a result, the reducibility of the fired pellets 1- deteriorates,
Moreover, due to the deterioration of the reducibility described above, the shrinkage property in a temperature range of 1000° C. or higher, that is, the high temperature softening property is deteriorated.

また特公昭55−27607号には、0.044mm以
下の粒径の微粉を70wtに以上含有する微粉鉄鉱石中
に、0.177〜1.01の粒径の粗粒鉄鉱石を30w
t・%以上添加した主原料を使用して焼成することから
なる焼成ペレットの製造方法が開示されている。
Furthermore, in Japanese Patent Publication No. 55-27607, 30w of coarse iron ore with a particle size of 0.177 to 1.01 is added to fine iron ore containing 70wt or more of fine powder with a particle size of 0.044 mm or less.
A method for producing fired pellets is disclosed, which comprises firing using a main raw material added in an amount of t.% or more.

然しながら上記方法は、微粉鉄鉱石に添加する粗粒鉄鉱
石の粒径が0.177〜1.Ommの範囲であるから、
使用しうろ鉄鉱石の範囲が限られ、且つ、このような粒
径にするためには鉄鉱石を粉砕及び分級しなげければな
らず、粉砕及び分級のための費用を要してコスト高とな
る問題が生ずる。一方生ペレットの粒径が例えば1〜3
 mmのように小さいと、次のような問題が起る。
However, in the above method, the particle size of the coarse iron ore to be added to the fine iron ore is 0.177 to 1. Since it is in the range of Omm,
The range of iron ore that can be used is limited, and the iron ore must be crushed and classified in order to obtain such a particle size, which increases the cost of crushing and classification. A problem arises. On the other hand, the particle size of raw pellets is, for example, 1 to 3
If it is as small as mm, the following problems will occur.

(1)生ペレットの焼成を、無端移動グレート式焼成炉
またばシャフト炉で行う場合は、生ペレット層内通気性
が悪化するため、生ペレットの焼成が不十分となる。
(1) When the raw pellets are fired in an endless moving grate type firing furnace or a shaft furnace, the air permeability within the raw pellet layer deteriorates, resulting in insufficient firing of the raw pellets.

(2)また生ペレットの焼成を、キルン式焼成炉で行う
場合は、生ペレットが小さいために互いに融着し、且っ
キルン内壁に生ぺL・ツトがリング状に付着して、焼成
を円滑に行うことが出来なくなる。
(2) When raw pellets are fired in a kiln-type firing furnace, the raw pellets are small so they fuse together, and the raw pellets stick to the inner wall of the kiln in a ring shape, causing the firing to fail. It will not be possible to do it smoothly.

(3)このような生ペレットを焼成して得られた小粒径
の焼成ペレットを高炉用原料として使用すると、高炉内
に於ける通気性が悪化し、棚吊りやスリップ等が発生し
て円滑な高炉操業を妨げる。
(3) If small-sized fired pellets obtained by firing such raw pellets are used as a raw material for a blast furnace, the ventilation inside the blast furnace will deteriorate, and shelving and slipping will occur, making it difficult to operate smoothly. This impedes blast furnace operation.

上述のような従来方法で製造された焼成ペレットは、何
れも単体の球状からなっており、その安息角は小さい。
The fired pellets produced by the conventional method as described above are each formed into a single spherical shape, and the angle of repose thereof is small.

従って、高炉用原料として高炉内に装入したときに、焼
成ペレットが高炉の中心部に集まるなめ、炉内の通気性
を悪化させる問題がある。
Therefore, when charged into a blast furnace as a raw material for a blast furnace, the fired pellets gather in the center of the blast furnace, resulting in a problem of deterioration of air permeability in the furnace.

乙のような問題を解決するため、特公昭58−5369
7号にば、焼成ペレットが互いにファイアライト相によ
り結合された、複数個の焼成ペレットの集合体からなる
焼成塊成鉱が開示されている。然しながら、このような
焼成塊成鉱は、上述したように、互いにファイアライト
相により結合されているので、還元性状が悪い等の問題
がある。
In order to solve problems like Otsu's, the
No. 7 discloses a calcined agglomerate consisting of an aggregate of a plurality of calcined pellets, in which the calcined pellets are bonded to each other by a fayalite phase. However, as described above, such calcined agglomerate ores are bonded to each other by the fayalite phase, so there are problems such as poor reduction properties.

本出願人は、先に、特願昭59−227944号にて、
高温性状に優れ、高還元性(RI)で、低還元粉化率(
RDI)且つ製品歩留りの高い塊成鉱を得るために、粒
度5 mm以下を主要粒度とする微粉鉄鉱石を原料とし
て、3〜9 mmの粒径に造粒されたミニペレットを焼
成し、拡散結合させてミニペレットの複数個をカルシウ
ムフェライトによる結合で表層部を結合塊成化したこと
を特徴とする塊成鉱及びその製造方法を出願した。
The present applicant previously filed Japanese Patent Application No. 59-227944,
Excellent high-temperature properties, high reducing property (RI), and low reduction powdering rate (
In order to obtain agglomerate ore with a high product yield (RDI) and a high product yield, we use fine iron ore, whose main particle size is 5 mm or less, as a raw material and granulate mini pellets with a particle size of 3 to 9 mm, which are then calcined and dispersed. An application has been filed for an agglomerate and a method for producing the same, which are characterized in that a plurality of mini-pellets are bonded together and agglomerated at the surface layer by bonding with calcium ferrite.

上記方法1よ、粒度5市以下を主要粒度とする微粉鉄鉱
石に媒溶剤を添加して一次造粒し、次にとの造粒物の表
面に粉コークス、粉状チャー、微粉炭、粉状石油コーク
ス等の固体燃料をコーティングする二次造粒を行って、
3〜9 mm粒径のミニペ6一 レットに造粒し、このミニベレットを乾燥、点火、焼成
、冷却ゾーンを有するグレート式焼成炉を用いて焼成し
、ミニペレッ1〜の塊成体を製造することを特徴とする
ものである。
According to method 1 above, fine iron ore with a particle size of 5 or less is primarily granulated by adding a solvent, and then powdered coke, powdered char, pulverized coal, and powder are added to the surface of the granulated material. Secondary granulation is performed to coat solid fuel such as petroleum coke,
Pelletize into 6 mini pellets with a particle size of 3 to 9 mm, and fire the mini pellets using a grate type firing furnace having drying, ignition, firing, and cooling zones to produce an agglomerated body of mini pellets 1 to 1. It is characterized by:

更に本出願人は、特願昭60−138966号にて、粒
径0.044mm以下の微粉を50〜80wtXを含有
する微粉鉄鉱石と、1〜8 mmの粒径の粗粒を30〜
50w1含有する粗粒鉄鉱石とを主原料とし、前記微粉
鉄鉱石を30〜70 w t%と、前記粗粒鉄鉱石を7
0〜30wt%とに媒溶剤を添加して混合し造粒し、そ
の表面に粉状固体燃料を被覆し3〜12mmの粒径の生
ペレットを焼成してなる焼成塊成鉱及びその製造方法を
開示した。
Furthermore, the present applicant has disclosed in Japanese Patent Application No. 138966/1983 that fine powder with a particle size of 0.044 mm or less is mixed with fine iron ore containing 50 to 80 wtX, and coarse particles with a particle size of 1 to 8 mm are mixed with 30 to 80 wtX.
The main raw material is coarse iron ore containing 50 w1, 30 to 70 wt% of the fine iron ore, and 7 wt% of the coarse iron ore.
A calcined agglomerate obtained by adding a solvent to 0 to 30 wt%, mixing and granulating it, coating the surface with powdered solid fuel, and firing raw pellets with a particle size of 3 to 12 mm, and a method for producing the same. disclosed.

これらの焼成塊成鉱は、その表層部が主としてカルシウ
ムフェライト相及びスラグ相の少なくとも一つにより互
いに結合された、複数個の焼成ペレットの不規則形状の
集合体からなるものである。
These calcined agglomerates are composed of irregularly shaped aggregates of a plurality of calcined pellets, the surface layer of which is mainly bonded to each other by at least one of a calcium ferrite phase and a slag phase.

又、その製造方法は、粉粒状鉄鉱石として、粒径0,0
4.4mm以下の微粉を50〜80 w t Xを含有
する微粉鉄鉱石と、1〜8 mmの粒径の粗粒を30〜
50wtX含有する粗粒鉄鉱石とを主原料とし、前記微
粉鉄鉱石を30〜70wt%と、前記粗粒鉄鉱石を70
〜30 w ’t%の割合で配合し、これに前記媒溶剤
を添加して混合し造粒し、得られた造粒物の表面上に粉
状固体燃料を被覆し、3〜1.2 mmの粒径の生ペレ
ットを調製し、このような粒径の生ペレットを、無端移
動グレート式焼成炉に装入し、この無端移動グレート式
焼成炉によって、前記生ペレットを連続的に製造するこ
とを特徴とする製造方法である。
In addition, the manufacturing method is to produce powdered iron ore with a particle size of 0.0.
Fine powder of 4.4 mm or less is mixed with fine iron ore containing 50 to 80 wtX, and coarse particles with a particle size of 1 to 8 mm are mixed with
The main raw material is coarse iron ore containing 50 wtX, 30 to 70 wt% of the fine iron ore, and 70 wt% of the coarse iron ore.
The solid fuel is blended at a ratio of ~30 w't%, the solvent is added thereto, mixed and granulated, and the surface of the resulting granules is coated with powdered solid fuel. Prepare green pellets with a particle size of mm, charge the green pellets with such a particle size into an endless moving grate type kiln, and continuously produce the green pellets by this endless moving grate type kiln. This manufacturing method is characterized by the following.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、前述の如く本出願人が開示した塊成鉱の製造
方法において、得られた還元性状並びに気孔率に富み、
シャッター強度の高い塊成鉱を主原料として高炉に装入
する高炉操業方法を提供するにある。
The present invention provides a method for producing agglomerated ore disclosed by the applicant as described above, which has high reducing properties and high porosity,
An object of the present invention is to provide a method for operating a blast furnace in which agglomerated ore with high shutter strength is charged as a main raw material into a blast furnace.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、粉粒状鉄鉱石に媒溶剤を添加、混合。 The present invention involves adding and mixing a solvent to powdered granular iron ore.

