JPH046771B2 - - Google Patents

Info

Publication number
JPH046771B2
JPH046771B2 JP29668886A JP29668886A JPH046771B2 JP H046771 B2 JPH046771 B2 JP H046771B2 JP 29668886 A JP29668886 A JP 29668886A JP 29668886 A JP29668886 A JP 29668886A JP H046771 B2 JPH046771 B2 JP H046771B2
Authority
JP
Japan
Prior art keywords
particle size
calcined
pellets
coke powder
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29668886A
Other languages
Japanese (ja)
Other versions
JPS63149332A (en
Inventor
Noboru Sakamoto
Hidetoshi Noda
Hideomi Yanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP29668886A priority Critical patent/JPS63149332A/en
Priority to IN357/BOM/87A priority patent/IN167132B/en
Priority to AU82221/87A priority patent/AU600777B2/en
Priority to CA000554134A priority patent/CA1324493C/en
Priority to US07/131,660 priority patent/US4851038A/en
Priority to DE3751747T priority patent/DE3751747T2/en
Priority to EP87118525A priority patent/EP0271863B1/en
Priority to DE3752270T priority patent/DE3752270T2/en
Priority to EP93111020A priority patent/EP0578253B1/en
Priority to BR8706790A priority patent/BR8706790A/en
Priority to CN87108122A priority patent/CN1016184B/en
Priority to KR1019870014415A priority patent/KR910001325B1/en
Publication of JPS63149332A publication Critical patent/JPS63149332A/en
Publication of JPH046771B2 publication Critical patent/JPH046771B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、高炉用または直接還元鉄用原料と
して好適な焼成塊成鉱の製造方法に関するもので
ある。 〔従来技術とその問題点〕 高炉用原料または直接還元製鉄用原料として、
粉鉄鉱石をペレツト化して焼成した焼成塊成鉱が
知られており、使用が拡大されつつある。 この焼成塊成鉱は、通常、次のように製造され
ている。 すなわち、粒径約8mm以下の粉鉄鉱石に、生石
灰、消石灰、石灰石、ベントナイト、高炉水砕ス
ラグおよびドロマイト等のうちの少なくとも1つ
からなる媒溶剤を、焼成塊成鉱中のCaO/SiO2
の値が1.0〜2.5程度となるように添加し、ミキサ
ーで混合する。そして、得られた混合物をデイス
ク型の第1の造粒機に供給し、水を加えて、第1
の造粒機により混合物を造粒し、粒径が例えば約
3〜13mmの生ペレツトに成形する。次いで、得ら
れた生ペレツトをデイスク型の第2の造粒機に供
給し、2.5〜4.0wt%程度の粉コークスを添加し
て、第2の造粒機により生ペレツトを更に造粒
し、これによつて表面に粉コークスを被覆した生
ペレツトを調製する。 そして、このようにして得られた生ペレツトを
無端移動グレート式焼成炉内に装入して、装入さ
れた生ペレツトの層を焼成炉のグレート上に乗つ
て、焼成炉の乾燥帯、点火帯および焼成帯を順次
通過させる。乾燥帯においては、生ペレツトの層
に上方から温度150〜350℃の乾燥用ガスを吹込
み、生ペレツトを乾燥する。点火帯においては、
乾燥された生ペレツトの層に上方から高温燃焼ガ
スを吹込み、生ペレツトの表面の粉コークスを点
火する。燃焼帯においては、粉コークスの燃焼に
よつて生じた高温燃焼ガスを生ペレツト層を通つ
て下方に吸引して、生ペレツトを焼成温度まで加
熱する。生ペレツトは、焼成帯における加熱によ
つて、その表面に形成されたカルシウムフエライ
トおよびスラグの少なくとも1つにより結合され
た焼成ペレツトからなる、大きいブロツク状の塊
りの焼成塊成鉱に焼成される。 そして、このようにして得られた大きいブロツ
ク状の塊りの焼成塊成鉱を焼成炉の下流端から排
出し、クラツシヤーによつて破砕したのち、スク
リーンによつて篩分けて、粒径3mm未端の篩下の
焼成塊成鉱片を除去し、かくして、複数個の焼成
ペレツトが結合した塊状の形の最大粒径50mm程度
の焼成塊成鉱および単体の焼成ペレツトの形の粒
径3〜13mm程度の焼成塊成鉱が製造される。 以上のようにして製造された焼成塊成鉱は、主
として還元性に優れた微細なカルシウムフエライ
トおよび微細なヘマタイトが多く形成されている
ので、優れた還元性を有している。また、複数個
の焼成ペレツトが結合した塊状の形の場合のみな
らず、単体の焼成ペレツトの形の場合にも、不規
則な形状を有しているので、高炉内に装入したと
きに、高炉内の中心部に偏つて流れ込むことがな
く、且つ、焼成塊成鉱間に隙間が生ずるために、
還元ガスの円滑な通過を阻害することがない。さ
らに、移送中の衝撃等によつて崩壊があつても、
複数個の焼成ペレツトが結合した塊状の形の焼成
塊成鉱が単体の焼成ペレツトに分離するだけなの
で、支障なく使用することができる。 しかしながら、従来は、生ペレツトの表面に被
覆する粉コークスとして、粒径5mm以下が20〜
70wt%、粒径5mm超が残りからなる相対的に粗
い配合の粉コークスを使用していたため、生ペレ
ツトの表面に粉コークスが良好に付着せず、粉コ
ークスの被覆が不充分であつたり、不均一であつ
たりする欠点があつた。このため、生ペレツトを
焼成炉で焼成する際に焼成が良好に行なわれず、
その結果、焼成塊成鉱の成品歩留りが70%以下、
生産率が1.5トン/m2・h以下と低い問題があつ
た。 〔発明の目的〕 この発明は、上述の現状に鑑み、粉鉄鉱石に媒
溶剤を添加、混合した混合物を生ペレツトに成形
し、得られた生ペレツトに粉コークスを被覆し、
前記生ペレツトを無端移動グレート式焼成炉に装
入して、焼成塊成鉱を連続的に製造するに際し
て、生ペレツトの被覆に使用する粉コークスの粒
径およびその配合割合を選択することによつて、
容易に高い成品歩留りおよび生産率で焼成塊成鉱
を製造することを目的とするものである。 〔発明の概要〕 この発明は、粉鉄鉱石に媒溶剤を添加、混合し
た混合物を造粒して生ペレツトを成形し、得られ
た生ペレツトに粉コークスを被覆し、前記生ペレ
ツトを無端移動グレート式焼成炉に装入して連続
的に焼成し、かくして、焼成塊成鉱を連続的に製
造する、焼成塊成鉱の製造方法において、 前記粉コークスとして、粒径1mm以下が80〜
100wt%、粒径1mm超5mm以下が残りからなる配
合の粉コークスを使用することに特徴を有するも
のである。 〔発明の構成〕 以下、この発明の焼成塊成鉱の製造方法につい
て詳述する。 本発明者等は、粉鉄鉱石に媒溶剤を添加、混合
した混合物を生ペレツトに成形し、得られた生ペ
レツトに粉コークスを被覆し、前記生ペレツトを
無端移動グレート式焼成炉に装入して、焼成塊成
鉱を連続的に製造するに際して、焼成塊成鉱の成
品歩留りおよび生産率を向上させるべく、使用す
る粉コークスについて検討を重ねた。 細粒の粉コークスの配合割合が増して、使用す
る粉コークスの粒径が相対的に細かくなれば、粉
コークスは生ペレツトの表面に付着し易くなるの
で、粉コークスを生ペレツトの表面に均一且つ充
分に被覆させることができ、その結果、焼成炉に
おいて生ペレツトを良好に焼成させて、焼成塊成
鉱の成品歩留りおよび生産率を向上させられるこ
とが予想される。 そこで、粉コークスの粒径およびその配合割合
を種々に変化させて生ペレツトに被覆し、焼成塊
成鉱を製造する実験を行なつて、そのときの焼成
塊成鉱の成品歩留りおよび生産率を調べた。 その結果、粒径1mm以下が80〜100wt%、粒径
1mm超5mm以下が残りからなる配合の細かい粉コ
ークスを生ペレツトの被覆に使用すれば、焼成塊
成鉱の成品歩留りおよび生産率を大幅に向上でき
ることが判つた。 第1図は、生ペレツトの被覆に使用した粒径5
mm以下の粉コークス中の、粒径1mm以下の粉コー
クスの配合割合と、得られた焼成塊成鉱の成品歩
留りとの関係を示したグラフ、第2図は、同じ
く、粒径1mm以下の粉コークスの配合割合と得ら
れた焼成塊成鉱の生産率との関係を示したグラフ
である。なお、粉鉄鉱石の粒径は約8mm以下、生
ペレツトの粒径は約3〜13mm、粉コークスの添加
量は3.5wt%の条件で行なつた。 第1図に示されるように、粒径1mm以下の粉コ
ークスの配合割合が多くなるにつれて、生ペレツ
トは粉コークスの被覆が良好になり、焼成が良好
に行なわれるので、焼成塊成鉱の成品歩留りは増
加しており、配合割合が80wt%以上では、成品
歩留りは75%以上と高い。 焼成塊成鉱の生産率も、第2図に示されるよう
に、粒径0.1mm以下の粉コークスの配合割合が多
くなるにつれて、同様の理由により増加してお
り、配合割合が80wt%以上では、生産率は1.5ト
ン/m2・h以上と高い。 従つて、焼成塊成鉱の成品歩留りを75%以上、
生産率を1.5トン/m2・h以上とするためには、
粒径1mm以下が80〜100wt%、粒径1mm超5mm以
下が残りからなる配合の粉コークスを、生ペレツ
トの被覆に使用すべきである。 この発明においては、以上のように、粒径1mm
以下が80〜100wt%、粒径1mm超5mm以下が残り
からなる配合の粉コークスを、生ペレツトの被覆
に使用して、焼成塊成鉱の成品歩留り、および生
産率を大幅に向上させるものである。 この発明において、生ペレツトに被覆する粉コ
ークスの量は、従来と同様2.5〜4.0wt%とするの
が好ましい。これは、被覆する粉コークスの量が
2.5wt%未満では、焼成炉における生ペレツトの
焼成効率を高めることができず、生ペレツトを短
時間で高強度の焼成塊成鉱に焼成できないからで
あり、また、被覆する粉コークスの量が4.0wt%
を超えると、焼成時の生ペレツトの温度が高くな
り過ぎて、焼成塊成鉱の組織が緻密になり過ぎる
からである。 この発明において、使用する粉鉄鉱石の粒径
は、従来と同様約8mm以下とするのが好ましい。
これは、粒径8mm超の粉鉄鉱石は焼成塊成鉱化し
ないでもそのまま使用でき、焼成塊成鉱化する必
要があるのは粒径8mm以下の粉鉄鉱石であるから
である。 この発明において、生ペレツトの粒径は、従来
と同様約3〜13mmとするのが好ましい。その理由
は、次の通りである。即ち、生ペレツトの粒径が
3mm未満であると、焼成炉における生ペレツトの
焼成時に、粉コークスの焼成によつて生じた高温
燃焼ガスが、生ペレツトの層を円滑に通過するの
を阻害されるため、焼成塊成鉱の生産率が低下す
る問題が生ずる。のみならず、単体の焼成ペレツ
トの形の焼成塊成鉱も粒径3mm未満となるため
に、このような小さい粒径の焼成塊成鉱を高炉内
に装入した場合に、還元ガスの円滑な通過を阻害
する。その結果、高炉内において棚吊りおよびス
リツプが発生し、高炉操業が不安定になる問題が
生ずる。一方、生ペレツトの粒径が13mmを超える
と、衝撃に対する抵抗力が弱くなるため、生ペレ
ツトを焼成炉に移送する際に、生ペレツトが崩壊
する問題を生ずる。また、本プロセスの如く短期
間の焼成時間では、生ペレツトの芯まで熱が伝わ
らず、熱不足により高品質の焼成塊成鉱が得られ
ない。さらに、焼成塊成鉱の焼成ペレツト個々の
粒径も13mmを超えるため、このような大きい焼成
ペレツトの焼成塊成鉱を高炉内に装入した場合
に、焼成塊成鉱の中心部まで還元ガスが浸透する
のに長時間を必要とする。その結果、高炉内にお
ける焼成塊成鉱の還元性が悪くなり、且つ、未還
元の芯が残つて、焼成塊成鉱の、荷重下における
高温特性が悪くなる問題を生ずる。 〔実施例〕 第1表に示す粒度構成で第2表に示す化学成分
組成の微粉鉄鉱石と、第3表に示す粒度構成で第
4表に示す化学成分組成の粗粒鉄鉱石とを、微粉
鉄鉱石40wt%、粗粒鉄鉱石60wt%の割合で使用
し、これに媒溶剤およびバインダーとして第5表
に示す粒度構成の生石灰を2.7wt%添加、混合し
て、得られた混合物を造粒することによつて、第
6表に示す粒径分布を有する、水分含有量8〜
9wt%の生ペレツトに成形した。
[Technical Field of the Invention] The present invention relates to a method for producing calcined agglomerate ore suitable as a raw material for blast furnaces or directly reduced iron. [Prior art and its problems] As a raw material for blast furnaces or raw material for direct reduction steelmaking,
Calcined agglomerate, which is made by pelletizing powdered iron ore and calcining it, is known, and its use is expanding. This calcined agglomerate ore is usually produced as follows. That is, a solvent consisting of at least one of quicklime, slaked lime, limestone, bentonite, granulated blast furnace slag, dolomite, etc. is added to powdered iron ore with a particle size of about 8 mm or less, and CaO/SiO 2 in the calcined agglomerated ore is added to the powdered iron ore.
Add so that the value is about 1.0 to 2.5 and mix with a mixer. Then, the obtained mixture is supplied to a disk-type first granulator, water is added thereto, and the first
The mixture is granulated using a granulator, and formed into raw pellets having a particle size of, for example, about 3 to 13 mm. Next, the obtained raw pellets are supplied to a second disk-type granulator, and about 2.5 to 4.0 wt% of coke powder is added, and the raw pellets are further granulated by the second granulator. In this way, raw pellets whose surfaces are coated with coke powder are prepared. Then, the raw pellets obtained in this way are charged into an endless moving grate type kiln, and the layer of charged raw pellets is placed on the grate of the kiln, and the drying zone of the kiln is heated. Pass through the band and firing zone in sequence. In the drying zone, drying gas at a temperature of 150 to 350°C is blown into the layer of raw pellets from above to dry the raw pellets. At the ignition zone,
High-temperature combustion gas is blown into the layer of dried raw pellets from above to ignite the coke powder on the surface of the raw pellets. In the combustion zone, the hot combustion gas produced by the combustion of coke breeze is drawn downward through the bed of green pellets to heat the green pellets to the calcination temperature. The raw pellets are calcined by heating in a calcining zone into large blocks of calcined agglomerates consisting of calcined pellets bound together by at least one of calcium ferrite and slag formed on their surfaces. . The calcined agglomerates in the form of large blocks thus obtained are discharged from the downstream end of the calciner, crushed by a crusher, and then sieved by a screen. By removing the pieces of calcined agglomerate under the sieve at the end, the calcined agglomerate ore has a maximum particle size of about 50 mm in the form of a lump formed by combining a plurality of calcined pellets, and the particle size 3 ~ 3 in the form of a single calcined pellet. Calcined agglomerates of approximately 13mm are produced. The calcined agglomerate produced in the manner described above has excellent reducing properties, since it mainly contains a large amount of fine calcium ferrite and fine hematite, which have excellent reducing properties. In addition, not only when a plurality of fired pellets are combined into a lump, but also when a single fired pellet has an irregular shape, when charged into a blast furnace, Because it does not flow unevenly to the center of the blast furnace, and gaps are created between the fired agglomerated ores,
Smooth passage of reducing gas is not obstructed. Furthermore, even if it collapses due to shock during transportation,
Since the calcined agglomerate, which is in the form of a lump made up of a plurality of calcined pellets combined, is simply separated into single calcined pellets, it can be used without any problems. However, conventionally, coke powder coated on the surface of raw pellets has a particle size of 5 mm or less.
Because a relatively coarse coke powder consisting of 70wt% and the remainder having a particle size of more than 5 mm was used, the coke powder did not adhere well to the surface of the raw pellets, resulting in insufficient coke powder coating. There were some drawbacks such as unevenness and unevenness. For this reason, when raw pellets are fired in a kiln, the firing is not performed well.
As a result, the product yield of calcined agglomerate ore was less than 70%.
There was a problem with the production rate being low at less than 1.5 tons/m 2 h. [Object of the Invention] In view of the above-mentioned current situation, the present invention involves adding a solvent to powdered iron ore, forming a mixture into raw pellets, coating the obtained raw pellets with coke powder,
When the green pellets are charged into an endless moving grate calcining furnace to continuously produce calcined agglomerates, the particle size and blending ratio of coke breeze used to coat the green pellets can be selected. Then,
The purpose is to easily produce calcined agglomerate ore with high product yield and production rate. [Summary of the Invention] This invention involves adding a solvent to powdered iron ore, granulating a mixture to form raw pellets, coating the obtained raw pellets with coke powder, and moving the raw pellets endlessly. In the method for producing calcined agglomerate ore, which is charged into a grate calcining furnace and continuously calcined to thereby continuously produce calcined agglomerate ore, the coke powder has a particle size of 1 mm or less with a particle size of 80 to 1 mm.
It is characterized by the use of coke powder with a composition of 100 wt% and the remainder consisting of particles with a particle size of more than 1 mm and less than 5 mm. [Structure of the Invention] Hereinafter, the method for producing calcined agglomerates of the present invention will be described in detail. The present inventors added a solvent to fine iron ore, formed the mixture into raw pellets, coated the obtained raw pellets with coke powder, and charged the raw pellets into an endless moving grate type kiln. Therefore, in order to improve the product yield and production rate of calcined agglomerate ore in the continuous production of calcined agglomerate ore, we have repeatedly investigated the coke breeze to be used. If the blending ratio of fine coke powder increases and the particle size of the coke powder used becomes relatively fine, the coke powder will more easily adhere to the surface of the raw pellets, so the coke powder will spread evenly over the surface of the raw pellets. It is expected that the raw pellets can be sufficiently coated, and as a result, the raw pellets can be fired satisfactorily in the firing furnace, thereby improving the product yield and production rate of fired agglomerate ore. Therefore, we conducted an experiment in which the particle size and blending ratio of coke breeze were varied and coated on green pellets to produce calcined agglomerate ore. Examined. As a result, if fine coke powder with a composition consisting of 80-100wt% of particles with a particle size of 1 mm or less and the remainder of particles with a particle size of more than 1 mm and 5 mm or less is used to coat raw pellets, the product yield and production rate of calcined agglomerate ore can be greatly increased. It was found that this could be improved. Figure 1 shows the particle size 5 used to coat the raw pellets.
Figure 2 is a graph showing the relationship between the blending ratio of coke powder with a particle size of 1 mm or less in coke powder with a particle size of 1 mm or less and the product yield of the obtained calcined agglomerates. It is a graph showing the relationship between the blending ratio of coke powder and the production rate of the obtained calcined agglomerates. The particle size of the iron ore powder was about 8 mm or less, the particle size of the raw pellets was about 3 to 13 mm, and the amount of coke powder added was 3.5 wt%. As shown in Figure 1, as the blending ratio of coke powder with a particle size of 1 mm or less increases, the green pellets become better coated with coke powder and are sintered better. The yield is increasing, and when the blending ratio is 80wt% or more, the product yield is as high as 75% or more. As shown in Figure 2, the production rate of calcined agglomerate increases for the same reason as the blending ratio of coke powder with a particle size of 0.1 mm or less increases, and when the blending ratio exceeds 80wt%, it increases. , the production rate is high at over 1.5 tons/m 2 h. Therefore, the product yield of calcined agglomerate ore should be increased to 75% or more.
In order to increase the production rate to 1.5 tons/ m2・h or more,
A powder coke with a composition of 80 to 100 wt% of particles with a particle size of 1 mm or less and the balance of particles with a particle size of more than 1 mm and 5 mm or less should be used for coating the green pellets. In this invention, as described above, the particle size is 1 mm.
By using coke powder with a composition of 80 to 100 wt% of the following, and the remainder of particle size of more than 1 mm and less than 5 mm, to coat green pellets, the product yield and production rate of calcined agglomerate ore can be greatly improved. be. In this invention, the amount of coke powder coated on the raw pellets is preferably 2.5 to 4.0 wt%, as in the conventional method. This means that the amount of coke powder to be coated is
If the amount is less than 2.5 wt%, the firing efficiency of the raw pellets in the kiln cannot be increased, and the raw pellets cannot be fired into high-strength fired agglomerates in a short time. 4.0wt%
This is because if the temperature exceeds 100, the temperature of the raw pellets during firing becomes too high, and the structure of the fired agglomerates becomes too dense. In this invention, the particle size of the powdered iron ore used is preferably about 8 mm or less, as in the conventional method.
This is because fine iron ore with a particle size of more than 8 mm can be used as is without being converted into calcined agglomerate minerals, and it is iron ore fines with a particle size of 8 mm or less that needs to be converted into calcined agglomerate minerals. In this invention, the particle size of the raw pellets is preferably about 3 to 13 mm, as in the conventional method. The reason is as follows. In other words, if the particle size of the green pellets is less than 3 mm, the high-temperature combustion gas generated by the burning of coke breeze will be inhibited from smoothly passing through the layer of green pellets during baking of the green pellets in the kiln. As a result, the production rate of calcined agglomerate ore decreases. In addition, since the fired agglomerate ore in the form of a single fired pellet has a particle size of less than 3 mm, when such a small particle size of the calcined agglomerate is charged into the blast furnace, it is difficult for the reducing gas to flow smoothly. impede passage. As a result, shelving and slipping occur in the blast furnace, resulting in the problem of unstable blast furnace operation. On the other hand, if the particle size of the green pellets exceeds 13 mm, the resistance to impact becomes weak, resulting in the problem of the green pellets collapsing when they are transferred to a kiln. Furthermore, in a short firing time as in this process, heat is not transmitted to the core of the raw pellets, and high quality fired agglomerates cannot be obtained due to insufficient heat. Furthermore, since the particle size of each fired pellet of fired agglomerate ore exceeds 13 mm, when such large fired agglomerate ore is charged into a blast furnace, the reducing gas reaches the center of the fired agglomerate ore. It takes a long time to penetrate. As a result, the reducibility of the calcined agglomerate ore in the blast furnace deteriorates, and unreduced cores remain, resulting in a problem that the high temperature characteristics of the calcined agglomerate ore under load deteriorate. [Example] Fine iron ore with the particle size composition shown in Table 1 and the chemical composition shown in Table 2, and coarse iron ore with the particle size structure shown in Table 3 and the chemical composition shown in Table 4, Fine iron ore was used at a ratio of 40 wt% and coarse iron ore was used at a ratio of 60 wt%, and 2.7 wt% of quicklime having the particle size composition shown in Table 5 was added as a solvent and a binder to the mixture, and the resulting mixture was produced. By granulating, it has a particle size distribution shown in Table 6 and has a water content of 8 to 8.
It was formed into 9wt% raw pellets.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 次いで、第7表に示す、この発明の範囲内の配
合の粉コークスを生ペレツトに3.5wt%添加して
造粒し、生ペレツトに粉コークスを被覆した。比
較のために、同じく第7表に示す、この発明の範
囲外の配合の粉コークスを同様に生ペレツトに被
覆した。
[Table] Next, 3.5 wt % of coke powder having a composition within the scope of the present invention as shown in Table 7 was added to the raw pellets and granulated, and the raw pellets were coated with coke powder. For comparison, the raw pellets were similarly coated with coke breeze having a formulation outside the scope of this invention, also shown in Table 7.

【表】 そして、無端移動グレート式焼成炉のグレート
上に生ペレツトを400mmの厚さに装入して、生ペ
レツトを焼成炉の乾燥帯、点火帯および焼成帯を
順次移動させ、焼成塊成鉱に焼成した。そして、
このようにして得られた大きいブロツク状の焼成
塊成鉱を焼成炉の下流端から排出し、クラツシヤ
ーによつて破砕したのち、スクリーンによつて粒
径3mm未満の篩下の焼成塊成鉱片を除去し、かく
して、複数個の焼成ペレツトが結合した最大粒径
約50mmの塊状の形の焼成塊成鉱および単体の焼成
ペレツトの形の粒径約3〜13mmの焼成塊成鉱が製
造された。 以上のように製造された焼成塊成鉱の成品歩留
りおよび生産率並びに還元率および還元粉化率
は、第8表に示す通りであつた。
[Table] Then, raw pellets are charged to a thickness of 400 mm onto the grate of an endless moving grate type kiln, and the raw pellets are sequentially moved through the drying zone, ignition zone, and firing zone of the kiln, and are baked into agglomerates. Fired into ore. and,
The large blocks of calcined agglomerate ore thus obtained are discharged from the downstream end of the kiln, and after being crushed by a crusher, the calcined agglomerate pieces under the sieve with a particle size of less than 3 mm are passed through a screen. In this way, calcined agglomerate in the form of a lump with a maximum particle size of about 50 mm, in which a plurality of calcined pellets are combined, and calcined agglomerate in the form of a single calcined pellet, with a particle size of about 3 to 13 mm, are produced. Ta. The product yield, production rate, reduction rate, and reduction powdering rate of the calcined agglomerate ore produced as described above were as shown in Table 8.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、生ペレツトの被覆に使用す
る粉コークスの粒径およびその配合割合いを選択
することによつて、容易に高い成品歩留りおよび
生産率で焼成塊成鉱を製造することができる。
According to this invention, by selecting the particle size and blending ratio of the coke breeze used to coat the green pellets, it is possible to easily produce calcined agglomerate with a high product yield and production rate. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、生ペレツトの被覆に使用した粒径5
mm以下の粉コークス中の、粒径1mm以下の粉コー
クスの配合割合と、得られた焼成塊成鉱の成品歩
留りとの関係を示したグラフ、第2図は、同じ
く、粒径1mm以下の粉コークスの配合割合と得ら
れた焼成塊成鉱の生産率との関係を示すグラフで
ある。
Figure 1 shows the particle size 5 used to coat the raw pellets.
Figure 2 is a graph showing the relationship between the blending ratio of coke powder with a particle size of 1 mm or less in coke powder with a particle size of 1 mm or less and the product yield of the obtained calcined agglomerates. It is a graph showing the relationship between the blending ratio of coke powder and the production rate of the obtained calcined agglomerates.

Claims (1)

【特許請求の範囲】 1 粉鉄鉱石に媒溶剤を添加、混合した混合物を
造粒して生ペレツトを成形し、得られた生ペレツ
トに粉コークスを被覆し、前記生ペレツトを無端
移動グレート式焼成炉に装入して連続的に焼成
し、かくして、焼成塊成鉱を連続的に製造する、
焼成塊成鉱の製造方法において、 前記粉コークスとして、粒径1mm以下が80〜
100wt%、粒径1mm超5mm以下が残りからなる配
合の粉コークスを使用することを特徴とする、焼
成塊成鉱の製造方法。
[Scope of Claims] 1 A mixture of powdered iron ore and a solvent is added and mixed to granulate to form raw pellets, the obtained raw pellets are coated with coke powder, and the raw pellets are transferred to an endless moving grate. Charged into a kiln and fired continuously, thus continuously producing fired agglomerate ore.
In the method for producing calcined agglomerate ore, the coke powder has a particle size of 1 mm or less and is
A method for producing calcined agglomerate ore, characterized by using coke powder having a composition of 100wt% and the remainder consisting of particle sizes of more than 1 mm and less than 5 mm.
JP29668886A 1986-12-15 1986-12-15 Production of burnt agglomerated ore Granted JPS63149332A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP29668886A JPS63149332A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore
IN357/BOM/87A IN167132B (en) 1986-12-15 1987-12-08
AU82221/87A AU600777B2 (en) 1986-12-15 1987-12-08 Method for manufacturing agglomerates of fired pellets
CA000554134A CA1324493C (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
US07/131,660 US4851038A (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
DE3751747T DE3751747T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
EP87118525A EP0271863B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
DE3752270T DE3752270T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
EP93111020A EP0578253B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
BR8706790A BR8706790A (en) 1986-12-15 1987-12-14 PROCESS FOR THE PRODUCTION OF BURNED PELLETS PELLETS
CN87108122A CN1016184B (en) 1986-12-15 1987-12-15 Method for roasting ores into ball agglomeration
KR1019870014415A KR910001325B1 (en) 1986-12-15 1987-12-15 Method for manufacturing agglomerates of fired pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29668886A JPS63149332A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore

Publications (2)

Publication Number Publication Date
JPS63149332A JPS63149332A (en) 1988-06-22
JPH046771B2 true JPH046771B2 (en) 1992-02-06

Family

ID=17836792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29668886A Granted JPS63149332A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore

Country Status (1)

Country Link
JP (1) JPS63149332A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836618A (en) * 2022-07-04 2022-08-02 华北理工大学 Roasting method of fluxed magnetite pellets

Also Published As

Publication number Publication date
JPS63149332A (en) 1988-06-22

Similar Documents

Publication Publication Date Title
JPS61106728A (en) Lump ore and its production
JP2012528941A (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
JPH024658B2 (en)
US3323901A (en) Process of pelletizing ores
JPH0430442B2 (en)
JP3144886B2 (en) Method for producing sintered ore or pellet ore as raw material for blast furnace using lime cake
JPH0430445B2 (en)
JPH0425326B2 (en)
JPH046771B2 (en)
JP2790026B2 (en) Method for producing calcined agglomerate
JPH0430446B2 (en)
JP2748782B2 (en) Method for producing calcined agglomerate
JP2755042B2 (en) Method for producing calcined agglomerate
JPS62174333A (en) Production of lump ore
JPH0425327B2 (en)
JPH0430444B2 (en)
JPH0430443B2 (en)
JP2790025B2 (en) Method for producing calcined agglomerate
JPH0425328B2 (en)
JPH0437146B2 (en)
JPH0422961B2 (en)
JPS62177128A (en) Manufacture of briquetted ore
JPS62177129A (en) Manufacture of briquetted ore
JPS62177130A (en) Manufacture of briquetted ore
JPS62174335A (en) Method and apparatus for producing lump ore