JP4842410B2 - Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same - Google Patents

Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same Download PDF

Info

Publication number
JP4842410B2
JP4842410B2 JP2011527084A JP2011527084A JP4842410B2 JP 4842410 B2 JP4842410 B2 JP 4842410B2 JP 2011527084 A JP2011527084 A JP 2011527084A JP 2011527084 A JP2011527084 A JP 2011527084A JP 4842410 B2 JP4842410 B2 JP 4842410B2
Authority
JP
Japan
Prior art keywords
sintering
coal
combustion
rotary kiln
solid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011527084A
Other languages
Japanese (ja)
Other versions
JPWO2011115262A1 (en
Inventor
俊次 笠間
誠治 野村
広行 小水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011527084A priority Critical patent/JP4842410B2/en
Application granted granted Critical
Publication of JP4842410B2 publication Critical patent/JP4842410B2/en
Publication of JPWO2011115262A1 publication Critical patent/JPWO2011115262A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

本発明は、製鉄原料用の焼結鉱を製造する際に熱源として使用する焼結用固体燃料の製造方法、焼結用固体燃料およびこれを用いた焼結鉱の製造方法に関する。
本願は、2010年3月19日に、日本に出願された特願2010−64207号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a solid fuel for sintering used as a heat source when producing a sintered ore for a steelmaking raw material, a solid fuel for sintering, and a method for producing a sintered ore using the same.
This application claims priority on March 19, 2010 based on Japanese Patent Application No. 2010-64207 for which it applied to Japan, and uses the content here.

製鉄原料用の焼結鉱を製造する一般的な製造工程では、粉状鉄鉱石等の鉄含有原料、石灰石等の副原料および焼結返鉱などに、熱源としての粉コークスや無煙炭などの固体燃料を加えた焼結原料が使用される。この焼結原料を、例えばドワイトロイド式の焼結機における無端回動する焼結パレット上に装入して原料充填層を生成した後、着火炉で原料充填層の表層部中の固体燃料に着火する。その後、焼結パレット下部の吸引部(ウインドボックス)から空気を吸引して原料充填層の上方から下方へと燃焼点を移動させ、焼結反応を連続的に進行させて得られた焼結ケーキを破砕することで所定粒度の焼結鉱を製造する。   In general manufacturing processes for producing sintered ore for iron making raw materials, solid materials such as powdered coke and anthracite as a heat source are used for iron-containing raw materials such as powdered iron ore, secondary raw materials such as limestone, and sintered ore. Sintered raw material with added fuel is used. After this raw material is charged on a sintering pallet that rotates endlessly in, for example, a Dwydroid-type sintering machine, a raw material packed layer is generated, and then the solid fuel in the surface layer portion of the raw material packed layer is formed in an ignition furnace. Ignite. Then, the sintered cake obtained by sucking air from the suction part (wind box) at the bottom of the sintering pallet to move the combustion point from the upper side to the lower side of the raw material packed bed and continuously proceeding the sintering reaction Is smashed to produce a sintered ore with a predetermined particle size.

このとき、焼結用固体燃料として、高炉用コークスを製造する際に副次的に発生し、粒度が小さすぎるために高炉へ装入することができない細粒のコークスを、5mm以下の粒度に破砕調製した粉コークスが使用されている。   At this time, as a solid fuel for sintering, a fine coke which is secondarily generated when producing coke for blast furnace and cannot be charged into the blast furnace because the particle size is too small has a particle size of 5 mm or less. Crushed and prepared powder coke is used.

また、粉コークスの発生量不足を補う焼結用固体燃料として、無煙炭などの揮発分が少ない石炭が、粉コークスと同様に破砕調製された後、焼結工程で広く使用されている。   Further, as a solid fuel for sintering that compensates for the shortage of the amount of powder coke generated, coal with low volatile content such as anthracite is crushed and prepared in the same manner as powder coke and then widely used in the sintering process.

焼結用固体燃料として使用する粉コークスでは、コークス炉で製造したコークスの内の高炉で使用されるコークス量と高炉で使用されないコークス量とのバランスによって、粉コークスの在庫量が大きく変動することがある。高炉での銑鉄の増産時には、高炉用コークスの使用量が増加するため、焼結用固体燃料として使用できる粉コークスが不足する。   For powder coke used as a solid fuel for sintering, the amount of coke inventories varies greatly depending on the balance between the amount of coke produced in the coke oven and the amount of coke not used in the blast furnace. There is. At the time of increased production of pig iron in the blast furnace, the amount of coke used for the blast furnace increases, so there is not enough powder coke that can be used as a solid fuel for sintering.

また、焼結用固体燃料として使用する無煙炭に関しては、無煙炭が海外からの輸入品であると同時に無煙炭の資源国が限定されているため、需給の変動リスクが大きいことが問題である。   As for anthracite used as a solid fuel for sintering, anthracite is an imported product from overseas and at the same time the resource country of anthracite is limited.

したがって、焼結用固体燃料として、従来から主に使用されてきた粉コークス及び無煙炭以外に使用可能な燃料の選択肢を拡大させることが重要である。   Therefore, it is important to expand the choices of fuels that can be used other than powdered coke and anthracite that have been mainly used as solid fuels for sintering.

粉コークス及び無煙炭の代替燃料として、コークス炉で副次的に生成するタール及びピッチを焼結原料に配合する方法では、揮発分が多量に発生し、これらの揮発分が熱源として使用されずに排ガス中へ混入するため、集塵機内での油分凝縮や集塵効率低下などの問題を招くおそれがある。   As a substitute fuel for coke breeze and anthracite, tar and pitch, which are secondarily produced in a coke oven, are blended into the sintering raw material, so that a large amount of volatile matter is generated and these volatile matter is not used as a heat source. Since it is mixed in the exhaust gas, there is a risk of causing problems such as oil condensation in the dust collector and lowering of dust collection efficiency.

また、褐炭及び亜瀝青炭は、安価な石炭であるが、揮発分が高いため、そのままの状態で褐炭及び亜瀝青炭を焼結用固体燃料として使用する場合には、上記と同様の問題が生じる。   Moreover, although lignite and subbituminous coal are cheap coal, since the volatile matter is high, when using brown coal and subbituminous coal as a solid fuel for sintering as it is, the same problem as the above arises.

そこで、この揮発分に係る問題点を解決する手段として、石炭を300〜900℃の温度範囲で熱分解して得られるチャーを焼結用の固体燃料として使用する技術が開示されている(特許文献1)。   Therefore, as a means for solving the problems related to the volatile matter, a technique is disclosed in which char obtained by pyrolyzing coal in a temperature range of 300 to 900 ° C. is used as a solid fuel for sintering (patent). Reference 1).

日本国特開平5−230558号公報Japanese Patent Laid-Open No. 5-255858

しかしながら、石炭チャーを焼結用の固体燃料として使用する場合、以下のような問題が指摘されている。   However, when using coal char as a solid fuel for sintering, the following problems have been pointed out.

この問題は、石炭チャーの中に多量の粉が混在することである。褐炭や亜瀝青炭のように水分の多い石炭を加熱乾留して石炭チャーを製造する場合、加熱乾留過程において、石炭中に含まれる石炭粉の乾留と一部の石炭の粉化とによって、粒径250μm未満の微粉粒子の含有率の高いチャーが生じる。微粉粒子の含有率の高い石炭チャーを固体燃料として含む焼結原料を用いて焼結鉱を製造する場合、固体燃料中の微粉粒子の燃焼速度が速過ぎるため、この固体燃料は、初期昇温過程で燃焼し、焼結反応で必要な高温領域での燃焼に寄与しない。また、固体燃料中の微粉粒子が多くなると、焼結充填層内の通気性が低下するため、焼結反応の進行を阻害し、生産性を悪化させる。   The problem is that a large amount of powder is mixed in the coal char. When coal char is produced by heat-distilling coal with a high water content, such as brown coal or sub-bituminous coal, the particle size is reduced by the carbonization of coal powder contained in the coal and the pulverization of some coal in the process of heat-distillation. A char with a high content of fine particles less than 250 μm is produced. When producing sintered ore using a sintering raw material containing coal char with a high content of fine particles as a solid fuel, the burning rate of the fine particles in the solid fuel is too high. It burns in the process and does not contribute to combustion in the high temperature region required for the sintering reaction. Further, when the fine powder particles in the solid fuel increase, the air permeability in the sintered packed bed is lowered, so that the progress of the sintering reaction is hindered and the productivity is deteriorated.

このような微粉粒子による問題を解決する方法として、石炭チャーの製造後に、石炭チャー中の粒径250μm未満の微粉粒子を篩い分けにより除去することが考えられる。しかし、一般的に、篩い分けにより粒径250μm未満の微粉粒子を分離することは難しく、多量の石炭チャーを処理する場合に、篩い目の詰まり発生等により作業効率及び生産性が低下しやすいため、実用面で問題がある。また、この方法で分離回収した粒径250μm未満の微粉粒子は、そのままの状態では利用価値が低く、貯蔵及び搬送を行うにあたっては、発塵対策等の環境保全上の処理を施す必要がある。   As a method for solving such problems caused by fine particles, it is conceivable to remove fine particles having a particle size of less than 250 μm in the coal char by sieving after the production of the coal char. However, in general, it is difficult to separate fine particles having a particle size of less than 250 μm by sieving, and when processing a large amount of coal char, work efficiency and productivity are likely to be reduced due to occurrence of clogging of the sieve. There is a problem in practical use. In addition, fine powder particles having a particle size of less than 250 μm separated and recovered by this method have low utility value as they are, and it is necessary to perform environmental preservation treatment such as dust generation measures when storing and transporting them.

本発明は、上記現状に鑑みてなされ、本発明では、焼結用の固体燃料として使用されるチャーの製造工程において粒径250μm未満の微粉粒子を燃焼により除去することによって、焼結通気性を阻害する微粉粒子を低減し、成品チャーの粒度分布を改善し、焼結鉱製造工程における焼結鉱の生産性を向上させている。すなわち、本発明では、粒径250μm未満の微粉粒子の比率を大幅に低減した焼結用固体燃料、焼結用固体燃料の製造方法および焼結用固体燃料を提供する。   The present invention has been made in view of the above-mentioned present situation. In the present invention, in the manufacturing process of char used as a solid fuel for sintering, fine powder particles having a particle size of less than 250 μm are removed by combustion, thereby improving the sintering air permeability. The hindered fine powder particles are reduced, the particle size distribution of the product char is improved, and the productivity of the sintered ore in the sinter manufacturing process is improved. That is, the present invention provides a solid fuel for sintering, a method for producing a solid fuel for sintering, and a solid fuel for sintering, in which the ratio of fine powder particles having a particle size of less than 250 μm is significantly reduced.

本発明者等は、石炭の種類及び粒度を変えて、試験乾留炉やロータリーキルンなどの反応装置を用いてチャーを試作し、これら試作チャーを焼結用固体燃料として使用して焼結を行い、燃焼性についての研究開発を進めてきた。その中で、本発明者等は、チャー製造における乾留前の石炭の粒度及びロータリーキルンの運転条件によって変化するチャーの粒度分布が焼結工程での燃焼性及び焼結性に影響を与えることに着目し、燃焼性及び焼結性を大幅に改善できる固体燃料の条件を見出した。   The inventors changed the type and particle size of coal, made a prototype of a char using a reactor such as a test carbonization furnace or a rotary kiln, performed sintering using these prototype char as a solid fuel for sintering, Research and development on flammability has been promoted. Among them, the present inventors pay attention to the fact that the particle size distribution of char before carbonization in char production and the particle size distribution of char that changes depending on the operating conditions of the rotary kiln affect the combustibility and sinterability in the sintering process. As a result, the present inventors have found conditions for a solid fuel that can greatly improve combustibility and sinterability.

本発明は、以上の知見に基づいてなされたもので、以下のように構成される。
(1)本発明の第一の態様に係る焼結用固体燃料の製造方法は、石炭をロータリーキルンにより300〜1150℃の温度範囲で加熱乾留することで、焼結用固体燃料として使用されるチャーを製造する焼結用固体燃料の製造方法であって、前記ロータリーキルンの成品排出側から、燃料の燃焼に必要な理論燃焼空気量と、前記石炭から発生する粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量との合計量の90〜110%の範囲内の量の空気及び前記燃料を供給し、前記ロータリーキルン内で前記石炭から発生する粒径250μm未満の前記微粉粒子を燃焼により除去し、前記石炭を乾留する。
(2)本発明の第二の態様に係る焼結用固体燃料の製造方法は、石炭をロータリーキルンにより300〜1150℃の温度範囲で加熱乾留することで、焼結用固体燃料として使用されるチャーを製造する焼結用固体燃料の製造方法であって、前記ロータリーキルンの成品排出側から、前記石炭から発生する粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量の90〜110%の範囲内の量の空気を供給し、前記ロータリーキルン内で前記石炭から発生する粒径250μm未満の前記微粉粒子を燃焼により除去し、前記石炭を乾留する。
(3)上記(1)または(2)に記載の高強度コークスの製造方法では、前記ロータリーキルンの成品排出側から、成品として排出されるチャー中に占める粒径250μm未満の微粉粒子の含有率を10質量%未満に調整してもよい。
(4)本発明の一態様に係る焼結用固体燃料は、上記(1)または(2)に記載の焼結用固体燃料の製造方法で製造される。
(5)本発明の一態様に係る焼結鉱の製造方法では、上記(4)に記載の焼結用固体燃料を焼結原料中に配合する。
This invention is made | formed based on the above knowledge, and is comprised as follows.
(1) In the method for producing a solid fuel for sintering according to the first aspect of the present invention, char is used as a solid fuel for sintering by heat-drying coal in a temperature range of 300 to 1150 ° C. with a rotary kiln. A method for producing a solid fuel for sintering, wherein the amount of theoretical combustion air necessary for combustion of fuel and the combustion of fine particles having a particle diameter of less than 250 μm generated from the coal are obtained from the product discharge side of the rotary kiln. Air and fuel are supplied in an amount in the range of 90 to 110% of the total theoretical combustion air amount required, and the fine particles having a particle size of less than 250 μm generated from the coal in the rotary kiln are removed by combustion. Then, the coal is carbonized.
(2) In the method for producing a solid fuel for sintering according to the second aspect of the present invention, char is used as a solid fuel for sintering by heat-drying coal in a temperature range of 300 to 1150 ° C. with a rotary kiln. 90% to 110% of the theoretical amount of combustion air required for combustion of fine particles having a particle size of less than 250 μm generated from the coal from the product discharge side of the rotary kiln. An amount of air within a range is supplied, the fine particles having a particle size of less than 250 μm generated from the coal in the rotary kiln are removed by combustion, and the coal is dry-distilled.
(3) In the method for producing high-strength coke according to (1) or (2) above, the content of fine particles having a particle size of less than 250 μm in the char discharged as a product from the product discharge side of the rotary kiln is determined. You may adjust to less than 10 mass%.
(4) The solid fuel for sintering according to one aspect of the present invention is manufactured by the method for manufacturing a solid fuel for sintering according to the above (1) or (2).
(5) In the manufacturing method of the sintered ore which concerns on 1 aspect of this invention, the solid fuel for sintering as described in said (4) is mix | blended in a sintering raw material.

本発明の上記第一の態様または第二の態様に係る焼結用固体燃料の製造方法によれば、成品チャー中の粒径250μm未満の微粉粒子を燃焼により除去することができ、焼結における燃焼性および通気性に優れた焼結用固体燃料を製造することができる。   According to the method for producing a solid fuel for sintering according to the first aspect or the second aspect of the present invention, fine powder particles having a particle diameter of less than 250 μm in the product char can be removed by combustion. A solid fuel for sintering excellent in combustibility and breathability can be produced.

本発明の上記第一の態様または第二の態様に係る焼結鉱の製造方法によれば、上記の焼結用固体燃料を配合した焼結原料を使用することにより、焼結反応域が十分に高温になるように焼結用固体燃料を燃焼させ、焼結層全体の通気性を改善することができるため、良好な品質の焼結鉱を効率的に生産することができる。   According to the method for producing a sintered ore according to the first aspect or the second aspect of the present invention, the sintering reaction zone is sufficient by using the sintering raw material blended with the solid fuel for sintering. Since the solid fuel for sintering can be burned to a high temperature and the air permeability of the entire sintered layer can be improved, a sintered ore of good quality can be produced efficiently.

本発明の一実施形態に係るロータリーキルンによるチャー製造における石炭の乾留及び微粉粒子の燃焼を説明する模式図である。It is a mimetic diagram explaining dry distillation of coal and combustion of fine particles in char manufacture by a rotary kiln concerning one embodiment of the present invention. 本実施形態の焼結用固体燃料の製造方法を有効に実施できるロータリーキルンを含む焼結用固体燃料の製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus of the solid fuel for sintering containing the rotary kiln which can implement effectively the manufacturing method of the solid fuel for sintering of this embodiment.

以下、図面を参照しながら本発明の一実施形態に係る焼結用固体燃料の製造方法について説明する。   Hereinafter, a method for producing a solid fuel for sintering according to an embodiment of the present invention will be described with reference to the drawings.

石炭の乾留設備として、室式コークス炉、ロータリーキルン、流動層などが使用されるが、本実施形態の焼結用固体燃料の製造方法では、以下の理由からロータリーキルンを用いる。   As a coal carbonization facility, a chamber coke oven, a rotary kiln, a fluidized bed, or the like is used. In the method for manufacturing a solid fuel for sintering according to this embodiment, a rotary kiln is used for the following reason.

ロータリーキルンは、粉状石炭を乾留する場合に、室式コークス炉に比べて熱伝達率が高く、乾留速度を相対的に大きくすることができるため、チャーの生産性の点において有利である。   A rotary kiln is advantageous in terms of char productivity because it has a higher heat transfer rate than a chamber coke oven and can relatively increase the rate of carbonization when carbonizing powdered coal.

流動層は、ロータリーキルンに比べて乾留速度が速い。しかしながら、流動層では、石炭やチャーの粒子同士が激しく衝突するため、ロータリーキルンに比べて微粉粒子の発生量が増大する。したがって、本実施形態では、焼結用固体燃料の製造設備としてロータリーキルンを使用する。ロータリーキルンは、原料と加熱燃焼ガスとを接触させ、熱交換により原料を加熱する内燃式ロータリーキルンと、原料と加熱媒体とを直接接触させず、原料の外部から原料を加熱する外燃式ロータリーキルンとに分けられる。なお、本実施形態では、内燃式ロータリーキルンと外燃式ロータリーキルンとの両方が適用できる。   The fluidized bed has a faster carbonization rate than a rotary kiln. However, in the fluidized bed, particles of coal and char collide violently, so that the amount of fine particles generated increases compared to a rotary kiln. Therefore, in this embodiment, a rotary kiln is used as a production facility for a solid fuel for sintering. The rotary kiln is divided into an internal combustion rotary kiln that heats the raw material by heat exchange by bringing the raw material and heated combustion gas into contact, and an external combustion rotary kiln that heats the raw material from the outside of the raw material without directly contacting the raw material and the heating medium. Divided. In this embodiment, both an internal combustion type rotary kiln and an external combustion type rotary kiln can be applied.

本実施形態では、密閉状態にある内燃式ロータリーキルンの一端の原料投入側(石炭投入口)から原料である粉状石炭を投入し、粉状石炭をロータリーキルン内で転動させながら加熱乾留し、ロータリーキルンの他端の成品排出側から成品であるチャーを排出する。その際、ロータリーキルンの成品排出側から原料投入側に向けて、重油や天然ガスなどの燃料を燃焼用空気と共に供給し、ロータリーキルン内で燃料を燃焼させて原料を加熱する。   In this embodiment, powder coal as a raw material is charged from a raw material charging side (coal charging port) at one end of an internal combustion rotary kiln that is in a sealed state, and the powdered coal is heated and dry distilled while rolling in the rotary kiln. The char that is the product is discharged from the product discharge side at the other end of the product. At that time, fuel such as heavy oil or natural gas is supplied together with combustion air from the product discharge side of the rotary kiln to the raw material input side, and the raw material is heated by burning the fuel in the rotary kiln.

本実施形態では、上記ロータリーキルンへの空気の供給方法に特徴がある。すなわち、内燃式ロータリーキルンを用いる場合には、ロータリーキルンに供給する燃料の燃焼に必要な理論燃焼空気量の空気に加えて、ロータリーキルン内で石炭から発生した粒径250μm未満の微粉粒子を燃焼させるために十分な量の空気を供給する。   This embodiment is characterized by a method of supplying air to the rotary kiln. That is, in the case of using an internal combustion type rotary kiln, in addition to the theoretical amount of combustion air necessary for the combustion of fuel supplied to the rotary kiln, in order to burn fine powder particles having a particle diameter of less than 250 μm generated from coal in the rotary kiln. Supply a sufficient amount of air.

図1に、本実施形態のロータリーキルンによるチャー製造における石炭の乾留及び微粉粒子の燃焼を説明する模式図を示す。   In FIG. 1, the schematic diagram explaining the dry distillation of coal in the char manufacture by the rotary kiln of this embodiment and the combustion of a fine particle is shown.

本実施形態では、ロータリーキルンへの空気の供給量の調整によって、図1に示すように、内燃式ロータリーキルン内において、「燃料燃焼ゾーン」と、「石炭乾留ゾーン」と、「微粉粒子燃焼ゾーン」とを形成させることができる。「燃料燃焼ゾーン」では、燃料が空気中の酸素によって燃焼し、「石炭乾留ゾーン」では、燃焼により加熱された空気によって石炭が乾留される。「微粉粒子燃焼ゾーン」は、「燃料燃焼ゾーン」と「石炭乾留ゾーン」との間に形成され、石炭の加熱及び乾留により発生した粒径250μm未満の微粉粒子が燃焼する。   In the present embodiment, by adjusting the amount of air supplied to the rotary kiln, as shown in FIG. 1, in the internal combustion rotary kiln, a “fuel combustion zone”, a “coal dry distillation zone”, and a “fine particle combustion zone” Can be formed. In the “fuel combustion zone”, the fuel is combusted by oxygen in the air, and in the “coal dry distillation zone”, the coal is carbonized by the air heated by the combustion. The “fine particle combustion zone” is formed between the “fuel combustion zone” and the “coal dry distillation zone”, and fine particles having a particle diameter of less than 250 μm generated by heating and dry distillation of coal burn.

通常のロータリーキルンの操業においては、燃料からの煤発生を防止するために、空気比が燃料の燃焼に必要な理論燃焼空気量の1.2〜1.4倍程度になるように供給空気量を調整する。この空気量の調整では、燃料燃焼ゾーンにおける煤発生を抑制することができるが、石炭の加熱及び乾留により発生した粒径250μm未満の微粉粒子を燃焼して、成品として排出されるチャーから除去することはできない。   In normal rotary kiln operation, in order to prevent the generation of soot from fuel, the amount of supplied air is adjusted so that the air ratio is about 1.2 to 1.4 times the theoretical amount of combustion air necessary for fuel combustion. adjust. This adjustment of the air amount can suppress soot generation in the fuel combustion zone, but burns fine powder particles having a particle size of less than 250 μm generated by heating and dry distillation of coal and removing them from the char discharged as a product. It is not possible.

本実施形態では、ロータリーキルン内において、石炭乾留ゾーンまでに発生した粒径250μm未満の微粉粒子を燃焼により除去するために、燃料の燃焼に必要な理論燃焼空気量と、石炭から発生する粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量との合計量(以下では、目標値と称することもある)の90〜110%の範囲内の量の空気を供給する。ここで、供給する空気の量については、炭材毎に燃焼特性が異なるため、必ずしも目標値と同じ量(目標値の100%)にする必要はなく、目標値の90〜110%の空気量を調製することが好ましい。目標値の90%未満の空気量では、250μm未満の粉が燃焼不足により残存しやすい。一方、目標値の110%以上の空気量では、250μm以上の粒子の燃焼が起こるため、成品となるチャーの収率と粒度が低下する。   In the present embodiment, in order to remove fine particles having a particle size of less than 250 μm generated up to the coal carbonization zone in the rotary kiln by combustion, a theoretical combustion air amount necessary for the combustion of fuel and a particle size of 250 μm generated from coal are used. An amount of air in the range of 90 to 110% of the total amount (hereinafter also referred to as a target value) required for the combustion of less than fine particles is supplied. Here, the amount of air to be supplied does not necessarily have to be the same amount as the target value (100% of the target value) because the combustion characteristics differ for each carbonaceous material, and the air amount of 90 to 110% of the target value. Is preferably prepared. When the air amount is less than 90% of the target value, powder less than 250 μm tends to remain due to insufficient combustion. On the other hand, when the amount of air is 110% or more of the target value, combustion of particles of 250 μm or more occurs, so that the yield and particle size of the product char are lowered.

ここで、燃料の燃焼に必要な理論空気量Ao(Nm/hr)、および、石炭から発生する粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量Aoc(Nm/hr)は、以下のように定義される。Here, the theoretical air amount Ao (Nm 3 / hr) necessary for fuel combustion and the theoretical combustion air amount Aoc (Nm 3 / hr) necessary for combustion of fine particles having a particle diameter of less than 250 μm generated from coal are: Is defined as follows.

Ao=(1/0.21)・{(22.4/12)・C+(11.2/2)・(H−OX/8)+(22.4/32)・S}・・・(1)
ここで、Ao:燃料の燃焼に必要な理論燃焼空気量(Nm/hr)、C:燃料中の炭素原子量(kg/hr)、H:燃料中の水素原子量(kg/hr)、OX:燃料中の酸素原子量(kg/hr)、S:燃料中の硫黄原子量(kg/hr)である。
Ao = (1 / 0.21). {(22.4 / 12) .C + (11.2 / 2). (H-OX / 8) + (22.4 / 32) .S} (...) 1)
Here, Ao: theoretical amount of combustion air necessary for fuel combustion (Nm 3 / hr), C: amount of carbon atoms in fuel (kg / hr), H: amount of hydrogen atoms in fuel (kg / hr), OX: The amount of oxygen atoms in the fuel (kg / hr), S: the amount of sulfur atoms in the fuel (kg / hr).

Aoc=(1/0.21)・{(22.4/12)・Cc+(11.2/2)・(Hc−OXc/8)+(22.4/32)・Sc}・・・(2)
ここで、Aoc:粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量(Nm/hr)、Cc:粒径250μm未満の微粉粒子中の炭素原子量(kg/hr)、Hc:粒径250μm未満の微粉粒子中の水素原子量(kg/hr)、OXc:粒径250μm未満の微粉粒子中の酸素原子量(kg/hr)、Sc:粒径250μm未満の微粉粒子中の硫黄原子量(kg/hr)である。
Aoc = (1 / 0.21). {(22.4 / 12) .Cc + (11.2 / 2). (Hc-OXc / 8) + (22.4 / 32) .Sc}. (2)
Here, Aoc: theoretical combustion air amount necessary for combustion of fine particles having a particle size of less than 250 μm (Nm 3 / hr), Cc: carbon atom amount (kg / hr) in fine particles having a particle size of less than 250 μm, Hc: particles Hydrogen atom amount (kg / hr) in fine particles having a diameter of less than 250 μm, OXc: oxygen atom amount (kg / hr) in fine particles having a particle size of less than 250 μm, Sc: sulfur atom amount in fine particles having a particle size of less than 250 μm (kg) / Hr).

本実施形態では、内燃式ロータリーキルンにおいて、(1)式および(2)式を用いて、燃料の燃焼に必要な理論燃焼空気量Ao(Nm/hr)と粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量Aoc(Nm/hr)とをそれぞれ求め、その合計量A(=Ao+Aoc)(Nm/hr)をロータリーキルン内に供給する空気量の目標値に決定する。In the present embodiment, in the internal combustion rotary kiln, the combustion of fine powder particles having a theoretical combustion air amount Ao (Nm 3 / hr) necessary for fuel combustion and a particle size of less than 250 μm is performed using the equations (1) and (2). The theoretical amount of combustion air Aoc (Nm 3 / hr) required for each is calculated, and the total amount A (= Ao + Aoc) (Nm 3 / hr) is determined as the target value of the amount of air supplied into the rotary kiln.

また、本実施形態の変形例として、外燃式ロータリーキルンを用いる場合には、(2)式を用いて、粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量Aoc(Nm/hr)を求め、これをロータリーキルン内に供給する空気量の目標値に決定する。すなわち、この場合には、粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量の90〜110%の範囲内の量の空気を供給する。As a modification of the present embodiment, when an external combustion type rotary kiln is used, the theoretical combustion air amount Aoc (Nm 3 / hr) required for combustion of fine particles having a particle size of less than 250 μm is obtained using the equation (2). ) And determine this as the target value for the amount of air supplied into the rotary kiln. That is, in this case, an amount of air in the range of 90 to 110% of the theoretical amount of combustion air necessary for burning fine particles having a particle size of less than 250 μm is supplied.

なお、本実施形態では、下記(3)式で定義される空気比mが、1.0である。   In the present embodiment, the air ratio m defined by the following equation (3) is 1.0.

m =A/Ao ・・・(3)
ここで、m:空気比(−)である。
また、(1)および(2)式における、燃料中の炭素原子量C(kg/hr)、水素原子量H(kg/hr)、酸素原子量OX(kg/hr)、および、硫黄原子量S(kg/hr)、並びに、粒径250μm未満の微粉粒子の炭素原子量Cc(kg/hr)、水素原子量Hc(kg/hr)、酸素原子量OXc(kg/hr)、および、硫黄原子量Sc(kg/hr)は、予めバッチの乾留試験を行い、石炭及びチャーの微粒子の化学分析を行うことによって測定できる。
m = A / Ao (3)
Here, m is the air ratio (−).
Further, in the formulas (1) and (2), the carbon atom amount C (kg / hr), the hydrogen atom amount H (kg / hr), the oxygen atom amount OX (kg / hr), and the sulfur atom amount S (kg / hr) in the fuel hr), and the carbon atom weight Cc (kg / hr), the hydrogen atom weight Hc (kg / hr), the oxygen atom weight OXc (kg / hr), and the sulfur atom weight Sc (kg / hr) of the fine particles having a particle size of less than 250 μm Can be measured by conducting a batch carbonization test in advance and conducting chemical analysis of coal and char fine particles.

また、本発明者らの検討によれば、粒径500μm未満の石炭では、ロータリーキルン内の加熱による乾燥過程において石炭中に含有する水分及び揮発分が放出されて体積が減少し、さらに乾留過程において溶融軟化後の再固化及び揮発分の放出により固体組織が緻密化する結果、粒径500μm未満の石炭のほぼ全てが粒径250μm未満の微粉粒子になることが確認されている。したがって、予めバッチの乾留試験を行い、チャーの微粒子の化学分析を行う場合には、粒径500μm未満の石炭粒子を用いて乾留試験を行うことができる。また、乾留試験では、石炭原料中の粒径500μm未満の石炭粒子の比率から、乾留試験で得られるチャー中の粒径250μm未満の微粉粒子の比率を推定することができる。   Further, according to the study by the present inventors, in coal having a particle size of less than 500 μm, the moisture and volatile components contained in the coal are released in the drying process by heating in the rotary kiln, and the volume is reduced. As a result of densification of the solid structure due to re-solidification after melt softening and release of volatile matter, it has been confirmed that almost all coal having a particle size of less than 500 μm becomes fine particles having a particle size of less than 250 μm. Therefore, when a batch dry distillation test is performed in advance and chemical analysis of char fine particles is performed, the dry distillation test can be performed using coal particles having a particle size of less than 500 μm. In the dry distillation test, the ratio of fine particles having a particle size of less than 250 μm in char obtained in the dry distillation test can be estimated from the ratio of coal particles having a particle size of less than 500 μm in the coal raw material.

本実施形態では、ロータリーキルン内の乾留ゾーンを通過したチャーの微粉粒子は、転動作用によって浮遊するため、微粉粒子燃焼ゾーンにおいて効果的に微粉粒子を燃焼除去できる。そのため、成品チャー中の粒径250μm未満の微粉粒子の含有率を10質量%未満に低減することができる。   In the present embodiment, the fine powder particles of the char that have passed through the dry distillation zone in the rotary kiln float due to the rolling operation, and therefore the fine powder particles can be effectively burned and removed in the fine powder combustion zone. Therefore, the content rate of fine powder particles having a particle size of less than 250 μm in the product char can be reduced to less than 10 mass%.

ロータリーキルン内の温度は、原料投入側から成品排出側に向かうにつれて上昇して温度分布を形成する。また、石炭中の成分の熱分解温度に応じて石炭から発生するガスの組成が異なり、約300〜400℃の低温では主にタール成分が発生し、400〜650℃ではメタンやエタンのような炭化水素ガスが発生し、650〜850℃では水素が発生する。   The temperature in the rotary kiln rises from the raw material input side toward the product discharge side to form a temperature distribution. Further, the composition of gas generated from coal differs depending on the thermal decomposition temperature of the components in the coal, and tar components are mainly generated at low temperatures of about 300 to 400 ° C, and methane and ethane are used at 400 to 650 ° C. Hydrocarbon gas is generated, and hydrogen is generated at 650 to 850 ° C.

これらの石炭の加熱(熱分解)により生成する揮発分(VM)などの可燃性物質は、ロータリーキルンの原料投入側から中央部の乾留ゾーンまでの範囲内で主に発生し、成品排出側から供給された燃料の燃焼により加熱された燃焼ガスとともに原料投入側へ移動し排出される。本実施形態では、ロータリーキルンの成品排出側から燃料を供給するとともに、この燃料及び石炭乾留ゾーンまでに発生した粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量の空気を供給する。そのため、供給された空気中の酸素は、ロータリーキルンの燃料燃焼ゾーンおよび微粉粒子燃焼ゾーンで消費される。したがって、石炭乾留ゾーンおよび石炭乾燥ゾーンで発生したVMを燃焼により消費することなく燃焼ガスとともに回収し利用することができ、加熱(乾燥及び乾留)により発生した成品チャー中の微粉粒子のみを効果的に燃焼により除去することができる。また、微粉粒子の燃焼により乾留に必要とされる熱をロータリーキルン内に供給することもできる。   Combustible substances such as volatile matter (VM) generated by heating (pyrolysis) of these coals are mainly generated in the range from the raw material input side of the rotary kiln to the dry distillation zone in the center, and supplied from the product discharge side. It moves to the raw material input side and is discharged together with the combustion gas heated by the combustion of the produced fuel. In the present embodiment, fuel is supplied from the product discharge side of the rotary kiln and air having a theoretical combustion air amount necessary for combustion of fine particles having a particle diameter of less than 250 μm generated up to the fuel and the coal carbonization zone is supplied. Therefore, oxygen in the supplied air is consumed in the fuel combustion zone and the fine particle combustion zone of the rotary kiln. Therefore, it is possible to recover and use the VM generated in the coal dry distillation zone and the coal dry zone together with the combustion gas without consuming it by combustion, and only the fine particles in the product char generated by heating (drying and dry distillation) are effective. It can be removed by combustion. Moreover, the heat | fever required for dry distillation can also be supplied in a rotary kiln by combustion of a fine powder particle.

本実施形態では、ロータリーキルン内の原料投入側から成品排出側に向かうにつれて温度が上昇しており、ロータリーキルン内の温度は、300〜1150℃の範囲内であることが望ましい。上記温度範囲における下限温度(300℃)は、原料投入側の下限温度に相当する。この下限温度よりも低い温度では、ほとんど石炭の乾留が起こらないため、石炭の乾留効率が低下する。上記温度範囲における上限温度(1150℃)は、成品排出側の上限温度に相当する。この上限温度よりも高い温度では、燃料および空気の供給ノズルの変形などが起こりやすく設備管理が非常に難しい。   In this embodiment, the temperature rises from the raw material input side in the rotary kiln toward the product discharge side, and the temperature in the rotary kiln is preferably in the range of 300 to 1150 ° C. The lower limit temperature (300 ° C.) in the above temperature range corresponds to the lower limit temperature on the raw material input side. At a temperature lower than the lower limit temperature, the carbonization of coal hardly occurs, so that the carbonization efficiency of coal is lowered. The upper limit temperature (1150 ° C.) in the above temperature range corresponds to the upper limit temperature on the product discharge side. At a temperature higher than the upper limit temperature, the fuel and air supply nozzles are likely to be deformed, and the facility management is very difficult.

図2は、本実施形態による焼結用固体燃料の製造方法を有効に実施できるロータリーキルンを含む焼結用固体燃料の製造装置の概略構成図である。   FIG. 2 is a schematic configuration diagram of an apparatus for producing a solid fuel for sintering including a rotary kiln that can effectively carry out the method for producing a solid fuel for sintering according to the present embodiment.

焼結用固体燃料として使用される成品チャーの原料である石炭は、石炭ホッパー1より切り出しコンベア2を経由して切り出され、ロータリーキルン4の一端側に設けた石炭投入口3よりロータリーキルン4の内部に供給される。ロータリーキルン4内に供給された石炭は、ロータリーキルン4の回転運動に伴って、ロータリーキルン4の他端側(成品排出側)へ転動しながら徐々に移動しつつ、還元雰囲気下での加熱により乾留される。乾留が終了したチャー9は、散水などの冷却装置7および排出コンベア8を介して系(ロータリーキルン4)の外に排出される。   Coal which is the raw material of the product char used as the solid fuel for sintering is cut out from the coal hopper 1 via the cutting conveyor 2 and is put into the rotary kiln 4 from the coal charging port 3 provided on one end side of the rotary kiln 4. Supplied. Coal supplied into the rotary kiln 4 is dry-distilled by heating in a reducing atmosphere while moving gradually while rolling to the other end side (product discharge side) of the rotary kiln 4 as the rotary kiln 4 rotates. The The char 9 that has been subjected to dry distillation is discharged out of the system (rotary kiln 4) through a cooling device 7 such as watering and a discharge conveyor 8.

本実施形態において、ロータリーキルン4の他端(成品排出側)の端壁を貫通するように、ロータリーキルン4の一端(原料投入側)に向けて燃料を供給する燃料供給バーナー5をロータリーキルン4の内部に配置し、この燃料供給バーナー5にエアーコンプレッサー6から所定量の空気を供給する。ロータリーキルン4の成品排出側に設けた燃料供給バーナー5から原料投入側に向けて供給された重油もしくは天然ガスなどの燃料は、同時に成品排出側から供給された空気中の酸素により燃焼し、その燃焼熱により加熱された燃焼ガスが原料投入側に移動する。   In the present embodiment, a fuel supply burner 5 that supplies fuel toward one end (raw material input side) of the rotary kiln 4 so as to penetrate the end wall of the other end (product discharge side) of the rotary kiln 4 is provided inside the rotary kiln 4. Then, a predetermined amount of air is supplied from the air compressor 6 to the fuel supply burner 5. Fuel such as heavy oil or natural gas supplied from the fuel supply burner 5 provided on the product discharge side of the rotary kiln 4 toward the raw material input side is simultaneously burned by oxygen in the air supplied from the product discharge side, and the combustion The combustion gas heated by the heat moves to the raw material input side.

一方、石炭は、ロータリーキルン4の他端側(原料投入側)から供給され、燃焼ガスの移動方向とは逆の方向に移動しながら燃焼ガスとの熱交換により加熱される。その結果、ロータリーキルン4内の温度は、原料投入側から成品排出側に向かうにつれて上昇し、この温度分布によりロータリーキルン4内の原料投入側から成品排出側にかけて、石炭乾燥ゾーン、石炭乾留ゾーン、微粉粒子燃焼ゾーンが順次形成される。   On the other hand, coal is supplied from the other end side (raw material input side) of the rotary kiln 4 and is heated by heat exchange with the combustion gas while moving in the direction opposite to the direction of movement of the combustion gas. As a result, the temperature in the rotary kiln 4 rises from the raw material input side toward the product discharge side, and this temperature distribution causes the coal drying zone, coal dry distillation zone, fine powder particles from the raw material input side to the product discharge side in the rotary kiln 4. A combustion zone is formed sequentially.

燃料供給バーナー5から供給した燃料が空気中の酸素により燃焼した後、ロータリーキルン4の成品排出側に形成された微粉粒子燃焼ゾーンでは、主に乾留ゾーンで生成した250μm未満の微粉粒子がロータリーキルン内での転動により舞い上がり、供給空気の余剰酸素によって効果的に燃焼して除去される。   In the fine particle combustion zone formed on the product discharge side of the rotary kiln 4 after the fuel supplied from the fuel supply burner 5 is combusted by oxygen in the air, the fine powder particles less than 250 μm mainly generated in the dry distillation zone are in the rotary kiln. So that it is swollen and effectively burned and removed by surplus oxygen in the supply air.

ロータリーキルン4内の他端側(成品排出側)から一端側(原料投入側)に向かう燃焼ガスは、石炭との熱交換後、排ガス(キルン排ガス)としてロータリーキルン4の外に排出される。ロータリーキルン4の一端側(原料投入側)には、排ガス燃焼炉10が接続され、この排ガス燃焼炉10では、排ガスが吸引処理される。   The combustion gas from the other end side (product discharge side) in the rotary kiln 4 toward the one end side (raw material input side) is discharged out of the rotary kiln 4 as exhaust gas (kiln exhaust gas) after heat exchange with coal. An exhaust gas combustion furnace 10 is connected to one end side (raw material input side) of the rotary kiln 4, and the exhaust gas is sucked in the exhaust gas combustion furnace 10.

本実施形態において、主に乾留ゾーンで生成した粒径250μm未満の微粉粒子のほとんどは、原料石炭中の粒径500μm未満の石炭粒子から生成するため、この石炭の燃焼に必要な理論燃焼空気量と供給燃料の燃焼に必要な理論燃焼空気量との合計量に略相当する量(合計量の90〜110%)の空気をロータリーキルン内に供給した。通常の原料石炭中の粒径500μm未満の石炭粒子の比率は、炭種及び粒度によって大きく異なるが、ロータリーキルンでの乾留に適する30mm未満の粒度に原料石炭を粉砕調整した場合には、10〜50質量%程度である。   In this embodiment, most of the fine particles having a particle size of less than 250 μm generated mainly in the carbonization zone are generated from coal particles having a particle size of less than 500 μm in the raw coal, and therefore the theoretical combustion air amount necessary for the combustion of the coal The amount of air substantially corresponding to the total amount of the theoretical combustion air required for combustion of the supplied fuel (90 to 110% of the total amount) was supplied into the rotary kiln. The ratio of coal particles having a particle size of less than 500 μm in ordinary raw coal varies greatly depending on the coal type and particle size, but when the raw coal is pulverized and adjusted to a particle size of less than 30 mm suitable for dry distillation in a rotary kiln, It is about mass%.

したがって、本実施形態においては、ロータリーキルン内に供給する空気量を上記のように設定することにより、ロータリーキルン4内で発生する粒径250μm未満の微粉粒子を微粉粒子燃焼ゾーンで効率的に燃焼して除去し、成品排出側の成品チャー中の粒径250μm未満の微粉粒子の含有率を10質量%未満に低減させている。   Therefore, in this embodiment, by setting the amount of air supplied into the rotary kiln as described above, fine particles having a particle size of less than 250 μm generated in the rotary kiln 4 are efficiently burned in the fine particle combustion zone. The content rate of fine powder particles having a particle size of less than 250 μm in the product char on the product discharge side is reduced to less than 10% by mass.

排ガス燃焼炉10に向けて排出されたガス状生成物および粉を含む燃焼排ガスは、排ガス燃焼炉10および集塵機11などのガス清浄設備を経由して系外へ排出されても良い。経済的な観点から廃熱回収ボイラー12を設置して排ガスの顕熱回収を行い、スタック(煙突)13を介して排ガスを排出してもよい。また、設備のコンパクト化を図る観点より、揮発分を含む可燃性ガスを排ガス燃焼炉10で燃焼させずに、この可燃性ガスをガス消費設備へそのまま供給しても良い。   The combustion exhaust gas containing the gaseous product and powder discharged toward the exhaust gas combustion furnace 10 may be discharged out of the system via a gas cleaning facility such as the exhaust gas combustion furnace 10 and the dust collector 11. From an economical point of view, a waste heat recovery boiler 12 may be installed to perform sensible heat recovery of exhaust gas, and exhaust gas may be discharged through a stack (chimney) 13. Further, from the viewpoint of downsizing the facility, this combustible gas may be supplied to the gas consuming facility as it is without burning the combustible gas containing volatile components in the exhaust gas combustion furnace 10.

本実施形態において、石炭ホッパー1からロータリーキルン4内に供給される焼結用固体燃料の原料である石炭の粒度を、予め調整して、成品チャー中に占める15mm以上の粗粒塊を20質量%未満にすることが好ましい。これにより、焼結工程で焼結層の最下層に塊状の固体燃料が偏析することがなく、原料充填層の全てで焼結反応を効率的に行うことができる。   In the present embodiment, the particle size of coal, which is a raw material of the solid fuel for sintering supplied from the coal hopper 1 into the rotary kiln 4, is adjusted in advance, and coarse masses of 15 mm or more in the product char are 20% by mass. It is preferable to make it less than. Thereby, the solid solid fuel does not segregate in the lowest layer of the sintered layer in the sintering step, and the sintering reaction can be efficiently performed in all of the raw material packed layers.

本実施形態では、内燃式ロータリーキルンを使用した例を示したが、本実施形態の変形例として、外燃式ロータリーキルンを使用することもできる。この外燃式ロータリーキルンでは、ガスバーナーによりその外側からロータリーキルンを加熱することができる。この場合、ロータリーキルン内に燃料を供給する燃料供給バーナー5からは、燃料を全く供給せず、ロータリーキルン4内の主に乾留ゾーンで発生する粒径250μm未満の微粉粒子を燃焼させるために必要な理論空気量と略同じ量(理論空気量の90〜110%)の空気のみを供給する。このように、外燃式ロータリーキルンでは、内燃式ロータリーキルンを用いる上記実施形態の条件のうち、少なくともロータリーキルン内に供給する空気量のみを変更すればよい。   In this embodiment, although the example which used the internal combustion type rotary kiln was shown, the external combustion type rotary kiln can also be used as a modification of this embodiment. In this external combustion type rotary kiln, the rotary kiln can be heated from the outside by a gas burner. In this case, the fuel supply burner 5 for supplying fuel into the rotary kiln does not supply any fuel, and the theory necessary for burning fine powder particles having a particle size of less than 250 μm generated mainly in the dry distillation zone in the rotary kiln 4. Only air of approximately the same amount as the air amount (90 to 110% of the theoretical air amount) is supplied. Thus, in the external combustion type rotary kiln, it is only necessary to change at least the amount of air supplied into the rotary kiln among the conditions of the above embodiment using the internal combustion type rotary kiln.

本実施形態においては、例えば、粗粉砕により0〜30mmの粒度に調製した亜瀝青炭を原料石炭としてロータリーキルンに供給している。例えば、この原料石炭中の粒径500μm未満の石炭粒子の比率は、約15質量%である。この原料石炭を図2に示す廃熱回収ボイラー付きのロータリーキルンに投入し、乾留ならびに所定の空気供給による燃焼処理を行うと、ロータリーキルンの成品排出側から排出した直後の成品チャー中の粒径250μm未満の微粉粒子の割合は、例えば、1質量%未満である。   In the present embodiment, for example, subbituminous coal prepared to have a particle size of 0 to 30 mm by coarse pulverization is supplied as raw coal to the rotary kiln. For example, the ratio of coal particles having a particle size of less than 500 μm in the raw coal is about 15% by mass. When this raw coal is put into a rotary kiln with a waste heat recovery boiler shown in FIG. 2 and subjected to combustion treatment by dry distillation and predetermined air supply, the particle size in the product char immediately after being discharged from the product discharge side of the rotary kiln is less than 250 μm The proportion of fine powder particles is, for example, less than 1% by mass.

上記実施形態の製造方法により製造された焼結用固体燃料を焼結用原料として使用し、鉄鉱石焼結鉱を製造する製造工程の一実施形態について以下に簡単に説明する。   An embodiment of a production process for producing an iron ore sintered ore using the solid fuel for sintering produced by the production method of the above embodiment as a raw material for sintering will be briefly described below.

粉状鉄鉱石等の鉄含有原料、石灰石等の副原料および焼結返鉱などに、熱源として上記実施形態に示す焼結用固体燃料を加えた焼結原料を、ドワイトロイド式の焼結機における無端回動する焼結パレット上に連続的に装入して原料充填層を生成させる。その後、着火炉で原料充填層の表層部中の固体燃料に着火し、焼結パレット下部の吸引部(ウインドボックス)から空気を吸引して原料充填層の上方から下方へと燃焼点を移動させ、焼結反応を連続的に進行させて焼結ケーキを得る。この焼結ケーキは、焼結機ストランドの排鉱部で焼結パレットが転回すると、適当なサイズに割れ、自重により下方に落下ながら破砕されて、所定粒度の焼結鉱が製造される。   A sintering material obtained by adding the solid fuel for sintering shown in the above embodiment as a heat source to an iron-containing raw material such as powdered iron ore, a secondary raw material such as limestone, and sintered ore is used as a heat source. The raw material packed bed is generated by continuously charging the endlessly rotating sintering pallet. After that, the solid fuel in the surface layer part of the raw material packed bed is ignited in an ignition furnace, and air is sucked from the suction part (wind box) below the sintering pallet to move the combustion point from the upper side to the lower side of the raw material packed bed. The sintering reaction is continuously performed to obtain a sintered cake. When the sintering pallet is rotated at the discharge portion of the sintering machine strand, the sintered cake is cracked to an appropriate size and crushed while falling downward by its own weight to produce a sintered ore having a predetermined particle size.

本実施形態の焼結鉱の製造方法では、石炭を300〜1150℃の温度で乾留して得られた固体燃料を用いるため、焼結工程中にタール、炭化水素ガス及びNOxの発生が少ない。また、焼結通気性を阻害する粒径250μm未満の微粉粒子が少ないため、焼結鉱の生産性及び成品品質に優れた安定した焼結操業を行うことが可能である。   In the manufacturing method of the sintered ore of this embodiment, since solid fuel obtained by dry distillation of coal at a temperature of 300 to 1150 ° C. is used, generation of tar, hydrocarbon gas and NOx is small during the sintering process. In addition, since there are few fine particles having a particle diameter of less than 250 μm that impede sintering air permeability, it is possible to perform a stable sintering operation excellent in productivity and product quality of sintered ore.

このため、集塵機内での油分凝縮や集塵効率の低下などの問題を防止することができ、NOx等の排ガス処理設備が小さくて済む。また、焼結鉱の製造効率を高めて増産に対応することができる。   Therefore, problems such as oil condensation in the dust collector and a decrease in dust collection efficiency can be prevented, and the exhaust gas treatment equipment such as NOx can be made small. In addition, the production efficiency of sintered ore can be increased to cope with increased production.

さらに、焼結用固体燃料中に塊混入物が混入していないので、焼結工程で焼結層の最下層に塊の固体燃料が偏析することがなく、所定時間内で焼結反応を終了させることができる。   In addition, since no lump inclusions are mixed in the solid fuel for sintering, lump solid fuel does not segregate in the lowest layer of the sintered layer in the sintering process, and the sintering reaction is completed within a predetermined time. Can be made.

なお、安価で、水分、揮発成分及びNが多い、褐炭や亜瀝青炭のような劣質な石炭を原料として固体燃料を安価に製造することができるため、コークス原料として利用できない劣質な石炭資源の有効利用の点からも社会的意義が高い。   In addition, since solid fuel can be produced at low cost using inferior coal such as lignite and subbituminous coal, which is inexpensive, rich in moisture, volatile components, and N, the effectiveness of inferior coal resources that cannot be used as coke raw material The social significance is high in terms of use.

直径1.6m、機長22mの内燃式ロータリーキルンを用いて、以下の実験を行った。   The following experiment was conducted using an internal combustion rotary kiln having a diameter of 1.6 m and a length of 22 m.

比較例1では、VM含有量30%の一般炭(石炭焚きボイラーの燃焼用に使用される石炭)を粒径20mm以下の粒子が100%含まれるように粉砕した原料石炭を使用して、3t/hの供給速度でこの原料石炭をロータリーキルンに投入した。この原料石炭中の粒径500μm未満の石炭粒子の比率は、14質量%であった。加熱用の燃料として、300リットル/hの重油を燃料供給プローブ(燃料供給バーナー)よりロータリーキルン内に供給した。   In Comparative Example 1, using raw coal obtained by pulverizing steam coal having a VM content of 30% (coal used for combustion of a coal-fired boiler) so as to contain 100% of particles having a particle size of 20 mm or less, 3 t This raw coal was fed into the rotary kiln at a feed rate of / h. The ratio of coal particles having a particle size of less than 500 μm in the raw material coal was 14% by mass. As a heating fuel, 300 liter / h of heavy oil was supplied into a rotary kiln from a fuel supply probe (fuel supply burner).

重油(燃料)供給量に対応する燃焼空気量として、ロータリーキルン内に3000Nm/hの空気を供給した。この量は、重油(燃料)の燃焼に必要な理論空気量の1.2倍に相当する供給量であり、燃料からの煤の発生防止のために必要最低限の過剰空気を供給する条件である。As a combustion air amount corresponding to a heavy oil (fuel) supply amount, 3000 Nm 3 / h of air was supplied into the rotary kiln. This amount is a supply amount equivalent to 1.2 times the theoretical air amount necessary for combustion of heavy oil (fuel), and is based on the condition of supplying the minimum amount of excess air necessary to prevent the generation of soot from the fuel. is there.

実施例1では、比較例1と全く同じ石炭を用いて、重油(燃料)使用量を45リットル/hに低下させ、空気の供給量を5200Nm/hに増加させた。この場合、燃料である重油の燃焼に必要な理論空気量は、約420Nm/hであり、残りの約4780Nmの空気量は、成品チャー中の粒径250μmの微粉粒子の燃焼に必要な理論空気量である。この実施例1では、ロータリーキルン内の温度は、原料投入側で300℃、成品チャー排出側で1150℃であった。In Example 1, the same coal as in Comparative Example 1 was used, the amount of heavy oil (fuel) used was reduced to 45 liters / h, and the amount of air supplied was increased to 5200 Nm 3 / h. In this case, the theoretical amount of air required for combustion of the heavy oil as a fuel is about 420 nm 3 / h, the amount of air remaining around 4780Nm 3 is required for combustion of the pulverized particles having a particle size 250μm in finished product char Theoretical air volume. In Example 1, the temperature in the rotary kiln was 300 ° C. on the raw material input side and 1150 ° C. on the product char discharge side.

比較例2では、比較例1と同じ設備を用い、比較例1の乾留条件を一部変更した。すなわち、石炭原料の種類を変更し、乾留温度を低下させて乾留試験を行った。ここでは、原料石炭にVM含有量38%の亜瀝青炭を使用した。この原料石炭中の粒径500μm未満の石炭粒子の比率は、10質量%であった。さらに、重油(燃料)の供給量を230リットル/hに削減した。空気供給量は、理論空気量の1.2倍に相当する330Nm/hであった。In Comparative Example 2, the same equipment as Comparative Example 1 was used, and the dry distillation conditions of Comparative Example 1 were partially changed. That is, the type of coal raw material was changed and the dry distillation temperature was lowered to conduct the dry distillation test. Here, sub-bituminous coal having a VM content of 38% was used as raw coal. The ratio of coal particles having a particle size of less than 500 μm in the raw material coal was 10% by mass. Furthermore, the supply amount of heavy oil (fuel) was reduced to 230 liters / h. The air supply amount was 330 Nm 3 / h corresponding to 1.2 times the theoretical air amount.

実施例2では、比較例1と全く同じ石炭を用いて、重油(燃料)使用量を40リットル/hに低下させ、空気の供給量を2500Nm/hに増加させた。この場合、燃料である重油の燃焼に必要な理論空気量は、約370Nm/hであり、残りの空気量は、成品チャー中の粒径250μm未満の微粉粒子の燃焼に必要な理論空気量である。この実施例2では、ロータリーキルン内の温度は、原料投入側で300℃、成品チャー排出側で850℃であった。In Example 2, the same coal as in Comparative Example 1 was used, the amount of heavy oil (fuel) used was reduced to 40 liter / h, and the amount of air supplied was increased to 2500 Nm 3 / h. In this case, the theoretical air amount necessary for combustion of heavy oil as fuel is about 370 Nm 3 / h, and the remaining air amount is the theoretical air amount necessary for combustion of fine powder particles having a particle diameter of less than 250 μm in the product char. It is. In Example 2, the temperature in the rotary kiln was 300 ° C. on the raw material input side and 850 ° C. on the product char discharge side.

比較例1、2および実施例1、2で製造したチャーの粒度分布を表1に示す。成品チャー中の粒径250μm未満(−0.25mm)の微粉粒子の比率が、比較例では18〜30質量%であったが、実施例では著しく減少した(実施例1では1.9質量%、実施例2では3.8質量%)。   Table 1 shows the particle size distribution of the chars produced in Comparative Examples 1 and 2 and Examples 1 and 2. The ratio of fine particles having a particle size of less than 250 μm (−0.25 mm) in the product char was 18 to 30% by mass in the comparative example, but was significantly reduced in the example (1.9% by mass in Example 1). In Example 2, it is 3.8% by mass).

Figure 0004842410
Figure 0004842410

上記の成品チャーを使用して、直径300mmφ、高さ600mmの円筒形焼結試験装置を用いた焼結試験を行った。表2に示す各原料の配合率になるように、比較例1、比較例2、実施例1および実施例2の4種類のチャー(石炭乾留チャー)をその他の原料と配合して4種類の焼結原料を調製し、負圧15kPaの一定条件で焼成を行い、生産率、成品歩留および強度を測定した。   Using the above product char, a sintering test was performed using a cylindrical sintering test apparatus having a diameter of 300 mmφ and a height of 600 mm. Four types of chars (coal dry distillation char) of Comparative Example 1, Comparative Example 2, Example 1 and Example 2 were blended with other raw materials so that the mixing ratio of each raw material shown in Table 2 was obtained. A sintered raw material was prepared and fired under a constant condition of a negative pressure of 15 kPa, and the production rate, product yield, and strength were measured.

Figure 0004842410
Figure 0004842410

焼結試験の結果を表3に示す。粒径250μm未満の微粉粒子の比率が低い実施例1および実施例2のチャーを使用すると、比較例1および比較例2に比べて、20質量%以上の生産性向上(例えば、(実施例1の生産率38.6−比較例1の生産率31.4)/38.6≒0.2)を図れ、成品歩留ならびに成品の強度も大幅に向上した。   The results of the sintering test are shown in Table 3. When the chars of Example 1 and Example 2 having a low ratio of fine particles having a particle diameter of less than 250 μm are used, productivity improvement of 20% by mass or more compared to Comparative Example 1 and Comparative Example 2 (for example, (Example 1 The production rate 38.6) of Comparative Example 1 was 31.4) /38.6≈0.2), and the product yield and product strength were also greatly improved.

Figure 0004842410
Figure 0004842410

焼結工程における固体燃料の燃焼性を本質的に改善し、焼結鉱製造工程の生産性向上効果を得るために必要な品質を有する焼結用固体燃料の製造方法を提供することができる。   It is possible to provide a method for producing a solid fuel for sintering having a quality necessary for substantially improving the combustibility of the solid fuel in the sintering process and obtaining the productivity improvement effect in the sinter production process.

1 石炭ホッパー
2 切り出しコンベア
3 石炭投入口
4 ロータリーキルン
5 燃料供給バーナー(バーナー)
6 エアーコンプレッサー
7 冷却装置
8 排出コンベア
9 チャー(成品チャー)
10 排ガス燃焼炉
11 集塵機
12 廃熱回収ボイラー(ボイラー)
13 スタック(煙突)
DESCRIPTION OF SYMBOLS 1 Coal hopper 2 Cutting conveyor 3 Coal inlet 4 Rotary kiln 5 Fuel supply burner (burner)
6 Air compressor 7 Cooling device 8 Discharge conveyor 9 Char (product char)
10 Exhaust gas combustion furnace 11 Dust collector 12 Waste heat recovery boiler (boiler)
13 Stack (chimney)

Claims (5)

石炭をロータリーキルンにより300〜1150℃の温度範囲で加熱乾留することで、焼結用固体燃料として使用されるチャーを製造する焼結用固体燃料の製造方法であって、
前記ロータリーキルンの成品排出側から、燃料の燃焼に必要な理論燃焼空気量と、前記石炭から発生する粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量との合計量の90〜110%の範囲内の量の空気及び前記燃料を供給し、前記ロータリーキルン内で前記石炭から発生する粒径250μm未満の前記微粉粒子を燃焼により除去し、前記石炭を乾留する
ことを特徴とする焼結用固体燃料の製造方法。
A method for producing a solid fuel for sintering, in which char is used as a solid fuel for sintering by heat-drying coal in a temperature range of 300 to 1150 ° C. with a rotary kiln,
From the product discharge side of the rotary kiln, 90 to 110% of the total amount of theoretical combustion air necessary for fuel combustion and theoretical combustion air necessary for combustion of fine particles having a particle diameter of less than 250 μm generated from the coal The air and the fuel in an amount within the range are supplied, the fine particles having a particle size of less than 250 μm generated from the coal in the rotary kiln are removed by combustion, and the coal is dry-distilled. Solid fuel manufacturing method.
石炭をロータリーキルンにより300〜1150℃の温度範囲で加熱乾留することで、焼結用固体燃料として使用されるチャーを製造する焼結用固体燃料の製造方法であって、
前記ロータリーキルンの成品排出側から、前記石炭から発生する粒径250μm未満の微粉粒子の燃焼に必要な理論燃焼空気量の90〜110%の範囲内の量の空気を供給し、前記ロータリーキルン内で前記石炭から発生する粒径250μm未満の前記微粉粒子を燃焼により除去し、前記石炭を乾留する
ことを特徴とする焼結用固体燃料の製造方法。
A method for producing a solid fuel for sintering, in which char is used as a solid fuel for sintering by heat-drying coal in a temperature range of 300 to 1150 ° C. with a rotary kiln,
From the product discharge side of the rotary kiln, air is supplied in an amount in the range of 90 to 110% of the theoretical combustion air amount necessary for combustion of fine particles having a particle size of less than 250 μm generated from the coal, A method for producing a solid fuel for sintering, wherein the fine powder particles having a particle diameter of less than 250 μm generated from coal are removed by combustion, and the coal is subjected to dry distillation.
前記ロータリーキルンの成品排出側から、成品として排出されるチャー中に占める粒径250μm未満の微粉粒子の含有率を10質量%未満に調整することを特徴とする請求項1または2に記載の焼結用固体燃料の製造方法。  The sintering according to claim 1 or 2, wherein the content of fine particles having a particle size of less than 250 µm in the char discharged as a product is adjusted to less than 10% by mass from the product discharge side of the rotary kiln. Method for manufacturing solid fuel. 請求項1または2に記載の焼結用固体燃料の製造方法で製造したことを特徴とする焼結用固体燃料。  A solid fuel for sintering produced by the method for producing a solid fuel for sintering according to claim 1 or 2. 請求項4に記載の焼結用固体燃料を焼結原料中に配合することを特徴とする焼結鉱の製造方法。  A method for producing a sintered ore comprising mixing the solid fuel for sintering according to claim 4 in a sintering raw material.
JP2011527084A 2010-03-19 2011-03-18 Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same Active JP4842410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011527084A JP4842410B2 (en) 2010-03-19 2011-03-18 Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010064207 2010-03-19
JP2010064207 2010-03-19
JP2011527084A JP4842410B2 (en) 2010-03-19 2011-03-18 Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same
PCT/JP2011/056609 WO2011115262A1 (en) 2010-03-19 2011-03-18 Process for production of solid fuel for use in sintering, solid fuel for use in sintering, and process for manufacturing sintered ore using same

Publications (2)

Publication Number Publication Date
JP4842410B2 true JP4842410B2 (en) 2011-12-21
JPWO2011115262A1 JPWO2011115262A1 (en) 2013-07-04

Family

ID=44649342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011527084A Active JP4842410B2 (en) 2010-03-19 2011-03-18 Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same

Country Status (5)

Country Link
JP (1) JP4842410B2 (en)
KR (1) KR101220596B1 (en)
CN (1) CN102822317B (en)
BR (1) BR112012023439B1 (en)
WO (1) WO2011115262A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710037A (en) * 2013-12-20 2014-04-09 清华大学 Fluidized-bed low-rank coal upgrading utilization system and method
AU2019347405B2 (en) * 2018-09-27 2021-07-01 Kyushu Electric Power Co., Inc. Molded fuel and method for producing same
JP7397303B2 (en) 2019-12-27 2023-12-13 日本製鉄株式会社 Method for producing sintered ore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236295A (en) * 1988-03-16 1989-09-21 Kawasaki Steel Corp Preparation of powdery coke having desired particle size distribution
WO2010087468A1 (en) * 2009-02-02 2010-08-05 新日本製鐵株式会社 Carbonaceous material for sintering iron ore
JP2010209212A (en) * 2009-03-10 2010-09-24 Nippon Steel Corp Method for producing fuel charcoal material for sintering

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069771A (en) * 1992-08-17 1993-03-10 屈兴贵 Utilize sulfate slag to produce the new technology of iron-smelting raw material
JP3510408B2 (en) * 1995-12-11 2004-03-29 新日本製鐵株式会社 Method for producing coke for iron-containing metallurgy and iron-containing granulated product
KR100286675B1 (en) * 1996-12-12 2001-06-01 이구택 Method for sintering iron ore
JP2003328044A (en) * 2002-05-09 2003-11-19 Nippon Steel Corp Process for manufacturing sintered ore using biomass- derived carbide and downward suction machine for manufacturing sintered ore
JP4274880B2 (en) * 2003-09-11 2009-06-10 社団法人日本鉄鋼連盟 Reforming and pretreatment methods for coking coal for blast furnace coke production
CN101148695B (en) * 2007-11-13 2010-09-15 中国科学院过程工程研究所 Method for reducing NOx discharge in sintering process by using additive modified coke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236295A (en) * 1988-03-16 1989-09-21 Kawasaki Steel Corp Preparation of powdery coke having desired particle size distribution
WO2010087468A1 (en) * 2009-02-02 2010-08-05 新日本製鐵株式会社 Carbonaceous material for sintering iron ore
JP2010209212A (en) * 2009-03-10 2010-09-24 Nippon Steel Corp Method for producing fuel charcoal material for sintering

Also Published As

Publication number Publication date
KR20120115585A (en) 2012-10-18
CN102822317B (en) 2014-08-27
BR112012023439B1 (en) 2019-02-19
BR112012023439A2 (en) 2016-05-24
JPWO2011115262A1 (en) 2013-07-04
WO2011115262A1 (en) 2011-09-22
CN102822317A (en) 2012-12-12
KR101220596B1 (en) 2013-01-11

Similar Documents

Publication Publication Date Title
JP4893136B2 (en) Blast furnace operation method using woody biomass
JP2005274122A (en) Waste melting method using biomass
JP5786795B2 (en) Sinter ore production method using oil palm core shell coal
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
JP4837799B2 (en) Method for producing sintered ore
JP4842410B2 (en) Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same
JP2020186436A (en) Manufacturing method of sintered ore
JP5857618B2 (en) Method for producing sintered ore
JP5439830B2 (en) Method for producing fuel carbon material for sintering
JP6142765B2 (en) Method for producing sintered ore
JP4681688B2 (en) Iron ore sintering carbon
CN103370396A (en) Method for manufacturing partially carbonized coal briquettes, apparatus for manufacturing partially carbonized coal briquettes, and apparatus for manufacturing molten iron
JP5929489B2 (en) Manufacturing method of oil palm core shell charcoal
JP5412940B2 (en) Method for producing a coagulation material for sinter production
JP5862515B2 (en) Blast furnace operation method using oil palm core shell coal.
KR101597716B1 (en) Method for preparation of mixing powdered coal
JP6167851B2 (en) Method for producing coconut shell charcoal
JP7397303B2 (en) Method for producing sintered ore
JP7143714B2 (en) Method for producing carbon material for sintering, method for selecting raw material for carbon material for sintering, and method for producing sintered ore
JP6521259B2 (en) Method of producing sintering material for producing sintered ore
Boiko et al. THE ORGANIZATION OF IRON ORE AGGLOMERATE AND PELLETS PRODUCTION WITH REDUCED ENVIRONMENTAL IMPACT
JP5929491B2 (en) Effective utilization of oil palm core
KR20170103503A (en) Sintering method and apparatus

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R151 Written notification of patent or utility model registration

Ref document number: 4842410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350