造粒し、得られた造粒物の表面に粉粒状固体燃料を被覆
し生ペレッ1−を調整し、前記生ペレットを、無端移動
グレート式焼成炉に装入して焼成することからなる+4
 mm粒径の焼成ペレットの不規則形状の塊成鉱を主原
料として、高炉に連続的に装入する高炉操業方法である
+4 consisting of granulating, coating the surface of the obtained granules with powdered solid fuel to prepare raw pellets 1-, and charging the raw pellets into an endless moving grate type firing furnace and firing them.
This is a blast furnace operating method in which irregularly shaped agglomerated ore made of calcined pellets with a particle size of mm is used as the main raw material and is continuously charged into the blast furnace.

〔作用〕[Effect]

本願発明1よ、前述の本出願人による塊成鉱の製造方法
にて製造された塊成鉱並びにその後出願した特願昭61
−13666号の「塊成鉱の製造方法及び装置」、特願
昭61−16910号、特願昭61.−16911号、
特願昭61−16912号、特願昭61−16913号
の「塊成鉱の製造方法」により製造された塊成鉱(以下
本塊成鉱乙れらの製造方法にて焼成された塊成鉱は、次
の第1表に示す如き特性を有するものである。
Invention 1, agglomerate ore produced by the above-mentioned method for producing agglomerate ore by the present applicant and the patent application filed in 1983
-13666, ``Method and apparatus for producing agglomerated ore'', Japanese Patent Application No. 16910-1983, Japanese Patent Application No. 1983-1983. -16911,
The agglomerate produced by the "method for producing agglomerate" in Japanese Patent Application No. 16912/1982 and Patent Application No. 16913/1982 (hereinafter referred to as "agglomerate") The ore has properties as shown in Table 1 below.

第1表に示す如く本塊成鉱の特性は、焼結鉱に比して優
れたものである。
As shown in Table 1, the properties of this agglomerated ore are superior to those of sintered ore.

第1表 特に被還元性に優れているため、高炉に主原料として装
入する高炉操業においては、燃料比の低減が期待される
ので、本発明者等は、後述する実施例に示す如く、シュ
ミレーシジンモデルによって本塊成鉱を通常高炉並びに
酸素高炉の二者に使用した時の還元の進行、燃料比への
効果を確認した結果、 (1)高炉内のガス還元が速くなり、高炉下部のソリュ
ーションロス景が減少し、熱余裕が出るため、炉下部の
固体温度が上昇する。
Table 1 Since it has particularly excellent reducibility, it is expected that the fuel ratio will be reduced in blast furnace operation where it is charged as the main raw material into the blast furnace. Using a simulation model, we confirmed the progress of reduction and the effect on the fuel ratio when this agglomerate was used in both a normal blast furnace and an oxygen blast furnace. (1) Gas reduction in the blast furnace became faster and the lower part of the blast furnace The solid temperature in the lower part of the furnace increases because the solution loss is reduced and a heat margin is created.

(2)羽口レベルの固体温度(溶銑温度)一定の観点か
ら、本塊成鉱の場合、通常高炉で1よ、コークス原単位
が焼結鉱に比して、26kg、/Tの減少となる。酸素
高炉では、通常焼結鉱でも還元が速いため、本塊成鉱と
の差は小さい。酸素高炉では炉高172でも還元可能で
あり、このとき本塊成鉱を用いると燃料比が10kg/
Tの減少となる。
(2) From the perspective of a constant solid temperature (hot metal temperature) at the tuyere level, in the case of this agglomerated ore, the coke consumption rate is reduced by 26 kg/T compared to sintered ore, compared to 1 in a normal blast furnace. Become. In an oxygen blast furnace, even normal sintered ore is reduced quickly, so the difference between it and real agglomerated ore is small. In an oxygen blast furnace, reduction is possible even at a furnace height of 172, and at this time, if this agglomerate is used, the fuel ratio is 10 kg/
This results in a decrease in T.

(3)本塊成鉱を高炉に使用するとき、燃料比が下がる
ため、炉頂ガス利用率は第7図に示す如く向上する。ま
た還元が速いため、通常焼結鉱に比べて、同一還元率で
の固体温度は低くなり、第8図に示す如くW□点での平
衡ηが大きくなる。
(3) When this agglomerated ore is used in a blast furnace, the fuel ratio is reduced, so the top gas utilization rate is improved as shown in FIG. 7. Furthermore, since the reduction is rapid, the solid temperature at the same reduction rate is lower than that of normal sintered ore, and the equilibrium η at the W□ point becomes large as shown in FIG.

更に後述する実施例に示す如く、本塊成鉱のハンドリン
グ強度は、焼結鉱に比して、SI+10指数は稍々低い
が、SI+、指数では高く問題がないことが確認された
Further, as shown in the examples described later, it was confirmed that the handling strength of the present agglomerated ore is slightly lower than that of sintered ore in terms of SI+10 index, but high in terms of SI+ and index, and there is no problem.

本塊成鉱を主要原料として、高炉に装入した場合、被還
元性状2強度に優れた組織の不規則形状の焼成ベレット
からなるため、高炉における燃料比の低下、炉高の低減
並びに炉頂ガス利用率の向上等の効果を奏するものであ
る。
When this agglomerate is used as the main raw material and charged into a blast furnace, it consists of fired pellets with an irregularly shaped structure that has excellent reducibility properties and strength, resulting in a reduction in the fuel ratio in the blast furnace, a reduction in the furnace height, and a reduction in the furnace top. This has the effect of improving the gas utilization rate.

次Zこ本発明の実施例を示す。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

実施例 1 本塊成鉱を高炉に使用した時の還元の進行、燃料比への
効果を通常高炉、酸素高炉の二者について、シュミレー
ションモデルによって行った。
Example 1 The progress of reduction and the effect on the fuel ratio when this agglomerated ore was used in a blast furnace were investigated using a simulation model for both a normal blast furnace and an oxygen blast furnace.

数式モデルとして「非定常1次モデル」を用い、定常状
態を計算する。
A steady state is calculated using an "unsteady first-order model" as a mathematical model.

本塊成鉱の組織は、この試験で用いた拡散組織に類似し
ているので、このデータを適用し、本塊成鉱は焼結鉱に
比べて拡散率は2倍2反応速度常数は同じ値として計算
した。(拡散率は、C02系、H2系の3段階の値を一
律に2倍にする。)計算の対象として、通常高炉、酸素
高炉の夫々について検討を行った。
The structure of this agglomerate is similar to the diffusion structure used in this test, so this data is applied, and the diffusivity of this agglomerate is twice that of sintered ore.2The reaction rate constant is the same. Calculated as a value. (The diffusivity is uniformly doubled for the three stages of C02 system and H2 system.) As objects of calculation, a normal blast furnace and an oxygen blast furnace were examined respectively.

第2表に基準条件を示す。Table 2 shows the standard conditions.

第  2  表 ネ1同一とする。Table 2 Ne1 is the same.

ネ2計算結果 以上に基づいて、求めた結果は次の通りである。Ne2 calculation results Based on the above, the results obtained are as follows.

(1)還元率、固体温度の対比について、第1図並びに
第2図に、通常高炉並びに酸素高炉におけるストックラ
インからの距離における全還元率とコークス反応率とを
対比して示す。
(1) Concerning the comparison of reduction rate and solid temperature, Figures 1 and 2 show a comparison of the total reduction rate and the coke reaction rate at the distance from the stock line in a normal blast furnace and an oxygen blast furnace.

第3図並びに第4図に、通常高炉並びに酸素高炉におけ
るストックラインからの距離における固体温度の変化を
対比して示す。
FIG. 3 and FIG. 4 compare changes in solid temperature with respect to the distance from the stock line in a normal blast furnace and an oxygen blast furnace.

図示する如く、本塊成鉱を用いた場合、ガス還元が速く
なり、炉下部のソリューションロス量が減少し、熱余裕
が出るため、その結果として炉下部の固体温度が上昇す
る。
As shown in the figure, when this agglomerated ore is used, gas reduction becomes faster, the amount of solution loss in the lower part of the furnace is reduced, and a heat margin is created, resulting in an increase in the solid temperature in the lower part of the furnace.

即ち同一燃料比で本塊成鉱を用いた場合溶銑温度が上昇
することとなる。
That is, when this agglomerate is used at the same fuel ratio, the hot metal temperature will increase.

(21m N比への効果について、 第5図並びに第6@に燃料比FR(kg /T)と羽口
レベル固体温度T、並びにコークス反応率との変化をグ
ラフにて示す。
(21m Regarding the effect on the N ratio, Figures 5 and 6 show graphs of changes in fuel ratio FR (kg/T), tuyere level solid temperature T, and coke reaction rate.

尚図中の数字は拡散率への乗数(1:焼結w、2:塊成
鉱)を示す。
The numbers in the figure indicate multipliers to the diffusivity (1: sintered w, 2: agglomerated ore).

羽口レベルの固体温度T5一定(溶銑温度一定)の観点
から、図示する如く本塊成鉱の場合、通常高炉では燃料
比482→45Bkg/T、即ち26kg/Tの減とな
る。酸素高炉では、通常焼結鉱でも還元速度が速いため
、塊成鉱との差は小さい。
From the viewpoint of a constant solid temperature T5 at the tuyere level (constant hot metal temperature), as shown in the figure, in the case of this agglomerated ore, the fuel ratio in a normal blast furnace is 482 → 45 Bkg/T, that is, a decrease of 26 kg/T. In an oxygen blast furnace, even sintered ore has a fast reduction rate, so the difference between it and agglomerated ore is small.

酸素高炉では、本塊成鉱を用いた場合炉高を172にし
ても還元可能であり、この時本塊成鉱の場合、燃料比は
10kg/Tの減となる。
In an oxygen blast furnace, when this agglomerate ore is used, reduction is possible even if the furnace height is set to 172, and at this time, in the case of this agglomerate ore, the fuel ratio is reduced by 10 kg/T.

(3)リスト線図による比較 第7図は燃料比FR(kg /T)とガス利用率l、。(3) Comparison using list diagram Figure 7 shows the fuel ratio FR (kg/T) and gas utilization rate l.

アとの関係グラフ、第8図は燃料比FRCkg /Tl
と平衡高度’r w (℃)との関係グラフである。
Figure 8 shows the relationship graph with fuel ratio FRCkg/Tl.
It is a graph showing the relationship between the equilibrium height 'r w (°C) and the equilibrium height 'r w (°C).

第7図に示す如く、本塊成鉱を使用する時は、燃料比は
下がるため炉頂ガス利用率η、。アは向上する。
As shown in Fig. 7, when using this agglomerate ore, the fuel ratio decreases, so the top gas utilization rate η. A will improve.

又第8図に示す如く、通常焼結鉱に比べて、同一還元率
での固体温度は低くなり、この結果W点での平衡qが大
きくなる。
Moreover, as shown in FIG. 8, the solid temperature at the same reduction rate is lower than that of normal sintered ore, and as a result, the equilibrium q at point W becomes larger.

以上の結果をリス)・線図に図示すれば、第9(1)〜
9(3)図の如くなる。
If the above results are illustrated in a diagram, Section 9 (1) -
9(3) As shown in the figure.

実施例2 次に本発明方法を実施するための塊成鉱製造工程図を第
10図に示す。
Example 2 Next, FIG. 10 shows a process diagram for producing agglomerated ore for carrying out the method of the present invention.

第10図において、(1)〜(3)は供用原料ホッパー
、(4)は媒溶剤、蛇紋岩ホッパー、(5)は返鉱ポツ
パー、(6)は生石灰ホッパー、(7)は供用原料のド
ラム型ミキサー、(8)は−次造粒用デスクタイプペレ
タイザー、(91はペレットスクリーン、00)は二次
造粒用デスクタイプペレタイザー、(11)は固体燃料
(C0D、Q粉コークス)の粉コークスホッパー、(1
2)は生ペレッ1〜装入装置、(13)は移動式グレー
ト焼成炉、(14)床敷ホッパー、(15)はレーヤー
、(16)は電気集塵機、(17)はメーンブロヮー、
、 (18)はクラッシャー、(19)はホットグリズ
リ−1(20)は固定グリズリ−1(21)はクーラー
、(22)は焼成ペレットスクリーン、(23)はダブ
ルロールクラッシャー、(24)は循環ファン、(13
1)は乾燥ゾーン、(132)は点火シーツ、(132
a)は点火炉、(133)は冷却ゾーン、(134)は
パし・ット、(135)は風箱である。
In Figure 10, (1) to (3) are the raw material hoppers in service, (4) are the solvent and serpentine hoppers, (5) are the return ore poppers, (6) are the quicklime hoppers, and (7) are the raw materials in service. Drum type mixer, (8) is a desk type pelletizer for secondary granulation, (91 is a pellet screen, 00) is a desk type pelletizer for secondary granulation, (11) is solid fuel (C0D, Q coke powder) powder Coke hopper, (1
2) is raw pellet 1 ~ charging device, (13) is a mobile grate kiln, (14) bedding hopper, (15) is a layer, (16) is an electrostatic precipitator, (17) is a main blower,
, (18) is a crusher, (19) is a hot grizzly-1 (20) is a fixed grizzly-1 (21) is a cooler, (22) is a fired pellet screen, (23) is a double roll crusher, (24) is a circulation Fan (13
1) is the drying zone, (132) is the ignition sheet, (132)
a) is the ignition furnace, (133) is the cooling zone, (134) is the pad, and (135) is the wind box.

又第3表に本実施例において用いた原料の化学成分並び
に粒度構成を示す。
Further, Table 3 shows the chemical composition and particle size structure of the raw materials used in this example.

先ず原料ホッパー(1)〜(6)に本発明の塊成鉱製造
用原料として微粉鉄鉱石A、B粉B(−8mm)。
First, fine iron ore A and B powder B (-8 mm) are placed in raw material hoppers (1) to (6) as raw materials for producing agglomerated ore of the present invention.

媒溶剤として蛇紋岩C1並びに4關未満の塊成鉱の返鉱
を夫々貯わえ、これら原料をミクサー(7)にて、所定
配合割合にて水を添加、混合し、−次造粒用デスクタイ
プベレタイザー(8)に装入し一次造粒する。
As a solvent, serpentinite C1 and return ore of less than 4 degrees of agglomerate are stored, and water is added and mixed at a predetermined mixing ratio to these raw materials in a mixer (7) for next granulation. Charge it to a desk type beretizer (8) and perform primary granulation.

造粒された一次造粒物はペレタイザー(8)の回転によ
り、壁を越えて溢流し、4.mmペレットスクリーン(
9&)にて篩分けられ、−4mm粒径の造粒物は一次造
粒用デスクタイプペレタイザー(8)に繰り返され、+
4 mm造粒物は25mmスクリーン(9b)にて篩分
けし、−25mm造粒物は二次造粒用ペレタイザー(1
0)に装入する。
The granulated primary granules overflow over the wall due to the rotation of the pelletizer (8), and 4. mm pellet screen (
The granulated material with a particle size of -4 mm is passed through the desk-type pelletizer (8) for primary granulation, and then
The 4 mm granules were sieved with a 25 mm screen (9b), and the -25 mm granules were sieved with a pelletizer for secondary granulation (1
0).

一方固体燃料F例えばC,D、Q粉コークスはホッパー
(11)より、二次造粒用ペレタイザー(10)に装入
され、−次造粒物の表面に前記C,D。
On the other hand, solid fuel F, for example, C, D, and Q coke powder, is charged from a hopper (11) to a pelletizer (10) for secondary granulation, and the above-mentioned C and D are deposited on the surface of the secondary granules.

Q粉コークスEをコーティングし、二次造粒し、4〜1
0岨粒径の生ペレットが得られる。
Q Coating powder coke E, secondary granulation, 4-1
A green pellet with a particle size of 0.0 m is obtained.

〜17− 第3表 原料の化学成分並びに粒度構成(,1)これら
造粒に当たっての造粒条件を第4表に示す。
~17- Table 3 Chemical composition and particle size structure of raw materials (1) Table 4 shows the granulation conditions for these granules.

第4表 造粒条件 次に得られた生ペレットを移動グレート式焼成炉(13
)を用いて焼成する。
Table 4 Granulation conditions
).

この焼成炉(13)は、乾燥ゾーン(131)、点火ゾ
ーン(132)及び焼成、冷却ゾーン(133)からな
り、生ペレットがパレット(134)のグレート上に装
入され、上記各シーツを生ベレットを載せたグレートが
通過出来るように設置されている。
This firing furnace (13) consists of a drying zone (131), an ignition zone (132), and a firing and cooling zone (133), in which raw pellets are charged onto the grate of a pallet (134), and each of the above-mentioned sheets is produced. It is set up so that a grate carrying a pellet can pass through.

主原料である生ベレン1−は、ロールフィーターを介し
て、パレッ1− (134)のグレート上部に厚み50
mmにて敷かれた床敷鉱の上部に装入され、全レーヤー
(15)の層厚を350〜450Mにし、焼成を開始す
る。乾燥ゾーン(131)は下向き乾燥であって、その
熱源として焼成、冷却ゾーン(133)の高温部分の廃
ガスを風箱(135)から循環ファン(24)により回
収し、この廃ガスの熱を利用し、グリーンペレットを乾
燥する。
Raw belen 1-, the main raw material, is passed through a roll feeder onto the top of the grate of pallet 1- (134) to a thickness of 50 mm.
The layer (15) is charged onto the top of the bedding ore laid with a thickness of 350 to 450 mm, and firing is started. The drying zone (131) is a downward drying type, and its heat source is the firing, and the waste gas from the high temperature part of the cooling zone (133) is recovered from the wind box (135) by a circulation fan (24), and the heat of this waste gas is recovered. Use and dry the green pellets.

また点火ゾーン(132)の点火炉(132a)にて生
ペレットの上層に着火する。
Further, the upper layer of the green pellets is ignited in the ignition furnace (132a) of the ignition zone (132).

焼成、冷却ゾーン(133)で焼成、冷却された生ペレ
ットは、塊状体となっており、次のクラッシャー(18
)で粉砕され、スクリーン(22)により、4mm以上
の塊状体が製品塊成鉱となる。
The raw pellets that have been fired and cooled in the firing and cooling zone (133) are in the form of lumps, and are sent to the next crusher (18).
), and the agglomerates with a size of 4 mm or more are turned into product agglomerates through a screen (22).

−4mmの篩下銃は返鉱として床敷鉱として再利用され
る。尚パレッ1. (134)下方の風箱(135)か
ら電気集塵機(j6)を介して排出されたガス1よメー
ンブロワ−(17)により、系外に排出される。
-4mm sieve gun is reused as bedding ore as return ore. Palette 1. (134) Gas 1 discharged from the lower wind box (135) via the electrostatic precipitator (j6) is discharged to the outside of the system by the main blower (17).

以上の焼成工程における焼成条件を下記第5表に示す。The firing conditions in the above firing process are shown in Table 5 below.

次に第10図の焼成装置を用いて、第4〜第5表の造粒
、焼成条件により、塊成鉱を製造した。
Next, agglomerated ore was produced using the sintering apparatus shown in FIG. 10 and according to the granulation and sintering conditions shown in Tables 4 and 5.

その試験成績を第6表に示す。The test results are shown in Table 6.

得られた塊成鉱の組織は、拡散結合で結合し、微細型カ
ルシウムフエライI・と微細型へマタイトからなり、ミ
クロボアが各所に平均的に散在したものである。
The structure of the obtained agglomerate is composed of fine calcium ferrite I and fine hematite, which are bonded together by diffusion bonding, and microbores are evenly scattered in various places.

更に、本塊成鉱の高炉に装入した場合のハンドリング強
度を確認するため連続シャッター試験を行った。
Furthermore, a continuous shutter test was conducted to confirm the handling strength of this agglomerate when it was charged into a blast furnace.

第11図は、本塊成鉱と焼結鉱との連続シャッター試験
の結果求めたSI+1゜、 s i ++(”)と落下
回数(N)との関係グラフである。
FIG. 11 is a graph showing the relationship between SI+1°, s i ++ ('') and the number of falls (N) obtained as a result of a continuous shutter test of the present agglomerated ore and sintered ore.

図示する如/、+10mm粒度%の少ない#2試験の塊
成鉱のSエヤ、。は焼結鉱に比較し、稍々低下している
が、SI+5では高く、本塊成鉱は、焼結鉱に比し強度
についても優れ、高炉に装入しても問題ないことがi認
された。
As shown, #2 test agglomerate S air with less +10mm particle size %. Although it is slightly lower than that of sintered ore, it is high at SI+5, indicating that this agglomerated ore has superior strength compared to sintered ore, and there is no problem when charging it into a blast furnace. It was done.

第 6 表 試験成績 〔発明の効果〕 粉粒状鉄鉱石に媒溶剤を添加2混合、造粒し、得られた
造粒物の表面に粉粒状固体燃料を被覆し、生ペレットを
調製し、前記生ペレットを無端移動グレート式焼成炉に
装入し、焼成することからなる焼成ペレットの不規則形
状の塊成鉱は、還元性状が優れ、気孔に富み且つ強度も
固く、高炉内で崩壊するもではないので、焼結鉱の代替
として高炉に装入すると、燃料比の低下、炉高の低下、
ガス利用率の向上等が期待されるものである。
Table 6 Test Results [Effects of the Invention] A solvent was added to powdered granular iron ore, mixed, and granulated, the surface of the resulting granules was coated with powdered solid fuel, raw pellets were prepared, and the The irregularly shaped agglomerates of fired pellets, which are produced by charging raw pellets into an endless moving grate firing furnace and firing them, have excellent reducing properties, are rich in pores, and are hard and strong, and do not disintegrate in the blast furnace. Therefore, if it is charged into a blast furnace as a substitute for sintered ore, the fuel ratio will decrease, the furnace height will decrease,
This is expected to improve the gas utilization rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、夫々通常高炉並びに酸素高炉にお
けるス1−ツクラインからの距離における全還元率のグ
ラフ、第3図及び第4図は夫々通常高炉並びに酸素高炉
におけるス1−ツクラインからの距離における固体温度
のグラフ、第5図及び第6図は夫々燃料比FR(kg 
/T)と羽ロレベル固体渇度T6並びにコークス反応率
との変化を示すグラフ、第7図は燃料比FR(kg /
T)とガス利用率η、。アとの関係グラフ、第8図は燃
料比FR(kg/T)と平衡温度(135)= i箱で
ある。 Tw(℃)との関係グラフ、第9 (1)、9 (3)
図は夫々リスト線図、第10図は本発明方法を実施する
ための塊成鉱製造工程図、第11図は実施例2における
塊成鉱と焼結鉱の連続シャッター試験のS■ヤ、。、S
I+s(%)と落下回数(N)との関係グラフである。
Figures 1 and 2 are graphs of the total reduction rate as a function of distance from the line in a conventional blast furnace and an oxygen blast furnace, respectively, and Figures 3 and 4 are graphs from the line in a conventional blast furnace and an oxygen blast furnace, respectively. The graphs of solid temperature at a distance of , Figures 5 and 6 respectively show the fuel ratio FR (kg
Figure 7 is a graph showing changes in the fuel ratio FR (kg/T), the solid thirst level T6, and the coke reaction rate.
T) and gas utilization rate η,. Figure 8 shows the relationship between fuel ratio FR (kg/T) and equilibrium temperature (135) = i box. Relationship graph with Tw (℃), No. 9 (1), 9 (3)
The figures are respectively list diagrams, Fig. 10 is a process diagram for producing agglomerate ore for carrying out the method of the present invention, and Fig. 11 is a continuous shutter test of agglomerate and sintered ore in Example 2. . , S
It is a relationship graph between I+s (%) and the number of falls (N).

Claims (1)

【特許請求の範囲】[Claims] 粉粒状鉄鉱石に媒溶剤を添加、混合、造粒し、得られた
造粒物の表面に粉粒状固体燃料を被覆し生ペレットを調
整し、前記生ペレットを、無端移動グレート式焼成炉に
装入して焼成することからなる+4mm粒径の焼成ペレ
ットの不規則形状の塊成鉱を主原料として、高炉に連続
的に装入することを特徴とする高炉操業方法。
A solvent is added to granular iron ore, mixed, and granulated, the surface of the resulting granules is coated with granular solid fuel to prepare raw pellets, and the raw pellets are placed in an endless moving grate type kiln. A method of operating a blast furnace characterized in that irregularly shaped agglomerates of fired pellets with a particle size of +4 mm are continuously charged into a blast furnace as a main raw material.
JP22802686A 1986-09-29 1986-09-29 Operation of blast furnace Granted JPS6383205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22802686A JPS6383205A (en) 1986-09-29 1986-09-29 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22802686A JPS6383205A (en) 1986-09-29 1986-09-29 Operation of blast furnace

Publications (2)

Publication Number Publication Date
JPS6383205A true JPS6383205A (en) 1988-04-13
JPH0422961B2 JPH0422961B2 (en) 1992-04-21

Family

ID=16870032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22802686A Granted JPS6383205A (en) 1986-09-29 1986-09-29 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPS6383205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578253A1 (en) * 1986-12-15 1994-01-12 Nippon Kokan Kabushiki Kaisha Method for manufacturing agglomerates of fired pellets
JP2009019252A (en) * 2007-07-13 2009-01-29 Nippon Steel Corp Iron source raw material for blast furnace and its manufacturing method
WO2012049974A1 (en) * 2010-10-14 2012-04-19 新日本製鐵株式会社 Process for production of reduced iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578253A1 (en) * 1986-12-15 1994-01-12 Nippon Kokan Kabushiki Kaisha Method for manufacturing agglomerates of fired pellets
JP2009019252A (en) * 2007-07-13 2009-01-29 Nippon Steel Corp Iron source raw material for blast furnace and its manufacturing method
WO2012049974A1 (en) * 2010-10-14 2012-04-19 新日本製鐵株式会社 Process for production of reduced iron
CN103154276A (en) * 2010-10-14 2013-06-12 新日铁住金株式会社 Process for production of reduced iron

Also Published As

Publication number Publication date
JPH0422961B2 (en) 1992-04-21

Similar Documents

Publication Publication Date Title
JPH0465132B2 (en)
JPH024658B2 (en)
US3759693A (en) Method of producing reduced iron ore pellets
JPS589936A (en) Manufacture of agglomerated ore
TWI649429B (en) Manufacturing method of sintered ore
JP4022941B2 (en) Method for forming reduced iron production raw material
JPS6383205A (en) Operation of blast furnace
JPS62174333A (en) Production of lump ore
JP6333770B2 (en) Method for producing ferronickel
JPS63149333A (en) Coating method for powdery coke on green pellet for burnt agglomerated ore
JPS63149336A (en) Production of burnt agglomerated ore
JPH0430442B2 (en)
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JPS62177128A (en) Manufacture of briquetted ore
WO2017221774A1 (en) Method for manufacturing carbon-material-incorporated sintered ore
JP2755042B2 (en) Method for producing calcined agglomerate
JPS62177129A (en) Manufacture of briquetted ore
JPS62177131A (en) Manufacture of briquetted ore
JPS62177130A (en) Manufacture of briquetted ore
JP2755036B2 (en) Method for producing calcined agglomerate
JPS62174335A (en) Method and apparatus for producing lump ore
JP2022137928A (en) Granule and method for producing granule
JP2009019241A (en) Method for operating blast furnace using non-fired agglomerated ore
JPS63149332A (en) Production of burnt agglomerated ore
JPS63149335A (en) Production of burnt agglomerated ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees