JPS63149335A - Production of burnt agglomerated ore - Google Patents

Production of burnt agglomerated ore

Info

Publication number
JPS63149335A
JPS63149335A JP29669186A JP29669186A JPS63149335A JP S63149335 A JPS63149335 A JP S63149335A JP 29669186 A JP29669186 A JP 29669186A JP 29669186 A JP29669186 A JP 29669186A JP S63149335 A JPS63149335 A JP S63149335A
Authority
JP
Japan
Prior art keywords
ore
iron ore
calcined
grain size
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29669186A
Other languages
Japanese (ja)
Other versions
JPH0430444B2 (en
Inventor
Noboru Sakamoto
登 坂本
Hidetoshi Noda
野田 英俊
Hideomi Yanaka
谷中 秀臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29669186A priority Critical patent/JPS63149335A/en
Priority to IN357/BOM/87A priority patent/IN167132B/en
Priority to AU82221/87A priority patent/AU600777B2/en
Priority to US07/131,660 priority patent/US4851038A/en
Priority to CA000554134A priority patent/CA1324493C/en
Priority to DE3752270T priority patent/DE3752270T2/en
Priority to EP93111020A priority patent/EP0578253B1/en
Priority to DE3751747T priority patent/DE3751747T2/en
Priority to EP87118525A priority patent/EP0271863B1/en
Priority to BR8706790A priority patent/BR8706790A/en
Priority to CN87108122A priority patent/CN1016184B/en
Priority to KR1019870014415A priority patent/KR910001325B1/en
Publication of JPS63149335A publication Critical patent/JPS63149335A/en
Publication of JPH0430444B2 publication Critical patent/JPH0430444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the reducing ratio and the dropping strength for burnt agglomerated ore by making raw material fine powdery iron ore of specific grain size at the time of producing green pellet for raw material of burnt agglomerated ore by coating powdery coke on the surface, after pelletizing by adding flux to the fine powdery iron ore. CONSTITUTION:At the time of producing the burnt agglomerated ore as the raw material for blast furnace or the raw material for directly reducing iron- making by an endlessly moving grate type burning furnace, the fine powdery iron ore having grain size distribution of 10-80% of <44mum grain size and the remaining part of >=44mum grain size is used as the raw material. Flux, such as lime, slaked lime, limestone, bentonite, dolomite, water granulated blast furnace slag, etc., is added to this, and kneaded together with water and pelletized into the green pellet having 3-13mm grain size and coated by 2.5-4.0wt% ratio of powdery coke on the surface. By burning this green pellet in the endless moving grate type burning furnace, the burnt agglomerated ore having excellent dropping strength and reducing ratio is produced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高炉用または直接還元鉄用原料として好適
な焼成塊成鉱の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing calcined agglomerates suitable as raw materials for blast furnaces or directly reduced iron.

〔従来技術とその問題点〕[Prior art and its problems]

高炉用原料または直接還元製鉄用原料として、粉鉄鉱石
をペレット化して焼成した焼成塊成鉱が知られており、
使用が拡大されつつある。
Calcined agglomerate, which is made by pelletizing powdered iron ore and calcining it, is known as a raw material for blast furnaces or direct reduction iron manufacturing.
Its use is expanding.

この焼成塊成鉱は、通常、次のように製造されている。This calcined agglomerate ore is usually produced as follows.

すなわち、粒径約8襲以下の粉鉄鉱石に、生石灰、消石
灰1石灰石、ベントナイト、高炉水砕スラグおよびドロ
マイト等のうちの少なくとも1つからなる媒溶剤を、焼
成塊成鉱中のCaO/5i02 の値が1.0〜2.5
程度となるように添加し、ミキサーで混合する。そして
、得られた混合物をディスク型の第1の造粒機に供給し
、水を加えて、第10造粒機によυ混合物を造粒し、粒
径が例えば約3〜13mの生ベレットに成形する。次い
で、得られた生ペレットをディスク型の第2の造粒機に
供給し、2.5〜4.Owt%程度の粉コークスを添加
して、第2の造粒機によυ生ペレットを更に造粒し、こ
れによって表面に粉コークスを被覆した生ベレットを調
製する。
That is, a solvent consisting of at least one of quicklime, slaked limestone, bentonite, granulated blast furnace slag, dolomite, etc. is added to powdered iron ore with a particle size of about 8 or less, and CaO/5i02 in the calcined agglomerated ore is added. The value of is 1.0 to 2.5
Add to the desired amount and mix with a mixer. Then, the obtained mixture is supplied to a disk-shaped first granulator, water is added thereto, and the υ mixture is granulated by a tenth granulator to form raw pellets with a particle size of, for example, about 3 to 13 m. Form into. Next, the obtained raw pellets are fed to a second disc-shaped granulator, and the steps 2.5 to 4. Approximately Owt% of coke powder is added and the raw pellets are further granulated by a second granulator, thereby preparing green pellets whose surfaces are coated with coke powder.

そして、このようにして得られた生ペレットを無端移動
グレート式焼成炉内に装入して、装入された生ペレット
の層を焼成炉のグレート上に乗って、焼成炉の乾燥帯、
点火帯および焼成帯を順次通過させる。乾燥帯において
は、生ベレットの層に上方から温度150〜350℃の
乾燥用ガスを吹込み、生ベレットを乾燥する。点火帯に
おいては、乾燥された生ペレットの層に上方から高温燃
焼ガスを吹込み、生ペレットの表面の粉コークスを点火
する。燃焼帯においては、粉コークスの燃焼によって生
じた高温燃焼ガスを生ペレット層を通って下方に吸引し
て、生ペレットを焼成温度まで加熱する。生ペレットは
、焼成帯における加熱によって、その表面に形成された
カルシウムフェライトおよびスラグの少なくとも1つに
より結合された焼成ペレットからなる、大きいブロック
状の塊りの焼成塊成鉱に焼成される。
The green pellets thus obtained are charged into an endless moving grate type kiln, and the layer of the charged green pellets is placed on the grate of the kiln, and then placed in the drying zone of the kiln.
Pass through the ignition zone and firing zone in sequence. In the drying zone, drying gas at a temperature of 150 to 350° C. is blown into the layer of green pellets from above to dry the green pellets. In the ignition zone, high-temperature combustion gas is blown into the layer of dried green pellets from above to ignite the coke powder on the surface of the green pellets. In the combustion zone, the hot combustion gas produced by the combustion of coke breeze is sucked downward through the green pellet bed to heat the green pellets to the calcination temperature. The green pellets are calcined by heating in a calcining zone into large block-like masses of calcined agglomerates consisting of calcined pellets bound by at least one of calcium ferrite and slag formed on their surfaces.

そして、このようにして得られた大きいブロック状の塊
シの焼成塊成鉱を焼成炉の下流端から排出し、クラッシ
ャーによって破砕したのち、スクリーンによって篩分け
て、粒径31未満の篩下げの焼成塊成鉱片を除去し、か
くして、複数個の焼成ペレットが結合した塊状の形の最
大粒径50話程度の焼成塊成鉱および単体の焼成ペレッ
トの形の粒径3〜13謡程度の焼成塊成鉱が製造される
The calcined agglomerates in the form of large blocks thus obtained are discharged from the downstream end of the calciner, crushed by a crusher, and then sieved by a screen to remove particles with a particle size of less than 31. The calcined agglomerate pieces are removed, and the calcined agglomerate ore in the form of a plurality of calcined pellets combined has a maximum particle size of about 50 pieces, and the single calcined pellet has a particle size of about 3 to 13 pieces. Calcined agglomerate ore is produced.

以上のようにして製造された焼成塊成鉱は、主として還
元性に優れた微細なカルシウムフェライトおよび微細な
ヘマタイトが多く形成されているので、優れた還元性を
有している。また、複数個の焼成ペレットが結合した塊
状の形の場合のみならず、単体の焼成ペレットの形の場
合にも、不規則な形状を有しているので、高炉内に装入
したときに、高炉内の中心部に偏って流れ込むことがな
く、且つ、焼成塊成鉱間に隙間が生ずるために、還元ガ
スの円滑な通溝を阻害することがない。さらに、移送中
の衝撃等によって崩壊があっても、複数個の焼成ペレッ
トが結合した塊状の形の焼成塊成鉱が単体の焼成ペレッ
トに分離するだけなので、支障なく使用することができ
る。
The calcined agglomerate ore produced as described above has excellent reducibility, since it mainly contains a large amount of fine calcium ferrite and fine hematite, which have excellent reducibility. In addition, not only in the case of a lump-like shape in which multiple fired pellets are combined, but also in the case of a single fired pellet, it has an irregular shape, so when charged into a blast furnace, Since the reducing gas does not flow biasedly toward the center of the blast furnace, and gaps are formed between the fired agglomerated ores, smooth passage of the reducing gas is not obstructed. Furthermore, even if it collapses due to impact or the like during transportation, the calcined agglomerate, which is a lump of a plurality of calcined pellets combined, will simply separate into a single calcined pellet, so it can be used without any problem.

しかしながら、従来は、粉鉄鉱石として、粒径0.5 
a以下が30〜70wt%、粒径0.5鵡超が残りから
なる配合の相対的に粗い粉鉄鉱石を使用していたため、
粉鉄鉱石をペレットに成形して焼成したときに、得られ
る焼成塊成鉱中には多くのマクロ気孔が形成されず、こ
のため焼成塊成鉱の還元率が低下していた。また、粉鉄
鉱石に媒溶剤を添加、造粒して生ペレットに成形したと
きに、強度のある緻密な生ペレットが得られないので、
得られる焼成塊成鉱の落下強度も低い。
However, conventionally, powdered iron ore has a particle size of 0.5
Because a relatively coarse powdered iron ore was used with a composition of 30 to 70 wt% of particles below A and the remainder of particles with a particle size of more than 0.5 mm,
When fine iron ore is formed into pellets and fired, many macropores are not formed in the resulting fired agglomerate ore, resulting in a reduction rate of the fired agglomerate ore. In addition, when adding a solvent to fine iron ore and granulating it to form raw pellets, strong and dense raw pellets cannot be obtained.
The falling strength of the resulting calcined agglomerates is also low.

〔発明の目的〕[Purpose of the invention]

この発明は、上述の現状に鑑み、粉鉄鉱石に媒溶剤を添
加、混合した混合物を生ペレットに成形し、得られた生
ベレットに粉コークスを被覆し、前記生ペレットを無端
移動グレート式焼成炉に装入して、焼成塊成鉱を連続的
に製造するに際して、使用する粉鉄鉱石の粒径およびそ
の配合割合を選択することによって、得られる焼成塊成
鉱の還元率および落下強度を向上させることを目的とす
るものである。
In view of the above-mentioned current situation, this invention involves adding a solvent to fine iron ore, forming the mixture into raw pellets, coating the obtained raw pellets with coke powder, and firing the raw pellets using an endless moving grate. When charging into a furnace to continuously produce fired iron ore, the reduction rate and falling strength of the resulting fired iron ore can be adjusted by selecting the particle size of the fine iron ore used and its blending ratio. The purpose is to improve

〔発明の概要〕[Summary of the invention]

この発明は、粉鉄鉱石に媒溶剤を添加、混合した混合物
を造粒して生ペレットを成形し、得られた生ペレットに
粉コークスを被覆し、前記生ペレットを無端移動グレー
ト式焼成炉に装入して連続的に焼成し、かぐして、焼成
塊成鉱を連続的に製造する、焼成塊成鉱の製造方法にお
いて、前記粉鉄鉱石として、粒径44μm11.下が1
0〜80wt%、粒径44μm超が残りからなる配合の
粉鉄鉱石を使用することに特徴を有するものである。
This invention involves adding a solvent to powdered iron ore, granulating a mixed mixture to form raw pellets, coating the obtained raw pellets with coke powder, and placing the raw pellets in an endless moving grate type kiln. In a method for producing calcined agglomerate ore in which the iron ore powder is charged, continuously calcined, and smelt to continuously produce calcined agglomerate ore, the iron ore powder has a particle size of 44 μm11. The bottom is 1
It is characterized by using powdered iron ore having a composition of 0 to 80 wt% and the remainder having a particle size of more than 44 μm.

〔発明の構成〕[Structure of the invention]

以下、この発明の焼成塊成鉱の製造方法について詳述す
る。
Hereinafter, the method for producing calcined agglomerate ore of the present invention will be described in detail.

本発明者等は、粉鉄鉱石に媒溶剤を添加、混合した混合
物を生ペレットに成形し、得られた生ペレットに粉コー
クスを被覆し、前記生ペレットを無端移動グレート式焼
成炉に装入して、焼成塊成鉱を連続的に製造するに際し
て、焼成塊成鉱の落下強度および還元率を向上させるべ
く、使用する粉鉄鉱石について検討を重ねた。
The present inventors added a solvent to powdered iron ore, formed the mixture into green pellets, coated the obtained green pellets with coke powder, and charged the green pellets into an endless moving grate type kiln. In order to improve the falling strength and reduction rate of calcined agglomerate ore when continuously producing calcined agglomerate ore, we have repeatedly investigated the fine iron ore to be used.

細粒の粉鉄鉱石の配合割合が増して、使用する粉鉄鉱石
の粒径が相対的に細かくなれば、粉鉄鉱石を生ペレット
に成形して焼成したときに、得られる焼成塊成鉱中には
多くのマクロ気孔が形成されるので、焼成塊成鉱の還元
率を高められることが予想される。また、粉鉄鉱石に媒
溶剤を添加、造粒して生ベレットを成形したときに、強
度のある緻密な生ペレットが得られるので、焼成塊成鉱
の落下強度も高められることが予想される。
If the blending ratio of fine-grained iron ore increases and the particle size of the iron ore used becomes relatively fine, the fired agglomerated ore obtained when the iron ore powder is formed into green pellets and fired. Since many macropores are formed inside, it is expected that the reduction rate of calcined agglomerates can be increased. In addition, when a solvent is added to powdered iron ore and granulated to form green pellets, strong and dense green pellets are obtained, so it is expected that the falling strength of fired agglomerate ore will be increased. .

そこで、使用する粉鉄鉱石の粒径およびその配合割合を
種々に変化させて生ベレットを成形し、焼成塊成鉱を製
造する実験を行なって、そのときの焼成塊成鉱の還元率
および落下強度を調べた。
Therefore, we conducted an experiment in which the particle size and blending ratio of the fine iron ore used were varied, and green pellets were formed to produce fired agglomerate ore. I checked the strength.

その結果、粒径44μm 以下が10〜80wt%、粒
径44μm 超が残りからなる配合の粉鉄鉱石を使用す
れば、焼成塊成鉱の還元率および落下強度を大惺に向上
できることが判った。
As a result, it was found that by using powdered iron ore with a composition consisting of 10 to 80 wt% of particles with a particle size of 44 μm or less and the balance of particles with a particle size of over 44 μm, the reduction rate and falling strength of calcined agglomerate ore could be greatly improved. .

第1図は、使用した粒径8Is以下の粉鉄鉱石中の、粒
径44μmlJ、下の粉鉄鉱石の配合割合と。
Figure 1 shows the blending ratio of iron ore powder with a particle size of 44 μml J in the powdered iron ore with a particle size of 8 Is or less used.

得られた焼成塊成鉱の還元率との関係を示すグラフ、第
2図は、同じく、粒径44μm 以下の粉鉄鉱石の配合
割合と得られた焼成塊成鉱の落下強度との関係を示すグ
ラフである。
Figure 2, a graph showing the relationship between the reduction rate of the obtained calcined agglomerate ore, also shows the relationship between the blending ratio of fine iron ore with a grain size of 44 μm or less and the falling strength of the obtained calcined agglomerate ore. This is a graph showing.

第1図に示されるように11粒径44μm 以下の粉鉄
鉱石の配合割合が多くなるにつれて、得られた焼成塊成
鉱中のマクロ気孔が多くなるので、焼成塊成鉱の還元率
は増加しており、配合率が10wtチ以上では、還元率
は75%以上と高い。第2図に示されるように、粒径4
4μm 以下の粉鉄鉱・石の配合割合が10wt%以上
になると、生ペレットは緻密さおよび強度が充分になる
ので、得られた焼成塊成鉱の落下強度は85チは上と高
い。しかし、配合割合が80wt%を超えて多くなると
、生ペレットが点火時にパースティングを起こし易くな
り層内通気度が悪化するため、乾侯時間を長くせねばな
らず、また過度に加熱されたときに溶は易くなるので、
ガラス質スラグを生じ、落下強度は急激に低下する。
As shown in Figure 1, as the blending ratio of fine iron ore with a grain size of 44 μm or less increases, the number of macropores in the obtained calcined agglomerate increases, so the reduction rate of the calcined agglomerate increases. When the blending ratio is 10wt or more, the reduction rate is as high as 75% or more. As shown in Figure 2, particle size 4
When the blending ratio of fine iron ore/stone of 4 μm or less is 10 wt % or more, the green pellets have sufficient density and strength, so the drop strength of the obtained calcined agglomerates is as high as 85 cm. However, if the blending ratio exceeds 80wt%, the raw pellets tend to cause persing during ignition, and the air permeability within the layer deteriorates, requiring a longer drying time, and when heated excessively. Because it becomes easier to dissolve,
A vitreous slag is formed and the falling strength is rapidly reduced.

従って、焼成塊成鉱の還元率を75%以上、落下強度を
85チ以上とするためには、粒径44μm以下が10〜
80wt%、粒径44μm超8膓以下が残りからなる配
合の粉鉄鉱石を使用すべきである。
Therefore, in order to achieve a reduction rate of 75% or more and a drop strength of 85 cm or more for calcined agglomerate ore, the grain size of 44 μm or less must be
Powdered iron ore should be used with a composition of 80 wt %, the balance being 80 wt % with a particle size of more than 44 μm and no more than 8 μm.

この発明においては、μ上のように、粒径44μm以下
が10〜80wt%、粒径44μm 超が残りからなる
配合の粉鉄鉱石を使用して、焼成塊成鉱の還元率および
落下強度を大幅に向上させるものである。
In this invention, as shown in μ, the reduction rate and falling strength of the calcined agglomerated ore are improved by using powdered iron ore with a composition consisting of 10 to 80 wt% of particles with a particle size of 44 μm or less and the balance of particles with a particle size of more than 44 μm. This is a significant improvement.

この発明において、生にレットに被覆する粉コークスの
量は、従来と同様2.5〜4.Qwt%とするのが好ま
しい。゛ これは、被覆する粉コークスの量が2.5wt%未満で
は、焼成炉における生ペレットの焼成効率を高めること
ができず、生ベレットを短時間で高強度の焼成塊成鉱に
焼成できないからであり、また、被覆する粉コークスの
量が4.0wt%を超えると、焼成時の生ペレットの温
度が高くなり過ぎて、焼成塊成鉱の組織が緻密で気孔の
少ないものとなると同時に、被還元性の悪い溶融型組織
、即ち、2次へマタイトや短冊型カルシウムフェライト
の多い組織となるためである。
In this invention, the amount of coke powder coated on the green pellets is 2.5-4. It is preferable to set it as Qwt%.゛This is because if the amount of coated coke powder is less than 2.5 wt%, the firing efficiency of the green pellets in the firing furnace cannot be increased, and the raw pellets cannot be fired into high-strength fired agglomerates in a short time. In addition, if the amount of coke powder to be coated exceeds 4.0 wt%, the temperature of the green pellet during firing becomes too high, and the structure of the fired agglomerate becomes dense and has few pores. This is because the structure becomes a melt-type structure with poor reducibility, that is, a structure containing many secondary hematite and rectangular calcium ferrite.

この発明において、生ペレットの粒径は、従来と同様約
3〜13mとするのが好ましい。その理由は、次の通り
である。即ち、生ペレットの粒径が3g1i未満である
と、焼成炉における生ペレットの焼成時に、粉コークス
の燃焼によって生じた高温燃焼ガスが、生ペレットの層
を円滑に通過するのを阻害されるため、焼成塊成鉱の生
産率が低下する問題が生ずる。のみならず、単体の焼成
ペレットの形の焼成塊成鉱も粒径3語未満となるために
、このような小さい粒径の焼成塊成鉱を高炉内に装入し
た場合に、還元ガスの円滑な通過を阻害する。その結果
、高炉内において棚吊りおよびスリ2プが発生し、高炉
操業が不安定になる問題が生ずる。一方、生ペレットの
粒径が131を超えると、衝撃に対する抵抗力が弱くな
るため、生ペレットを焼成炉に移送する際に、生ペレッ
トが崩壊する問題を生ずる。また、本プロセスの如く短
期間の焼成時間では、生ペレットの芯まで熱が伝わらず
、熱不足によシ高品質の焼成塊成鉱が得られない。さら
に、焼成塊成鉱の焼成ペレット個々の粒径も131EI
を超えるため、このような大きい焼成ペレットの焼成塊
成鉱を高炉内に装入した場合に、焼成塊成鉱の中心部ま
で還元ガスが浸透するのに長時間を必要とする。その結
果、高炉内における焼成塊成鉱の還元性が悪くなシ、且
つ、未還元の芯が残って、焼成塊成鉱の、荷重下におけ
る高温特性が悪くなる問題を生ずる。
In this invention, it is preferable that the particle size of the raw pellets is about 3 to 13 m, similar to the conventional method. The reason is as follows. That is, if the particle size of the green pellets is less than 3g1i, the high temperature combustion gas generated by the combustion of coke breeze during firing of the green pellets in the firing furnace will be inhibited from smoothly passing through the layer of green pellets. , a problem arises in which the production rate of calcined agglomerate ore decreases. In addition, fired agglomerate ore in the form of a single fired pellet has a particle size of less than three words, so when calcined agglomerate with such a small particle size is charged into a blast furnace, the reduction gas Obstructs smooth passage. As a result, shelf suspension and slippage occur in the blast furnace, resulting in the problem of unstable blast furnace operation. On the other hand, if the particle size of the green pellet exceeds 131, the resistance to impact becomes weak, resulting in the problem that the green pellet collapses when it is transferred to a firing furnace. Furthermore, in a short firing time as in this process, heat is not transmitted to the core of the green pellets, and high quality fired agglomerates cannot be obtained due to lack of heat. Furthermore, the particle size of each fired pellet of fired agglomerate is also 131EI.
Therefore, when calcined agglomerates made of such large calcined pellets are charged into a blast furnace, it takes a long time for the reducing gas to penetrate to the center of the calcined agglomerates. As a result, the reducibility of the calcined agglomerate ore in the blast furnace is poor, and unreduced cores remain, resulting in the problem that the high temperature properties of the calcined agglomerate ore under load are deteriorated.

〔実施例〕〔Example〕

第1表に示す粒度構成で第2懺に示す化学成分組成の微
粉鉄鉱石と、第3表に示す粒度構成で第4表に示す化学
成分組成の粗粒鉄鉱石とを、第5衣に示す、この発明の
範囲内の配合で使用し、これに媒溶剤およびバインダー
として第6表に示す粒度構成の生石灰を2.7wt%添
加、混合して、得られた混合物を造粒するととKよって
、第7衣に示す粒径分布を有する、水分含有量8〜9 
wt %の生ペレットに成形した。比較のために、同じ
粉鉄鉱石を、同じく第5表に示す、この発明の範囲外の
配合で使用し、同様に生ペレットに成形した。
Fine iron ore with the particle size composition shown in Table 1 and the chemical composition shown in Table 2, and coarse iron ore with the particle size structure shown in Table 3 and the chemical composition shown in Table 4, are added to the fifth coating. When used in the formulation shown within the scope of this invention, 2.7 wt % of quicklime having the particle size structure shown in Table 6 is added as a solvent and a binder, and the resulting mixture is granulated. Therefore, the water content is 8 to 9 and has the particle size distribution shown in the seventh layer.
wt % green pellets. For comparison, the same fine iron ore was used in a formulation outside the scope of this invention, also shown in Table 5, and similarly formed into green pellets.

1”5   (−、チ) 第4表 第5表 第6表  (wt%) 第7表 次いで、第8表に示す、粒度構成の粉コークを生ペレッ
トに3,5 wt%添加して造粒し、生ペレットに粉コ
ークスを被覆した。
1"5 (-, CH) Table 4 Table 5 Table 6 (wt%) Table 7 Next, 3.5 wt% of coke powder having the particle size composition shown in Table 8 was added to the raw pellets. The raw pellets were granulated and coated with coke powder.

そして、無端移動グレート式焼成炉のグレート上に生ベ
レットを4001i1!の厚さに装入して、生ペレット
を焼成炉の乾燥帯、点火帯および焼成帯を順次移動させ
、焼成塊成鉱に焼成した。そして、このようにして得ら
れた大きいブロック状の焼成塊成鉱を焼成炉の下流端か
ら排出し、クラッシャーによって破砕したのち、スクリ
ーンによって粒径3訪未満の篩下の焼成塊成鉱片を除去
し、かぐして、複数個の焼成ペレットが結合した最大粒
径約50鋸の塊状の形の焼成塊成鉱および単体の焼成ペ
レットの形の粒径的3〜13mの焼成塊成鉱が製造され
た。
Then, place the raw pellets on the grate of the endless moving grate kiln 4001i1! The raw pellets were charged to a thickness of 100 mm, and then moved sequentially through the drying zone, ignition zone, and firing zone of the kiln, and were fired into fired agglomerates. The large block-shaped calcined agglomerate ore obtained in this way is discharged from the downstream end of the kiln, and after being crushed by a crusher, the calcined agglomerate pieces under the sieve with a particle size of less than 3 mm are separated by a screen. It is removed and smelt to produce calcined agglomerate in the form of a lump with a maximum grain size of about 50 grains, in which multiple calcined pellets are combined, and calcined agglomerate in the form of a single calcined pellet with a grain size of 3 to 13 m. manufactured.

以上のように製造された焼成塊成鉱の還元率および落下
強度は、第9表に示す通シであった。
The reduction rate and falling strength of the calcined agglomerates produced as described above were as shown in Table 9.

第9表 第9表に示されるように、この発明の範囲内の配合の粉
鉄鉱石を使用した本発明&1〜5においては、いずれも
、焼成塊成鉱の還元率および落下強度が共に高かった。
Table 9 As shown in Table 9, in the present invention &1 to 5, which used powdered iron ore with a composition within the scope of the present invention, both the reduction rate and the falling strength of the calcined agglomerates were high. Ta.

これに対し、この発明の範囲外の配合の粉鉄鉱石を使用
した比較例&6ン8においては、いずれも、焼成塊成鉱
の還元率または、少なくとも落下強度が本発明と比較し
て低くかった。
On the other hand, in Comparative Examples & 6 and 8, which used powdered iron ore with a composition outside the scope of the present invention, the reduction rate or at least the falling strength of the calcined agglomerates was lower than that of the present invention. Ta.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、使用する粉鉄鉱石の粒径およびその
配合割合を選択することによって、高い還元率および落
下強度を有する焼成塊成鉱を容易に製造することができ
る。
According to the present invention, by selecting the particle size of the powdered iron ore used and its blending ratio, it is possible to easily produce calcined agglomerate having a high reduction rate and falling strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、使用した粒径8語以下の粉鉄鉱石中の、粒径
44μmIfi下の粉鉄鉱石の配合割合と、得られた焼
成塊成鉱の還元率との関係を示すグラフ、第2図は、同
じく、粒径44μm 以下の粉鉄鉱石の配合割合と得ら
れた焼成塊成鉱の落下強度との関係を示すグラフである
。 第1図 G)
Figure 1 is a graph showing the relationship between the blending ratio of fine iron ore with a particle size of 44 μm or less in the used fine iron ore with a particle size of 8 words or less and the reduction rate of the obtained calcined agglomerate. Similarly, Figure 2 is a graph showing the relationship between the blending ratio of fine iron ore having a grain size of 44 μm or less and the falling strength of the obtained calcined agglomerates. Figure 1G)

Claims (1)

【特許請求の範囲】 粉鉄鉱石に媒溶剤を添加、混合した混合物を造粒して生
ペレットを成形し、得られた生ペレットに粉コークスを
被覆し、前記生ペレットを無端移動グレート式焼成炉に
装入して連続的に焼成し、かくして、焼成塊成鉱を連続
的に製造する、焼成塊成鉱の製造方法において、 前記粉鉄鉱石として、粒径44μm以下が10〜80w
t%、粒径44μm超が残りからなる配合の粉鉄鉱石を
使用することを特徴とする、焼成塊成鉱の製造方法。
[Claims] A mixture of powdered iron ore and a solvent is added and mixed and granulated to form raw pellets, the obtained raw pellets are coated with coke powder, and the raw pellets are fired in an endless moving grate. In a method for producing calcined agglomerate ore, in which the iron ore powder is charged into a furnace and continuously calcined to continuously produce calcined agglomerate ore, the iron ore powder has a particle size of 44 μm or less of 10 to 80 w.
A method for producing calcined agglomerate ore, characterized in that powdered iron ore is used in a composition in which the remainder consists of t% and grain size of more than 44 μm.
JP29669186A 1986-12-15 1986-12-15 Production of burnt agglomerated ore Granted JPS63149335A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP29669186A JPS63149335A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore
IN357/BOM/87A IN167132B (en) 1986-12-15 1987-12-08
AU82221/87A AU600777B2 (en) 1986-12-15 1987-12-08 Method for manufacturing agglomerates of fired pellets
US07/131,660 US4851038A (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
CA000554134A CA1324493C (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
DE3752270T DE3752270T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
EP93111020A EP0578253B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
DE3751747T DE3751747T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
EP87118525A EP0271863B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
BR8706790A BR8706790A (en) 1986-12-15 1987-12-14 PROCESS FOR THE PRODUCTION OF BURNED PELLETS PELLETS
CN87108122A CN1016184B (en) 1986-12-15 1987-12-15 Method for roasting ores into ball agglomeration
KR1019870014415A KR910001325B1 (en) 1986-12-15 1987-12-15 Method for manufacturing agglomerates of fired pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29669186A JPS63149335A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore

Publications (2)

Publication Number Publication Date
JPS63149335A true JPS63149335A (en) 1988-06-22
JPH0430444B2 JPH0430444B2 (en) 1992-05-21

Family

ID=17836835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29669186A Granted JPS63149335A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore

Country Status (1)

Country Link
JP (1) JPS63149335A (en)

Also Published As

Publication number Publication date
JPH0430444B2 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
JPS61106728A (en) Lump ore and its production
JPH024658B2 (en)
JPS63149336A (en) Production of burnt agglomerated ore
JPH0430442B2 (en)
JPS63149333A (en) Coating method for powdery coke on green pellet for burnt agglomerated ore
JPS63149335A (en) Production of burnt agglomerated ore
JP2748782B2 (en) Method for producing calcined agglomerate
JP2790026B2 (en) Method for producing calcined agglomerate
JP2755042B2 (en) Method for producing calcined agglomerate
JPS62174333A (en) Production of lump ore
JP2001262241A (en) Method for producing sintered ore containing carbon
JPH046771B2 (en)
JPH0430446B2 (en)
JPH05105969A (en) Manufacture of sintered ore
JPH0422961B2 (en)
JPH0430443B2 (en)
JPH0425327B2 (en)
JPS63153227A (en) Method for coating green pellet for agglomerate with coke breeze
JP2790025B2 (en) Method for producing calcined agglomerate
JPS63153228A (en) Method for coating green pellet for agglomerate with coke breeze
JPS62177128A (en) Manufacture of briquetted ore
JP2755036B2 (en) Method for producing calcined agglomerate
JPS6210226A (en) Sintered briquetted ore having superior reducibility and strength
JPS62177129A (en) Manufacture of briquetted ore
JPS62177131A (en) Manufacture of briquetted ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees