JP4681688B2 - Iron ore sintering carbon - Google Patents

Iron ore sintering carbon Download PDF

Info

Publication number
JP4681688B2
JP4681688B2 JP2010525088A JP2010525088A JP4681688B2 JP 4681688 B2 JP4681688 B2 JP 4681688B2 JP 2010525088 A JP2010525088 A JP 2010525088A JP 2010525088 A JP2010525088 A JP 2010525088A JP 4681688 B2 JP4681688 B2 JP 4681688B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
solid fuel
sintered ore
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010525088A
Other languages
Japanese (ja)
Other versions
JPWO2010087468A1 (en
Inventor
誠治 野村
俊次 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP4681688B2 publication Critical patent/JP4681688B2/en
Publication of JPWO2010087468A1 publication Critical patent/JPWO2010087468A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

本発明は、鉄鉱石を焼結して焼結鉱を製造するときの燃料として用いることができる炭材に関する。   The present invention relates to a carbon material that can be used as a fuel when iron ore is sintered to produce a sintered ore.

焼結鉱の製造においては、まず、粉鉄鉱石を主原料として、石灰石、珪石、蛇紋岩などの副原料、固体燃料、返鉱などからなる配合原料をドラムミキサーなどにより混合、造粒して擬似粒子とし、配合原料の擬似粒子を焼結パレットに層状に装入後、表層の配合原料中の固体燃料に着火し、焼結パレットの下方から吸引通風することによって燃焼を順次下層に移行させ、装入された配合原料を焼成して焼結鉱としている。   In the production of sintered ore, first, powdered iron ore is used as the main raw material, mixed raw materials such as limestone, quartzite, serpentinite, and other raw materials, solid fuel, return ore are mixed and granulated using a drum mixer or the like. Pseudo particles are used, and after mixing the mixed material pseudo particles into the sintered pallet in layers, the solid fuel in the surface layer mixed material is ignited, and the combustion is sequentially transferred to the lower layer by sucking air from below the sintered pallet. The charged blended raw materials are fired into sintered ore.

従来より焼結鉱を製造するときの固体燃料としては、粉コークスが使用されていた。粉コークスはコークス炉で製造された塊コークスのうち、粒度が小さくて高炉に装入できないものを篩い分けして得たものである。   Conventionally, powder coke has been used as a solid fuel for producing sintered ore. Powdered coke is obtained by sieving the bulk coke produced in the coke oven, which has a small particle size and cannot be charged into the blast furnace.

また、粉コークス以外の鉄鉱石焼結用の固体燃料としては、例えば以下の特許文献1および2に関するものが公知である。   Further, as solid fuel for iron ore sintering other than powder coke, for example, those relating to Patent Documents 1 and 2 below are known.

特許文献1には焼結鉱の製造に当たり配合する燃料(燃料炭材)の10重量%以上を、石炭を300℃以上900℃以下の温度範囲で熱分解したチャーを配合することが記載されている。   Patent Document 1 describes that 10% by weight or more of a fuel (fuel coal material) to be blended in the production of sintered ore is blended with char obtained by pyrolyzing coal in a temperature range of 300 ° C to 900 ° C. Yes.

また、特許文献2には、粉状鉄鉱石と石炭の混合物を石炭が熱分解するのに十分な300℃以上900℃以下に加熱保持し、得られたチャーと部分還元鉱石からなる固体物質を焼結用の燃料とすることが開示されている。   In Patent Document 2, a mixture of powdered iron ore and coal is heated and held at 300 ° C. or more and 900 ° C. or less sufficient for the coal to thermally decompose, and a solid substance made of char and partially reduced ore is obtained. A fuel for sintering is disclosed.

特開平5−230558号公報JP-A-5-230558 特開平5−230557号公報JP-A-5-230557

近年、無煙炭や粉コークスの原料となる粘結炭の価格が上昇している。したがって、焼結鉱製造のために用いることができる、より安価な代替の固体燃料が求められている。   In recent years, the price of caking coal, which is a raw material for anthracite and powdered coke, is increasing. Therefore, there is a need for a cheaper alternative solid fuel that can be used for sinter production.

また、環境上の問題から二酸化炭素の排出量低減が図られており、この目的を達成するために燃料の原単位低減が求められている。したがって、代替の固体燃料としては従来の固体燃料よりも燃焼効率に優れているものが所望されている。   In addition, carbon dioxide emissions are being reduced due to environmental problems, and in order to achieve this purpose, reduction of fuel intensity is required. Therefore, an alternative solid fuel that is superior in combustion efficiency to a conventional solid fuel is desired.

さらに、高炉の出銑量増大、出銑比向上が図られており、このためには焼結鉱の増産、および焼結鉱の品質向上が不可欠となる。したがって、従来の固体燃料を用いる場合よりも焼結鉱の生産率、および成品歩留まりの改善を可能とするような新たな焼結鉱製造方法が求められている。この点、特許文献1または2は、焼結鉱の生産率、および成品歩留まりの改善について何ら開示していない。   Furthermore, an increase in the amount of blast furnace tapping and an improvement in the tapping ratio are achieved. For this purpose, it is essential to increase the production of sintered ore and improve the quality of the ore. Accordingly, there is a need for a new method for producing sinter that enables improvement in the production rate and product yield of the sinter than in the case of using a conventional solid fuel. In this regard, Patent Document 1 or 2 does not disclose any improvement in the production rate of the sintered ore and the product yield.

さらにまた、二酸化炭素と同様に、焼結機排出ガス中における窒素酸化物(NOx)についても低減されることが求められている。   Furthermore, as with carbon dioxide, it is also required to reduce nitrogen oxide (NOx) in the exhaust gas from the sintering machine.

本発明はこのような事情に鑑みてなされたものであり、従来用いられていた焼結用燃料よりも安価であって燃焼効率に優れ、且つ焼結鉱の生産率、および成品歩留まりを改善することができるとともに、焼結鉱生産時における窒素酸化物排出量の低減を実現可能とする鉄鉱石焼結用の固体燃料すなわち、炭材を提供することを目的とする。   The present invention has been made in view of such circumstances, and is cheaper and superior in combustion efficiency than conventionally used sintering fuels, and improves the production rate and product yield of sintered ore. An object of the present invention is to provide a solid fuel for sintering iron ore, that is, a carbon material, which can reduce the amount of nitrogen oxide emission during production of sintered ore.

本発明は前記問題点に鑑みなされたものであり、その要旨とするところは
(1)鉄鉱石焼結用の固体燃料として使用するための炭材であって、以下の性質を有することを特徴とする炭材。
(i)反応開始温度が550℃以下、
(ii)揮発分(VM)が1.0%以上
(iii )水素と炭素の原子数比(H/C)が0.040以上、
(iv)水銀圧入法で測定される孔径0.1〜10μmの気孔量が50mm/g以上
(2)前記炭材がさらに以下の性質を有することを特徴とする(1)に記載の炭材。
(v)反応速度最大温度が600℃以下、
(vi)1000℃での反応速度が0.19min−1以上
(3)前記炭材がさらに以下の性質を有することを特徴とする(1)または(2)に記載の炭材。
(vii )ミクロ強度指数(MSI0.21)が20以上
(4)前記炭材が亜瀝青炭又は褐炭を原料として製造されることを特徴とする(1)または(2)に記載の炭材。
(5)前記炭材が亜瀝青炭又は褐炭を原料として製造されることを特徴とする(3)に記載の炭材。
(6)(1)または(2)に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。
(7)(3)に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。
(8)(4)に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。
(9)(5)に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。
The present invention has been made in view of the above problems, and the gist of the present invention is (1) a carbon material for use as a solid fuel for iron ore sintering, which has the following properties: Charcoal material.
(i) the reaction start temperature is 550 ° C. or lower,
(ii) Volatile content (VM) is 1.0% or more
(iii) The atomic ratio (H / C) of hydrogen to carbon is 0.040 or more,
(iv) The amount of pores with a pore diameter of 0.1 to 10 μm measured by mercury porosimetry is 50 mm 3 / g or more. (2) The charcoal according to (1), wherein the charcoal further has the following properties: Wood.
(v) the maximum reaction rate temperature is 600 ° C. or less,
(vi) The reaction rate at 1000 ° C. is 0.19 min −1 or more. (3) The carbon material further has the following properties. The carbon material according to (1) or (2).
(vii) The micro strength index (MSI 0.21 ) is 20 or more. (4) The charcoal material according to (1) or (2), wherein the charcoal material is manufactured using sub-bituminous coal or lignite.
(5) The carbon material according to (3), wherein the carbon material is manufactured using sub-bituminous coal or lignite.
(6) A method for producing a sintered ore, wherein the carbonaceous material according to (1) or (2) is used as a solid fuel.
(7) A method for producing a sintered ore, wherein the carbonaceous material according to (3) is used as a solid fuel.
(8) A method for producing a sintered ore, wherein the carbonaceous material according to (4) is used as a solid fuel.
(9) A method for producing a sintered ore, wherein the carbonaceous material according to (5) is used as a solid fuel.

本明細書において反応開始温度とは、以下の温度をいう。すなわち、熱天秤に所定の粒度(0.15〜0.25mm)に調整した試料を所定の重量(10〜20mg)入れ、空気雰囲気中で所定の昇温速度(10℃/min)で昇温し、重量減少を測定する。ここで、重量減少率が安定して0.002(1/min)を超える温度を反応開始温度という。   In this specification, the reaction start temperature refers to the following temperature. That is, a predetermined weight (10 to 20 mg) of a sample adjusted to a predetermined particle size (0.15 to 0.25 mm) is put on a thermobalance, and the temperature is increased at a predetermined temperature increase rate (10 ° C./min) in an air atmosphere. And measure weight loss. Here, the temperature at which the weight reduction rate stably exceeds 0.002 (1 / min) is referred to as the reaction start temperature.

また、本明細書において、重量減少曲線の傾きが最大となる温度(単位時間あたりの重量減少が最大となる温度)を、反応速度最大温度という。   In the present specification, the temperature at which the slope of the weight loss curve is maximized (the temperature at which the weight loss per unit time is maximized) is referred to as the maximum reaction rate temperature.

また、本明細書において、1000℃での反応速度とは、熱天秤に所定の粒度(0.15〜0.25mm)に調整した試料を所定の重量(10〜20mg)入れ、窒素雰囲気中で1000℃まで昇温し、その後雰囲気を空気雰囲気とした初期における単位時間あたりの重量減少比(重量減少量と初期重量の比)(1/min)をいう。   Further, in this specification, the reaction rate at 1000 ° C. means that a sample adjusted to a predetermined particle size (0.15 to 0.25 mm) is placed in a thermobalance and a predetermined weight (10 to 20 mg) is placed in a nitrogen atmosphere. It refers to the weight reduction ratio per unit time (ratio of weight reduction amount to initial weight) (1 / min) in the initial stage where the temperature is raised to 1000 ° C. and then the atmosphere is an air atmosphere.

また、本明細書の揮発分(VM)は、JISM8812に記載の方法で測定することができる。   Moreover, the volatile matter (VM) of this specification can be measured by the method as described in JISM8812.

また、水素と炭素の原子数比(H/C)は、元素分析により測定される炭素と水素の重量百分率C%およびH%をもとに、H/C=(H%/1)/(C%/12)で求めることができる。   The atomic ratio of hydrogen to carbon (H / C) is calculated based on the weight percentages C% and H% of carbon and hydrogen measured by elemental analysis. H / C = (H% / 1) / ( C% / 12).

また、本明細書において、気孔量は水銀圧入法によって測定されている。水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀を浸入させ、圧力と圧入された水銀量との関係から細孔径分布等の情報を得る手法である。当該水銀圧入法による気孔量分布は、固体物質内の孔径が0.01〜100μmの大きさの気孔量分布を測定する機器であって一般的に用いられている水銀ポロシメーターを用いて決定することができる。   In the present specification, the amount of pores is measured by a mercury intrusion method. The mercury intrusion method is a technique for obtaining information such as the pore size distribution from the relationship between the pressure and the amount of injected mercury by injecting mercury into the pores of a sample such as porous particles while applying pressure. The pore volume distribution by the mercury intrusion method is determined using a mercury porosimeter which is a device that measures the pore volume distribution with a pore size of 0.01 to 100 μm in a solid substance and is generally used. Can do.

また、本明細書においてミクロ強度指数(MSI0.21)とは、φ24.2×L300mmの円筒容器内に0.5〜1.0mm試料2gとφ7.9mm鉄球12個を入れ、25rpmで800回転の衝撃を加えた後、70mesh(0.21mm)の篩で篩い分け、重量を測定したときの+0.21mm(0.21mm以上)の試料に対する重量百分率をいう。 Moreover, in this specification, the micro strength index (MSI 0.21 ) means that a 0.5 to 1.0 mm sample 2 g and 12 φ7.9 mm iron balls are placed in a cylindrical container of φ24.2 × L300 mm at 25 rpm. After applying an impact of 800 rotations, the weight percentage with respect to the sample of +0.21 mm (0.21 mm or more) when the weight is measured with a 70 mesh (0.21 mm) sieve.

本発明によれば、従来用いられていた焼結用燃料よりも安価であって燃焼効率に優れ、且つ焼結鉱の生産率、および成品歩留まりの改善することができるとともに、焼結鉱生産時における窒素酸化物排出量の低減を実現可能とする鉄鉱石焼結用の燃料を提供することができる。   According to the present invention, it is cheaper than the conventionally used sintering fuel, has excellent combustion efficiency, can improve the production rate of the sintered ore, and the yield of the product, and at the time of producing the sintered ore It is possible to provide a fuel for sintering iron ore that makes it possible to achieve a reduction in nitrogen oxide emissions.

本発明の実施形態の炭材の製造工程の概略図である。It is the schematic of the manufacturing process of the carbonaceous material of embodiment of this invention. 実施例Hおよび比較例Aの気孔量分布を示すグラフである。It is a graph which shows the pore volume distribution of Example H and Comparative Example A. 実施例Hおよび比較例Aの重量と温度の関係を示すグラフである。It is a graph which shows the relationship between the weight of Example H and Comparative Example A, and temperature. 実施例Hおよび比較例Aの重量減少率と温度の関係を示すグラフである。It is a graph which shows the weight reduction rate of Example H and Comparative Example A, and the relationship of temperature. 本発明の実施形態の炭材を用いた焼結鉱の製造工程の概略図である。It is the schematic of the manufacturing process of the sintered ore using the carbonaceous material of embodiment of this invention. 焼結過程の焼結原料の状態を示す模式図である。It is a schematic diagram which shows the state of the sintering raw material of a sintering process.

本発明の実施形態の炭材は、例えば亜瀝青炭または褐炭を原料とし、これを例えばロータリーキルンなどの熱分解炉を用いて熱分解することにより製造される。当該亜瀝青炭や褐炭は、粉コークスよりも非常に安く入手することが可能であり、生産コスト等を考慮しても、従来の固体燃料より安価とすることができる。なお、本発明の実施形態に係る炭材の原料はこれに限定されるものではなく、粘結炭よりも石炭化度が低い石炭類(非微粘結炭、一般炭、亜瀝青炭、褐炭等)、より具体的には酸素と炭素の原子数比(O/C)が0.07以上の石炭を原料とすることができる。このうち、原料を亜瀝青炭または褐炭とすると、本発明の実施形態の炭材を用いて焼結鉱を製造したときに生産率および成品歩留まりがより改善されるため、好ましい。   The charcoal material of the embodiment of the present invention is manufactured by, for example, using subbituminous coal or lignite as a raw material, and pyrolyzing it using a pyrolysis furnace such as a rotary kiln. The subbituminous coal and lignite can be obtained much cheaper than powdered coke, and can be made cheaper than conventional solid fuels even in consideration of production costs and the like. In addition, the raw material of the carbonaceous material which concerns on embodiment of this invention is not limited to this, Coals (non-slightly caking coal, general coal, subbituminous coal, lignite etc.) whose coalification degree is lower than caking coal ), More specifically, coal having an oxygen / carbon atomic ratio (O / C) of 0.07 or more can be used as a raw material. Of these, sub-bituminous coal or lignite is preferable because the production rate and product yield are further improved when a sintered ore is produced using the carbonaceous material of the embodiment of the present invention.

まず、本発明の実施形態の炭材の製造について、例を挙げて具体的に説明する。図1は本発明の実施形態の炭材1の製造工程の概略図であり、2は熱分解炉(ロータリーキルン)であり、断熱壁によって大気雰囲気から遮断した内部空間が形成された閉鎖容器である。また、3は予熱炉であり、4は散水クーラーである。また、図1において実線矢印は亜瀝青炭または褐炭などの炭材の原料、および製造された炭材1の流れを表す。一方、破線矢印は熱分解工程等により生じたガスの流れを表す。   First, manufacture of the carbonaceous material of the embodiment of the present invention will be specifically described with an example. FIG. 1 is a schematic view of a manufacturing process of a carbonaceous material 1 according to an embodiment of the present invention. Reference numeral 2 denotes a pyrolysis furnace (rotary kiln), which is a closed container in which an internal space cut off from an atmospheric atmosphere by a heat insulating wall is formed. . 3 is a preheating furnace, and 4 is a watering cooler. Moreover, the solid line arrow in FIG. 1 represents the raw material of carbonaceous materials, such as subbituminous coal or lignite, and the flow of the manufactured carbonaceous material 1. On the other hand, a broken line arrow represents a gas flow generated by a pyrolysis process or the like.

まず、原料となる亜瀝青炭または褐炭はホッパー(図示しない)に装填され、第1のロータリーバルブ5aを介して予熱炉3のスクリューコンベア3aに供給される。スクリューコンベア3aを介して予熱炉3内に装入された亜瀝青炭または褐炭は、予熱炉3内で前処理として例えば490℃で加熱され、水分が除去される。   First, subbituminous coal or lignite as raw material is loaded into a hopper (not shown) and supplied to the screw conveyor 3a of the preheating furnace 3 through the first rotary valve 5a. The subbituminous coal or lignite charged into the preheating furnace 3 via the screw conveyor 3a is heated, for example, at 490 ° C. in the preheating furnace 3 to remove moisture.

当該前処理された亜瀝青炭または褐炭は予熱炉3から送出され、続いて第2のロータリーバルブ5bを介し、ロータリーキルン2のスクリューコンベア2aに供給されてロータリーキルン2内に装入される。ロータリーキルン2内においては、原料の亜瀝青炭または褐炭を任意の速度で攪拌、移動しながら650〜850℃で熱分解が行われる。これにより、亜瀝青炭または褐炭から揮発分(VM:炭化水素類、CO、H等のガス成分)の一部やタールが放出される。一方、ロータリーキルン内に残った固形成分はチャーと称され、これが後述する性質を有する本発明の実施形態の炭材となる。当該チャーはロータリーキルン2内から送出された後、散水クーラー4によって冷却され、焼結炉における使用のために保存することができる。 The pretreated subbituminous coal or lignite is sent out from the preheating furnace 3 and then supplied to the screw conveyor 2a of the rotary kiln 2 through the second rotary valve 5b and charged into the rotary kiln 2. In the rotary kiln 2, pyrolysis is performed at 650 to 850 ° C. while stirring and moving the raw subbituminous coal or lignite at an arbitrary speed. Thereby, a part of volatile matter (VM: gas components such as hydrocarbons, CO, H 2 ) and tar are released from subbituminous coal or lignite. On the other hand, the solid component remaining in the rotary kiln is referred to as char, and this becomes the carbon material of the embodiment of the present invention having the properties described later. After the char is delivered from within the rotary kiln 2, it is cooled by a watering cooler 4 and can be stored for use in a sintering furnace.

ロータリーキルン2における熱分解によって製造される炭材(チヤー)は、一般に堅牢なコークスとは異なり、粉化性のある炭材である。周知のようにコークスはコークス炉において1100〜1200℃で乾留されたものであり,石炭粒子が相互に粘結して塊状となったものであるが,本発明の炭材の場合には,かような粘結性は不要であり,揮発分の一部とタールが石炭から除去された熱分解生成物であればよい。   Unlike a solid coke, the carbonaceous material (cheer) produced by thermal decomposition in the rotary kiln 2 is a powdered carbonaceous material. As is well known, coke is carbonized in a coke oven at 1100 to 1200 ° C., and coal particles are caking together to form a lump. In the case of the carbonaceous material of the present invention, Such caking property is not necessary, and any pyrolysis product in which a part of volatile matter and tar are removed from coal may be used.

なお、本実施形態においては予熱炉3による前処理を行ってからロータリーキルン2に装入して熱分解を行っているが、当該前処理を省略して熱分解を行うようにしてもよい。また、冷却の方法についても特に限定されず、散水クーラーのほか、外部冷却式のロータリークーラーを用いるようにしてもよい。   In the present embodiment, the pretreatment by the preheating furnace 3 is performed and then the rotary kiln 2 is charged to perform the thermal decomposition. However, the pretreatment may be omitted and the thermal decomposition may be performed. Further, the cooling method is not particularly limited, and an external cooling type rotary cooler may be used in addition to the watering cooler.

また、熱分解によって生成したガス(VMガス)は炉内からガス利用設備に供給することによって再利用することができる。具体的には、熱分解にて生じたガスを燃料としてロータリーキルン1に供給し、亜瀝青炭または褐炭を熱分解するようにしてもよい。また、当該ガスを燃焼炉6で燃焼させた後、生じた燃焼排ガスを予熱炉2に送出して予熱過程にて有効利用することもできる。   Moreover, the gas (VM gas) produced | generated by thermal decomposition can be reused by supplying to gas utilization equipment from the inside of a furnace. Specifically, the gas generated by pyrolysis may be supplied to the rotary kiln 1 as fuel to pyrolyze subbituminous coal or lignite. Further, after the gas is combusted in the combustion furnace 6, the generated flue gas can be sent to the preheating furnace 2 and effectively used in the preheating process.

このようにして亜瀝青炭または褐炭を650〜850℃で熱分解することにより製造された本発明の実施形態の炭材(チャー)は、揮発分(VM)が1.0%以上、水素と炭素の原子数比(H/C)が0.040以上、および水銀圧入法で測定される0.1〜10μm気孔量が50mm/g以上であり、反応開始温度が550℃以下となる。 Thus, the carbonaceous material (char) of the embodiment of the present invention manufactured by pyrolyzing subbituminous coal or lignite at 650 to 850 ° C. has a volatile content (VM) of 1.0% or more, hydrogen and carbon. The atomic number ratio (H / C) is 0.040 or more, the 0.1 to 10 μm porosity measured by the mercury intrusion method is 50 mm 3 / g or more, and the reaction start temperature is 550 ° C. or less.

すなわち、揮発分(VM)が1.0%以上である本発明の実施形態に係る炭材は、化学構造が切れやすく、鉄鉱石などとともに焼結炉に装入されたときに、より低温で反応が開始される。また、原子数比(H/C)が0.040以上であることにより、構造内に水素原子を多く含み、芳香族の多環化が十分に進んでおらず、化学構造が切れやすく、低温で反応を開始するような構造を含んでいる。   That is, the carbonaceous material according to the embodiment of the present invention having a volatile content (VM) of 1.0% or more is easily cut in the chemical structure, and at a lower temperature when charged into a sintering furnace together with iron ore or the like. The reaction is started. Further, when the atomic ratio (H / C) is 0.040 or more, the structure contains many hydrogen atoms, the aromatic polycyclization is not sufficiently advanced, the chemical structure is easily cut off, and the temperature is low. The structure that starts the reaction is included.

また、水銀圧入法で測定される孔径が0.1〜10μmの気孔量が50mm/g以上であることにより、50mm/gより値が小さいときよりも燃焼開始温度が低く、燃焼速度が大きくなるため、焼結反応をより促進する。なお、0.1μmよりも孔径の小さい気孔は、焼結層での反応雰囲気条件において、酸素の拡散速度が燃焼速度に比べて相対的に遅いため、小さい気孔量の大小が燃焼性を決める因子とはならない。また、10μmよりも大きい気孔は、気孔表面積が小さいため、燃焼性への影響は少ない。したがって、本発明の実施形態に係る炭材では、孔径が0.1〜10μmの気孔量が燃焼性に大きな影響を与えることとなる。ここで、理解をより容易とするために、図2に後述する実施例Hの炭材と粉コークスである比較例Aの気孔量分布を示す。図2に示すように、実施例Hでは孔径が0.1〜10μmの大きさの気孔が比較例Aよりも非常に多く存在している。 Further, when the pore size measured by mercury porosimetry is 0.1 to 10 μm and the amount of pores is 50 mm 3 / g or more, the combustion start temperature is lower than when the value is smaller than 50 mm 3 / g, and the combustion rate is Since it becomes larger, the sintering reaction is further promoted. Note that pores having a pore size smaller than 0.1 μm are the factors that determine the flammability because the oxygen diffusion rate is relatively slow compared to the combustion rate under the reaction atmosphere conditions in the sintered layer. Must not. In addition, pores larger than 10 μm have a small effect on the flammability since the pore surface area is small. Therefore, in the carbonaceous material according to the embodiment of the present invention, the amount of pores having a pore diameter of 0.1 to 10 μm greatly affects the combustibility. Here, for easier understanding, FIG. 2 shows the pore volume distribution of Comparative Example A, which is a carbonaceous material and powder coke of Example H described later. As shown in FIG. 2, in Example H, there are much more pores having a pore diameter of 0.1 to 10 μm than in Comparative Example A.

そして、揮発分(VM)、原子数比(H/C)、および水銀圧入法で測定される孔径が0.1〜10μm気孔量について以上のような性質を有する炭材は、反応開始温度が550℃以下となり、粉コークスよりも低い温度で反応が開始される。ここで、理解をより容易とするために、図3に実施例Hと比較例Aの重量減少曲線、および図4に図3の一次微分を縦軸にプロットし、温度と反応速度の関係を表した重量減少率曲線を示す。図3および図4に示すように、実施例Hの炭材は比較例Aの粉コークスよりも反応開始温度が低温であって、550℃以下である。   Carbonaceous materials having the above properties with respect to the volatile matter (VM), the atomic ratio (H / C), and the pore diameter measured by mercury porosimetry of 0.1 to 10 μm pore volume have a reaction start temperature. The reaction is started at a temperature lower than 550 ° C. and lower than the powder coke. Here, for easier understanding, the weight reduction curves of Example H and Comparative Example A are plotted in FIG. 3, and the first derivative of FIG. 3 is plotted on the vertical axis, and the relationship between temperature and reaction rate is shown. The expressed weight loss rate curve is shown. As shown in FIGS. 3 and 4, the carbonaceous material of Example H has a lower reaction start temperature than the coke boil of Comparative Example A, and is 550 ° C. or lower.

よって、当該炭材からなる本発明の実施形態の固体燃料は、焼結機内で着火されたときに、粉コークスよりも低い温度で炭化水素等のガス(燃焼ガス)を放出する。当該燃焼ガスは焼結用の原料や燃料の昇温を加速するとともに燃焼帯において焼結反応を促進し、燃焼効率が改善されるため、焼結用燃料の原単位削減を実現することができ、焼結鉱製造時の二酸化炭素の排出量を従来よりも削減ことができる。また、当該炭材からなる本発明の実施形態の固体燃料を用いて製造された焼結鉱は、粉コークスを使用して製造された場合よりも強度が高く、したがって焼結鉱の生産率および成品歩留まりを改善することができる。   Therefore, the solid fuel of the embodiment of the present invention made of the carbon material emits a gas (combustion gas) such as hydrocarbon at a temperature lower than that of the powder coke when ignited in the sintering machine. The combustion gas accelerates the temperature rise of the raw materials and fuel for sintering and promotes the sintering reaction in the combustion zone, improving the combustion efficiency, so that the unit consumption of the fuel for sintering can be reduced. In addition, the amount of carbon dioxide emitted during the production of sintered ore can be reduced as compared with the prior art. In addition, the sintered ore manufactured using the solid fuel according to the embodiment of the present invention made of the carbon material has higher strength than that manufactured using the powder coke, and thus the production rate of the sintered ore and The product yield can be improved.

加えて、上述のように燃焼効率が改善されるため、燃焼時の窒素酸化物の発生量が低減する。これは、燃焼性が良いために炭材周辺のCO濃度が相対的に高く、炭材から発生する窒素酸化物が還元されやすいためと考えられる。したがって本実施形態の炭材を用いて焼結鉱を製造することにより、焼結鉱生産時における窒素酸化物の排出量を従来よりも削減することができる。   In addition, since the combustion efficiency is improved as described above, the amount of nitrogen oxide generated during combustion is reduced. This is presumably because the CO concentration around the carbonaceous material is relatively high due to good combustibility, and nitrogen oxides generated from the carbonaceous material are easily reduced. Therefore, by producing sintered ore using the carbonaceous material of the present embodiment, it is possible to reduce the amount of nitrogen oxide emissions during the production of sintered ore than before.

なお、揮発分(VM)が高い炭材については、焼結機で使用すると、低温領域で発生する揮発分(VM)の一部が燃焼に寄与せずに集塵機、ブロワーに吸引されるため、集塵機等のより頻繁なメンテナンスが必要となる場合があり、手間やコストがかかるようになる。このため、本発明の実施形態の炭材は、揮発分(VM)が10%以下であることが好ましい。   For carbon materials with high volatile matter (VM), when used in a sintering machine, part of the volatile matter (VM) generated in the low temperature region is sucked into the dust collector and blower without contributing to combustion. More frequent maintenance of the dust collector or the like may be required, which requires labor and cost. For this reason, it is preferable that the carbonaceous material of embodiment of this invention is 10% or less of volatile matter (VM).

また、本発明の実施形態に係る炭材は、反応速度最大温度が600℃以下であり、1000℃での反応速度が0.19min-1以上であることが好ましい。当該性質を有することにより、焼結反応をさらに促進させることができるため、焼結鉱の生産率および成品歩留まりをさらに改善することができる。 The carbonaceous material according to the embodiment of the present invention preferably has a maximum reaction rate temperature of 600 ° C. or lower and a reaction rate at 1000 ° C. of 0.19 min −1 or higher. By having the property, the sintering reaction can be further promoted, so that the production rate and product yield of the sintered ore can be further improved.

さらにまた、本発明の実施形態の炭材は、以上の条件に加えて、ミクロ強度指数(MSI0.21)が20以上であることが好ましい。20以上であるとき、焼結鉱の生産率および歩留まりがさらに一層改善される。このようにミクロ強度指数が20以上である場合に生産率および歩留まりがさらに一層改善される理由は明らかとなっていないが、原料鉄鉱石と混ぜて混合、造粒し、配合原料を調整する過程において、本発明の実施形態の炭材が壊れて微紛となる率が低下することにより、配合原料としての造粒物の表面に本発明の実施形態の炭材の露出率が大きくなる結果、造粒物の着火性が増すこと、および微粉化が抑制される結果、飛散して燃料としての機能を発揮しないものが少なくなるためと考えられる。 Furthermore, the carbonaceous material of the embodiment of the present invention preferably has a microstrength index (MSI 0.21 ) of 20 or more in addition to the above conditions. When it is 20 or more, the production rate and yield of the sintered ore are further improved. The reason why the production rate and the yield are further improved when the microstrength index is 20 or more is not clear, but the process of mixing and granulating the raw iron ore and adjusting the blended raw material In, the rate of exposure to the carbonaceous material of the embodiment of the present invention is increased on the surface of the granulated product as a blended raw material by reducing the rate at which the carbonaceous material of the embodiment of the present invention is broken and becomes a fine powder. This is probably because the ignitability of the granulated material is increased and the pulverization is suppressed, so that the number of particles that scatter and do not function as a fuel is reduced.

次に、本実施形態の炭材を用いた焼結鉱の製造について、下方吸引式のドワイドロイド式の焼結機を用いた場合を例に挙げて説明する。図5は焼結鉱の製造工程の概略図であり、10は焼結機であり、11(11a〜11d)はホッパーであり、12(12a,12b)はドラムミキサーである。   Next, the production of sintered ore using the carbonaceous material of the present embodiment will be described by taking as an example the case of using a downward suction type dwyroid type sintering machine. FIG. 5 is a schematic view of a manufacturing process of sintered ore, 10 is a sintering machine, 11 (11a to 11d) is a hopper, and 12 (12a, 12b) is a drum mixer.

まず、焼結鉱の原料となる、粉状或いは適切な粒度に破砕調整された鉄鉱石と、石灰石、蛇紋岩などの副原料と、返鉱と、本実施形態の炭材や粉コークスなどの固体燃料とが、鉄鉱石用ホッパー11a、副原料用ホッパー11b、返鉱用ホッパー11c、および固体燃料用ホッパー11dに装填される。各ホッパーから送出された鉄鉱石、副原料、返鉱、および固体燃料は混練用ドラムミキサー12aに所定の比率で装填されて破砕および混練され、続いて造粒用ドラムミキサー12bにおいて水分が添加されて造粒され、擬似粒子(造粒物)となる。当該擬似粒子はサージホッパー13に装填された後、ドラムフィーダー14によって切り出され、ドワイトロイド式焼結機10の無端であるパレット10a上に所定の厚さ(たとえば500〜700mm)となるように層状に装入される(以下、当該擬似粒子が積層された層を原料層31という)。   First, the iron ore, which is a raw material of sintered ore, crushed and adjusted to a suitable particle size, auxiliaries such as limestone and serpentine, return ore, and the carbonaceous material and powder coke of this embodiment Solid fuel is loaded into the iron ore hopper 11a, the auxiliary material hopper 11b, the return hopper 11c, and the solid fuel hopper 11d. The iron ore, secondary raw material, return mineral, and solid fuel delivered from each hopper are loaded into the kneading drum mixer 12a at a predetermined ratio, crushed and kneaded, and then water is added in the granulating drum mixer 12b. To be pseudo-particles (granulated products). The pseudo particles are loaded into the surge hopper 13 and then cut out by the drum feeder 14 and are layered so as to have a predetermined thickness (for example, 500 to 700 mm) on the pallet 10a, which is the endless of the dwelloid type sintering machine 10. (Hereinafter, the layer in which the pseudo particles are laminated is referred to as a raw material layer 31).

次いで、点火炉15によりパレット10a上の表層の造粒物(擬似粒子)中の固体燃料に着火して、焼結過程を開始する。着火後はウインドボックス10bにより、下方に向けて空気を吸引しながら固体燃料、および固体燃料から放出される揮発分を燃焼させ、その燃焼熱によってパレット10a上の擬似粒子を焼結させて焼結ケーキ40とする。   Next, the solid fuel in the granulated material (pseudoparticles) on the surface layer on the pallet 10a is ignited by the ignition furnace 15, and the sintering process is started. After ignition, the wind box 10b burns solid fuel and volatile matter released from the solid fuel while sucking air downward, and the quasi particles on the pallet 10a are sintered by the combustion heat to sinter. This is cake 40.

図6は焼結過程の焼結原料の状態を模式的に表したものであり、本実施形態の固体燃料を焼結用燃料とした場合のパレット10b上の焼結原料の或る時点の温度分布を例示したものである。点火炉15で原料層31上部の本実施形態の炭材等が着火され、燃焼帯32は下方へさがってくるが、燃焼帯直下の乾燥帯33では燃焼ガスによって原料や燃料が昇温される。一方、さきに燃焼が進行して終了した部分は温度が下がり、冷却帯34となる。図6に加えて図5を参照することにより、無端のパレット10aの折り返し点に近づくにつれて、燃焼が進行し、原料層31が減少するとともに冷却帯34が増加して焼結ケーキ40が形成される様子が模式的に理解される。なお、図6に示した温度分布は、粉コークスを固体燃料とした従来の場合と実質的に同様の挙動である。   FIG. 6 schematically shows the state of the sintering raw material in the sintering process, and the temperature at a certain point of the sintering raw material on the pallet 10b when the solid fuel of the present embodiment is used as the sintering fuel. This is an example of the distribution. In the ignition furnace 15, the carbonaceous material of the present embodiment above the raw material layer 31 is ignited and the combustion zone 32 is lowered downward, but in the dry zone 33 immediately below the combustion zone, the temperature of the raw material and fuel is increased by the combustion gas. . On the other hand, the temperature of the portion where the combustion has proceeded and ended is lowered to become a cooling zone 34. Referring to FIG. 5 in addition to FIG. 6, as the end point of the endless pallet 10a approaches, the combustion proceeds, the raw material layer 31 decreases and the cooling zone 34 increases to form the sintered cake 40. This is understood schematically. The temperature distribution shown in FIG. 6 is substantially the same behavior as in the conventional case where powder coke is used as a solid fuel.

焼結過程により形成された焼結ケーキは無端のパレット10aから送出された後、第1のクラッシャー16により破砕され、クーラー17にて通風冷却される。続いて、スクリーン18および第2のクラッシャー19によりさらに破砕された後、多段式の篩い20に供され、所定の粒径を有する焼結鉱となる。一方、所定の粒径に満たない焼結鉱は返鉱となり、焼結原料として再利用される。   The sintered cake formed by the sintering process is sent out from the endless pallet 10 a, then crushed by the first crusher 16, and cooled by ventilation in the cooler 17. Subsequently, after being further crushed by the screen 18 and the second crusher 19, it is provided to a multistage sieve 20 to become a sintered ore having a predetermined particle size. On the other hand, the sintered ore that does not satisfy the predetermined particle size is returned to ore and reused as a sintering raw material.

なお、焼結過程によって生じたガスはウインドボックス10bから送出され、集塵機21、ファン22を経て排気筒23から排出される。   The gas generated by the sintering process is sent out from the wind box 10b and discharged from the exhaust cylinder 23 through the dust collector 21 and the fan 22.

本発明の実施形態の炭材は、ホッパーに装填される固体燃料の少なくとも一部として使用することができる。焼結鉱製造に用いられる固体燃料中の本実施形態の炭材を混合比率は特に限定されるものではなく、固体燃料を全て本実施形態の炭材とすることも可能であり、本発明の実施形態の炭材と粉コークスとを混合して使用してもよい。   The carbonaceous material of the embodiment of the present invention can be used as at least part of the solid fuel loaded in the hopper. The mixing ratio of the carbonaceous material of the present embodiment in the solid fuel used for the production of sintered ore is not particularly limited, and it is also possible to use all the solid fuel as the carbonaceous material of the present embodiment. You may mix and use the carbonaceous material and powdered coke of embodiment.

以下、本発明の実施例について説明する。なお、本発明の目的を阻害しない限り、本発明が以下に示す条件等に限定させるものではない。   Examples of the present invention will be described below. Note that the present invention is not limited to the following conditions and the like as long as the object of the present invention is not impaired.

表1に示す原料より、ロータリーキルンを用い、650〜850℃で熱分解して実施例C〜Iの炭材を製造した。これらについて、揮発分(VM)の割合、水素と炭素の原子数比(H/C)、反応開始温度、反応速度最大温度、1000℃での反応速度、水銀圧入法による0.1〜10μm気孔量(水銀ポロシメーターを用いて測定)、およびミクロ強度指数を決定した。   From the raw materials shown in Table 1, the carbonaceous materials of Examples C to I were produced by thermal decomposition at 650 to 850 ° C. using a rotary kiln. About these, ratio of volatile matter (VM), atomic ratio of hydrogen and carbon (H / C), reaction start temperature, reaction rate maximum temperature, reaction rate at 1000 ° C., 0.1 to 10 μm pore by mercury intrusion method The quantity (measured using a mercury porosimeter) and the microintensity index were determined.

すなわち、反応開始温度については、熱天秤に粒度を0.15〜0.25mmに調整した試料を10mg入れ、空気雰囲気中で昇温速度10℃/minで昇温し、重量減少を測定した。このときの重量減少率が安定して0.002(l/min)を超える温度を反応開始温度とした。   That is, for the reaction start temperature, 10 mg of a sample having a particle size adjusted to 0.15 to 0.25 mm was put into a thermobalance, the temperature was raised at a rate of temperature rise of 10 ° C./min in an air atmosphere, and weight loss was measured. The temperature at which the weight loss rate at this time stably exceeded 0.002 (l / min) was defined as the reaction start temperature.

また、反応速度最大温度については、上述の重量減少の測定から図1に示すような重量原料曲線を作成し、当該重量減少曲線の傾きが最大となる温度(単位時間あたりの重量減少が最大となる温度)を反応速度最大温度とした。   For the maximum reaction rate temperature, a weight raw material curve as shown in FIG. 1 is prepared from the above-described measurement of weight loss, and the temperature at which the slope of the weight decrease curve is maximum (the weight loss per unit time is the maximum). Temperature) was defined as the maximum reaction rate temperature.

また、1000℃での反応速度については、熱天秤に粒度を0.15〜0.25mmに調整した試料を10mg入れ、窒素雰囲気中で1000℃まで昇温し、その後雰囲気を空気雰囲気とした初期における単位時間あたりの重量減少比(重量減少量と初期重量の比)(1/min)を測定することにより決定した。   As for the reaction rate at 1000 ° C., 10 mg of a sample whose particle size was adjusted to 0.15 to 0.25 mm was put in a thermobalance, the temperature was raised to 1000 ° C. in a nitrogen atmosphere, and then the atmosphere was an initial atmosphere. The weight reduction ratio per unit time (ratio of weight loss to initial weight) (1 / min) was determined by measuring.

また、揮発分(VM)を、JISM8812に記載の方法で測定した。   Moreover, the volatile matter (VM) was measured by the method described in JISM8812.

また、水素と炭素の原子数比(H/C)を、元素分析により測定される炭素と水素の重量百分率C%およびH%をもとに、H/C=(H%/1)/(C%/12)で算出した。   In addition, the atomic ratio (H / C) of hydrogen and carbon is calculated based on the weight percentages C% and H% of carbon and hydrogen measured by elemental analysis. H / C = (H% / 1) / ( C% / 12).

また、水銀圧入法により計測される孔径0.1〜10μmの気孔量は水銀ポロシメーターを用いて測定した。   Moreover, the amount of pores having a pore diameter of 0.1 to 10 μm measured by mercury porosimetry was measured using a mercury porosimeter.

また、ミクロ強度指数(MSI0.21)は、φ24.2×L300mmの円筒容器内に0.5〜1.0mm試料2gとφ7.9mm鉄球12個を入れ、25rpmで800回転の衝撃を加えた後、70mesh(0.21mm)の篩で篩い分け、重量を測定したときの+0.21mm(0.21mm以上)の重量の試料重量に対する重量百分率を求めることにより決定した。 The micro-strength index (MSI 0.21 ) was measured by placing a 0.5-1.0 mm sample 2 g and 12 φ7.9 mm iron balls in a cylindrical container of φ24.2 × L300 mm and applying an impact of 800 revolutions at 25 rpm. After the addition, it was determined by sieving with a 70 mesh (0.21 mm) sieve and determining the weight percentage of the weight of +0.21 mm (0.21 mm or more) relative to the sample weight when the weight was measured.

さらに、実施例C〜Iの炭材を用いたときの焼結鉱の生産率および成品歩留まりを焼結鍋試験によって評価した。   Furthermore, the production rate and product yield of sintered ore when using the carbonaceous materials of Examples C to I were evaluated by a sintering pot test.

焼結鍋試験としては、直径30cm、層高60cmの焼結試験装置を用いて、所定の配合原料豪卅産鉄鉱石:53%、ブラジル産鉄鉱石:30%、石灰石:14%、蛇紋岩:3%(いずれも質量%)で焼結鉱を製造する試験を実施した。まず、配合原料を焼結試験装置内に60cm高さまで装入した後、原料層の表層の炭材にプロパンガスバーナーで90秒間添加する操作を行った。その後、15kPaの一定負圧で下方へ空気を吸引しながら焼結反応を行った。一連の焼結処理が完了した焼結体は、十分に冷却した後、2m高さから4回落下させて破砕し、5mm以上の粒度を焼結鉱として回収した。このマテリアルバランスから焼結鉱の生産率および歩留まりを測定した。評価は、生産率、成品歩留まりで行い、粉コークス(炭材A)を用いたベース条件と比較して、同等の場合を△、優れている場合を○、より優れている場合を◎で評価した。また、当該焼結鍋試験における排ガス中のNOxについても測定を行った。   As a sintering pot test, using a sintering test apparatus having a diameter of 30 cm and a layer height of 60 cm, the prescribed raw materials of Australian iron ore: 53%, Brazilian iron ore: 30%, limestone: 14%, serpentine : The test which manufactures a sintered ore at 3% (all are the mass%) was implemented. First, the blended raw material was charged to a height of 60 cm in the sintering test apparatus, and then added to the surface carbon material of the raw material layer with a propane gas burner for 90 seconds. Thereafter, a sintering reaction was performed while suctioning air downward at a constant negative pressure of 15 kPa. The sintered body after a series of sintering treatments was sufficiently cooled, dropped from a height of 2 m four times and crushed, and a particle size of 5 mm or more was recovered as sintered ore. From this material balance, the production rate and yield of sintered ore were measured. Evaluation is based on production rate and product yield. Compared to the base conditions using coke breeze (carbon material A), △ is equivalent, ◯ is excellent, and ◎ is better. did. Further, NOx in the exhaust gas in the sintering pot test was also measured.

これらの結果を表1に示す。また、比較例Aとして、固体燃料として粉コークスを用い、実施例と同様の測定および評価を行った。さらに、比較例Bとして、炭材用の原料を粘結炭として実施例と同様の方法で炭材を製造し、実施例と同様の測定および評価を行った。   These results are shown in Table 1. Further, as Comparative Example A, powder coke was used as the solid fuel, and the same measurements and evaluations as in Examples were performed. Furthermore, as Comparative Example B, a carbonaceous material was produced in the same manner as in the example using caking coal as the raw material for the carbonaceous material, and the same measurement and evaluation as in the example were performed.

表1に示すように、反応開始温度がいずれも550℃以下である実施例C〜Iは、粉コークスである比較例よりも生産率が向上するとともに、成品歩留まりも改善される。特に、反応速度最大温度が600℃以下であり、且つ1000℃での反応速度が0.19min-1以上である実施例F〜Iはさらに生産率、成品歩留まりが改善される。さらにまた、以上の条件を満たし、且つミクロ強度指数が20以上である実施例HおよびIは、一層の生産率、および成品歩留まりの改善の効果が得られる。また、排ガス中のNOxの濃度も削減することができている。 As shown in Table 1, in Examples C to I each having a reaction start temperature of 550 ° C. or lower, the production rate is improved and the product yield is also improved as compared with the comparative example that is powder coke. In particular, Examples F to I in which the maximum reaction rate temperature is 600 ° C. or less and the reaction rate at 1000 ° C. is 0.19 min −1 or more further improve the production rate and product yield. Furthermore, Examples H and I satisfying the above conditions and having a microstrength index of 20 or more can further improve the production rate and the product yield. Further, the concentration of NOx in the exhaust gas can be reduced.

本発明によれば、従来用いられていた焼結用燃料よりも安価であって燃焼効率に優れ、且つ焼結鉱の生産率、および成品歩留まりの改善することができるとともに、焼結鉱生産時における窒素酸化物排出量の低減を実現可能とする鉄鉱石焼結用の燃料を提供することができる。   According to the present invention, it is cheaper than the conventionally used sintering fuel, has excellent combustion efficiency, can improve the production rate of the sintered ore, and the yield of the product, and at the time of producing the sintered ore It is possible to provide a fuel for sintering iron ore that makes it possible to achieve a reduction in nitrogen oxide emissions.

Claims (9)

鉄鉱石焼結用の固体燃料として使用するための炭材であって、以下の性質を有することを特徴とする炭材。
(i)反応開始温度が550℃以下、
(ii)揮発分(VM)が1.0%以上
(iii )水素と炭素の原子数比(H/C)が0.040以上、
(iv)水銀圧入法で測定される孔径0.1〜10μmの気孔量が50mm/g以上
A carbonaceous material for use as a solid fuel for sintering iron ore and having the following properties.
(i) the reaction start temperature is 550 ° C. or lower,
(ii) Volatile content (VM) is 1.0% or more
(iii) The atomic ratio (H / C) of hydrogen to carbon is 0.040 or more,
(iv) The amount of pores having a pore diameter of 0.1 to 10 μm measured by the mercury intrusion method is 50 mm 3 / g or more
前記炭材がさらに以下の性質を有することを特徴とする請求項1に記載の炭材。
(v)反応速度最大温度が600℃以下、
(vi)1000℃での反応速度が0.19min−1以上
The carbonaceous material according to claim 1, wherein the carbonaceous material further has the following properties.
(v) the maximum reaction rate temperature is 600 ° C. or less,
(vi) Reaction rate at 1000 ° C. is 0.19 min −1 or more
前記炭材がさらに以下の性質を有することを特徴とする請求項1または2に記載の炭材。
(vii )ミクロ強度指数(MSI0.21)が20以上
The charcoal material according to claim 1 or 2, wherein the charcoal material further has the following properties.
(vii) Micro strength index (MSI 0.21 ) is 20 or more
前記炭材が亜瀝青炭又は褐炭を原料として製造されることを特徴とする請求項1または2に記載の炭材。  The carbonaceous material according to claim 1 or 2, wherein the carbonaceous material is manufactured using subbituminous coal or lignite. 前記炭材が亜瀝青炭又は褐炭を原料として製造されることを特徴とする請求項3に記載の炭材。  The carbonaceous material according to claim 3, wherein the carbonaceous material is manufactured using subbituminous coal or lignite. 請求項1または2に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。  A method for producing sintered ore, wherein the carbonaceous material according to claim 1 or 2 is used as a solid fuel. 請求項3に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。  A method for producing a sintered ore, wherein the carbonaceous material according to claim 3 is used as a solid fuel. 請求項4に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。  A method for producing a sintered ore, wherein the carbonaceous material according to claim 4 is used as a solid fuel. 請求項5に記載の炭材を固体燃料として用いることを特徴とする焼結鉱の製造方法。  A method for producing a sintered ore, characterized in that the carbonaceous material according to claim 5 is used as a solid fuel.
JP2010525088A 2009-02-02 2010-01-26 Iron ore sintering carbon Active JP4681688B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009021204 2009-02-02
JP2009021204 2009-02-02
PCT/JP2010/051312 WO2010087468A1 (en) 2009-02-02 2010-01-26 Carbonaceous material for sintering iron ore

Publications (2)

Publication Number Publication Date
JP4681688B2 true JP4681688B2 (en) 2011-05-11
JPWO2010087468A1 JPWO2010087468A1 (en) 2012-08-02

Family

ID=42395721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010525088A Active JP4681688B2 (en) 2009-02-02 2010-01-26 Iron ore sintering carbon

Country Status (5)

Country Link
JP (1) JP4681688B2 (en)
KR (1) KR101296887B1 (en)
CN (1) CN102300965B (en)
BR (1) BRPI1007900B1 (en)
WO (1) WO2010087468A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842410B2 (en) * 2010-03-19 2011-12-21 新日本製鐵株式会社 Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same
DE112013003846T5 (en) * 2012-08-03 2015-04-23 Mitsubishi Heavy Industries, Ltd. Blast furnace injection coal, and process for its production
JP7211031B2 (en) * 2018-11-26 2023-01-24 住友金属鉱山株式会社 Method for smelting oxide ore
KR102313804B1 (en) 2021-06-02 2021-10-19 (주)트루엔 Electronic device for distinguishing front or rear of vehicle and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230558A (en) * 1992-02-19 1993-09-07 Nisshin Steel Co Ltd Production of sintered ore
JPH05230557A (en) * 1992-02-18 1993-09-07 Nisshin Steel Co Ltd Production of fuel for sintering iron ore
JPH06184653A (en) * 1992-12-17 1994-07-05 Nisshin Steel Co Ltd Iron source raw material to be fed into blast furnace
JP2000237528A (en) * 1999-02-22 2000-09-05 Nkk Corp Method for using coal, coal dry distillation product and its production
JP2004269978A (en) * 2003-03-10 2004-09-30 Kobe Steel Ltd Production method of reduced metal and carbon material-containing agglomerate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW512176B (en) * 1998-09-30 2002-12-01 Kawasaki Steel Co Process for manufacturing sintered ore for blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230557A (en) * 1992-02-18 1993-09-07 Nisshin Steel Co Ltd Production of fuel for sintering iron ore
JPH05230558A (en) * 1992-02-19 1993-09-07 Nisshin Steel Co Ltd Production of sintered ore
JPH06184653A (en) * 1992-12-17 1994-07-05 Nisshin Steel Co Ltd Iron source raw material to be fed into blast furnace
JP2000237528A (en) * 1999-02-22 2000-09-05 Nkk Corp Method for using coal, coal dry distillation product and its production
JP2004269978A (en) * 2003-03-10 2004-09-30 Kobe Steel Ltd Production method of reduced metal and carbon material-containing agglomerate

Also Published As

Publication number Publication date
CN102300965B (en) 2014-03-12
JPWO2010087468A1 (en) 2012-08-02
BRPI1007900B1 (en) 2018-05-15
BRPI1007900A2 (en) 2016-02-16
WO2010087468A1 (en) 2010-08-05
KR20110086638A (en) 2011-07-28
CN102300965A (en) 2011-12-28
KR101296887B1 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP4893136B2 (en) Blast furnace operation method using woody biomass
JP4681688B2 (en) Iron ore sintering carbon
JP2020186436A (en) Manufacturing method of sintered ore
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
JP6102484B2 (en) Method for producing sintered ore
JP4837799B2 (en) Method for producing sintered ore
JP5857618B2 (en) Method for producing sintered ore
JP6044353B2 (en) Method for producing sintered ore
JP5853874B2 (en) Method for producing sintered ore with high combustible carbon material mixed in the upper layer of the sintered layer
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP2007246786A (en) Ferrocoke and method for producing sintered ore
JP4842410B2 (en) Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same
JP7143714B2 (en) Method for producing carbon material for sintering, method for selecting raw material for carbon material for sintering, and method for producing sintered ore
KR101597716B1 (en) Method for preparation of mixing powdered coal
JP7469622B2 (en) Manufacturing method of carbonaceous material for sintering and manufacturing method of sintered ore
JP7397303B2 (en) Method for producing sintered ore
KR101623271B1 (en) Method for manufacturing sintered ore by using low-quality coal
KR101503443B1 (en) Composition for cokes and method of manufacturing the cokes
WO2024117144A1 (en) Sintered ore production method
JP2018003081A (en) Manufacturing method of sinter raw material for manufacturing sintered ore
JP2021091965A (en) Method for producing molding sintering raw material, and method for producing sintered ore
JP5729259B2 (en) How to handle brown coal
JP2015199976A (en) Method for producing sintered ore, and method for evaluating coal char or anthracite coal or half-anthracite coal
JP2011032502A (en) Method for producing sintered ore

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4681688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350