JPH0430444B2 - - Google Patents

Info

Publication number
JPH0430444B2
JPH0430444B2 JP29669186A JP29669186A JPH0430444B2 JP H0430444 B2 JPH0430444 B2 JP H0430444B2 JP 29669186 A JP29669186 A JP 29669186A JP 29669186 A JP29669186 A JP 29669186A JP H0430444 B2 JPH0430444 B2 JP H0430444B2
Authority
JP
Japan
Prior art keywords
calcined
ore
particle size
pellets
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29669186A
Other languages
Japanese (ja)
Other versions
JPS63149335A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP29669186A priority Critical patent/JPS63149335A/en
Priority to IN357/BOM/87A priority patent/IN167132B/en
Priority to AU82221/87A priority patent/AU600777B2/en
Priority to CA000554134A priority patent/CA1324493C/en
Priority to US07/131,660 priority patent/US4851038A/en
Priority to DE3751747T priority patent/DE3751747T2/en
Priority to EP87118525A priority patent/EP0271863B1/en
Priority to DE3752270T priority patent/DE3752270T2/en
Priority to EP93111020A priority patent/EP0578253B1/en
Priority to BR8706790A priority patent/BR8706790A/en
Priority to CN87108122A priority patent/CN1016184B/en
Priority to KR1019870014415A priority patent/KR910001325B1/en
Publication of JPS63149335A publication Critical patent/JPS63149335A/en
Publication of JPH0430444B2 publication Critical patent/JPH0430444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、高炉用または直接還元鉄用原料と
して好適な焼成塊成鉱の製造方法に関するもので
ある。 〔従来技術とその問題点〕 高炉用原料または直接還元製鉄用原料として、
粉鉄鉱石をペレツト化して焼成した焼成塊成鉱が
知られており、使用が拡大されつつある。 この焼成塊成鉱は、通常、次のように製造され
ている。 すなわち、粒径約8mm以下の粉鉄鉱石に、生石
灰、消石灰、石灰石、ベントナイト、高炉水砕ス
ラグおよびドロマイト等のうちの少なくとも1つ
からなる媒溶剤を、焼成塊成鉱中のCaO/SiO2
の値が1.0〜2.5程度となるように添加し、ミキサ
ーで混合する。そして、得られた混合物をデイス
ク型の第1の造粒機に供給し、水を加えて、第1
の造粒機により混合物を造粒し、粒径が例えば約
3〜13mmの生ペレツトに成形する。次いで、得ら
れた生ペレツトをデイスク型の第2の造粒機に供
給し、2.5〜4.0wt%程度の粉コークスを添加し
て、第2の造粒機により生ペレツトを更に造粒
し、これによつて表面に粉コークスを被覆した生
ペレツトを調製する。 そして、このようにして得られた生ペレツトを
無端移動グレート式焼成炉内に装入して、装入さ
れた生ペレツトの層を焼成炉のグレート上に乗つ
て、焼成炉の乾燥帯、点火帯および焼成帯を順次
通過させる。乾燥帯においては、生ペレツトの層
に上方から温度150〜350℃の乾燥用ガスを吹込
み、生ペレツトを乾燥する。点火帯においては、
乾燥された生ペレツトの層に上方から高温燃焼ガ
スを吹込み、生ペレツトの表面の粉コークスを点
火する。燃焼帯においては、粉コークスの燃焼に
よつて生じた高温燃焼ガスを生ペレツト層を通つ
て下方に吸引して、生ペレツトを焼成温度まで加
熱する。生ペレツトは、焼成帯における加熱によ
つて、その表面に形成されたカルシウムフエライ
トおよびスラグの少なくとも1つにより結合され
た焼成ペレツトからなる、大きいブロツク状の塊
りの焼成塊成鉱に焼成される。 そして、このようにして得られた大きいブロツ
ク状の塊りの焼成塊成鉱を焼成炉の下流端から排
出し、クラツシヤーによつて破砕したのち、スク
リーンによつて篩分けて、粒径3mm未満の篩下げ
の焼成塊成鉱片を除去し、かくして、複数個の焼
成ペレツトが結合した塊状の形の最大粒径50mm程
度の焼成塊成鉱および単体の焼成ペレツトの形の
粒径3〜13mm程度の焼成塊成鉱が製造される。 以上のようにして製造された焼成塊成鉱は、主
として還元性に優れた微細なカルシウムフエライ
トおよび微細なヘマタイトが多く形成されている
ので、優れた還元性を有している。また、複数個
の焼成ペレツトが結合した塊状の形の場合のみな
らず、単体の焼成ペレツトの形の場合にも、不規
則な形状を有しているので、高炉内に装入したと
きに、高炉内の中心部に偏つて流れ込むことがな
く、且つ、焼成塊成鉱間に隙間が生ずるために、
還元ガスの円滑な通過を阻害することがない。さ
らに、移送中の衝撃等によつて崩壊があつても、
複数個の焼成ペレツトが結合した塊状の形の焼成
塊成鉱が単体の焼成ペレツトに分離するだけなの
で、支障なく使用することができる。 しかしながら、従来は、粉鉄鉱石として、粒径
0.5mm以下が30〜70wt%、粒径0.5mm超が残りから
なる配合の相対的に粗い粉鉄鉱石を使用していた
ため、粉鉄鉱石をペレツトに成形して焼成したと
きに、得られる焼成塊成鉱中には多くのマクロ気
孔が形成されず、このため焼成塊成鉱の還元率が
低下していた。また、粉鉄鉱石に媒溶剤を添加、
造粒して生ペレツトに成形したときに、強合のあ
る緻密な生ペレツトが得られないので、得られる
焼成塊成鉱の落下強度も低い。 〔発明の目的〕 この発明は、上述の現状に鑑み、粉鉄鉱石に媒
溶剤を添加、混合した混合物を生ペレツトに成形
し、得られた生ペレツトに粉コークスを被覆し、
前記生ペレツトを無端移動グレート式焼成炉に装
入して、焼成塊成鉱を連続的に製造するに際し
て、使用する粉鉄鉱石の粒径およびその配合割合
を選択することによつて、得られる焼成塊成鉱の
還元率および落下強度を向上させることを目的と
するものである。 〔発明の概要〕 この発明は、粉鉄鉱石に媒溶剤を添加、混合し
た混合物を造粒して生ペレツトを成形し、得られ
た生ペレツトに粉コークスを被覆し、前記生ペレ
ツトを無端移動グレート式焼成炉に装入して連続
的に焼成し、かくして、焼成塊成鉱を連続的に製
造する、焼成塊成鉱の製造方法において、 前記粉鉄鉱石として粒径44μm以下が10〜80wt
%、粒径44μmが残りからなる配合の粉鉄鉱石を
使用することに特徴を有するものである。 〔発明の構成〕 以下、この発明の焼成塊成鉱の製造方法につい
て詳述する。 本発明者等は、粉鉄鉱石に媒溶剤を添加、混合
した混合物を生ペレツトを成形し、得られた生ペ
レツトに粉コークスを被覆し、前記生ペレツトを
無端移動グレート式焼成炉に装入して、焼成塊成
鉱を連続的に製造するに際して、焼成塊成鉱の落
下強度および還元率を向上させるべく、使用する
粉鉄鉱石について検討を重ねた。 細粒の粉鉄鉱石の配合割合が増して、使用する
粉鉄鉱石の粒径が相対的に細かくなれば、粉鉄鉱
石は生ペレツトに成形して焼成したときに、得ら
れる焼成塊成鉱中には多くのマクロ気孔が形成さ
れるので、焼成塊成鉱の還元率を高められること
が予想される。また、粉鉄鉱石に媒溶剤を添加、
造粒して生ペレツトを成形したときに、強度のあ
る緻密な生ペレツトが得られるので、焼成塊成鉱
の落下強度も高められることが予想される。 そこで、使用する粉鉄鉱石の粒径およびその配
合割合を種々に変化させて生ペレツトを成形し、
焼成塊成鉱を製造する実験を行なつて、そのとき
の焼成塊成鉱の還元率および落下強度を調べた。 その結果、粒径44μm以下が10〜80wt%、粒径
44μm超が残りからなる配合の粉鉄鉱石を使用す
れば、焼成塊成鉱の還元率および落下強度を大幅
に向上できることが判つた。 第1図は、使用した粒径8mm以下の粉鉄鉱石中
の、粒径44μm以下の粉鉄鉱石の配合割合と、得
られた焼成塊成鉱の還元率との関係を示すグラ
フ、第2図は、同じく、粒径44μm以下の粉鉄鉱
石の配合割合と得られた焼成塊成鉱の落下強度と
の関係を示すグラフである。 第1図に示されるように、粒径44μm以下の粉
鉄鉱石の配合割合が多くなるにつれて、得られた
焼成塊成鉱中のマクロ気孔が多くなるので、焼成
塊成鉱の還元率は増加しており、配合率が10wt
%以上では、還元率は75%以上と高い。第2図に
示されるように、粒径44μm以下の粉鉄鉱石の配
合割合が10wt%以上になると、生ペレツトは緻
密さおよび強度が充分になるので、得られた焼成
塊成鉱の落下強度は85%以上と高い。しかし、配
合割合が80wt%を超えて多くなると、生ペレツ
トが点火時にバーステイングを起こし易くなり層
内通気度が悪化するため、乾燥時間を長くせねば
ならず、また過度に加熱されたときに溶け易くな
るので、ガラス質スラグを生じ、落下強度は急激
に低下する。 従つて、焼成塊成鉱の還元率を75%以上、落下
強度を85%以上とするためには、粒径44μm以下
が10〜80wt%、粒径44μm超58以下が残りからな
る配合の粉鉄鉱石を使用すべきである。 この発明においては、以上のように、粒径
44μm以下が10〜80wt%、粒径44μm超が残りか
らなる配合の粉鉄鉱石を使用して、焼成塊成鉱の
還元率および落下強度を大幅に向上させるもので
ある。 この発明において、生ペレツトに被覆する粉コ
ークスの量は、従来と同様2.5〜4.0wt%とするの
が好ましい。 これは、被覆する粉コークスの量が2.5wt%未
満では、焼成炉における生ペレツトの焼成効率を
高めることができず、生ペレツトを短時間で高強
度の焼成塊成鉱に焼成できないからであり、ま
た、被覆する粉コークスの量が4.0wt%を超える
と、焼成時の生ペレツトの温度が高くなり過ぎ
て、焼成塊成鉱の組織が緻密で気孔の少ないもの
となると同時に、被還元性の悪い溶融型組織、即
ち、2次ヘマタイトや短冊型カルシウムフエライ
トの多い組織となるためである。 この発明において、生ペレツトの粒径は、従来
と同様約3〜13mmとするのが好ましい。その理由
は、次の通りである。即ち、生ペレツトの粒径が
3mm未満であると、焼成炉における生ペレツトの
焼成時に、粉コークスの燃焼によつて生じた高温
燃焼ガスが、生ペレツトの層を円滑に通過するの
を阻害されるため、焼成塊成鉱の生産率が低下す
る問題が生ずる。のみならず、単体の焼成ペレツ
トの形の焼成塊成鉱も粒径3mm未満となるため
に、このような小さい粒径の焼成塊成鉱を高炉内
に装入した場合に、還元ガスの円滑な通過を阻害
する。その結果、高炉内において棚吊りおよびス
リツプが発生し、高炉操業が不安定になる問題が
生ずる。一方、生ペレツトの粒径が13mmを超える
と、衝撃に対する抵抗力が弱くなるため、生ペレ
ツトを焼成炉に移送する際に、生ペレツトが崩壊
する問題を生ずる。また、本プロセスの如く短期
間の焼成時間では、生ペレツトの芯まで熱が伝わ
らず、熱不足により高品質の焼成塊成鉱が得られ
ない。さらに、焼成塊成鉱の焼成ペレツト個々の
粒径も13mmを超えるため、このような大きい焼成
ペレツトの焼成塊成鉱を高炉内に装入した場合
に、焼成塊成鉱の中心部まで還元ガスが浸透する
のに長時間を必要とする。その結果、高炉内にお
ける焼成塊成鉱の還元性が悪くなり、且つ、未還
元の芯が残つて、焼成塊成鉱の、荷重下における
高温特性が悪くなる問題を生ずる。 〔実施例〕 第1表に示す粒度構成で第2表に示す化学成分
組成の微粉鉄鉱石と、第3表に示す粒度構成で第
4表に示す化学成分組成の粗粒鉄鉱石とを、第5
表に示す。この発明の範囲内の配合で使用し、こ
れに媒溶剤およびバインダーとして第6表に示す
粒度構成の生石灰を2.7wt%添加、混合して、得
られた混合物を造粒することによつて、第7表に
示す粒径分布を有する、水分含有量8〜9wt%の
生ペレツトに成形した。比較のために、同じ粉鉄
鉱石を、同じく、第5表に示す、この発明の範囲
外の配合で使用し、同様に生ペレツトに成形し
た。
[Technical Field of the Invention] The present invention relates to a method for producing calcined agglomerate ore suitable as a raw material for blast furnaces or directly reduced iron. [Prior art and its problems] As a raw material for blast furnaces or raw material for direct reduction steelmaking,
Calcined agglomerate, which is made by pelletizing powdered iron ore and calcining it, is known, and its use is expanding. This calcined agglomerate ore is usually produced as follows. That is, a solvent consisting of at least one of quicklime, slaked lime, limestone, bentonite, granulated blast furnace slag, dolomite, etc. is added to powdered iron ore with a particle size of about 8 mm or less, and CaO/SiO 2 in the calcined agglomerated ore is added to the powdered iron ore.
Add so that the value is about 1.0 to 2.5 and mix with a mixer. Then, the obtained mixture is supplied to a disk-type first granulator, water is added thereto, and the first
The mixture is granulated using a granulator, and formed into raw pellets having a particle size of, for example, about 3 to 13 mm. Next, the obtained raw pellets are supplied to a second disk-type granulator, and about 2.5 to 4.0 wt% of coke powder is added, and the raw pellets are further granulated by the second granulator. In this way, raw pellets whose surfaces are coated with coke powder are prepared. Then, the raw pellets obtained in this way are charged into an endless moving grate type kiln, and the layer of charged raw pellets is placed on the grate of the kiln, and the drying zone of the kiln is heated. Pass through the band and firing zone in sequence. In the drying zone, drying gas at a temperature of 150 to 350°C is blown into the layer of raw pellets from above to dry the raw pellets. At the ignition zone,
High-temperature combustion gas is blown into the layer of dried raw pellets from above to ignite the coke powder on the surface of the raw pellets. In the combustion zone, the hot combustion gas produced by the combustion of coke breeze is drawn downward through the bed of green pellets to heat the green pellets to the calcination temperature. The raw pellets are calcined by heating in a calcining zone into large blocks of calcined agglomerates consisting of calcined pellets bound together by at least one of calcium ferrite and slag formed on their surfaces. . The calcined agglomerate ore in the form of large blocks thus obtained is discharged from the downstream end of the calciner, crushed by a crusher, and then sieved by a screen, with a particle size of less than 3 mm. The sifted calcined agglomerate pieces are removed, and thus the calcined agglomerate ore in the form of a lump of multiple calcined pellets with a maximum particle size of about 50 mm and the particle size of a single calcined pellet in the form of 3 to 13 mm. A certain amount of calcined agglomerate ore is produced. The calcined agglomerate produced in the manner described above has excellent reducing properties, since it mainly contains a large amount of fine calcium ferrite and fine hematite, which have excellent reducing properties. In addition, not only when a plurality of fired pellets are combined into a lump, but also when a single fired pellet has an irregular shape, when charged into a blast furnace, Because it does not flow unevenly to the center of the blast furnace, and gaps are created between the fired agglomerated ores,
Smooth passage of reducing gas is not obstructed. Furthermore, even if it collapses due to shock during transportation,
Since the calcined agglomerate, which is in the form of a lump made up of a plurality of calcined pellets combined, is simply separated into single calcined pellets, it can be used without any problems. However, conventionally, powdered iron ore has a particle size of
Because a relatively coarse powdered iron ore was used with a composition consisting of 30 to 70wt% particles with a particle size of 0.5 mm or less and the remainder with a particle size of more than 0.5 mm, when the powdered iron ore was formed into pellets and fired, the resulting sintered Many macropores were not formed in the agglomerate ore, and as a result, the reduction rate of the calcined agglomerate ore was reduced. In addition, a solvent is added to powdered iron ore,
When granulated and formed into green pellets, dense green pellets with strong reinforcement cannot be obtained, and the resulting calcined agglomerates also have low drop strength. [Object of the Invention] In view of the above-mentioned current situation, the present invention involves adding a solvent to powdered iron ore, forming a mixture into raw pellets, coating the obtained raw pellets with coke powder,
It can be obtained by charging the raw pellets into an endless moving grate kiln to continuously produce calcined agglomerates, by selecting the particle size of the powdered iron ore used and its blending ratio. The purpose is to improve the reduction rate and falling strength of calcined agglomerates. [Summary of the Invention] This invention involves adding a solvent to powdered iron ore, granulating a mixture to form raw pellets, coating the obtained raw pellets with coke powder, and moving the raw pellets endlessly. In a method for producing calcined agglomerate ore, which is charged into a grate type calcining furnace and continuously calcined to thereby continuously produce calcined agglomerate ore, 10 to 80 wt of powdered iron ore having a particle size of 44 μm or less is used.
%, and the remainder has a particle size of 44 μm. [Structure of the Invention] Hereinafter, the method for producing calcined agglomerates of the present invention will be described in detail. The present inventors added a solvent to powdered iron ore, formed a mixture into raw pellets, coated the obtained raw pellets with coke powder, and charged the raw pellets into an endless moving grate type kiln. In order to improve the falling strength and reduction rate of calcined agglomerate ore when continuously producing calcined agglomerate ore, we have repeatedly investigated the fine iron ore to be used. If the blending ratio of fine-grained iron ore increases and the particle size of the iron ore used becomes relatively fine, the iron ore powder becomes a calcined agglomerate ore when formed into green pellets and fired. Since many macropores are formed inside, it is expected that the reduction rate of calcined agglomerates can be increased. In addition, a solvent is added to powdered iron ore,
When granulated and shaped into green pellets, strong and dense green pellets can be obtained, so it is expected that the falling strength of the fired agglomerates will also be increased. Therefore, we molded raw pellets by varying the particle size of the powdered iron ore used and its blending ratio.
An experiment was conducted to produce calcined agglomerate ore, and the reduction rate and falling strength of the calcined agglomerate ore were investigated. As a result, 10 to 80 wt% of particles with a particle size of 44 μm or less were
It was found that the reduction rate and falling strength of calcined agglomerate ore could be significantly improved by using powdered iron ore with a composition consisting of the remainder exceeding 44 μm. Figure 1 is a graph showing the relationship between the blending ratio of fine iron ore with a particle size of 44 μm or less in the used fine iron ore with a particle size of 8 mm or less and the reduction rate of the obtained calcined agglomerate; The figure is also a graph showing the relationship between the blending ratio of fine iron ore with a grain size of 44 μm or less and the falling strength of the obtained calcined agglomerate ore. As shown in Figure 1, as the blending ratio of fine iron ore with a particle size of 44 μm or less increases, the number of macropores in the obtained calcined agglomerate increases, and the reduction rate of the calcined agglomerate increases. The blending rate is 10wt.
%, the return rate is as high as 75% or more. As shown in Figure 2, when the blending ratio of fine iron ore with a grain size of 44 μm or less is 10 wt% or more, the raw pellets have sufficient density and strength, so the falling strength of the resulting calcined agglomerates is is high at over 85%. However, when the blending ratio exceeds 80wt%, the raw pellets tend to burst during ignition and the air permeability within the layer deteriorates, requiring a longer drying time, and when heated excessively. As it melts easily, it forms a vitreous slag, and its drop strength rapidly decreases. Therefore, in order to achieve a reduction rate of 75% or more and a drop strength of 85% or more for calcined agglomerate ore, it is necessary to use a powder with a powder composition consisting of 10 to 80wt% of particles with a particle size of 44μm or less and the balance of particles with a particle size of more than 44μm and 58 or less. Iron ore should be used. In this invention, as described above, the particle size
The reduction rate and falling strength of calcined agglomerates are significantly improved by using powdered iron ore with a composition consisting of 10 to 80 wt% of particles with a particle size of 44 μm or less and the balance of particles with a particle size of more than 44 μm. In this invention, the amount of coke powder coated on the raw pellets is preferably 2.5 to 4.0 wt%, as in the conventional method. This is because if the amount of coated coke powder is less than 2.5wt%, the firing efficiency of the green pellets in the calcining furnace cannot be increased, and the raw pellets cannot be calcined into high-strength calcined agglomerates in a short time. In addition, if the amount of coke powder to be coated exceeds 4.0wt%, the temperature of the green pellets during calcination becomes too high, and the structure of the calcined agglomerates becomes dense and has few pores, and at the same time, it becomes less reducible. This is because the structure becomes a melt-type structure with poor quality, that is, a structure containing many secondary hematite and rectangular calcium ferrite. In this invention, the particle size of the raw pellets is preferably about 3 to 13 mm, as in the conventional method. The reason is as follows. That is, if the particle size of the green pellets is less than 3 mm, the high-temperature combustion gas generated by the combustion of coke breeze will be inhibited from smoothly passing through the layer of green pellets when the green pellets are fired in the firing furnace. As a result, the production rate of calcined agglomerate ore decreases. In addition, since fired agglomerate ore in the form of single fired pellets has a particle size of less than 3 mm, when such small particle size calcined agglomerate is charged into a blast furnace, it is difficult for the reducing gas to flow smoothly. impede passage. As a result, shelving and slipping occur within the blast furnace, resulting in the problem of unstable blast furnace operation. On the other hand, if the particle size of the green pellets exceeds 13 mm, the resistance to impact becomes weak, resulting in the problem of the green pellets collapsing when they are transferred to a kiln. Furthermore, in a short firing time as in this process, heat is not transmitted to the core of the raw pellets, and high quality fired agglomerates cannot be obtained due to insufficient heat. Furthermore, since the particle size of each fired pellet of fired agglomerate ore exceeds 13 mm, when such large fired agglomerate ore is charged into a blast furnace, the reducing gas reaches the center of the fired agglomerate ore. It takes a long time to penetrate. As a result, the reducibility of the calcined agglomerate ore in the blast furnace deteriorates, and unreduced cores remain, resulting in the problem that the high temperature properties of the calcined agglomerate ore under load deteriorate. [Example] Fine iron ore with the particle size composition shown in Table 1 and the chemical composition shown in Table 2, and coarse iron ore with the particle size structure shown in Table 3 and the chemical composition shown in Table 4, Fifth
Shown in the table. By using the formulation within the scope of this invention, adding and mixing 2.7 wt% of quicklime with the particle size structure shown in Table 6 as a solvent and binder, and granulating the resulting mixture, The pellets were formed into raw pellets having a particle size distribution shown in Table 7 and a water content of 8 to 9 wt%. For comparison, the same fine iron ore was used in a formulation outside the scope of this invention, also shown in Table 5, and similarly formed into green pellets.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 次いで、第8表に示す、粒度構成の粉コークを
生ペレツトに3.5wt%添加して造粒し、生ペレツ
トに粉コークスを被覆した。
[Table] Next, 3.5 wt % of coke powder having the particle size composition shown in Table 8 was added to the raw pellets for granulation, and the raw pellets were coated with the coke powder.

【表】 そして、無端移動グレート式焼成炉のグレート
上に生ペレツトを400mmの厚さに装入して、生ペ
レツトを焼成炉の乾燥帯、点火帯および燃焼帯を
順次移動させ、焼成塊成鉱に焼成した。そして、
このようにして得られた大きいブロツク状の焼成
塊成鉱を焼成炉の下流端から排出し、クラツシヤ
ーによつて破砕したのち、スクリーンによつて粒
径3mm未満の篩下の焼成塊成鉱片を除去し、かく
して、複数個の焼成ペレツトが結合した最大粒径
約50mmの塊状の形の焼成塊成鉱および単体の焼成
ペレツトの形の粒径約3〜13mmの焼成塊成鉱が製
造された。 以上のように製造された焼成塊成鉱の還元率お
よび落下強度は、第9表に示す通りであつた。
[Table] Then, raw pellets are charged to a thickness of 400 mm onto the grate of an endless moving grate type kiln, and the raw pellets are sequentially moved through the drying zone, ignition zone, and combustion zone of the kiln, and are baked into agglomerates. Fired into ore. and,
The large blocks of calcined agglomerate ore thus obtained are discharged from the downstream end of the kiln, and after being crushed by a crusher, the calcined agglomerate pieces under the sieve with a particle size of less than 3 mm are passed through a screen. In this way, calcined agglomerate in the form of a lump with a maximum particle size of about 50 mm, in which a plurality of calcined pellets are combined, and calcined agglomerate in the form of a single calcined pellet, with a particle size of about 3 to 13 mm, are produced. Ta. The reduction rate and falling strength of the calcined agglomerates produced as described above were as shown in Table 9.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、使用する粉鉄鉱石の粒径お
よびその配合割合を選択することによつて、高い
還元率および落下強度を有する焼成塊成鉱を容易
に製造することができる。
According to this invention, by selecting the particle size of the powdered iron ore used and its blending ratio, it is possible to easily produce calcined agglomerate ore having a high reduction rate and falling strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、使用した粒径8mm以下の粉鉄鉱石中
の、粒径44μm以下の粉鉄鉱石の配合割合と、得
られた焼成塊成鉱の還元率との関係を示すグラ
フ、第2図は、同じく、粒径44μm以下の粉鉄鉱
石の配合割合と得られた焼成塊成鉱の落下強度と
の関係を示すグラフである。
Figure 1 is a graph showing the relationship between the blending ratio of fine iron ore with a particle size of 44 μm or less in the used fine iron ore with a particle size of 8 mm or less and the reduction rate of the obtained calcined agglomerate; The figure is also a graph showing the relationship between the blending ratio of fine iron ore with a grain size of 44 μm or less and the falling strength of the obtained calcined agglomerate ore.

Claims (1)

【特許請求の範囲】 1 粉鉄鉱石に媒溶剤を添加、混合した混合物を
造粒して生ペレツトを成形し、得られた生ペレツ
トに粉コークスを被覆し、前記生ペレツトを無端
移動グレート式焼成炉に装入して連続的に焼成
し、かくして、焼成塊成鉱を連続的に製造する、
焼成塊成鉱の製造方法において、 前記粉鉄鉱石として、粒径44μm以下が10〜
80wt%、粒径44μm超が残りからなる配合の粉鉄
鉱石を使用することを特徴とする、焼成塊成鉱の
製造方法。
[Scope of Claims] 1 A mixture of powdered iron ore and a solvent is added and mixed to granulate to form raw pellets, the obtained raw pellets are coated with coke powder, and the raw pellets are transferred to an endless moving grate. Charged into a kiln and fired continuously, thus continuously producing fired agglomerate ore.
In the method for producing calcined agglomerate ore, the powdered iron ore has a particle size of 44 μm or less, which is 10 to 10 μm.
A method for producing calcined agglomerate ore, characterized by using powdered iron ore having a composition of 80wt% and the remainder having a grain size of more than 44μm.
JP29669186A 1986-12-15 1986-12-15 Production of burnt agglomerated ore Granted JPS63149335A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP29669186A JPS63149335A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore
IN357/BOM/87A IN167132B (en) 1986-12-15 1987-12-08
AU82221/87A AU600777B2 (en) 1986-12-15 1987-12-08 Method for manufacturing agglomerates of fired pellets
CA000554134A CA1324493C (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
US07/131,660 US4851038A (en) 1986-12-15 1987-12-11 Method for manufacturing agglomerates of fired pellets
DE3751747T DE3751747T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
EP87118525A EP0271863B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
DE3752270T DE3752270T2 (en) 1986-12-15 1987-12-14 Process for producing briquettes from burned pellets
EP93111020A EP0578253B1 (en) 1986-12-15 1987-12-14 Method for manufacturing agglomerates of fired pellets
BR8706790A BR8706790A (en) 1986-12-15 1987-12-14 PROCESS FOR THE PRODUCTION OF BURNED PELLETS PELLETS
CN87108122A CN1016184B (en) 1986-12-15 1987-12-15 Method for roasting ores into ball agglomeration
KR1019870014415A KR910001325B1 (en) 1986-12-15 1987-12-15 Method for manufacturing agglomerates of fired pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29669186A JPS63149335A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore

Publications (2)

Publication Number Publication Date
JPS63149335A JPS63149335A (en) 1988-06-22
JPH0430444B2 true JPH0430444B2 (en) 1992-05-21

Family

ID=17836835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29669186A Granted JPS63149335A (en) 1986-12-15 1986-12-15 Production of burnt agglomerated ore

Country Status (1)

Country Link
JP (1) JPS63149335A (en)

Also Published As

Publication number Publication date
JPS63149335A (en) 1988-06-22

Similar Documents

Publication Publication Date Title
KR900001095B1 (en) Agglomerated ores and a producing method therefor
JP2012528941A (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
JPH024658B2 (en)
JPH0430445B2 (en)
JPH0430442B2 (en)
JPH05263155A (en) Production of sintered or pelletized ore as blast-furnace material using lime cake
JPH0425326B2 (en)
JPH0430444B2 (en)
JPH046771B2 (en)
JP2748782B2 (en) Method for producing calcined agglomerate
JPH0430446B2 (en)
JP2790026B2 (en) Method for producing calcined agglomerate
JP2755042B2 (en) Method for producing calcined agglomerate
JPH0425327B2 (en)
JPH0430443B2 (en)
JPS62174333A (en) Production of lump ore
EP0053139A1 (en) Agglomerates, a process for producing thereof and use thereof.
JP2001262241A (en) Method for producing sintered ore containing carbon
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2790025B2 (en) Method for producing calcined agglomerate
JPH0425328B2 (en)
JPH0437146B2 (en)
JPH0422961B2 (en)
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JPS62177128A (en) Manufacture of briquetted ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees