JP4893136B2 - Blast furnace operation method using woody biomass - Google Patents

Blast furnace operation method using woody biomass Download PDF

Info

Publication number
JP4893136B2
JP4893136B2 JP2006198522A JP2006198522A JP4893136B2 JP 4893136 B2 JP4893136 B2 JP 4893136B2 JP 2006198522 A JP2006198522 A JP 2006198522A JP 2006198522 A JP2006198522 A JP 2006198522A JP 4893136 B2 JP4893136 B2 JP 4893136B2
Authority
JP
Japan
Prior art keywords
biomass
coke
coal
blast furnace
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006198522A
Other languages
Japanese (ja)
Other versions
JP2008024984A (en
Inventor
茂行 廣瀬
省三 板垣
登 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006198522A priority Critical patent/JP4893136B2/en
Publication of JP2008024984A publication Critical patent/JP2008024984A/en
Application granted granted Critical
Publication of JP4893136B2 publication Critical patent/JP4893136B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は鉄鋼製造プロセスにおいて使用する石炭の一部を、木質バイオマスで代替することにより、石炭使用量の削減を図る技術に関し、バイオマスの使用量に応じた省エネルギーおよびCO2排出削減が達成できる木質バイオマスを原料とした高炉操業方法に関する。 The present invention relates to a technique for reducing the amount of coal used by substituting a part of coal used in the steel manufacturing process with woody biomass, and relates to the woody that can achieve energy saving and CO 2 emission reduction according to the amount of biomass used. The present invention relates to a blast furnace operation method using biomass as a raw material.

省エネルギーが徹底している我が国の鉄鋼業においても、京都議定書で決められた温室ガス排出削減目標を達成するために更なる省エネルギーとCO2排出削減が求められている。バイオマスの利用はカーボンニュートラルにより、CO2排出削減の有力な手段となりうるため、鉄鋼業において従来種々のバイオマスの利用法が提案されている。たとえば廃木材の粉砕粉やRDF(Refused Derived Fuel)の炭化粉を微粉炭と共に高炉に吹き込む方法、石炭粉と混合してコークス炉に装入する方法などが提案されている(例えば、非特許文献1参照。)。またCO2排出削減効果を意図し、カーボンニュートラル扱いの木質バイオマスを高炉に吹き込む実験も行われている(例えば、非特許文献2参照。)。 Even in Japan's steel industry, where energy conservation is thorough, further energy conservation and CO 2 emission reductions are required to achieve the greenhouse gas emission reduction targets set by the Kyoto Protocol. Since the use of biomass can be an effective means for reducing CO 2 emissions due to carbon neutral, various methods of using biomass have been proposed in the steel industry. For example, a method of blowing pulverized waste wood powder or carbonized powder of RDF (Refused Derived Fuel) into a blast furnace together with pulverized coal, a method of mixing with coal powder and charging into a coke oven, etc. have been proposed (for example, non-patent literature) 1). In addition, an experiment of blowing carbon-neutral woody biomass into a blast furnace with the aim of reducing CO 2 emissions has also been performed (see, for example, Non-Patent Document 2).

バイオマスを用いたコークス製造法としては、原料石炭粉に木質系バイオマスのチップを配合し、この混合物を通常の室炉式コークス炉へ装入して高温乾留する方法が提案されている。この際、熱分解ガスおよびタールは副産物として回収し、残留炭化物をコークスとして利用する。この方法では、木質バイオマスを高温で熱分解させ、発生するガスおよびタールや残渣物(木炭)を100%回収することが可能である。しかし、バイオマスのチップは石炭との粒径差および密度差が大きく均一に混合してコークス炉に装入することが困難である。また、木質バイオマスは加熱時に粘結性を発現しないため粒子間の結合力が弱まり、高温乾留後に生成するコークスの反応性は向上するが、強度が著しく低下するため高炉用コークスとして使用するにはバイオマスの配合量に限界があった。さらに、木質バイオマスは水分含有量が30〜60mass%と高く、密度が低い。このため、石炭とバイオマスの混合物を室炉式コークス炉へ装入する際、重力装入方式のため装入密度が低くなるという問題があり、その結果、コークスの生産性が低下するとともに乾留時に発生する水分量が多くなりコークス生産消費熱量の増加とガス精製設備の効率が低下するなどの現象が起こり易かった。これらの問題を解決するため、バイオマス原料を室炉式コークス炉で利用する方法として、バイオマス原料をまず150〜400℃で加熱処理し、熱分解により生成した油分を分離・回収する。次に残渣物のチャーを所定の粒度に粉砕した後、コークス製造設備に供給し、石炭とチャーとを混合してコークス炉へ装入、乾留し、コークスを製造する方法などが提案されている(例えば、特許文献1参照。)。   As a method for producing coke using biomass, there has been proposed a method in which woody biomass chips are blended with raw coal powder, and this mixture is charged into a normal room furnace type coke oven and subjected to high temperature dry distillation. At this time, pyrolysis gas and tar are recovered as by-products, and residual carbides are used as coke. In this method, it is possible to thermally decompose woody biomass at a high temperature and recover 100% of the generated gas, tar, and residue (charcoal). However, biomass chips have large particle size differences and density differences from coal, and it is difficult to mix them uniformly into a coke oven. In addition, woody biomass does not exhibit caking properties when heated, so the bonding strength between particles is weakened, and the reactivity of coke produced after high temperature dry distillation is improved, but the strength is significantly reduced, so it can be used as blast furnace coke. There was a limit to the amount of biomass blended. Furthermore, the woody biomass has a high water content of 30 to 60 mass% and a low density. For this reason, when charging a mixture of coal and biomass into a chamber-type coke oven, there is a problem that the charging density becomes low due to the gravity charging method, and as a result, the productivity of coke decreases and during dry distillation Phenomena such as an increase in the amount of heat generated, an increase in the heat consumption of coke production, and a decrease in the efficiency of gas purification equipment were likely to occur. In order to solve these problems, as a method of using the biomass raw material in a chamber furnace type coke oven, the biomass raw material is first heat-treated at 150 to 400 ° C., and the oil component generated by thermal decomposition is separated and recovered. Next, a method is proposed in which the char of the residue is pulverized to a predetermined particle size, then supplied to a coke production facility, coal and char are mixed, charged into a coke oven, and carbonized to produce coke. (For example, refer to Patent Document 1).

一方、バイオマスを利用した高炉の操業方法としては、高炉羽口よりバイオマスとして乾燥下水汚泥を微粉炭と共に吹き込み、高炉を効率よく操業する方法が提案されている(例えば、特許文献2参照。)。また木質バイオマスを石炭、鉄鉱石と共に混合・成型し室炉式コークス炉で乾留するフェロコークスの製造方法及びこれを使用して高炉の熱保存帯温度を下げることにより高炉の還元材比を低下させる高炉操業方法が提案されている(例えば、特許文献3参照。)。特許文献3は、反応性を高めたコークスを高炉原料として使用することにより高炉シャフト部の温度を下げることが出来、その結果FeO〜Fe還元平衡到達度が一定下では還元材比低下につながることを示した報告(例えば、非特許文献3参照。)と同様の結果を示している。   On the other hand, as a method for operating a blast furnace using biomass, there has been proposed a method for efficiently operating a blast furnace by blowing dry sewage sludge together with pulverized coal as biomass from a blast furnace tuyere (see, for example, Patent Document 2). Also, a ferro-coke manufacturing method in which woody biomass is mixed and molded with coal and iron ore and carbonized in a chamber-type coke oven, and the heat storage zone temperature of the blast furnace is lowered by using this method, thereby reducing the reducing material ratio of the blast furnace. A blast furnace operating method has been proposed (see, for example, Patent Document 3). Patent Document 3 can reduce the temperature of the blast furnace shaft portion by using coke with increased reactivity as a blast furnace raw material, and as a result, the FeO-Fe reduction equilibrium achievement is constant, leading to a reduction in the reducing material ratio. The result is similar to that of the report (for example, see Non-Patent Document 3).

更にバイオマスを炭化し、これを焼結原料に添加することにより焼結エネルギーとして使用を図ると共に、簡易且つ低コストで排ガス中のNOx、SOxを低減する焼結鉱製造方法が提案されている(例えば、特許文献4参照。)。
奥野嘉雄「ふぇらむ」8、2003年、p.217 脇元一政他「材料とプロセス」18、2005年、p.1112 内藤誠章他「鉄と鋼」87、2001年、p.357 「バイオマス比率算定方法、施行規定第7条第2項」資源エネルギー庁 2003年2月 日本エネルギー学会「バイオマスハンドブック」オーム社 2002年 「バイオマスニッポン(平成16年度農水省バイオマスニッポン総合戦略推進事業)」2004年 「2004年度版鉄鋼統計要覧」(社)日本鉄鋼連盟 「統計資料:2005年度銑鉄生産量」(社)日本鉄鋼連盟 特開2005―272569号公報 (図1) 特開2006―37196号公報 (図1、図2) 特開2004−217914号公報 (表1、図4) 特開2003−328044号公報 (図1)
Further carbonized biomass, which together reduce the use as a sintering energy by adding the sintering raw material, is proposed sinter manufacturing method of reducing NO x, SO x in the exhaust gas easily at low cost (For example, refer to Patent Document 4).
Yoshio Okuno "Feramu" 8, 2003, p. 217 Kazumasa Wakimoto et al. “Materials and Processes” 18, 2005, p. 1112 Naito Masaaki et al. “Iron and Steel” 87, 2001, p. 357 “Biomass Ratio Calculation Method, Enforcement Regulations, Article 7, Paragraph 2” Agency for Natural Resources and Energy, February 2003 The Japan Institute of Energy "Biomass Handbook" Ohm Corporation 2002 “Biomass Nippon (FY2004 Biomass Nippon Biomass Nippon Strategy Promotion Project)” 2004 "2004 Iron and Steel Statistics Manual" Japan Iron and Steel Federation "Statistical data: Production volume of pig iron in 2005" Japan Iron and Steel Federation Japanese Patent Laying-Open No. 2005-272569 (FIG. 1) Japanese Patent Laid-Open No. 2006-37196 (FIGS. 1 and 2) JP 2004-217914 A (Table 1, FIG. 4) JP 2003-328044 A (FIG. 1)

バイオマス原料を室炉式コークス炉で使用するコークス製造技術は、特許文献1などに記載されている様にバイオマス原料を事前に150〜400℃でまず加熱処理する。次に熱分解により生成した残留物のチャーを所定の粒度に粉砕した後、通常の配合炭と混合してコークス炉に装入、乾留し、コークスを製造する。しかし、バイオマス原料を事前に加熱処理してチャー化および残留物チャーを所定の粒度に粉砕し通常の室炉式コークスへ装入する方法は製造設備が複雑になるという問題がある。また、事前に加熱処理した残留チャーを室温近くまで冷却後、再び配合炭と混合してコークス炉へ装入し炉内で約1100℃までに乾留(加熱処理)することはエネルギー効率が悪いことは明らかである。さらに残留物のチャーは木質バイオマスと同様に粘結性がなく、これを配合した場合はコークス強度が低下する。それゆえに配合炭の強粘結炭配合割合を増加させ粘結性状を上昇させたり、高価な粘結剤を添加する必要がある。また、熱分解チャーは熱処理過程での脱揮発分により多孔質化し、所定の粒度に粉砕する際には0.5mm以下の微粉が多く発生し、収率は悪くなる。また、通常の配合炭に混合しコークス炉に装入すると微粉発生によりコークス炉の炉壁のカーボン付着量が増加し、コークス炉の安定操業が阻害される。このためコークス製造プロセスが複雑になるとともにエネルギー使用量の増加による製造コストや配合炭価格が上昇するなどの問題がある。   In the coke production technology that uses a biomass material in a chamber-type coke oven, the biomass material is first heat-treated at 150 to 400 ° C. in advance as described in Patent Document 1 and the like. Next, the residual char generated by pyrolysis is pulverized to a predetermined particle size, mixed with ordinary blended coal, charged into a coke oven, and dry-distilled to produce coke. However, there is a problem in that the production equipment becomes complicated in the method in which the biomass raw material is heat-treated in advance to char and the residual char is pulverized to a predetermined particle size and charged into a normal chamber furnace coke. In addition, after cooling the pre-heated residual char to near room temperature, mixing it with blended coal again, charging it into a coke oven, and dry-distilling (heating treatment) to about 1100 ° C in the furnace is inefficient. Is clear. Further, the char residue is not caking as in the case of woody biomass, and when it is blended, the coke strength decreases. Therefore, it is necessary to increase the caking property by increasing the blending ratio of strong caking coal in the blended charcoal, or to add an expensive caking agent. Further, the pyrolysis char becomes porous due to the devolatilization during the heat treatment process, and when pulverized to a predetermined particle size, a large amount of fine powder of 0.5 mm or less is generated, and the yield is deteriorated. In addition, when mixed with ordinary blended coal and charged into a coke oven, the amount of carbon deposited on the coke oven wall increases due to the generation of fine powder, which impedes stable operation of the coke oven. For this reason, there is a problem that the coke production process becomes complicated and the production cost and the blended coal price increase due to an increase in energy consumption.

一方、高炉の羽口より微粉炭と共に木質バイオマスを吹き込み、微粉炭及び炉頂から装入する塊コークスの使用量削減とCO2排出削減を図る高炉の操業方法が非特許文献2に明らかにされている。ところで木質バイオマスは微粉炭と比較し含有水分が高いことが特徴である。表1に代表的なバイオマスの含水率、有機物比、灰分及び発熱量比較を示す(非特許文献5参照。)。 On the other hand, Non-Patent Document 2 discloses a method for operating a blast furnace in which wood biomass is blown together with pulverized coal from the tuyere of the blast furnace to reduce the amount of pulverized coal and lump coke charged from the top of the furnace and CO 2 emissions. ing. By the way, woody biomass is characterized by a higher water content than pulverized coal. Table 1 shows a comparison of moisture content, organic matter ratio, ash content, and calorific value of typical biomass (see Non-Patent Document 5).

Figure 0004893136
Figure 0004893136

表1より木質バイオマスの水分含有量は30〜60mass%であることが認められる。高炉の羽口より固体燃料を吹き込み、塊コークス消費量を効率的に減らすためには羽口先温度は通常2000℃以上で管理する必要がある。2000℃未満では吹き込み燃料が羽口先空間で十分燃焼せず一部未燃焼状態でチャー化し、その蓄積により高炉下部の通気性通液性を阻害する。バイオマス水分含有量が高い場合は他の送風条件が一定であれば水の蒸発潜熱2500kJ/kg(非特許文献4参照。)分が羽口先で失われる。それゆえ、その吹き込み量に応じて羽口先温度は低下し、吹き込み燃料の安定燃焼は困難になる。このため、送風温度の上昇、酸素富化率の上昇、脱湿送風などの高炉操業上の対策が必要となりいずれもコスト増の要因につながるという問題がある。   From Table 1, it is recognized that the water content of the woody biomass is 30 to 60 mass%. In order to inject solid fuel from the tuyere of the blast furnace and reduce the coke consumption efficiently, the tuyere tip temperature usually needs to be controlled at 2000 ° C. or higher. When the temperature is lower than 2000 ° C., the injected fuel does not burn sufficiently in the tuyere tip space and partially chars in an unburned state. When the biomass moisture content is high, if the other air blowing conditions are constant, the latent heat of vaporization of water of 2500 kJ / kg (see Non-Patent Document 4) is lost at the tuyere. Therefore, the tuyere tip temperature decreases according to the amount of injection, and stable combustion of the injected fuel becomes difficult. For this reason, measures in blast furnace operation such as an increase in blowing temperature, an increase in oxygen enrichment rate, and dehumidification blowing are required, and all of them lead to cost increase.

この様な課題を解決するために特許文献2では下水汚泥を乾燥し、これを微粉炭と混合して吹き込む方法を提示している。その結果、表1に示す90mass%以上の含水率汚泥を吹き込む場合と比較して羽口先温度の低下が抑制され大幅な燃焼効率の改善が期待できる。但しバイオマスのなかで汚泥は表1に示すように灰分含有量が20mass%以上であり、木質バイオマスの灰分に比較し20倍以上の含有量である。このため木質バイオマス吹き込みに比べ羽口先空間で汚泥灰分が炉芯あるいは融着帯に蓄積し通気性、通液性が相対的に悪化する。また事前乾燥に要する乾燥熱源を化石燃料に依存すれば、この段階で熱エネルギーが必要になる。それゆえに、この熱を含めた鉄鋼製造エネルギーは汚泥の不十分な乾燥のままでは他の高炉操業条件の変更、たとえば送風温度の上昇、酸素富化率の上昇、脱湿送風などが必要となり、鉄鋼製造コスト合理化には繋がらない可能性がある。   In order to solve such a problem, Patent Document 2 proposes a method of drying sewage sludge, mixing it with pulverized coal, and blowing it. As a result, compared with the case where the moisture content sludge of 90 mass% or more shown in Table 1 is blown in, the reduction of the tuyere temperature is suppressed and a significant improvement in combustion efficiency can be expected. However, sludge in the biomass has an ash content of 20 mass% or more as shown in Table 1, and is 20 times or more the content of wood biomass. For this reason, sludge ash accumulates in the furnace core or the cohesive zone in the tuyere space compared with wood biomass blowing, and the air permeability and liquid permeability are relatively deteriorated. If the drying heat source required for pre-drying depends on fossil fuel, heat energy is required at this stage. Therefore, steel production energy including this heat requires changes in other blast furnace operating conditions, such as an increase in blowing temperature, an increase in oxygen enrichment rate, dehumidification blowing, etc., with insufficient drying of sludge. It may not lead to rationalization of steel manufacturing costs.

一方、非特許文献3は高反応性コークスの高炉使用により高炉のシャフト部熱保存帯のFeO〜Fe還元平衡温度を下げ、還元材比を削減する方法を総括物質・熱収支モデルの解析により理論的に提示している。この結果はコークスの反応性を高めると還元材比の低下につながることを明らかにしている。但し高反応性コークスはその製造過程で反応性を高めるためコークスの組織を多孔質化する。その結果コークス強度が低下する傾向がある。特許文献3の図6においても、同様の傾向を示している。このため高反応性コークスはその強度と反応性を同時に望ましい範囲で管理することが高炉の低還元材比下で安定操業を継続する上で重要となる。   On the other hand, Non-Patent Document 3 shows that the method of reducing the FeO-Fe reduction equilibrium temperature of the shaft thermal storage zone of the blast furnace by using highly reactive coke blast furnace and reducing the reducing material ratio by the analysis of the general material and heat balance model Presents. This result clarifies that increasing the reactivity of coke leads to a reduction in the reducing material ratio. However, highly reactive coke makes the coke structure porous in order to increase the reactivity in the production process. As a result, the coke strength tends to decrease. In FIG. 6 of Patent Document 3, the same tendency is shown. For this reason, it is important for high-reactivity coke to maintain its strength and reactivity within the desired range at the same time in order to continue stable operation under the low reducing agent ratio of the blast furnace.

以上のように、木質バイオマスを製鉄所で利用する際には、コークス強度の低下やコークス製造プロセスの複雑化等の問題が、また高炉の羽口より木質バイオマスを吹き込む際には羽口先温度の低下、吹き込み燃料の安定燃焼の困難化等の問題があり、いずれも銑鉄製造コストが大幅に増加する。   As described above, when using wood biomass at steelworks, there are problems such as reduced coke strength and complication of the coke production process, and when injecting wood biomass from the blast furnace tuyere, the tuyere tip temperature There are problems such as lowering and difficulty in stable combustion of injected fuel, both of which greatly increase pig iron production costs.

したがって本発明の目的は、このような従来技術の課題を解決し、製鉄所において木質バイオマスを効果的に利用する方法を提供すること、すなわち、木質バイオマスを原料とした高炉操業方法および木質バイオマスを原料としたコークスの製造方法を提供することにある。   Therefore, an object of the present invention is to solve such problems of the prior art and provide a method of effectively using woody biomass in an ironworks, that is, a blast furnace operating method and woody biomass using woody biomass as raw materials. The object is to provide a method for producing coke as a raw material.

また本発明の他の目的は、木質バイオマスの利用により、高炉の還元材比の低下を達成することにある。   Another object of the present invention is to achieve a reduction in the reducing material ratio of the blast furnace by using woody biomass.

本発明では、バイオマスを高炉の羽口から吹き込む方法及び高炉炉頂から装入する高反応性コークスの有する課題を解決するため、原料となる木質バイオマスを事前に乾燥し、これを高反応性コークス原料及び羽口吹き込み原料として使用する。これにより従来の類似技術に比較し羽口部における固体燃料の燃焼効率改善が、また強度を維持し反応性を高めたコークスの製造により高炉熱保存帯温度の低下が可能となり還元材比低下が達成される。   In the present invention, in order to solve the problems of the method of injecting biomass from the tuyere of the blast furnace and the highly reactive coke charged from the top of the blast furnace, the woody biomass as a raw material is dried in advance, and this is reacted with the highly reactive coke. Used as raw material and tuyere blown raw material. This makes it possible to improve the combustion efficiency of solid fuel in the tuyere compared to the conventional similar technology, and to reduce the blast furnace heat preservation zone temperature by producing coke that maintains strength and increases reactivity, and reduces the reducing material ratio. Achieved.

本発明の特徴は以下の通りである。
(1)木質バイオマスを加熱して乾燥後に粉砕し、石炭とともに成型して成型体とし、該成型体を篩い分けした篩い上を、石炭とともにコークス炉に装入して乾留して製造したコークスを高炉に装入し、前記成型体を篩い分けした篩い下を、羽口から高炉内に吹き込むことを特徴とする木質バイオマスを原料とした高炉操業方法。
(2)篩い分けの篩い目を、3〜6mmとすることを特徴とする(1)に記載の木質バイオマスを原料とした高炉操業方法。
(3)木質バイオマスを、水分含有量が5mass%以上、30mass%未満となるように乾燥することを特徴とする(1)または(2)に記載の木質バイオマスを原料とした高炉操業方法。
(4)木質バイオマスの乾燥を、300℃以下の排熱を用いて行うことを特徴とする(1)ないし(3)のいずれかに記載の木質バイオマスを原料とした高炉操業方法。
(5)乾燥後の木質バイオマスを粉砕し、石炭とともに成型して成型体とし、該成型体を石炭とともにコークス炉に装入して乾留して製造したコークスの高炉への装入割合を、高炉に装入する全コークス量の80mass%未満とすることを特徴とする(1)ないし(4)のいずれかに記載の木質バイオマスを原料とした高炉操業方法。
(6)木質バイオマスを粒径3mm以下に粉砕し、石炭ととともに混合して成型し、成型体の体積を10cm3以上で50cm3以下、嵩密度を0.8g/cm3以上で1.1g/cm3以下にすることを特徴とする(1)ないし(5)のいずれかに記載の木質バイオマスを原料とした高炉操業方法。
(7)粉砕した木質バイオマスを、石炭とバインダーとともに成型することを特徴とする(1)ないし(6)のいずれかに記載の木質バイオマスを原料とした高炉操業方法。
The features of the present invention are as follows.
(1) Coke produced by heating and drying woody biomass , pulverizing it with coal, forming it into a molded body, and sieving the molded body with a coal in a coke oven and dry distillation. A method for operating a blast furnace using woody biomass as a raw material, wherein the material is charged into a blast furnace and a sieve bottom obtained by sieving the molded body is blown into the blast furnace from a tuyere .
(2) The method for operating a blast furnace using woody biomass as a raw material according to (1), wherein the sieve mesh for sieving is 3 to 6 mm.
(3) The blast furnace operation method using the woody biomass as a raw material according to (1) or (2) , wherein the woody biomass is dried so that the water content is 5 mass% or more and less than 30 mass%.
(4) The blast furnace operating method using the woody biomass as described in any one of (1) to (3), wherein the woody biomass is dried using exhaust heat of 300 ° C. or less.
(5) The dried woody biomass is pulverized, molded with coal to form a molded body, and the molded body is charged together with coal into a coke oven and dry-distilled to produce a coke charging ratio into the blast furnace. The blast furnace operating method using the woody biomass as described in any one of (1) to (4) , wherein the amount of coke is less than 80 mass% of the total amount of coke.
(6) The woody biomass is pulverized to a particle size of 3 mm or less, mixed with coal and molded, and the volume of the molded body is 10 cm 3 or more and 50 cm 3 or less, and the bulk density is 0.8 g / cm 3 or more and 1.1 g. The method of operating a blast furnace using the woody biomass according to any one of (1) to (5) as a raw material, wherein the raw material is made / cm 3 or less.
(7) A blast furnace operation method using the woody biomass according to any one of (1) to (6) , wherein the pulverized woody biomass is molded together with coal and a binder.

本発明を我が国全体の銑鋼一貫製鉄所に適用することにより石炭使用量削減及びCO2排出削減効果は著しく大きくなる。すなわち木質バイオマスは我が国で年間およそ1480万トン発生しており、このうち未利用で廃棄される量は740万トンに達する(非特許文献6参照。)。この量は石炭発熱量換算で510万トンに該当する(非特許文献4参照。)。一方我が国の鉄鋼業における石炭使用量は6500万トンである(非特許文献7参照。)。本発明により木質バイオマスをコークス原料として使用すれば、カーボンニュートラルによるCO2削減量は、
2.394(t-CO2/t-coal)×510(万t/y)≒1220(万t-CO2/y)
となる。また、木質バイオマス(水分5mass%)を高炉へ40kg/pig-t吹き込む場合に、カーボンニュートラルである木質バイオマスの吹き込みによる微粉炭吹き込み量38kg/pig-t(40kg/pig-t×0.95)の他、後述する表7より高反応性コークス80mass%を高炉で使用し還元材比11kg/pig-t(内訳:PCI比3kg/pig-t、coke比8kg/pig-t)を削減できる。その結果、2005年度の銑鉄生産量82940千t(非特許文献8参照。)を考慮すると、木質バイオマスを微粉炭吹込み代替および高反応性コークス原料に使用することによるコークス比低減効果による石炭使用量の削減効果は、
(0.038(coal-t/pig-t)+0.003(coal-t/pig-t)+0.008(coke-t/pig-t)/0.75(coke-t/coal-t))×82940千(pig-t/y)=4288千(coal-t/y)
と評価できる。この様に本発明は従来鉄鋼分野では使用に課題のあった木質バイオマスの有効利用により鉄鋼業の省エネルギーと環境排出CO2削減を同時に達成する技術を提示するものである。
By applying the present invention to an integrated steelworks in Japan as a whole, the effects of reducing the amount of coal used and reducing CO 2 emissions are significantly increased. That is, approximately 14.8 million tons of woody biomass is generated annually in Japan, of which the amount that is unused and discarded reaches 7.40 million tons (see Non-Patent Document 6). This amount corresponds to 5.1 million tons in terms of coal calorific value (see Non-Patent Document 4). On the other hand, the amount of coal used in the steel industry in Japan is 65 million tons (see Non-Patent Document 7). If woody biomass is used as a coke raw material according to the present invention, the amount of CO 2 reduction by carbon neutral is
2.394 (t-CO 2 / t-coal) × 510 (10,000 t / y) ≈1220 (10,000 t-CO 2 / y)
It becomes. In addition, when wood biomass (moisture 5 mass%) is blown into the blast furnace at 40 kg / pig-t, the amount of pulverized coal blown by wood biomass, which is carbon neutral, 38 kg / pig-t (40 kg / pig-t × 0.95) In addition, it is possible to reduce the reducing material ratio of 11 kg / pig-t (breakdown: PCI ratio of 3 kg / pig-t, coke ratio of 8 kg / pig-t) by using 80 mass% of highly reactive coke in the blast furnace from Table 7 described later. As a result, considering the amount of pig iron production of 82940 thousand tons in 2005 (see Non-Patent Document 8), coal use due to coke ratio reduction effect by using woody biomass as a substitute for pulverized coal injection and highly reactive coke feedstock The amount reduction effect is
(0.038 (coal-t / pig-t) +0.003 (coal-t / pig-t) +0.008 (coke-t / pig-t) /0.75 (coke-t / coal-t) ) × 82940 thousand (pig-t / y) = 4288 thousand (coal-t / y)
Can be evaluated. In this way, the present invention presents a technique for simultaneously achieving energy saving and reduction of environmental emission CO 2 in the steel industry by effectively using woody biomass, which has been a problem in use in the steel industry.

本発明では、乾燥させた木質バイオマス原料を高炉原料またはコークス原料として使用する。木質バイオマスの乾燥は、300℃以下の排熱を用いて行うことが好ましく、焼結鉱焼結機の低温のクーラー排熱が特に効果的に利用できる。高炉原料としては、高炉の羽口から吹き込むことが好ましい。コークス原料としては、乾燥させた木質バイオマス原料を石炭に配合後、成型機で塊成化し、この成型物を通常のコークス用配合炭と混合した後にコークス炉に装入し、コークスを製造することが好ましい。本発明はバイオマス原料と石炭の混合物を機械的な圧力により高密度な成型物に生成する。それゆえに成型物内のバイオマス原料と石炭粒子の接着性が向上し、また成型時に粘結性を有するバインダーを利用することで、よりコークスの強度が改善される。通常の配合炭に高密度の成型物を所定の割合で混合し、コークス炉に装入すると石炭の装入密度が増加するため石炭の粘結性が向上しコークス強度が改善される。また、バイオマス原料を成型物としてコークス炉内に装入するために、コークス炉内でバイオマスが均一分散され偏析が抑制され、従来の課題であったコークスの品質の炉内域におけるばらつきが低減される。また、バイオマス原料を事前加熱によりチャー化していないため熱エネルギーの損失や微粉発生によるカーボントラブルが生じない。さらに、石炭にバイオマス原料を配合してコークスを製造するためバイオマスの熱処理過程でガス化によるコークスの気孔率は高くなる。またバイオマスからの残留炭化物の光学的組織は等方性成分のため反応性が高く、コークスの強度を維持しながら反応性を高めることができる。これらは本発明により初めて実現できるコークス製造方法である。   In the present invention, the dried wood biomass material is used as a blast furnace material or a coke material. The drying of the woody biomass is preferably performed using exhaust heat of 300 ° C. or less, and the low-temperature cooler exhaust heat of the sintered ore sintering machine can be used particularly effectively. The blast furnace raw material is preferably blown from the blast furnace tuyere. As coke raw material, after mixing dried woody biomass raw material into coal, it is agglomerated with a molding machine, this molded product is mixed with ordinary coal for coke and charged into a coke oven to produce coke. Is preferred. In the present invention, a mixture of biomass raw material and coal is formed into a high-density molded product by mechanical pressure. Therefore, the adhesion between the biomass raw material and the coal particles in the molded product is improved, and the strength of the coke is further improved by using a binder having caking properties at the time of molding. When a high-density molded product is mixed with normal blended coal at a predetermined ratio and charged into a coke oven, the coal charging density increases, so that the caking property of coal is improved and coke strength is improved. In addition, since the biomass raw material is charged into the coke oven as a molded product, the biomass is uniformly dispersed in the coke oven and segregation is suppressed, thereby reducing the variation in coke quality in the furnace area, which was a conventional problem. The Moreover, since the biomass raw material is not char by preheating, carbon loss due to loss of heat energy and generation of fine powder does not occur. Further, since coke is produced by blending biomass raw material with coal, the porosity of coke due to gasification increases during the heat treatment process of biomass. Moreover, the optical structure of the residual carbide from biomass is highly reactive due to the isotropic component, and the reactivity can be increased while maintaining the strength of coke. These are coke production methods that can be realized for the first time by the present invention.

上記のようにコークスを製造する場合、木質バイオマス原料を石炭に配合後、成型機で塊成化した成型物を、篩い分けして、篩い上を石炭とともにコークス炉に装入して乾留して製造したコークスを高炉に装入し、篩い分けした篩い下を、羽口から高炉内に吹き込むことが好ましい。   When producing coke as described above, after mixing wood biomass raw material with coal, the molded product agglomerated with a molding machine is sieved, and the sieve top is charged together with coal into a coke oven and dry-distilled. It is preferable to charge the produced coke into a blast furnace and blow the screened sieve under the blast furnace from the tuyere.

なお、本発明で用いる木質バイオマスとは、表1(出展は非特許文献5)で「木質」に分類されるバイオマス等であり、廃木材、間伐材、剪定された樹木等であって含水率が高く灰分の含有率の低いバイオマスである。本発明で用いる木質バイオマスは、その一部に自然乾燥等により水分含有量の低下した木質バイオマスを含む場合があり、そのような場合は全体としての木質バイオマスの水分含有量が30mass%未満となる場合もある。以下、「木質バイオマス」を単に「バイオマス」として記載する。   The woody biomass used in the present invention is a biomass or the like classified as “woody” in Table 1 (non-patent document 5), and is waste wood, thinned wood, pruned trees, etc., and has a moisture content It is a biomass with high ash content. The woody biomass used in the present invention may include a woody biomass whose water content has been reduced due to natural drying or the like in a part thereof, and in such a case, the water content of the woody biomass as a whole is less than 30 mass%. In some cases. Hereinafter, “woody biomass” is simply referred to as “biomass”.

バイオマスの乾燥は任意の装置を用いて行なうことが可能であるが、乾燥ガスを用いたロータリーキルン内での乾燥や、移動グレート、流動層等を用いることが好適である。   Although drying of biomass can be performed using an arbitrary apparatus, it is preferable to use drying in a rotary kiln using a drying gas, a moving grate, a fluidized bed, or the like.

本発明では、バイオマスを水分含有量5mass%以上、30mass%未満に乾燥することが好ましい。   In the present invention, the biomass is preferably dried to a moisture content of 5 mass% or more and less than 30 mass%.

バイオマスの乾燥後の水分含有量は、以下の理由により5mass%以上、30mass%未満とすることが好ましい。バイオマスを羽口から微粉炭と共に一定吹き込み条件下で吹き込むと、その水分含有量に応じて羽口先温度は変化する。高炉の羽口を模擬し、高温送風と燃料吹き込みが可能なホットモデルにより表2に示す燃料吹き込み条件で水分含有量の異なるバイオマス40kg/t(乾量換算)相当を微粉炭78kg/t相当と共に吹き込み、安定状態下で送り込み式温度計により羽口先の最高温度を測定した。その結果を図1に示す。   The moisture content after drying of the biomass is preferably 5 mass% or more and less than 30 mass% for the following reasons. When biomass is blown from the tuyere together with pulverized coal under constant blowing conditions, the tuyere tip temperature changes according to the moisture content. A hot model that simulates the tuyere of a blast furnace and is capable of high-temperature blowing and fuel blowing, equivalent to 40 kg / t (dry weight conversion) of biomass with different moisture contents under the fuel blowing conditions shown in Table 2, and equivalent to 78 kg / t of pulverized coal The maximum temperature at the tuyere was measured with a blow-in thermometer. The result is shown in FIG.

Figure 0004893136
Figure 0004893136

図1によれば、羽口先のレースウエイ条件は、バイオマス中の水分含有量の増加に伴い羽口先最高温度が低下する。今回の測定結果ではバイオマス水分が30mass%を超えると温度は約100℃低下し、レースウエイ空間で吹き込み燃料の燃焼が不完全となる。またその結果として未燃チャーがコークスベッドに沈積し送風圧力が上昇傾向となる。   According to Fig. 1, the tuyere tip raceway condition is such that the tuyere tip maximum temperature decreases as the moisture content in the biomass increases. In this measurement result, when the biomass moisture exceeds 30 mass%, the temperature drops by about 100 ° C., and the combustion of the injected fuel becomes incomplete in the raceway space. As a result, unburned char is deposited on the coke bed, and the blowing pressure tends to increase.

これらの実験結果よりバイオマスの水分含有量は30mass%未満、望ましくは安定した燃焼が達成できる25mass%以下とすることが適正である。更に望ましくは、20mass%以下とすることによって、上記羽口先温度の低下量が少なく、高炉操業を安定して行なうことができる。一方、大気中における暴露試験からバイオマス搬送中に着火の恐れのない水分量は5mass%以上と判断される。それゆえこれらを総合するとバイオマスの水分含有量は5mass%以上、30mass%未満で管理されることが望ましい。   From these experimental results, it is appropriate that the moisture content of the biomass is less than 30 mass%, desirably 25 mass% or less that can achieve stable combustion. More preferably, by setting it to 20 mass% or less, the amount of decrease in the tuyere tip temperature is small, and the blast furnace operation can be performed stably. On the other hand, it is determined from the exposure test in the atmosphere that the amount of water that does not ignite during biomass transportation is 5 mass% or more. Therefore, when these are combined, it is desirable that the moisture content of the biomass is controlled to be 5 mass% or more and less than 30 mass%.

バイオマスは、粒径100mm以下に調整して、水分を低下させることが好ましい。ここで、粒径100mm以下のバイオマスとは、100mm(またはそれ以下)の篩目を通過する篩下のバイオマスの状態である。粒径を所定の粒径以下に調整して乾燥することにより、バイオマス内の含有水分放出が容易になり乾燥効率が高まる。最適な粒径は乾燥方法により適宜変動するが、乾燥に炉長10m程度のロータリーキルンを用いる場合は、粒径100mm以下程度が適当である。   The biomass is preferably adjusted to a particle size of 100 mm or less to reduce moisture. Here, the biomass having a particle size of 100 mm or less is the state of biomass under a sieve passing through a 100 mm (or less) sieve mesh. By adjusting the particle size to be equal to or smaller than the predetermined particle size and drying, the water content contained in the biomass is easily released, and the drying efficiency is increased. The optimum particle size varies depending on the drying method, but when a rotary kiln having a furnace length of about 10 m is used for drying, a particle size of about 100 mm or less is appropriate.

バイオマスを乾燥する雰囲気温度は、100℃以上、300℃以下とすることが好ましい。バイオマス中の水分は、多孔質のために粒子表面への付着水や気孔の中の包蔵水分として存在する。このため、バイオマスの加熱処理を行うと、100℃近傍でバイオマス表面の付着水や気孔の中の包蔵水分が蒸発、脱水し、約300℃から500℃で有機物であるバイオマスが熱分解を開始し、ガス、タールや生成水を発生しながらチャー化(アモルファスカーボン化)する。したがって、チャー化のためにはバイオマスの加熱温度は300〜500℃が適当であるが、バイオマスの乾燥を目的とする本発明では300℃以下とすることが好ましい。一方、100℃未満では木質バイオマスの乾燥効率が低下するので、乾燥温度は100℃以上が好ましい。   The atmospheric temperature for drying the biomass is preferably 100 ° C. or higher and 300 ° C. or lower. Moisture in the biomass exists as water adhering to the particle surface or trapped moisture in the pores due to the porous nature. For this reason, when the biomass is heat-treated, the attached water on the biomass surface and the moisture contained in the pores evaporate and dehydrate at around 100 ° C, and the biomass, which is an organic substance, starts thermal decomposition at about 300 ° C to 500 ° C. , Char (amorphous carbon) while generating gas, tar and generated water. Accordingly, the heating temperature of the biomass is suitably 300 to 500 ° C. for charring, but is preferably 300 ° C. or less in the present invention for the purpose of drying the biomass. On the other hand, if it is less than 100 ° C., the drying efficiency of the woody biomass is lowered, and therefore the drying temperature is preferably 100 ° C. or higher.

このようなバイオマスの乾燥には、比較的低温(例えば、300℃以下)の排ガスを用いることが好ましい。300℃以下の排熱は蒸気回収等による熱回収が困難であるため、通常は有効に利用することができないが、本発明ではバイオマスの乾燥に有効に利用することができる。200℃以下の排ガスであれば、熱回収の観点から更に好ましい。   For drying such biomass, it is preferable to use exhaust gas at a relatively low temperature (for example, 300 ° C. or lower). Exhaust heat of 300 ° C. or less cannot normally be effectively used because heat recovery by steam recovery or the like is difficult, but in the present invention, it can be effectively used for drying biomass. An exhaust gas of 200 ° C. or lower is more preferable from the viewpoint of heat recovery.

比較的低温の排ガスとして、たとえば焼結鉱を製造する焼結機クーラーから排出される中低温排熱を利用することができる。これはクーラー排熱ガスが基本的には高温空気から構成されており水分含有量が低く乾燥効率に優れていること、300℃以下の未利用系外排出ガス量の比率が全体の排出熱に対し60%以上であることに起因する。また非特許文献1に示すように、このような乾燥条件では木質バイオマスはチャー化しない。チャー化する場合は大気雰囲気下では困難であり、チャー化の過程でガス処理を含め設備上多大の投資を必要とする。有効利用が困難である300℃以下の排熱をバイオマスの乾燥に利用することは、乾燥のための加熱でCO2を発生させることがないため、非常に望ましい実施形態である。 As the relatively low temperature exhaust gas, for example, medium / low temperature exhaust heat discharged from a sintering machine cooler for producing sintered ore can be used. This is because the cooler exhaust heat gas is basically composed of high-temperature air, has a low moisture content and is excellent in drying efficiency, and the ratio of the amount of unused external exhaust gas at 300 ° C or less is the total exhaust heat. This is because it is 60% or more. In addition, as shown in Non-Patent Document 1, woody biomass is not charred under such dry conditions. Charging is difficult in the atmosphere and requires a large investment in equipment including gas treatment during the charing process. Utilizing exhaust heat of 300 ° C. or less, which is difficult to use effectively, for drying biomass is a highly desirable embodiment because it does not generate CO 2 by heating for drying.

乾燥後のバイオマスを粉砕し、高炉の羽口からの吹き込む吹き込み原料とする、または石炭とともに成型して成型体としコークス原料とすることができる。粉砕は、吹き込み原料とする場合は10mm以下程度、コークス原料とする場合は成型に好適な3mm以下程度とすることが好ましい。   The dried biomass can be pulverized and used as a blown raw material blown from the tuyere of a blast furnace, or molded together with coal to form a molded body as a coke raw material. The pulverization is preferably about 10 mm or less when using the blown raw material, and about 3 mm or less suitable for molding when using the coke raw material.

バイオマスと石炭とを混合して成型した成型物は、たとえば、乾燥されたバイオマス原料を石炭に配合後、バインダーを添加し混合機にて混合された後、ダブルロール式成型機へ供給し、成型体の体積が10cm3以上で50cm3以下、また、嵩密度は0.8g/cm3以上で1.1g/cm3以下の成型物を製造する。この成型物を配合炭に5〜30mass%の範囲で混合し、コークス炉へ装入して通常コークスと同等の強度を有した高反応性コークスを製造する。 For example, a molded product that is formed by mixing biomass and coal is blended with dried biomass raw material, mixed with a binder and then mixed in a mixer, and then supplied to a double roll molding machine. A molded product having a body volume of 10 cm 3 or more and 50 cm 3 or less and a bulk density of 0.8 g / cm 3 or more and 1.1 g / cm 3 or less is produced. This molded product is mixed with blended coal in the range of 5 to 30 mass%, and charged into a coke oven to produce highly reactive coke having the same strength as ordinary coke.

成型物の製造方法としては、ダブルロール式成型機の他に、パンペレタイザーなどを用いることもできる。バイオマス、石炭および必要に応じてバインダーを添加した混合物をダブルロール式成型機等で機械的な圧力により加圧して高密度な成型物を生成するため、成型物内のバイオマス原料と石炭粒子の接着性が向上し、また成型時に粘結性を有するバインダーを利用することで、コークスの強度が改善される。成型体の体積が10cm3以下ではバイオマスの粒径を3mm以下とした場合の成型物の生産性が低く、また50cm3以上ではコークス炉内へ装入した場合に成型物の偏析が生じ、コークス品質のばらつきの原因となる。成型物の嵩密度は0.8g/cm3以下で成型物の強度が低下し、コークス炉への搬送に耐えられず粉化し、1.1g/cm3以上では高価なバインダーの添加率を増加させたり成型機の成型圧を高めたりする必要があり、成型物の製造コストが高くなる問題がある。また、通常の配合炭に高密度の成型物を所定の割合で混合し、コークス炉に装入すると石炭の装入密度が増加するため石炭の粘結性が向上し、コークス強度が改善される。バイオマス原料をそのままでなく、成型物としてコークス炉内に装入するために、コークス炉内で均一分散され偏析が抑制されコークスの品質のばらつきが低減される。しかし、成型物の配合炭への配合率が40mass%以上では最密充填条件から離れるためコークス炉への装入密度は低下し、バイオマスの添加量が増加することと併せてコークス強度が低下する。さらに、バイオマス原料を事前加熱によりチャー化しないため熱エネルギーの損失や微粉発生によるカーボントラブルが生じないという利点がある。 As a method for producing a molded product, a pan pelletizer or the like can be used in addition to a double roll type molding machine. Adhesion of biomass material and coal particles in the molded product to produce a high-density molded product by pressurizing the mixture containing biomass, coal and, if necessary, a binder with mechanical pressure using a double roll molding machine The strength of coke is improved by using a binder that has improved caking properties and has caking properties during molding. If the volume of the molded body is 10 cm 3 or less, the productivity of the molded product is low when the particle size of the biomass is 3 mm or less, and if it is 50 cm 3 or more, segregation of the molded product occurs when it is charged into the coke oven. It causes quality variation. When the bulk density of the molded product is 0.8 g / cm 3 or less, the strength of the molded product is reduced, and it cannot be endured for conveyance to the coke oven, and pulverizes. When the bulk density is 1.1 g / cm 3 or more, the addition rate of expensive binders is increased. There is a problem that it is necessary to increase the molding pressure of the molding machine or to increase the manufacturing cost of the molded product. Also, when a high-density molded product is mixed at a predetermined ratio with normal blended coal and charged into a coke oven, the coal charging density increases, so that the coal cohesiveness is improved and coke strength is improved. . In order to charge the biomass raw material into the coke oven as a molded product as it is, it is uniformly dispersed in the coke oven, segregation is suppressed, and variations in coke quality are reduced. However, if the blending ratio of the molded product into the blended coal is 40 mass% or more, the charging density into the coke oven is lowered because it is far from the closest packing condition, and the coke strength is lowered along with the increase in the amount of biomass added. . Furthermore, there is an advantage that carbon trouble due to loss of heat energy and generation of fine powder does not occur because the biomass raw material is not charred by preheating.

上記のようにして製造したコークスは、高反応性コークスである。高反応性コークスは高炉内熱保存帯領域(ガスと固体の温度がほぼ1000℃一定の領域)で下記(a)式に示すコークスのガス化反応が活発になる。
C(コークス)+CO2=2CO・・・(a)
(a)式の反応は吸熱反応のため高反応性コークスの使用により熱保存帯温度は低下傾向となる。この領域で主体となる下記(b)式で示す酸化鉄の還元は熱保存帯領域が長いためほぼ平衡に達することが知られている。
FeO+CO=Fe+CO2・・・(b)
(b)式は平衡温度が低下するにつれ平衡するガス酸化度(=CO2/(CO+CO2(-))は高酸化度側、換言すると高ガス利用率側に移行するため還元材比は低下することになる。以上が木質バイオマスを原料とした高反応性コークスを使用した高炉の操業技術の導入により、還元材比が低下できる理由である。熱保存帯温度を低下させることにより還元材比を低下させるという考えは非特許文献3で実験によって検証されており、その達成手段としてバイオマスを原料とした高反応性コークスが寄与することが明らかである。
The coke produced as described above is highly reactive coke. In the highly reactive coke, the coke gasification reaction shown in the following formula (a) becomes active in the blast furnace heat preservation zone region (region in which the temperature of gas and solid is approximately 1000 ° C.).
C (coke) + CO 2 = 2CO (a)
Since the reaction of formula (a) is an endothermic reaction, the use of highly reactive coke tends to lower the temperature of the heat preservation zone. It is known that the reduction of iron oxide represented by the following formula (b), which is the main component in this region, reaches almost equilibrium because of the long heat conservation zone region.
FeO + CO = Fe + CO 2 (b)
In equation (b), as the equilibrium temperature decreases, the equilibrium gas oxidation degree (= CO 2 / (CO + CO 2 (−)) shifts to the high oxidation degree side, in other words, to the high gas utilization rate side, so the reducing material ratio decreases. The above is the reason why the ratio of reducing material can be reduced by introducing blast furnace operation technology using highly reactive coke made from woody biomass. The idea of lowering is confirmed by experiments in Non-Patent Document 3, and it is clear that highly reactive coke using biomass as a raw material contributes as an achievement means.

本発明は従来のバイオマス使用に起因するコークス強度低下及び羽口先温度低下に問題のあった高炉操業と比較し、操業の安定、還元材比低下、CO2排出量低下が達成されることになる。 The present invention achieves stable operation, reduced reductant ratio, and reduced CO 2 emissions compared to conventional blast furnace operations that have problems with reduced coke strength and tuyere temperature due to the use of biomass. .

上記のようにして製造したコークスを高炉に装入して原料として使用する際には、高炉への装入割合を、高炉に装入する全コークス量の80mass%未満とすることが好ましい。バイオマスを原料として石炭とともに成型し、石炭(配合炭)とともにコークス炉で乾留して製造したコークスは通常のコークスに比較して反応性が高く、上記(a)式、(b)式で述べた理由により高炉の還元材比削減に寄与することが認められている(非特許文献3参照。)。表7(後述)に示す高炉操業条件をもとに通常コークスに高反応性コークスを配合することにより還元材比を評価した結果を図2に示す。図2によれば、バイオマスを原料として製造した高反応性コークス配合率が上昇するに従い、高炉の熱保存帯温度が低下する結果、一定シャフト効率(FeO〜Fe還元平衡到達度を示すパラメータ)のもとで還元材比は低下する。この傾向は高反応性コークス配合率の上昇に従い、ほぼ直線的に低下する。但し配合率が80mass%以上では還元材比は逆に上昇傾向となる。この理由は配合率に応じて還元材比が低下するが、これと並行して高炉内の熱移動特性を表す熱流比(高炉シャフト部領域におけるガスの持つエンタルピーに対する固体側のエンタルピーの比)が大きくなりガス側から固体側に熱移動が安定的に行われなくなる。その結果安定した高炉操業が困難となり高反応性コークス配合率80mass%以上では敢えてシャフト効率を悪化させた操業、換言すれば還元材比を高い状態で操業しないと安定操業がおぼつかなくなる。今回の評価では熱流比は0.900(-)以下で管理が必要であり、この管理のために80mass%以上の配合は安定操業を阻害することが認められた。これらの評価より熱保存帯温度の低下が始まる高反応性コークス配合率5mass%以上、還元材比が低下し続ける80mass%以下が望ましい配合率の範囲である。   When the coke produced as described above is charged into a blast furnace and used as a raw material, the charging ratio into the blast furnace is preferably less than 80 mass% of the total amount of coke charged into the blast furnace. Coke produced by co-molding biomass as a raw material with coal and carbonizing with coal (mixed coal) in a coke oven is more reactive than ordinary coke, and is described in the above formulas (a) and (b). For reasons, it has been recognized that it contributes to reducing the reducing material ratio of the blast furnace (see Non-Patent Document 3). FIG. 2 shows the results of evaluating the reducing material ratio by blending high-reactivity coke with normal coke based on the blast furnace operating conditions shown in Table 7 (described later). According to FIG. 2, as the high reactive coke blending ratio produced using biomass as a raw material increases, the thermal storage zone temperature of the blast furnace decreases, resulting in a constant shaft efficiency (a parameter indicating the degree of FeO to Fe reduction equilibrium). Originally, the reducing material ratio decreases. This tendency decreases almost linearly as the high reactive coke content increases. However, when the blending ratio is 80 mass% or more, the reducing material ratio tends to increase. The reason for this is that the reducing material ratio decreases according to the blending ratio, but in parallel with this, the heat flow ratio (ratio of the enthalpy on the solid side to the enthalpy of the gas in the blast furnace shaft region) representing the heat transfer characteristics in the blast furnace is The heat transfer is not stably performed from the gas side to the solid side. As a result, stable blast furnace operation becomes difficult, and at a high reactive coke compounding ratio of 80 mass% or more, operation that deliberately deteriorates the shaft efficiency, in other words, stable operation cannot be realized unless the reductant ratio is high. In this evaluation, the heat flow ratio is 0.900 (−) or less and needs to be controlled. For this control, it was confirmed that the blending of 80 mass% or more hinders stable operation. From these evaluations, the range of the desirable mixing ratio is a high reactive coke blending ratio of 5 mass% or more, at which the temperature of the heat preservation zone starts to be reduced, and 80 mass% or less, in which the reducing material ratio keeps decreasing.

本発明の一実施形態である製造プロセス概要を設備構成と共に図3に示す。乾燥効率を改善するため粒径10mm以下に調整した木質バイオマスあるいは木質バイオマスチップは一旦バイオマスチップ槽1に集積し以後の製鉄プロセスで使用するに際し、エネルギー効率を高めるため乾燥工程2に移送される。乾燥はロータリーキルン、移動グレート、流動層などで行う。なお乾燥に使用する熱源は化石燃料に依存せず製鉄所の排熱、たとえば焼結機クーラー3より排出される未利用の100〜300℃排熱を利用することにより製銑工程全体のエネルギー効率の向上に繋がる。水分5mass%以上、30mass%未満に乾燥されたバイオマスは自然発火を防ぐため専用保管槽5に保管される。専用保管槽5よりバイオマスは解砕・粉砕機6に供給されここで粒径3mm以下に粉砕される。次に粉砕バイオマスは石炭7及びバインダー8と共に混合機9に装入され、均一に混合された後に、成型工程10において造粒または塊成化される。10はブリケッティングマシンあるいはペレタイザーおよび同等の機能を有する塊成化装置が要求される。10の成型工程を経ることによりバイオマスの0.4〜0.6t/m3の低嵩密度が石炭と混合、成型されることにより嵩密度が0.8〜1.1t/m3の成型物が製造される。成型物の嵩密度は石炭粉の嵩密度よりも高いために以降のコークス化処理および高炉への吹き込み処理に適する物性を具備するようになる。なお嵩密度が0.8t/m3以下ではコークス炉への搬送過程で粉化するために、コークス炉内で石炭との偏析が進み乾留後の歩留まり、生産性が低下する。また1.1t/m3以上では機械的な成型圧力が高くなり設備が高価になることやバインダーの添加率を増やす必要があり製造コストが高くなる。塊成化に際し石炭粉とバイオマスの均一混合やバイオマスの表層部の石炭を被覆することと併せて粘結性のあるコールタールピッチをバインダーに使用することは、コークス強度を維持しながら気孔を形成し高反応性コークスを製造するために重要な操作になる。石炭と共に塊成化されたバイオマスは篩い分け工程11で篩い分けられ、粒径5mm以上の粗粒はコークス炉13に、粒径5mm未満の細粒はバイオマス貯留槽17に送られる。バイオマスはバイオマス貯留槽17より所定量の比率で切り出され微粉炭18と共に羽口から高炉14に羽口先温度の管理のもとで吹き込み、塊コークス使用量削減に寄与する。この吹き込み方法はバイオマスを未乾燥状態で吹き込む場合と比較し羽口先温度2000℃以上の管理条件下では吹き込み量を増やすことが可能であり、その結果微粉炭との置換量は羽口からの全固体燃料吹き込み量の20mass%まで増やすことが出来る。また化石燃料を使ってバイオマスを乾燥する方法に比較し未利用中低温排熱を利用するためエネルギー効率の優れた乾燥方法となる。 An outline of a manufacturing process according to an embodiment of the present invention is shown in FIG. The woody biomass or woody biomass chip adjusted to a particle size of 10 mm or less in order to improve the drying efficiency is once accumulated in the biomass chip tank 1 and transferred to the drying step 2 in order to increase energy efficiency when used in the subsequent iron making process. Drying is performed in a rotary kiln, moving grate, fluidized bed or the like. Note that the heat source used for drying does not depend on fossil fuels, but uses the exhaust heat of the steel mill, for example, the unused 100-300 ° C. exhaust heat discharged from the cooler 3 of the sintering machine, thereby improving the energy efficiency of the entire ironmaking process. It leads to improvement. Biomass dried to a moisture content of 5 mass% or more and less than 30 mass% is stored in a dedicated storage tank 5 to prevent spontaneous ignition. Biomass is supplied from the dedicated storage tank 5 to the crushing / pulverizing machine 6 where it is pulverized to a particle size of 3 mm or less. Next, the pulverized biomass is charged into the mixer 9 together with the coal 7 and the binder 8 and mixed uniformly, and then granulated or agglomerated in the molding step 10. No. 10 requires a briquetting machine or pelletizer and an agglomeration device having equivalent functions. A molded product having a bulk density of 0.8 to 1.1 t / m 3 by mixing and molding a low bulk density of 0.4 to 0.6 t / m 3 with coal by passing through 10 molding steps. Is manufactured. Since the bulk density of the molded product is higher than the bulk density of the coal powder, it has physical properties suitable for the subsequent coking process and the blowing process into the blast furnace. If the bulk density is 0.8 t / m 3 or less, the powder is pulverized in the course of conveyance to the coke oven, so that segregation with coal proceeds in the coke oven and the yield after dry distillation is reduced, and the productivity is lowered. On the other hand, if it is 1.1 t / m 3 or more, the mechanical molding pressure becomes high, the equipment becomes expensive, and the addition rate of the binder needs to be increased, resulting in an increase in production cost. The use of cohesive coal tar pitch as a binder in combination with the uniform mixing of coal powder and biomass and the coating of the surface layer of biomass during agglomeration forms pores while maintaining coke strength. However, this is an important operation for producing highly reactive coke. The biomass agglomerated with coal is sieved in the sieving step 11, coarse particles having a particle size of 5 mm or more are sent to the coke oven 13, and fine particles having a particle size of less than 5 mm are sent to the biomass storage tank 17. Biomass is cut out from the biomass storage tank 17 at a ratio of a predetermined amount and blown into the blast furnace 14 from the tuyere together with the pulverized coal 18 under the management of the tuyere tip temperature, thereby contributing to the reduction of the amount of lump coke used. This blowing method can increase the amount of blowing under controlled conditions with a tip temperature of 2000 ° C. or higher compared with the case where the biomass is blown in an undried state, and as a result, the amount of substitution with pulverized coal is all from the tuyere. It can be increased up to 20 mass% of the solid fuel injection amount. Moreover, compared with the method of drying biomass using fossil fuel, it uses an unused mid- and low-temperature exhaust heat, which makes the drying method more energy efficient.

次に、モデル計算を併用して行なった実施例を用いて本発明を説明する。   Next, the present invention will be described with reference to an example in which model calculation is used in combination.

木質バイオマスをロータリーキルンで乾燥する場合、その乾燥挙動は乾燥温度、バイオマスに対する乾燥ガス流量比、バイオマス初期水分、バイオマス粒径などに影響を受ける。これらの因子のなかで乾燥上重要な操作因子について乾燥実験を行った結果を示す。実験は径3m、長さ10mのロータリーキルンを用いて行った。その他の主要操業条件を表3に示す。   When woody biomass is dried in a rotary kiln, the drying behavior is affected by the drying temperature, the dry gas flow ratio to biomass, the initial biomass moisture, the biomass particle size, and the like. Among these factors, the results of drying experiments on the operating factors important for drying are shown. The experiment was performed using a rotary kiln having a diameter of 3 m and a length of 10 m. Table 3 shows other main operating conditions.

Figure 0004893136
Figure 0004893136

図4に200℃排ガスをガス量原単位1300Nm3/t、バイオマス平均粒径3cmの条件でキルンに吹き込んだ時の炉内ガス温度及びバイオマスの水分除去率を示す。これよりバイオマス供給量が30t/hの場合はキルンのほぼ3〜4mの地点で乾燥は終了するが、供給量が60t/hでは8m地点で漸く完了する。乾燥バイオマスの生産性面からは供給量が多い操業条件が望ましい。但しガス量原単位一定下でバイオマス供給量を増すと必然的にキルンへのガス供給量は増える。今回の一連の実験ではキルン内でのガス流速は増加する。図5にバイオマス供給量とキルン内の空塔ガス流速の関係を示す。今回の一連の実験では2.0m/s以上の空塔ガス流速では流動化によりキルン内のバイオマスの飛散量が増え始め2.5m/s以上では乾燥バイオマスの歩留まりが著しく低下する。このため表3に示す操業条件下ではバイオマス処理量が30〜50t/hが望ましい操業範囲である。 FIG. 4 shows the gas temperature in the furnace and the moisture removal rate of biomass when 200 ° C. exhaust gas was blown into the kiln under the conditions of a gas quantity basic unit of 1300 Nm 3 / t and a biomass average particle size of 3 cm. From this, when the biomass supply amount is 30 t / h, the drying is completed at a point of about 3 to 4 m in the kiln, but when the supply amount is 60 t / h, the drying is gradually completed at the point of 8 m. Operating conditions with a large supply amount are desirable from the viewpoint of productivity of dry biomass. However, if the biomass supply is increased under a constant gas unit, the gas supply to the kiln inevitably increases. In this series of experiments, the gas flow rate in the kiln increases. FIG. 5 shows the relationship between the biomass supply amount and the empty gas flow rate in the kiln. In this series of experiments, the amount of biomass scattered in the kiln begins to increase due to fluidization at a superficial gas flow rate of 2.0 m / s or more, and the yield of dry biomass decreases significantly at 2.5 m / s or more. Therefore, under the operating conditions shown in Table 3, the biomass throughput is preferably 30 to 50 t / h.

バイオマス粒径の乾燥挙動に及ぼす影響からキルンに供給するバイオマスの適正粒径範囲を求める実験を行った。表3の操業条件をもとにバイオマス初期水分35mass%、ガス量原単位1300Nm3/t、バイオマス供給量50t/hの条件下で乾燥試験を行い図6にその結果を示す。この結果より粒径が小さい場合比表面積が大きいため乾燥速度が高く、たとえば粒径1cmではバイオマスのキルン装入部よりおよそ4m付近で乾燥は完了する。これに対し粒径の拡大と共に乾燥は遅れ粒径7cmではキルン排鉱部で乾燥率はおよそ90%に留まる。このためバイオマスの粒径は小さい方が望ましいが、その場合粒径分布の広がりにより製品の歩留まりが悪化するといった問題点が生じる。またチップの入荷の際、小粒径を要求すると粒径調整にコストがかかり経済性の優位性がなくなる。一方、図6より粒径の拡大により乾燥遅れが顕著になり生産性は悪化する。このため望ましい受け入れバイオマスの適正粒径は1〜10cmの範囲と決められる。 An experiment was conducted to determine the appropriate particle size range of biomass supplied to the kiln from the effect of biomass particle size on drying behavior. Based on the operating conditions shown in Table 3, a drying test was conducted under the conditions of 35 mass% of initial biomass moisture, 1300 Nm 3 / t of gas unit, and 50 t / h of biomass supply, and the results are shown in FIG. When the particle size is smaller than this result, the drying speed is high because the specific surface area is large. For example, when the particle size is 1 cm, the drying is completed at about 4 m from the biomass kiln charging portion. On the other hand, when the particle size is increased, the drying is delayed with a particle size of 7 cm. For this reason, it is desirable that the particle size of the biomass is small, but in this case, there arises a problem that the yield of the product deteriorates due to the spread of the particle size distribution. If a small particle size is required when the chips are received, the adjustment of the particle size is costly and the economical advantage is lost. On the other hand, as shown in FIG. For this reason, the appropriate particle size of the desired receiving biomass is determined to be in the range of 1 to 10 cm.

図7に初期バイオマス水分含有量の乾燥特性に及ぼす影響を排熱供給量原単位1300Nm3/t、バイオマス供給量40t/h、バイオマス平均粒径3cm及び表3の操業条件をもとに実験によって求めた結果を示す。これより初期バイオマス水分含有量が30mass%ではキルンのバイオマス装入口よりほぼ7m位置で乾燥は完了する。しかるに水分が35mass%ではもはやこの条件では乾燥は完了しないため排熱供給量原単位1500Nm3/tが必要である。さらに水分が40mass%では同様に1700Nm3/tが必要になる。この場合のキルン内ガス空塔速度はそれぞれ2.0、2.4、2.7m/sであった。それゆえに実施例1と同様含水率が高くなるにつれガス空塔速度が高まる結果、キルン内でのバイオマスの流動化が顕著になり乾燥バイオマス歩留まりが悪化する。今回の実験条件下では初期バイオマス水分は40mass%以下、望ましくは35mass%以下に管理されたバイオマス水分条件が望ましいことが認められた。 Figure 7 shows the effect of initial biomass moisture content on drying characteristics by experiments based on waste heat supply basic unit of 1300 Nm 3 / t, biomass supply of 40 t / h, biomass average particle size of 3 cm, and operating conditions in Table 3. The obtained result is shown. As a result, when the initial biomass moisture content is 30 mass%, the drying is completed at approximately 7 m from the biomass charging port of the kiln. However, when the water content is 35 mass%, the drying is no longer completed under these conditions, so that the waste heat supply basic unit of 1500 Nm 3 / t is necessary. Further, if the moisture is 40 mass%, 1700 Nm 3 / t is required similarly. In this case, the gas superficial velocity in the kiln was 2.0, 2.4, and 2.7 m / s, respectively. Therefore, as in the case of Example 1, as the moisture content increases, the gas superficial velocity increases. As a result, the fluidization of biomass in the kiln becomes remarkable, and the dry biomass yield deteriorates. Under the present experimental conditions, it was confirmed that the initial biomass moisture was desirably 40% by mass or less, and desirably the biomass moisture condition controlled to 35% by mass or less.

乾燥バイオマス、石炭とバインダーを混合、成型した後、成型物を通常のコークス製造用配合炭に配合し、250kg乾留試験炉に装入してコークス製造試験を行った。   After the dry biomass, coal and binder were mixed and molded, the molded product was blended with ordinary blended coal for coke production, and charged into a 250 kg dry distillation test furnace to conduct a coke production test.

石炭とバイオマスを所定の割合で切り出し、バインダーのコールタール軟ピッチ(外枠5mass%添加)と合わせてKBミキサー内に装入、混合後、ダブルロール成型機にて成型物を製造した。成型機の成型圧力は線圧1000kg/cmで、成型物の形状はマセック型(幅:43mm、長さ:25mm、厚み:18mm)の成型物を製造した。   Coal and biomass were cut out at a predetermined ratio, combined with a binder coal tar soft pitch (addition of 5 mass% of outer frame), charged into a KB mixer, mixed, and then molded with a double roll molding machine. The molding pressure of the molding machine was a linear pressure of 1000 kg / cm, and the molded product was a Macek type (width: 43 mm, length: 25 mm, thickness: 18 mm).

成型物は通常の配合炭に所定の割合で混合された後に、250kg乾留試験炉に装入され乾留温度1100℃の条件で乾留しコークスを製造した。コークスの性状としては、コークス強度(JISドラム強度DI30/15)、CO2反応性(CRI)およびCO2反応後強度(CSR+9.5)を測定し評価した。表4に使用した原料の石炭およびバイオマスの粒度分布を示す。 The molded product was mixed with ordinary blended coal at a predetermined ratio, and then charged into a 250 kg dry distillation test furnace and subjected to dry distillation at a dry distillation temperature of 1100 ° C. to produce coke. As the properties of coke, coke strength (JIS drum strength DI30 / 15), CO 2 reactivity (CRI) and strength after CO 2 reaction (CSR + 9.5) were measured and evaluated. Table 4 shows the particle size distribution of the raw coal and biomass used.

Figure 0004893136
Figure 0004893136

図8にバイオマス原料を石炭と混合後に成型物を製造しコークス炉に装入する方法(成型物配合法)と単純にバイオマスを配合しコークス炉に装入する方法(バイオマス単純配合法)のコークス性状への影響を示した。バイオマスを添加しない通常のコークス用配合炭(通常炭)によるコークス性状も併せて示した。   Fig. 8 shows the coke produced by mixing the biomass raw material with coal, producing a molded product and charging it into the coke oven (molded compounding method), and simply mixing the biomass and charging it into the coke oven (biomass simple compounding method). The effect on properties was shown. The coke properties of ordinary coal for coke without adding biomass (ordinary charcoal) are also shown.

バイオマスと石炭の成型物は、バイオマス(17mass%)と通常の配合炭(83mass%)にバインダーとしてコールタール軟ピッチ(外枠5mass%添加)を加え混合にダブルロール式成型機を用いて製造した。成型物を通常のコークス用配合炭へ30mass%配合し、250kg乾留試験炉へ装入しコークスを製造した。バイオマス原料を単純に配合する方法ではバイオマスが加熱過程で粘結性を示さないために石炭粒子との溶融性が不足し、コークス強度(DI30/15)およびCO2反応後強度(CSR)は低下した。しかし、バイオマスの脱揮発化によるコークスの多孔質化と残留物の反応性(CRI)が高いためにコークスの反応性は上昇している。一方、バイオマス原料、石炭とバインダーを混合後、成型し、通常の配合炭に混合してコークスを製造する方法では、通常のコークスとほぼ同等のコークス強度およびCO2反応後強度を維持しながら、コークスの反応性は上昇している。 A molded product of biomass and coal was manufactured using a double roll molding machine for mixing by adding coal tar soft pitch (addition of 5 mass% of outer frame) as a binder to biomass (17 mass%) and ordinary blended coal (83 mass%). . The molded product was blended in 30% by mass into ordinary coal for coke and charged into a 250 kg dry distillation test furnace to produce coke. In the method of simply blending the biomass feedstock insufficient melting of the coal particles to the biomass does not exhibit caking during heating, coke strength (DI30 / 15) and CO 2 strength after reaction (CSR) is reduced did. However, the coke reactivity is increasing due to the high porosity of coke due to the devolatization of biomass and the high reactivity (CRI) of the residue. On the other hand, after mixing biomass raw material, coal and binder, molding, mixing with ordinary blended coal to produce coke, while maintaining coke strength and CO 2 reaction strength almost the same as normal coke, Coke reactivity is increasing.

図9は、実施例4の成型物製造法と同様な方法で製造した成型物中のバイオマスの水分含有量とコークス性状の関係を示した。水分含有量の異なるバイオマスと石炭を混合、成型後、通常のコークス用配合炭に30mass%の一定比率で配合し、250kg試験乾留炉へ装入してコークスを製造した。コークス性状はバイオマスの水分含有量が高いほどコークス強度およびCO2反応後強度が低下している。コークス炉内の加熱過程でバイオマスの水分含有量が高いと水分が蒸発する時に成型物が崩壊する。それゆえに高水分バイオマスの脱水に伴う蒸発潜熱増に加え、バイオマスと石炭粒子との密着性が低下するとともに低嵩密度化するために溶融性が阻害され、コークス強度が低下するものと推察される。これより、バイオマスの含有水分量は10mass%以下、好ましくは乾燥後のバイオマスの着火性から5mass%から10mass%の範囲が最も望ましい。 FIG. 9 shows the relationship between the moisture content of biomass and coke properties in the molded product produced by the same method as the molded product production method of Example 4. Biomass and coal having different water contents were mixed and molded, and then blended into a normal coke blending coal at a constant ratio of 30 mass%, and charged into a 250 kg test dry distillation furnace to produce coke. As for the coke properties, the higher the moisture content of biomass, the lower the coke strength and strength after CO 2 reaction. If the moisture content of the biomass is high during the heating process in the coke oven, the molded product will collapse when the moisture evaporates. Therefore, in addition to the increase in latent heat of vaporization accompanying the dehydration of high-moisture biomass, it is assumed that the adhesion between the biomass and coal particles is reduced and the meltability is hindered due to the low bulk density, resulting in a decrease in coke strength. . Accordingly, the moisture content of the biomass is 10 mass% or less, and preferably in the range of 5 mass% to 10 mass% from the ignitability of the biomass after drying.

図10は、実施例4の成型物製造法と同様な方法で製造した成型物中のバイオマスの粒径とコークス性状への影響を示した。粒径の異なるバイオマスと石炭を混合、成型後、成型物を通常のコークス用配合炭に30mass%の一定比率で配合し、250kg試験乾留炉へ装入してコークスを製造した。コークス性状はバイオマスの粒径が大きくなるほどコークス強度およびCO2反応後強度は低下している。バイオマスの粒径が大きくなるほど石炭と粒径差が大きくなるために配合時に均一に混合されず、バイオマスと石炭粒子との溶融性が低下するためコークス強度が低下する。また、バイオマスは溶融性がなく加熱処理時に水分やガスが抜けるためコークス塊内に多孔質なイナート物質として存在する。このためバイオマスの粒径が大きくなると脆弱なイナート物質も大きくなるためコークス強度は低下するものと推察される。また、木質バイオマスは石炭などに比較し繊維質が多く弾力性が高く粉砕性が悪く、例えば1.5mm以下に微粉砕するには粉砕処理および粉砕設備の維持などの費用が高くなる問題がある。 FIG. 10 shows the influence on the particle size of biomass and coke properties in the molded product produced by the same method as the molded product production method of Example 4. After mixing and molding biomass and coal having different particle diameters, the molded product was blended into a normal coke blending coal at a constant ratio of 30 mass%, and charged into a 250 kg test dry distillation furnace to produce coke. As for the coke properties, the coke strength and the strength after CO 2 reaction decrease as the particle size of the biomass increases. The larger the particle size of the biomass, the larger the particle size difference with coal, so that it is not uniformly mixed at the time of blending, and the meltability between the biomass and the coal particles decreases, so the coke strength decreases. Biomass is not meltable, and moisture and gas escape during heat treatment, so it exists as a porous inert substance in the coke mass. For this reason, it is presumed that when the particle size of the biomass increases, the weak inert material also increases and the coke strength decreases. In addition, woody biomass has more fiber and elasticity and is less pulverizable than coal, etc. For example, when pulverizing to 1.5 mm or less, there is a problem that costs such as pulverization and maintenance of pulverization equipment are increased. .

これより、バイオマスの粒径は通常のコークス用配合炭の最大粒径の6mm以下、好ましくは3mm以下に粉砕することが望ましい。   From this, it is desirable that the particle size of the biomass be pulverized to 6 mm or less, preferably 3 mm or less, which is the maximum particle size of ordinary coal for coke.

図11は、実施例4の成型物製造法と同様な方法で成型物中のバイオマスの配合割合の成型物性状への影響への関係を示した。成型物の性状としては、圧潰強度、トロンメル強度および成型物歩留(+5mm)を測定した。バイオマスの配合割合を高くすると圧潰強度とトロンメル強度は低下する傾向があり、成型物をコークス炉まで搬送過程での衝撃による粉化を考慮するとバイオマスの添加量は少なくとも25mass%以下、好ましくは20mass%以下が望ましい。また、30mass%以上の配合では成型後のバックスプリング現象が生じ成型物が割れ、成型物歩留が著しく低下し好ましくない。   FIG. 11 shows the relationship between the blending ratio of biomass in the molded product and the influence on the molded product properties in the same manner as the molded product manufacturing method of Example 4. As the properties of the molded product, crushing strength, trommel strength and molded product yield (+5 mm) were measured. When the blending ratio of biomass is increased, the crushing strength and the trommel strength tend to decrease, and the amount of biomass added is at least 25 mass%, preferably 20 mass%, considering pulverization due to impact in the process of conveying the molded product to the coke oven. The following is desirable. On the other hand, a blending ratio of 30% by mass or more is not preferable because a back spring phenomenon after molding occurs, the molded product is cracked, and the molded product yield is remarkably lowered.

図12は、実施例4の成型物製造法にて製造した成型物を通常のコークス用配合炭へ配合してコークスを製造した際の、成型物の配合比率とコークス性状の関係を示した。コークス強度、CO2反応後強度は成型物の配合比率が30mass%程度まではあまり変化しないが、40mass%では大きく低下することが確認された。成型物配合比率が増加するとバイオマスの添加量が増加し気孔率が高くなり、コークス強度が低下したものと推定される。しかし、コークスの反応性は成型物の増配合により上昇している。これより、通常コークスと同等の強度を維持しながら反応性が高いコークスを製造するためには、成型物の配合比率は30mass%以下が好ましい。また、バインダーの添加量を増加させることでコークス強度やCO2反応後強度を改善することが可能である。さらに、石炭より水素含有量が高いバイオマス原料を配合することにより、通常の副生ガスに比較し、水素濃度が高いガスが生成する。 FIG. 12 shows the relationship between the blending ratio of the molded product and the coke properties when the coke was produced by blending the molded product produced by the method for producing the molded product of Example 4 into an ordinary coal for coke. It was confirmed that the coke strength and strength after CO 2 reaction did not change so much until the blending ratio of the molded product was about 30 mass%, but greatly decreased at 40 mass%. When the molding compounding ratio increases, it is estimated that the amount of biomass added increases, the porosity increases, and the coke strength decreases. However, the reactivity of coke is increased by increasing the amount of moldings. Thus, in order to produce coke having high reactivity while maintaining the same strength as normal coke, the blending ratio of the molded product is preferably 30 mass% or less. Moreover, it is possible to improve coke strength and strength after CO 2 reaction by increasing the amount of binder added. Furthermore, by blending a biomass material having a hydrogen content higher than that of coal, a gas having a higher hydrogen concentration than normal by-product gas is generated.

本発明ではバイオマスの事前乾燥による高炉吹き込み時の熱的負荷削減を意図している。図13にバイオマスを未乾燥状態で吹き込む場合と乾燥して吹き込む場合の高炉レースウエイ空間内のガス組成と温度分布を物質と熱収支に基づく数学モデルで評価した結果を示す。吹き込み用木質バイオマスの化学成分を表5に示す。また羽口から固体燃料を吹き込む条件を表6に示す。これより吹き込み条件1は基準吹き込み条件であり、微粉炭のみ118kg/tを吹き込んだ条件である。これに対し吹き込み条件2は水分含有量30mass%のバイオマスを未乾燥で40kg/t吹き込む場合であり、この時には微粉炭吹き込み量を78kg/tとして全体の吹き込み量を吹き込み条件1にあわせてある。吹き込み条件3は本発明の範囲内の条件である。吹き込み条件2と同様であるが事前に水分含有量5mass%まで乾燥したバイオマスを吹き込む条件である。   In the present invention, it is intended to reduce the thermal load during blast furnace blowing by pre-drying of biomass. FIG. 13 shows the results of evaluating the gas composition and temperature distribution in the blast furnace raceway space when the biomass is blown in an undried state and when blown dry, using a mathematical model based on the material and the heat balance. Table 5 shows chemical components of the wood biomass for blowing. Table 6 shows the conditions for blowing the solid fuel from the tuyere. Accordingly, the blowing condition 1 is a reference blowing condition, in which only pulverized coal is blown at 118 kg / t. On the other hand, blowing condition 2 is a case where biomass having a water content of 30 mass% is blown in an undried state at 40 kg / t. At this time, the blowing quantity of pulverized coal is set to 78 kg / t, and the entire blowing quantity is adjusted to blowing condition 1. The blowing condition 3 is a condition within the scope of the present invention. Although it is the same as blowing condition 2, it is the conditions which blow in the biomass dried to water content 5mass% beforehand.

Figure 0004893136
Figure 0004893136

Figure 0004893136
Figure 0004893136

図13より吹き込み条件1における羽口先最高温度は2045℃であるがバイオマスを未乾燥で吹き込む吹き込み条件2では含有水分の上昇により最高温度は1980℃に留まる。このためレースウエイ空間における個体吹き込み燃料の燃焼は抑制され、未燃焼チャーの高炉下部融着帯、レースウエイ前方に位置する炉芯への蓄積と通気性、通液性の悪化が容易に予想される。これによる塊コークスとの置換比率の悪化も推定される。これに対し系外で事前に未利用排熱で乾燥する本発明の範囲内に該当する吹き込み条件3ではレースウエイで水分分解熱が減少するために最高温度は2066℃まで上昇する。その結果、レースウエイにおける固体燃料の燃焼は改善され塊コークスとの置換率が向上するものと推定される。   From FIG. 13, the tuyere tip maximum temperature in blowing condition 1 is 2045 ° C., but in blowing condition 2 in which the biomass is blown in undried, the maximum temperature remains at 1980 ° C. due to the increase in the moisture content. For this reason, combustion of the solid fuel in the raceway space is suppressed, and accumulation of unburned char in the lower blast furnace cohesive zone and the furnace core located in front of the raceway as well as deterioration of air permeability and liquid permeability are easily expected. The The deterioration of the replacement ratio with the coke coke due to this is also estimated. On the other hand, under the blowing condition 3, which falls within the scope of the present invention, which is previously dried with unused exhaust heat outside the system, the heat of moisture decomposition is reduced in the raceway, so the maximum temperature rises to 2066 ° C. As a result, it is presumed that the solid fuel combustion in the raceway is improved and the replacement rate with the lump coke is improved.

バイオマスと石炭の混合塊成化事前処理により高反応性コークスの製造が可能となった。ここで製造した高反応性コークスを従来のコークスに一部置換して高炉で使用することにより高炉の還元材比削減が達成できることを高炉の物質・熱収支総括モデル(リストモデル)で検証した。検証に当たってはまず高反応性コークスを使用せず微粉炭のみを吹き込む通常の高炉操業を基準とする。この基準操業条件をもとに高反応性コークスに切り替え、反応率に応じ非特許文献3の図5に示すコークス反応率向上による熱保存帯温度低下を考慮した。   Highly reactive coke can be produced by pre-mixing agglomeration of biomass and coal. It was verified in the blast furnace material / heat balance summary model (list model) that the reduced reactive material ratio of the blast furnace can be achieved by replacing the highly reactive coke produced here with conventional coke and using it in the blast furnace. In the verification, first, normal blast furnace operation in which only pulverized coal is blown without using highly reactive coke is used as a standard. Based on this standard operating condition, the coke was switched to highly reactive coke, and the thermal preservation zone temperature drop due to the coke reaction rate improvement shown in FIG.

条件設定にあたっては全コークス量に対するバイオマスを原料とした高反応性コークスの配合は65mass%及び80mass%である。この配合により混合コークスのJIS反応率は基準条件の30%から35%及び41%に向上することが実験によって明らかとなった。非特許文献3によりこれらの混合コークスを高炉で使用することにより熱保存帯温度は基準条件の1000℃から高反応性コークス65mass%配合で980℃、同80mass%で960℃まで低下することが明らかである。これらの条件をもとにリストモデルにより高炉の操業を解析すると表7が得られる。   In setting the conditions, the blending of highly reactive coke using biomass as a raw material with respect to the total amount of coke is 65 mass% and 80 mass%. Experiments have revealed that this formulation improves the JIS reaction rate of mixed coke from 30% to 35% and 41% of the standard condition. It is clear from Non-Patent Document 3 that when these mixed cokes are used in a blast furnace, the temperature of the heat preservation zone decreases from 1000 ° C. as a reference condition to 980 ° C. with 65 mass% of highly reactive coke and 960 ° C. with 80 mass%. It is. Table 7 is obtained by analyzing the operation of the blast furnace using the list model based on these conditions.

Figure 0004893136
Figure 0004893136

表7より高反応性コークスの配合により、操業1では基準条件に比較し燃料比は6kg/t、操業2では11kg/tの低下が達成できる。基準操業と操業2の解析結果を図示すると図14が得られる。これより前記の(a)、(b)式で示した反応により熱保存帯温度(TR)は1000℃から960℃まで下がる結果、XWの座標は相対的に高酸化度側に移行する。その結果一定シャフト効率(FeO〜Fe還元平衡への到達度を示すパラメータ)下では還元材比を表す操作線(L)の勾配は低下しL1となり燃料比11kg/tの低下につながる。また還元材比が低下する分だけ送風原単位及び炉頂ガス発生量は低下し且つ炉頂ガスの酸化度を示すXAはLからL1に移行する結果高酸化度側に移行する。この様な収支結果をもとに表7が得られる。 From Table 7, by blending highly reactive coke, the fuel ratio can be reduced by 6 kg / t in operation 1 and 11 kg / t in operation 2 compared to the standard conditions. FIG. 14 is obtained when the analysis results of the standard operation and the operation 2 are illustrated. As a result, the thermal storage zone temperature (T R ) is lowered from 1000 ° C. to 960 ° C. by the reaction shown in the above formulas (a) and (b). As a result, the coordinates of X W shift to a relatively high oxidation degree side. . As a result, under a constant shaft efficiency (a parameter indicating the degree of attainment of FeO to Fe reduction equilibrium), the gradient of the operating line (L) representing the reducing material ratio decreases and becomes L 1 , leading to a fuel ratio of 11 kg / t. Further, the blast unit and the amount of generated gas at the top of the furnace are reduced by the reduction of the reducing material ratio, and X A indicating the degree of oxidation of the furnace top gas shifts from L to L 1, so that it shifts to the high oxidation side. Table 7 is obtained based on such balance results.

高反応性コークスの配合限界はコークス強度が一定で高炉内通気性が維持される場合高炉の熱伝達特性に依存する。高反応性コークス使用により還元材比が低下すると羽口より発生するガス量が相対的に低下し高炉の熱伝達特性を示すパラメータである熱流比(=熱保存帯における固体の有するエンタルピー/同ガスが有するエンタルピーの比で定義)が上昇する。通常高炉の安定操業を維持するためには熱流比は0.900(-)以下で管理することが望ましい。表7より操業2では0.866を示しており、熱移動特性面からはほぼ操業限界に近づくことを示唆する。   The mixing limit of highly reactive coke depends on the heat transfer characteristics of the blast furnace when the coke strength is constant and the air permeability in the blast furnace is maintained. The heat flow ratio (= enthalpy of solids in the heat storage zone / same gas) is a parameter that indicates the heat transfer characteristics of the blast furnace due to the relative reduction in the amount of gas generated from the tuyere when the reducing material ratio decreases due to the use of highly reactive coke. Defined by the ratio of enthalpy of Usually, in order to maintain the stable operation of the blast furnace, it is desirable to manage the heat flow ratio at 0.900 (−) or less. Table 7 shows 0.866 in operation 2, suggesting that the operation limit is almost approached from the viewpoint of heat transfer characteristics.

以上より木質バイオマスを原料とした高反応性コークスの高炉使用に際し、その配合率は80mass%以内に管理して操業することが安定操業上、還元材比削減上必要であることが認められた。特に望ましい配合率範囲は50〜80mass%である。   From the above, when using a highly reactive coke made of woody biomass as a blast furnace, it was recognized that it is necessary to control the blending rate within 80 mass% in order to reduce the ratio of reducing materials. A particularly desirable blending ratio range is 50 to 80 mass%.

バイオマスの乾燥をグレート方式で行うことを前提に実験によって乾燥挙動を明らかにした。図15下部は鉄鉱石焼結用ポットグレート炉を用いたバイオマスの乾燥実験装置である。図15上部のグレート式乾燥炉プロセス19を模擬して、グレート上の一部を固定層で実験した。断熱ポット20に所定の水分及び粒径の木質バイオマス21を層厚30cmの高さに充填する。この状態で所定温度及び所定流量の乾燥ガス22をポット20の上部より偏流のない条件で供給し、ポット20下部からブロワー23を介して排気する。実験中はベッド上の温度計24、ベッド中の温度計25、ベッド下層部の温度計26により温度を連続的に測温すると共に所定時間毎に実験を中断しそれぞれの部分のバイオマスを採取し水分の測定を行った。バイオマスの乾燥特性はバイオマス平均粒径、ベッド内通過ガス流速、バイオマス層厚、乾燥温度、初期含有水分などにより影響を受ける。本実験ではこれらの操業因子が乾燥特性に及ぼす影響を実験的に明らかにした。グレート炉方式のバイオマス乾燥において基準操業をバイオマス平均粒径5cm、乾燥ガス空塔速度1.0m/s、バイオマス層厚30cm、乾燥温度300℃、バイオマス初期水分35mass%と想定し、ポットテストの基準となる条件を設定した。   The drying behavior was clarified by experiments on the premise that the biomass is dried by the Great method. The lower part of FIG. 15 is a biomass drying experiment apparatus using a pot grate furnace for sintering iron ore. In order to simulate the great drying furnace process 19 in the upper part of FIG. The heat insulating pot 20 is filled with woody biomass 21 having a predetermined moisture and particle size to a height of 30 cm. In this state, a dry gas 22 having a predetermined temperature and a predetermined flow rate is supplied from the upper part of the pot 20 under the condition that there is no drift, and exhausted from the lower part of the pot 20 through the blower 23. During the experiment, the temperature is continuously measured by the thermometer 24 on the bed, the thermometer 25 in the bed, and the thermometer 26 in the lower layer of the bed, and the experiment is interrupted every predetermined time, and the biomass of each part is collected. Moisture was measured. The drying characteristics of biomass are affected by biomass average particle size, bed passing gas flow rate, biomass layer thickness, drying temperature, initial moisture content, and the like. In this experiment, the influence of these operating factors on drying characteristics was experimentally clarified. Standard test for biomass drying in the Great Furnace system, assuming a biomass average particle size of 5 cm, a dry gas superficial velocity of 1.0 m / s, a biomass layer thickness of 30 cm, a drying temperature of 300 ° C., and a biomass initial moisture of 35 mass%. Was set.

(A)ガス流速の影響
図16に実験結果を示す。乾燥が活発に進んでいる時間領域では乾燥に伴う蒸発潜熱がガス側から奪われるためガスの昇温が遅れることが認められる。基準条件の空塔速度1.0m/sではほぼ20分で乾燥は終了するが0.5m/sではベッド下層部のバイオマスは60mass%程度しか乾燥しない。なお流速が1.5m/sまで上昇すると乾燥は16分程度で終了する。これより基準操業の条件を乾燥条件とするとベッド内を通過するガス空塔速度は1.0m/s以上が望ましい。
(A) Influence of gas flow rate FIG. 16 shows the experimental results. It can be seen that the temperature rise of the gas is delayed because the latent heat of evaporation accompanying the drying is taken away from the gas side in the time region where the drying is actively progressing. Drying is completed in about 20 minutes at the standard superficial velocity of 1.0 m / s, but at 0.5 m / s, the biomass in the lower layer of the bed is dried only by about 60 mass%. When the flow rate is increased to 1.5 m / s, drying is completed in about 16 minutes. Accordingly, when the condition of the standard operation is the drying condition, the gas superficial velocity passing through the bed is desirably 1.0 m / s or more.

(B)乾燥ガス温度の影響
図17に実験結果を示す。これより乾燥温度が200℃以下になるとベッド下層部の乾燥が遅れ始める。100℃では50%程度の乾燥しか進行しないため乾燥時間をもっと長く設定する必要が生ずる。なお300℃では乾燥が十分進むもののこれ以上ではバイオマスに着火する恐れがあり乾燥温度は100〜300℃、望ましくは200〜300℃が好ましい。
(B) Effect of drying gas temperature FIG. 17 shows the experimental results. From this point, when the drying temperature is 200 ° C. or less, the drying of the bed lower layer starts to be delayed. At 100 ° C., only about 50% of the drying proceeds, so that it is necessary to set a longer drying time. In addition, although drying progresses sufficiently at 300 degreeC, there exists a possibility of igniting biomass above this, Drying temperature is 100-300 degreeC, Desirably 200-300 degreeC is preferable.

(C)バイオマス初期水分の影響
図18に実験結果を示す。バイオマス水分が増すと乾燥の遅延が顕著になる。基準操業の実験条件下では初期水分の限界は40mass%と評価される。45mass%以上ではベッドの下層部の昇温が十分ではないものの、乾燥はほぼ90mass%達成されている。なお初期水分が45mass%以上ではガス流速を上昇するか或いは乾燥時間の延長が必要となる。
(C) Influence of biomass initial moisture FIG. 18 shows the experimental results. As biomass moisture increases, the delay in drying becomes significant. Under the experimental conditions of the standard operation, the initial moisture limit is estimated to be 40 mass%. At 45 mass% or more, although the temperature rise in the lower layer of the bed is not sufficient, drying is achieved at about 90 mass%. When the initial moisture is 45 mass% or more, it is necessary to increase the gas flow rate or extend the drying time.

(D)バイオマス粒径の影響
図19に実験結果を示す。バイオマス粒径が増すとバイオマス比表面積が減少し、伝熱面積が減少する結果乾燥速度は遅れる。基準操業の条件ではバイオマス径が10cmになると乾燥時間は26分近くまで遅延するもののまだ乾燥条件に余裕がある。このため乾燥温度の低下、乾燥ガス空塔速度の低下など経済性を考慮した操業の選択が可能と推定される。粒径が10cm以下であれば更に操業条件に余裕が出来る。
(D) Influence of biomass particle size FIG. 19 shows the experimental results. As the biomass particle size increases, the specific surface area of the biomass decreases and the heat transfer area decreases, resulting in a delay in the drying rate. Under standard operating conditions, when the biomass diameter is 10 cm, the drying time is delayed to nearly 26 minutes, but there is still room for drying conditions. For this reason, it is estimated that it is possible to select an operation in consideration of economics such as a decrease in drying temperature and a decrease in the drying gas superficial velocity. If the particle size is 10 cm or less, the operating conditions can be further afforded.

(E)グレート炉による適正乾燥条件
グレート炉を模擬した乾燥実験から適正乾燥条件は以下のように設定できる。
乾燥ガス空塔速度:0.5〜1.5m/s
乾燥ガス温度:100〜300℃(但し100℃では乾燥時間の延長が必要)
バイオマス初期水分:40mass%以下
バイオマス粒径:10cm以下(粒径の低下により乾燥条件緩和が可能)
(E) Appropriate drying conditions using a great furnace The appropriate drying conditions can be set as follows from a drying experiment simulating a great furnace.
Dry gas superficial velocity: 0.5 to 1.5 m / s
Drying gas temperature: 100-300 ° C (However, it is necessary to extend the drying time at 100 ° C)
Biomass initial moisture: 40 mass% or less Biomass particle size: 10 cm or less (Drying conditions can be relaxed by reducing particle size)

バイオマスの水分と羽口先最高温度の関係を示すグラフ。The graph which shows the relationship between the water | moisture content of biomass, and a tuyere tip maximum temperature. 高反応性コークスの配合率と還元材比の関係を示すグラフ。The graph which shows the relationship between the compounding rate of a highly reactive coke, and a reducing material ratio. バイオマスの排熱による乾燥、石炭との混合塊成化、高反応性コークス製造と高炉への使用および乾燥バイオマスの高炉吹き込みを示す本発明の全体プロセス概要図。The whole process outline | summary figure of this invention which shows drying by exhaust heat of biomass, mixed agglomeration with coal, high-reactive coke production and use to a blast furnace, and blast furnace injection of dry biomass. 焼結機クーラーの未利用排熱を利用しロータリーキルンで供給量の異なるバイオマスを乾燥した結果を示しているグラフ。The graph which shows the result of having dried the biomass with which supply amount differs with a rotary kiln using the unused waste heat of a sintering machine cooler. ロータリーキルンでバイオマスを乾燥する際、バイオマス供給量に応じて得られる乾燥排ガスのキルン内での空塔速度を示しているグラフ。The graph which shows the superficial velocity in the kiln of the dry exhaust gas obtained according to biomass supply amount when drying biomass with a rotary kiln. ロータリーキルン内でバイオマスを乾燥するに際し、バイオマス粒径により乾燥挙動が変わる結果を示すグラフ。The graph which shows the result from which drying behavior changes with biomass particle size when drying biomass in a rotary kiln. ロータリーキルンに装入されるバイオマスの初期水分率に応じて乾燥ガス量を変化させた時の乾燥挙動を示すグラフ。The graph which shows the drying behavior when changing the amount of dry gas according to the initial moisture content of the biomass charged to a rotary kiln. バイオマスを石炭に単純添加する方法と石炭とバイオマスの混合物を成型し石炭の配合する方法のコークス性状への影響を示すグラフ。The graph which shows the influence on the coke property of the method of simply adding biomass to coal and the method of molding a mixture of coal and biomass and blending the coal. 石炭とバイオマスの混合物を成型し石炭の配合する方法で、バイオマスの含有水分量とコークス性状の関係を示すグラフ。The graph which shows the relationship between the moisture content of biomass, and coke property by the method of shape | molding the mixture of coal and biomass, and mix | blending coal. 石炭とバイオマスの混合物を成型し石炭の配合する方法で、バイオマスの粒径とコークス性状の関係を示すグラフ。The graph which shows the relationship between the particle size of biomass, and a coke property by the method of shape | molding the mixture of coal and biomass, and mix | blending coal. 石炭とバイオマスの混合、成型し成型物を製造する場合のバイオマスの配合割合と成型物の性状との関係を示すグラフ。The graph which shows the relationship between the compounding ratio of the biomass in the case of mixing and shaping | molding coal and biomass, and manufacturing a molding, and the property of a molding. 成型物の石炭への配合割合とコークス性状の関係を示すグラフ。The graph which shows the compounding ratio to the coal of a molding, and a coke property. 羽口からバイオマスを吹き込む際のレースウエイ空間内での温度及びガス組成を示すグラフ。吹き込み条件1は微粉炭のみ吹き込む場合、吹き込み条件2は未乾燥のバイオマスを吹き込む場合、吹き込み条件3は乾燥バイオマスを吹き込む場合を示す。The graph which shows the temperature and gas composition in the raceway space at the time of blowing biomass from a tuyere. The blowing condition 1 indicates a case where only pulverized coal is blown, a blowing condition 2 indicates a case where undried biomass is blown, and a blowing condition 3 indicates a case where dry biomass is blown. 高炉の熱保存帯温度が低下した場合の高炉燃料比の考え方をリスト線図によって解析した結果を示すグラフ。The graph which shows the result of having analyzed the way of thinking of the blast furnace fuel ratio when the thermal preservation zone temperature of a blast furnace fell by the list diagram. グレート炉方式を模擬したバイオマス乾燥実験装置の概略図。Schematic of a biomass drying experiment apparatus simulating a great furnace system. グレート方式の実験結果を示すグラフ。The graph which shows the experimental result of a great system. グレート方式の実験結果を示すグラフ。The graph which shows the experimental result of a great system. グレート方式の実験結果を示すグラフ。The graph which shows the experimental result of a great system. グレート方式の実験結果を示すグラフ。The graph which shows the experimental result of a great system.

符号の説明Explanation of symbols

1 バイオマスチップ槽
2 乾燥工程
3 焼結機クーラー
4 焼結機
5 専用保管槽
6 解砕・粉砕機
7 石炭
8 バインダー
9 混合機
10 成型工程
11 篩い分け工程
12 石炭配合槽
13 コークス炉
14 高炉
15 銑鉄
16 スラグ
17 バイオマス貯留槽
18 微粉炭
19 グレート式乾燥炉プロセス
20 断熱ポット
21 木質バイオマス
22 乾燥ガス
23 ブロワー
24 ベッド上の温度計
25 ベッド中の温度計
26 ベッド下層部の温度計
DESCRIPTION OF SYMBOLS 1 Biomass chip tank 2 Drying process 3 Sinter cooler 4 Sintering machine 5 Dedicated storage tank 6 Crushing and grinding machine 7 Coal 8 Binder 9 Mixer 10 Molding process 11 Sieving process 12 Coal mixing tank 13 Coke oven 14 Blast furnace 15 Pig iron 16 Slag 17 Biomass storage tank 18 Pulverized coal 19 Great drying furnace process 20 Thermal insulation pot 21 Woody biomass 22 Drying gas 23 Blower 24 Thermometer on bed 25 Thermometer in bed 26 Thermometer in lower layer of bed

Claims (7)

木質バイオマスを加熱して乾燥後に粉砕し、石炭とともに成型して成型体とし、該成型体を篩い分けした篩い上を、石炭とともにコークス炉に装入して乾留して製造したコークスを高炉に装入し、前記成型体を篩い分けした篩い下を、羽口から高炉内に吹き込むことを特徴とする木質バイオマスを原料とした高炉操業方法。 The woody biomass is heated and dried and then pulverized, then molded with coal to form a molded body. A method of operating a blast furnace using woody biomass as a raw material , wherein the sieved material obtained by sieving is blown into a blast furnace from a tuyere . 篩い分けの篩い目を、3〜6mmとすることを特徴とする請求項1に記載の木質バイオマスを原料とした高炉操業方法。The method for operating a blast furnace using woody biomass as a raw material according to claim 1, wherein the sieve mesh for sieving is 3 to 6 mm. 木質バイオマスを、水分含有量が5mass%以上、30mass%未満となるように乾燥することを特徴とする請求項1または2に記載の木質バイオマスを原料とした高炉操業方法。 The blast furnace operation method using the woody biomass as a raw material according to claim 1 or 2 , wherein the woody biomass is dried so that the moisture content is 5 mass% or more and less than 30 mass%. 木質バイオマスの乾燥を、300℃以下の排熱を用いて行うことを特徴とする請求項1ないし請求項3のいずれかに記載の木質バイオマスを原料とした高炉操業方法。 The blast furnace operation method using the woody biomass as a raw material according to any one of claims 1 to 3, wherein the woody biomass is dried using exhaust heat of 300 ° C or lower. 乾燥後の木質バイオマスを粉砕し、石炭とともに成型して成型体とし、該成型体を石炭とともにコークス炉に装入して乾留して製造したコークスの高炉への装入割合を、高炉に装入する全コークス量の80mass%未満とすることを特徴とする請求項1ないし請求項4のいずれかに記載の木質バイオマスを原料とした高炉操業方法。 The dried woody biomass is pulverized, molded with coal to form a molded body, and the molded body is charged into a coke oven together with coal, and the charging ratio of the coke produced by dry distillation is charged into the blast furnace. The blast furnace operating method using woody biomass as a raw material according to any one of claims 1 to 4 , wherein the amount is less than 80 mass% of the total amount of coke to be produced. 木質バイオマスを粒径3mm以下に粉砕し、石炭ととともに混合して成型し、成型体の体積を10cm3以上で50cm3以下、嵩密度を0.8g/cm3以上で1.1g/cm3以下にすることを特徴とする請求項1ないし請求項5のいずれかに記載の木質バイオマスを原料とした高炉操業方法。 Woody biomass is pulverized to a particle size of 3 mm or less, mixed with coal and molded. The volume of the molded body is 10 cm 3 or more and 50 cm 3 or less, and the bulk density is 0.8 g / cm 3 or more and 1.1 g / cm 3. A blast furnace operating method using the woody biomass according to any one of claims 1 to 5 as a raw material. 粉砕した木質バイオマスを、石炭とバインダーとともに成型することを特徴とする請求項1ないし請求項6のいずれかに記載の木質バイオマスを原料とした高炉操業方法。 The blast furnace operating method using the woody biomass as a raw material according to any one of claims 1 to 6 , wherein the pulverized woody biomass is molded together with coal and a binder.
JP2006198522A 2006-07-20 2006-07-20 Blast furnace operation method using woody biomass Expired - Fee Related JP4893136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198522A JP4893136B2 (en) 2006-07-20 2006-07-20 Blast furnace operation method using woody biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198522A JP4893136B2 (en) 2006-07-20 2006-07-20 Blast furnace operation method using woody biomass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011210092A Division JP5403027B2 (en) 2011-09-27 2011-09-27 Blast furnace operating method and coke manufacturing method using woody biomass

Publications (2)

Publication Number Publication Date
JP2008024984A JP2008024984A (en) 2008-02-07
JP4893136B2 true JP4893136B2 (en) 2012-03-07

Family

ID=39115935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198522A Expired - Fee Related JP4893136B2 (en) 2006-07-20 2006-07-20 Blast furnace operation method using woody biomass

Country Status (1)

Country Link
JP (1) JP4893136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017528A (en) * 2011-09-27 2012-01-26 Jfe Steel Corp Method for operating blast furnace using woody biomass as raw material, and coke production method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292884B2 (en) * 2008-03-27 2013-09-18 Jfeスチール株式会社 Blast furnace operation method
JP5644365B2 (en) * 2009-10-29 2014-12-24 Jfeスチール株式会社 Blast furnace operation method
US8906131B2 (en) * 2011-10-04 2014-12-09 John J. Simmons Direct production of iron slabs and nuggets from ore without pelletizing or briquetting
KR101269391B1 (en) 2011-10-10 2013-05-29 주식회사 경동 Pulverized fuel and method for production of the same
CN104028540B (en) * 2014-06-19 2016-07-06 国网四川省电力公司成都市新都供电分公司 A kind of power station aseptic combustion power generation system of garbage on water
WO2018229520A1 (en) * 2017-06-16 2018-12-20 Arcelormittal Operating method of an iron making installation and associated operating installation
JP2019199567A (en) * 2018-05-18 2019-11-21 株式会社神戸製鋼所 Manufacturing method of coke containing lignite
CN110194960B (en) * 2019-06-10 2021-10-08 平昌中环农科科技有限公司 Device and method for co-producing biomass dry distillation carbon, gas, oil and liquid
CN114875192B (en) * 2022-04-20 2023-03-14 北京科技大学 Coupling method for applying biomass hydrogen-rich micro powder to smelting iron-making furnace
CN115058551B (en) * 2022-07-06 2023-09-22 马鞍山乌力平冶金技术工作室 Method for enriching blast furnace gas
CN115747394A (en) * 2022-11-15 2023-03-07 德龙钢铁有限公司 Coal injection comprehensive regulation and control method based on coal-coke replacement ratio and blast furnace operation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798592A (en) * 1980-12-11 1982-06-18 Nippon Steel Corp Treatment of coal
JPH0248409A (en) * 1988-08-05 1990-02-19 Nippon Steel Corp Production of active coke
JP2002129167A (en) * 2000-10-27 2002-05-09 Nippon Steel Corp Production method for metallurgical low-density formed coke
JP2004263256A (en) * 2003-03-03 2004-09-24 Nippon Steel Corp Method for charging raw material into blast furnace
JP2004263279A (en) * 2003-03-04 2004-09-24 Nippon Steel Corp Method for operating blast furnace by blowing waste wood
JP4556525B2 (en) * 2004-07-16 2010-10-06 Jfeスチール株式会社 Blast furnace operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017528A (en) * 2011-09-27 2012-01-26 Jfe Steel Corp Method for operating blast furnace using woody biomass as raw material, and coke production method

Also Published As

Publication number Publication date
JP2008024984A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4893136B2 (en) Blast furnace operation method using woody biomass
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
CN104884586A (en) Coal briquette and production method therefor
JP4970256B2 (en) Molten iron manufacturing apparatus for injecting fine carbonaceous material into molten gasification furnace and molten iron manufacturing method
JP2011047053A (en) Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier
KR101405480B1 (en) Method for manufacturinfg coal briquettes
JP2010236081A (en) Method of manufacturing carbonaceous material-containing agglomerate
CN103370396B (en) The preparation method of partially carbonized coal briquette, the preparation facilities of partially carbonized coal briquette and molten iron preparation facilities
KR101405483B1 (en) Method for manufacturing coal briquettes for being used in manufacturing molten iron and apparatus for the same
JP2006057082A (en) Method for producing carbon-containing molded product and method for melting treatment of waste using the carbon-containing molded product
JP5336018B1 (en) Method for producing coke for gasification melting furnace, and method for using coke
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP4681688B2 (en) Iron ore sintering carbon
JP5412940B2 (en) Method for producing a coagulation material for sinter production
JP5762653B1 (en) Coal charcoal, method for producing the same, and method of using charcoal
KR101220596B1 (en) Process for production of solid fuel for use in sintering, solid fuel for use in sintering, and process for manufacturing sintered ore using same
KR101262596B1 (en) Method of producing ferro-coke through low temperature dry distillation
JP5929489B2 (en) Manufacturing method of oil palm core shell charcoal
KR101597716B1 (en) Method for preparation of mixing powdered coal
JP2005053986A (en) Method for producing ferrocoke for blast furnace
KR20170103503A (en) Sintering method and apparatus
KR101709204B1 (en) Method for manufacturing coal briquettes and dryer
JP7493121B1 (en) Coke manufacturing method
JP7407224B2 (en) Iron-making equipment operating method and related operating equipment
WO2024202185A1 (en) Coke production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees