JP2018003081A - Manufacturing method of sinter raw material for manufacturing sintered ore - Google Patents

Manufacturing method of sinter raw material for manufacturing sintered ore Download PDF

Info

Publication number
JP2018003081A
JP2018003081A JP2016129842A JP2016129842A JP2018003081A JP 2018003081 A JP2018003081 A JP 2018003081A JP 2016129842 A JP2016129842 A JP 2016129842A JP 2016129842 A JP2016129842 A JP 2016129842A JP 2018003081 A JP2018003081 A JP 2018003081A
Authority
JP
Japan
Prior art keywords
raw material
sintered
sintering
granulation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016129842A
Other languages
Japanese (ja)
Other versions
JP6521259B2 (en
Inventor
友司 岩見
Tomoji Iwami
友司 岩見
山本 哲也
Tetsuya Yamamoto
哲也 山本
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
大山 伸幸
Nobuyuki Oyama
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016129842A priority Critical patent/JP6521259B2/en
Priority to PCT/JP2017/022975 priority patent/WO2018003648A1/en
Publication of JP2018003081A publication Critical patent/JP2018003081A/en
Priority to PH12018550208A priority patent/PH12018550208A1/en
Application granted granted Critical
Publication of JP6521259B2 publication Critical patent/JP6521259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a sinter raw material for manufacturing a sintered ore capable of providing the sinter raw material which can increase particle size of granulation particles and enhance combustion property of a carbonaceous material.SOLUTION: There is provided a manufacturing method of a sinter raw material containing a carbonaceous material used for manufacturing a sintered ore, a carbonaceous material having a volatile component of 10 mass% or less is used as the carbonaceous material, the sinter raw material for manufacturing the sintered ore is obtained by adding the carbonaceous material during granulation of the sinter raw material other than the carbonaceous material or after granulation of the sinter raw material other than the carbonaceous material.SELECTED DRAWING: Figure 1

Description

本発明は、焼結鉱の製造に用いる焼結原料の製造方法に関するものである。   The present invention relates to a method for producing a sintered raw material used for producing sintered ore.

高炉製銑法の主原料である焼結鉱は、一般に、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉、石灰石及びドロマイトなどの副原料、粉コークスや無煙炭などの炭材(固体燃料)を原料として無端移動床型火格子式焼結機であるドワイトロイド(DL)焼結機(以下、単に「焼結機」と記載する。)を用いて製造される。焼結鉱の焼結原料は、ドラムミキサー等により適量の水を加えながら混合、続いて造粒され、3.0〜6.0mmの平均径を有する擬似粒子として焼結原料が形成される。形成された焼結原料は、乾燥後、焼結機の無端移動式のパレット上に装入され、焼結ベッドとも呼ばれる装入層が形成される。装入層の厚さ(高さ)は400〜800mm前後である。その後、装入層の上方に設置された点火炉により、この装入層中の炭材に点火する。パレットの下に配設されているウインドボックスを介して装入層中の空気を下方に吸引することにより、装入層中の炭材は順次に燃焼し、その燃焼はパレットの移動につれて次第に下層にかつ前方に進行する。このときに発生する燃焼熱によって、焼結原料が燃焼、溶融し、焼結ケーキが生成する。その後、得られた焼結ケーキは、破砕後クーラーで冷却されて、整粒され、所定粒度(例えば、5.0mm以上)の塊成物からなる成品焼結鉱として回収される。   Sintered ore, which is the main raw material for blast furnace ironmaking, is generally composed of iron ore powder, recovered powder in steelworks, secondary raw materials such as sinter ore powder, limestone and dolomite, and carbonaceous materials (solid fuel ) As a raw material, a Dwytroid (DL) sintering machine (hereinafter simply referred to as “sintering machine”), which is an endless moving bed grate-type sintering machine. The sintered raw material of the sintered ore is mixed and then granulated while adding an appropriate amount of water by a drum mixer or the like, and the sintered raw material is formed as pseudo particles having an average diameter of 3.0 to 6.0 mm. The formed sintering raw material is dried and then charged onto an endless moving pallet of a sintering machine to form a charging layer called a sintering bed. The thickness (height) of the charging layer is about 400 to 800 mm. Thereafter, the carbon material in the charging layer is ignited by an ignition furnace installed above the charging layer. By sucking the air in the charging layer downward through the wind box arranged under the pallet, the carbonaceous material in the charging layer burns sequentially, and the combustion gradually becomes lower as the pallet moves. Go forward and forward. Due to the combustion heat generated at this time, the sintered raw material is burned and melted to produce a sintered cake. Thereafter, the obtained sintered cake is cooled by a cooler after crushing, sized, and recovered as a product sintered ore composed of agglomerates having a predetermined particle size (for example, 5.0 mm or more).

焼結機の生産量(t/hr)は、一般に、焼結生産率(t/hr・m)×焼結機面積(m)により決定される。即ち、焼結機の生産量は、焼結機の機幅や機長、原料堆積層の厚さ(装入層厚さ)、焼結原料の嵩密度、焼結(燃焼)時間、歩留などにより変化する。そして、焼結鉱の生産量を増加させるには、装入層の通気性(圧損)を改善して焼結時間を短縮する、あるいは、破砕前の焼結ケーキの冷間強度を高めて歩留を向上することなどが有効であると考えられている。一般の焼結操業では、装入層中の炭材の量を増減することで、焼結層内の温度を制御し、冷間強度、歩留の向上を実践している。 The production amount (t / hr) of the sintering machine is generally determined by the sintering production rate (t / hr · m 2 ) × sintering machine area (m 2 ). That is, the production volume of the sintering machine includes the machine width and length of the sintering machine, the thickness of the raw material deposition layer (charge layer thickness), the bulk density of the sintering raw material, the sintering (combustion) time, the yield, etc. It depends on. In order to increase the production of sintered ore, the air permeability (pressure loss) of the charging layer is improved to shorten the sintering time, or the cold strength of the sintered cake before crushing is increased. It is considered effective to improve the retention. In a general sintering operation, the temperature in the sintered layer is controlled by increasing / decreasing the amount of the carbonaceous material in the charging layer, thereby improving the cold strength and the yield.

焼結工程で使用される炭材は主に粉コークスである。コークスは粘結炭等の石炭をコークス炉で乾留し、揮発分を取り除き、燃焼熱を高めたものであり、この中で比較的粒度が小さいものが焼結用の粉コークスとして使用される。石炭をそのまま使用すると、発熱量が小さく、多くの石炭が必要になることや、焼結反応中に揮発分が放散、もしくは燃焼し、排出されるガスの大規模な処理設備が必要になる。   The carbonaceous material used in the sintering process is mainly powdered coke. Coke is obtained by carbonizing coal such as caking coal in a coke oven to remove volatile components and increasing combustion heat. Among them, the one having a relatively small particle size is used as the powder coke for sintering. If the coal is used as it is, the calorific value is small and a large amount of coal is required, and a large-scale treatment facility for the gas emitted by the volatile matter being diffused or burned during the sintering reaction is required.

しかし、コークス炉が無い工場、または、コークス炉の生産能力が低い工場では、コークスの代替として無煙炭を用いることがある。以下の表1に代表的なコークスと無煙炭、一般的な石炭の成分を示す。コークスの原料となる粘結炭や発電等に使用される一般炭は揮発分が高く、そのまま焼結工程に使用することはできない。無煙炭は揮発分を殆ど含まない石炭であり、焼結工程においても唯一使用できる炭種として挙げられる。また、褐炭は非常に高い揮発分、少ない炭素量から、現在までに余り使用されていない。   However, anthracite coal may be used as a substitute for coke in a factory without a coke oven or a factory with a low production capacity of a coke oven. Table 1 below shows typical coke, anthracite, and general coal components. Coking coal, which is a raw material for coke, and steaming coal used for power generation, etc., have a high volatile content and cannot be used as it is in the sintering process. Anthracite is a coal that contains almost no volatile matter, and is the only coal that can be used in the sintering process. Also, lignite has not been used so far due to its very high volatile content and low carbon content.

Figure 2018003081
Figure 2018003081

近年、新興国の発展に伴い、無煙炭の使用量が増加し、無煙炭の高騰、また、市場に出回る無煙炭の量自体が少なくなっており、焼結で使用する無煙炭の入手が困難となっている。   In recent years, with the development of emerging countries, the use of anthracite has increased, the anthracite coal has soared, and the amount of anthracite on the market itself has decreased, making it difficult to obtain anthracite for use in sintering. .

こうした問題点に鑑み、低品位の石炭チャーを使用する焼結方法が提案されている。例えば、特許文献1は、褐炭又は非粘結の亜瀝青炭の少なくともいずれかを熱分解し、揮発分を5.1mass%以下まで低下させたものを焼結原料として使用している。   In view of these problems, a sintering method using low quality coal char has been proposed. For example, Patent Document 1 uses, as a sintering raw material, a material obtained by pyrolyzing at least one of lignite or non-caking sub-bituminous coal and reducing the volatile content to 5.1 mass% or less.

また、特許文献2では低品位炭から発生する250μm以下の微粉が焼結工程において問題となることを懸念し、熱処理の際に雰囲気中の空気量を調整し、微粉のみを燃焼させる方法が提案されている。   Further, Patent Document 2 is concerned that fine powder of 250 μm or less generated from low-grade coal will cause a problem in the sintering process, and proposes a method of adjusting the amount of air in the atmosphere during heat treatment and burning only the fine powder. Has been.

さらに、特許文献3では、熱分解して得られた石炭チャーの強度が低いことを懸念し、得られた石炭チャーに焼結で使用できるマイクロストレングスの範囲を提示し、その範囲の石炭チャーを使用する方法を提案している。   Furthermore, Patent Document 3 is concerned that the strength of coal char obtained by pyrolysis is low, and presents a range of micro-strength that can be used for sintering to the obtained coal char. Proposed method to use.

特許第5412940号明細書Japanese Patent No. 5412940 特許第4842410号明細書Japanese Patent No. 4842410 特開2014−133937号公報JP 2014-133937 A

上記のように、低品位炭を熱分解して使用する焼結方法が提案されている。しかし、上記方法では低品位炭を熱分解することによる微粉の発生や強度の低下を選別することで解決するものであり、熱分解した石炭チャー全てを使用することができなかった。   As described above, a sintering method in which low-grade coal is pyrolyzed and used has been proposed. However, the above method solves the problem by selecting the generation of fine powder and the decrease in strength caused by pyrolyzing low-grade coal, and it was not possible to use all the pyrolyzed coal char.

本発明の目的は、褐炭などを熱分解した石炭チャーを用いた場合でも、造粒粒子の粒度を高めるとともに炭材の燃焼性を向上できる焼結原料を得ることができ、得られた焼結原料を用いて焼結鉱を製造することで焼結鉱の燃焼歩留りおよび生産率を高めることができる、焼結鉱製造用焼結原料の製造方法を提案することにある。   The object of the present invention is to obtain a sintered raw material that can increase the particle size of the granulated particles and improve the combustibility of the carbonaceous material even when using coal char obtained by pyrolyzing lignite and the like, and obtained sintering An object of the present invention is to propose a method for producing a sintered raw material for producing sintered ore, which can increase the combustion yield and production rate of the sintered ore by producing the sintered ore using the raw material.

上述した従来技術が抱えている課題について鋭意検討を重ねた結果、発明者らは、炭材として褐炭などの揮発分を10mass%以下まで低減させた石炭チャーを用いること、および、炭材以外の焼結原料の造粒中、もしくは、炭材以外の焼結原料の造粒後、炭材を添加すること、の効果により、造粒粒子の粒度を高めるとともに炭材の燃焼性を向上できる焼結原料を得ることができることを突き止めて、本発明を開発した。   As a result of intensive studies on the problems of the above-described conventional technology, the inventors have used coal char whose volatile content such as lignite has been reduced to 10 mass% or less as the charcoal, and other than charcoal. Due to the effect of adding carbonaceous material during granulation of sintered raw material or after granulating sintered raw material other than carbonaceous material, it is possible to increase the particle size of the granulated particles and improve the combustibility of the carbonaceous material. The present invention was developed by ascertaining that a raw material for binding could be obtained.

即ち、本発明は、焼結鉱の製造に用いる焼結原料の製造方法であって、炭材を含む焼結原料の製造方法において、前記炭材として揮発分が10mass%以下の炭材を用い、前記炭材以外の焼結原料の造粒中、もしくは、前記炭材以外の焼結原料の造粒後、前記炭材を添加することを特徴とする焼結鉱製造用焼結原料の製造方法にある。   That is, this invention is a manufacturing method of the sintering raw material used for manufacture of a sintered ore, Comprising: In the manufacturing method of the sintering raw material containing a carbon material, the volatile matter uses a carbon material whose volatile matter is 10 mass% or less as said carbon material. In addition, during the granulation of a sintered raw material other than the carbonaceous material, or after the granulation of a sintered raw material other than the carbonaceous material, the carbonaceous material is added to produce a sintered raw material for sinter production Is in the way.

なお、前記のように構成される本発明に係る焼結鉱製造用焼結原料の製造方法においては、
(1)前記炭材として褐炭の揮発分を10mass%以下まで低減させた石炭チャーを用いること、
(2)前記炭材の添加時期を、前記炭材以外の焼結原料の全造粒時間(100%)に対し、前記炭材の添加後造粒時間が60%以下となるようにすること、
(3)前記炭材の添加時期を、前記炭材以外の焼結原料の全造粒時間(100%)に対し、前記炭材の添加後造粒時間が20〜40%となるようにすること、
がより好ましい解決手段となるものと考えられる。
In the method for producing a sintered raw material for producing sintered ore according to the present invention configured as described above,
(1) Use coal char in which the volatile content of lignite is reduced to 10 mass% or less as the carbon material,
(2) The addition time of the carbon material is set so that the granulation time after addition of the carbon material is 60% or less with respect to the total granulation time (100%) of the sintering raw material other than the carbon material. ,
(3) The addition time of the carbon material is set such that the granulation time after addition of the carbon material is 20 to 40% with respect to the total granulation time (100%) of the sintering raw material other than the carbon material. about,
Is considered to be a more preferable solution.

本発明によれば、揮発分が10mass%以下の炭材を用いるか、褐炭などを熱分解し、揮発分を無煙炭と同様のレベルである10mass%以下まで低下させた炭材を用いることにより、焼結層内における褐炭からの揮発分の揮発による吸熱反応を抑制し、かつ焼結排ガスの大規模な浄化設備が不要となるとともに、この石炭チャーは一般の石炭と異なり、酸素官能基が多いため親水性であることから、水を用いた焼結原料の造粒中、もしくは造粒後に混合することで、造粒粒子の外周に炭材の層を形成し、造粒粒子の粒度を高めることができ、通気性改善による焼結生産性の向上を享受することができる。また、褐炭は非常に燃焼しやすい炭材であることから、造粒粒子の外周に賦存することによる炭材の燃焼性向上の効果を助長することが可能となる。   According to the present invention, by using a carbon material having a volatile content of 10 mass% or less, or by thermally decomposing lignite and reducing the volatile content to 10 mass% or less, which is the same level as anthracite, Suppressing endothermic reaction due to volatilization of volatile matter from lignite in the sintered layer and eliminating the need for large-scale purification equipment for sintered exhaust gas, this coal char has many oxygen functional groups unlike ordinary coal Therefore, because it is hydrophilic, it is mixed during or after granulation of the sintering raw material using water to form a carbonaceous material layer on the outer periphery of the granulated particle and increase the particle size of the granulated particle Therefore, it is possible to enjoy the improvement of the sintering productivity by improving the air permeability. Moreover, since lignite is a charcoal material that is very easily combusted, it is possible to promote the effect of improving the combustibility of the charcoal material by being present on the outer periphery of the granulated particles.

(a)、(b)は、それぞれ、本発明の焼結鉱製造用焼結原料の製造方法の一例を説明するためのフローチャートである。(A), (b) is a flowchart for demonstrating an example of the manufacturing method of the sintering raw material for sinter ore manufacture of this invention, respectively. 焼結原料を得る際の炭材の添加時期と疑似粒子調和平均径との関係を示すグラフである。It is a graph which shows the relationship between the addition time of the carbonaceous material at the time of obtaining a sintering raw material, and a quasi-particle harmonic average diameter. 焼結原料を得る際の炭材の添加時期と得られた焼結原料を使用して焼結鉱を製造した際の焼結歩留りとの関係を示すグラフである。It is a graph which shows the relationship between the addition time of the carbonaceous material at the time of obtaining a sintering raw material, and the sintering yield at the time of manufacturing a sintered ore using the obtained sintering raw material. 焼結原料を得る際の炭材の添加時期と得られた焼結原料を使用して焼結鉱を製造した際の生産率との関係を示すグラフである。It is a graph which shows the relationship between the addition time of the carbonaceous material at the time of obtaining a sintering raw material, and the production rate at the time of manufacturing a sintered ore using the obtained sintering raw material. 焼結原料を得る際の炭材の添加時期と得られた焼結原料を使用して焼結鉱(揮発分を変えた褐炭改質炭)を製造した際の生産率との関係を示すグラフである。The graph which shows the relationship between the addition rate of the carbonaceous material when obtaining the sintered raw material and the production rate when producing the sintered ore (modified lignite with different volatile content) using the obtained sintered raw material It is.

図1(a)、(b)は、それぞれ、本発明の焼結鉱製造用焼結原料の製造方法の一例を説明するためのフローチャートである。以下、図1(a)、(b)を参考にして、本発明の焼結鉱製造用焼結原料の製造方法を説明する。   FIGS. 1A and 1B are flowcharts for explaining an example of a method for producing a sintered raw material for producing sinter according to the present invention. Hereinafter, with reference to FIG. 1 (a), (b), the manufacturing method of the sintering raw material for sintered ore manufacture of this invention is demonstrated.

図1(a)に示す例では、まず、揮発分が10mass%以下の炭材または褐炭などの揮発分を10mass%以下まで低減させた石炭チャーからなる炭材と、炭材以外の焼結原料、例えば、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉、石灰石及びドロマイトなどの副原料を準備する。次に、炭材以外の焼結原料を、ドラムミキサー等により適量の水を加えながら混合して造粒する。図1(a)に示す例では、この造粒過程において炭材を添加し、さらに造粒を所定時間続ける。これにより、本発明の焼結鉱製造用焼結原料を得ることができる。   In the example shown in FIG. 1 (a), first, a carbonaceous material having a volatile content of 10 mass% or less or a coal char made of coal char with a volatile content such as lignite reduced to 10 mass% or less, and a sintered raw material other than the carbonaceous material. For example, auxiliary raw materials such as iron ore powder, iron mill recovered powder, sintered ore sieve powder, limestone and dolomite are prepared. Next, a sintered raw material other than the carbonaceous material is mixed and granulated while adding an appropriate amount of water using a drum mixer or the like. In the example shown in FIG. 1 (a), carbonaceous material is added in this granulation process, and granulation is continued for a predetermined time. Thereby, the sintering raw material for sinter ore manufacture of this invention can be obtained.

図1(b)に示す例では、まず、図1(a)に示す例と同様に、揮発分が10mass%以下の炭材または褐炭などの揮発分を10mass%以下まで低減させた石炭チャーからなる炭材と、炭材以外の焼結原料、例えば、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉、石灰石及びドロマイトなどの副原料を準備する。次に、炭材以外の焼結原料を、ドラムミキサー等により適量の水を加えながら混合して造粒する。図1(b)に示す例では、この所定時間の造粒終了後、炭材を添加して焼結鉱製造用焼結原料を得ることができる。   In the example shown in FIG. 1 (b), first, from the coal char in which the volatile matter such as a carbonaceous material or lignite having a volatile content of 10% by mass or less is reduced to 10% by mass or less, as in the example shown in FIG. 1 (a). And carbonaceous materials, and sintering raw materials other than the carbonaceous materials, for example, iron ore powder, iron mill recovered powder, sintered ore sieve powder, limestone and dolomite are prepared. Next, a sintered raw material other than the carbonaceous material is mixed and granulated while adding an appropriate amount of water using a drum mixer or the like. In the example shown in FIG. 1 (b), after completion of the granulation for a predetermined time, a carbonaceous material can be added to obtain a sintered raw material for producing a sintered ore.

いずれの例においても、揮発分が10mass%以下の炭材または褐炭などの揮発分を10mass%以下まで低減させた石炭チャーよりなる炭材を、水を用いた炭材以外の焼結原料の造粒中もしくは造粒後に混合することで、造粒粒子の外周に炭材の層を形成し、造粒粒子の粒度を高めることができ、通気性改善による焼結生産性の向上を享受することができる。また、褐炭は非常に燃焼しやすい炭材であることから、造粒粒子の外周に賦存することによる炭材の燃焼性向上の効果を助長することが可能となる。   In any example, a carbon material made of coal char having a volatile content of 10 mass% or less or a volatile content such as lignite having a volatile content reduced to 10 mass% or less is used to produce a sintered raw material other than a carbon material using water. By mixing in the granule or after granulation, a layer of carbon material can be formed on the outer periphery of the granulated particle, the granulated particle size can be increased, and improvement in sintering productivity by improving air permeability can be enjoyed Can do. Moreover, since lignite is a charcoal material that is very easily combusted, it is possible to promote the effect of improving the combustibility of the charcoal material by being present on the outer periphery of the granulated particles.

本発明において、褐炭などの揮発分が10mass%以下の炭材を使用する場合、炭材として褐炭の揮発分を10mass%以下まで低減させた石炭チャーを用いるのが好ましいのは、無煙炭と同様のレベルである10mass%以下まで低下させることにより、焼結層内における褐炭からの揮発分の揮発による吸熱反応を抑制し、かつ焼結排ガスの大規模な浄化設備が不要となるとともに、この石炭チャーは一般の石炭と異なり、酸素官能基が多いため親水性であることから、水を用いた焼結原料の造粒中、もしくは造粒後に混合することで、造粒粒子の外周に炭材の層を形成し、造粒粒子の粒度を高めることができ、通気性改善による焼結生産性の向上を享受することができるためである。   In the present invention, when using a charcoal having a volatile content such as lignite of 10 mass% or less, it is preferable to use a coal char in which the volatile content of the lignite is reduced to 10 mass% or less as the charcoal. By reducing the level to 10 mass% or less, the endothermic reaction due to the volatilization of volatile matter from the lignite in the sintered layer is suppressed, and a large-scale purification facility for the sintered exhaust gas becomes unnecessary. Is different from ordinary coal because it has many oxygen functional groups and is hydrophilic. By mixing during or after granulation of the sintering raw material using water, This is because the layer can be formed, the particle size of the granulated particles can be increased, and the improvement of the sintering productivity by improving the air permeability can be enjoyed.

なお、本発明では、炭材として褐炭を用いる場合は、褐炭の揮発分は約40mass%であり、その揮発分を10mass%以下とした石炭チャーを使用する。本発明において、褐炭の揮発分を10mass%以下とする方法は、従来から知られているいずれの方法をもとることができ、例えば熱分解による方法を採用することができる。   In addition, in this invention, when using lignite as a carbon material, the volatile matter of lignite is about 40 mass%, and the coal char which made the volatile content 10 mass% or less is used. In the present invention, as a method for setting the volatile content of lignite to 10 mass% or less, any conventionally known method can be used. For example, a method by thermal decomposition can be adopted.

また、造粒中の炭材の添加時期については、炭材以外の焼結原料の全造粒時間(100%)に対し、炭材の添加後造粒時間が60%以下となるようにすることが好ましい。さらに、本発明の焼結原料を使用して焼結鉱を得る方法については、焼結機が下方吸引式のドワイトロイド(DL)焼結機であることが好ましい。   Moreover, about the addition time of the carbonaceous material during granulation, it is made for the granulation time after addition of a carbonaceous material to be 60% or less with respect to the total granulation time (100%) of sintering raw materials other than a carbonaceous material. It is preferable. Furthermore, about the method of obtaining a sintered ore using the sintering raw material of this invention, it is preferable that a sintering machine is a downward suction-type dwy toroid (DL) sintering machine.

以下に、本発明に係る実施例、および比較例を示す。   Examples according to the present invention and comparative examples are shown below.

<実験例1>
直径が1mのラボドラムミキサーを用いて造粒試験を行った。実験には3種の炭材(コークスC(揮発分:1mass%)、無煙炭A(揮発分:10mass%)、褐炭改質炭B(揮発分:5mass%)を用意し、粒度分布が同じとなるように調整した。同一種の鉄鉱石粉を用意し、ドラムミキサーに装入した後、炭材の添加タイミングを変更することで、造粒試験を行った。表2に実験条件を示す。
<Experimental example 1>
A granulation test was conducted using a laboratory drum mixer having a diameter of 1 m. Three types of charcoal (Coke C (volatile content: 1 mass%), anthracite coal A (volatile content: 10 mass%), and brown coal modified coal B (volatile content: 5 mass%) are prepared for the experiment, and the particle size distribution is the same. After preparing the same type of iron ore powder and charging it into a drum mixer, a granulation test was conducted by changing the timing of adding the carbonaceous material, and Table 2 shows the experimental conditions.

Figure 2018003081
Figure 2018003081

条件Cでは炭材としてコークス、条件Aでは無煙炭、条件Bでは褐炭改質炭を使用している。本試験では条件として(添加後造粒時間/全造粒時間)を変更した。例えば、C1、A1、B1の条件では(添加後造粒時間/全造粒時間)が100%となっており、あらかじめ鉄鉱石粉と炭材を混合し、ドラムミキサーで造粒を行っている。C2、A2、B2の条件では鉄鉱石粉のみを全造粒時間の40%分造粒し、ここで炭材をドラムミキサーに加え、残りの造粒時間の60%を造粒している。C5,A5、B5の条件では鉄鉱石粉のみで造粒だけを完了し、それに炭材を混合しただけのものである。   In condition C, coke is used as the carbon material, in condition A, anthracite coal is used, and in condition B, lignite-modified coal is used. In this test, the conditions (post-addition granulation time / total granulation time) were changed. For example, under the conditions of C1, A1, and B1, (post-addition granulation time / total granulation time) is 100%, and iron ore powder and carbonaceous material are mixed in advance and granulated by a drum mixer. Under the conditions of C2, A2, and B2, only iron ore powder is granulated for 40% of the total granulation time, and here the carbonaceous material is added to the drum mixer, and 60% of the remaining granulation time is granulated. Under the conditions of C5, A5, and B5, only granulation is completed with only iron ore powder, and carbon material is mixed with it.

上記の造粒物(焼結原料)を使用し、直径300mm、層高400mmの焼結試験装置を用いて、焼結鉱製造試験を実施した。また、造粒物に関しては事前に粒度分布を測定し、調和平均径を算出している。原料の装入量は約45kgであり、床敷き鉱を20mm分の厚みまで装入している。点火時間は30秒、吸引差圧6.9kPaで実験を実施した。   Using the above granulated material (sintered raw material), a sintered ore production test was performed using a sintering test apparatus having a diameter of 300 mm and a layer height of 400 mm. Moreover, regarding the granulated product, the particle size distribution is measured in advance, and the harmonic mean diameter is calculated. The raw material charging amount is about 45 kg, and the floor covering ore is charged to a thickness of 20 mm. The experiment was performed with an ignition time of 30 seconds and a suction differential pressure of 6.9 kPa.

図2に造粒試験における疑似粒子の調和平均径比較を示す。調和平均径が大きい程通気性改善による焼結生産性の向上させることを可能とできる。あらかじめ炭材を混合した(添加後造粒時間/全造粒時間)=100%の条件においても褐炭改質炭を使用した条件で、疑似粒子径が大きい。(添加後造粒時間/全造粒時間)=60%、40%、20%の条件では、全ての炭材種において疑似粒子径が大きくなっているが、褐炭改質炭を使用した条件(実施例B2〜B4)の疑似粒子径が他と比較して非常に大きくなっている。また、(添加後造粒時間/全造粒時間)=0%の条件ではコークス、無煙炭を使用した条件(実施例C5、実施例A5)で疑似粒子径が大きく低下しているのに対し、褐炭改質炭を使用した条件(実施例B5)では大幅な疑似粒子径の低下は見られない。この褐炭改質炭は一般の石炭と異なり、酸素官能基が多いため親水性であることから、水を用いた焼結原料の造粒中、もしくは造粒後に混合することで、造粒粒子の外周に炭材の層を形成し、造粒粒子の粒径を大きくすることができたと考えらえる。   FIG. 2 shows a comparison of harmonic mean diameters of pseudo particles in the granulation test. It is possible to improve the sintering productivity by improving the air permeability as the harmonic average diameter is larger. The pseudo particle diameter is large under the condition of using the lignite-modified coal even under the condition that the carbonaceous material is mixed in advance (granulation time after addition / total granulation time) = 100%. (Post-addition granulation time / total granulation time) = 60%, 40%, and 20%, the pseudo particle diameter is increased in all types of carbonaceous material, but the conditions using lignite-modified coal ( The pseudo particle size of Examples B2 to B4) is very large compared to the others. In addition, in the condition of (post-addition granulation time / total granulation time) = 0%, the pseudo particle diameter is greatly reduced under the conditions using coke and anthracite (Example C5, Example A5), Under the conditions using the lignite-modified coal (Example B5), there is no significant decrease in the pseudo particle size. Unlike ordinary coal, this modified lignite coal is hydrophilic because it has many oxygen functional groups, so mixing it during or after granulation of the sintering raw material using water, It is considered that a carbonaceous material layer was formed on the outer periphery, and the particle size of the granulated particles could be increased.

図3に焼結鉱製造試験における焼結歩留の結果を示す。本試験において焼結歩留は、焼結後の全試料を2mの高さから1回落下させた際の10mm以上の比率を示している。図より、全ての条件において、コークスを使用したものが最も高い焼結歩留を示した。(添加後造粒時間/全造粒時間)=100%の条件では、無煙炭を使用した条件と褐炭改質炭を使用した条件でほぼ同等の焼結歩留を示しているが、(添加後造粒時間/全造粒時間)=60%、40%、20%、0%の条件(実施例B2〜B5)において、無煙炭を使用した条件と比較して焼結歩留が大幅に増加した。   FIG. 3 shows the result of the sintering yield in the sinter production test. In this test, the sintering yield indicates a ratio of 10 mm or more when all the sintered samples are dropped once from a height of 2 m. From the figure, under all conditions, the one using coke showed the highest sintering yield. (Additional granulation time / total granulation time) = 100% condition shows almost the same sintering yield under conditions using anthracite and lignite modified coal, (Granulation time / total granulation time) = 60%, 40%, 20%, 0% (Examples B2 to B5), the sintering yield was significantly increased compared to the conditions using anthracite. .

図4に焼結鉱製造試験における生産率の結果を示す。図より、(添加後造粒時間/全造粒時間)=100%、60%、40%、20%の条件では、コークスを使用した条件が高い生産率を示している。一方、(添加後造粒時間/全造粒時間)=60%、40%、20%の条件では、褐炭改質炭を使用した条件(実施例B2〜B4)で大幅に生産率が向上し、コークスを使用した条件と同等の生産率にまで達している。   FIG. 4 shows the results of the production rate in the sinter production test. From the figure, under the conditions of (granulation time after addition / total granulation time) = 100%, 60%, 40%, 20%, the conditions using coke show a high production rate. On the other hand, under the conditions of (granulation time after addition / total granulation time) = 60%, 40%, 20%, the production rate is greatly improved under the conditions using lignite-modified coal (Examples B2 to B4). The production rate is equivalent to the conditions using coke.

<実験例2>
次に熱分解反応を制御し、褐炭の揮発分を10mass%、15mass%に調整した褐炭改質炭を用いて実験例1と同様の実験を行った。表3に実験条件を示す。
<Experimental example 2>
Next, the pyrolysis reaction was controlled, and the same experiment as Experimental Example 1 was performed using lignite-modified coal in which the volatile content of lignite was adjusted to 10 mass% and 15 mass%. Table 3 shows the experimental conditions.

Figure 2018003081
Figure 2018003081

図5に焼結鉱製造試験における生産率の結果を示す。図中には、実験例1で実験した5mass%の褐炭改質炭を用いた実験の結果を載せている。揮発分10mass%の条件では、いずれも揮発分5mass%の条件と比較して生産率が低くなった。これは揮発分の揮発による吸熱反応により、揮発分5mass%の条件と比較して熱不足になったため、歩留が低下したことと、タール等の揮発した成分が排ガスの集塵フィルターの目を一部閉塞したことによる圧損の増加によるものである。また、揮発分15mass%の条件では、集塵フィルターが殆どの目を閉塞してしまい、大幅に風量が低下したことによる焼結時間の延長に起因している。また、揮発分15mass%の条件では、風量の低下に伴い、十分な酸素が供給されなくなり、一部失火している場所も見受けられた。   FIG. 5 shows the result of the production rate in the sinter production test. In the figure, the result of the experiment using the 5 mass% brown coal modified coal experimented in Experimental Example 1 is listed. Under the condition of volatile content of 10 mass%, the production rate was lower than that of the condition of volatile content of 5 mass%. This is due to the endothermic reaction caused by the volatilization of the volatile matter, resulting in a lack of heat compared to the condition of 5 mass% of the volatile matter. This is due to an increase in pressure loss due to partial blockage. Also, under the condition of volatile content of 15 mass%, the dust collection filter closes most of the eyes, which is due to the extension of the sintering time due to a significant reduction in the air volume. Further, under the condition of volatile content of 15 mass%, with the decrease in air volume, sufficient oxygen was not supplied, and there were some places where misfires occurred.

以上のことから、本発明において、炭材として、揮発分10mass%以下の炭材または褐炭などの揮発分を10mass%以下まで低減させた石炭チャーからなる炭材を用い、炭材以外の焼結原料の造粒中、もしくは、炭材以外の焼結原料の造粒後、炭材を添加することが必要であることがわかる。また、炭材の添加時期として、炭材の添加時期を、炭材以外の焼結原料の全造粒時間(100%)に対し、炭材の添加後造粒時間が60%以下となるようにすること、が好ましいことがわかる。さらに、炭材の添加時期を、炭材以外の焼結原料の全造粒時間(100%)に対し、炭材の添加後造粒時間が20〜40%となるようにすること、がさらに好ましいことがわかる。   From the above, in the present invention, as a carbon material, a carbon material consisting of a char material having a volatile content of 10 mass% or less or a coal char in which a volatile content such as lignite is reduced to 10 mass% or less is used. It can be seen that it is necessary to add the carbonaceous material during the granulation of the raw material or after the granulation of the sintered raw material other than the carbonaceous material. Moreover, as the addition time of the carbon material, the addition time of the carbon material is set so that the granulation time after the addition of the carbon material is 60% or less with respect to the total granulation time (100%) of the sintering raw material other than the carbon material. It can be seen that is preferable. Furthermore, the addition time of the carbon material is set such that the granulation time after the addition of the carbon material is 20 to 40% with respect to the total granulation time (100%) of the sintering raw material other than the carbon material. It turns out that it is preferable.

本発明の焼結鉱製造用焼結原料の製造方法によれば、製造された焼結原料を用いて焼結鉱を製造することで、高い生産性で高品位の焼結鉱を得ることができる。そのため、高炉原料として得られた焼結鉱を利用することで、高い生産性の高炉操業を行うことが可能となる。   According to the method for producing a sintered raw material for producing a sintered ore according to the present invention, a high-quality sintered ore can be obtained with high productivity by producing the sintered ore using the produced sintered raw material. it can. Therefore, by using the sintered ore obtained as a blast furnace raw material, it becomes possible to perform blast furnace operation with high productivity.

Claims (4)

焼結鉱の製造に用いる焼結原料の製造方法であって、炭材を含む焼結原料の製造方法において、前記炭材として揮発分が10mass%以下の炭材を用い、前記炭材以外の焼結原料の造粒中、もしくは、前記炭材以外の焼結原料の造粒後、前記炭材を添加することを特徴とする焼結鉱製造用焼結原料の製造方法。   A method for producing a sintered raw material used for producing a sintered ore, wherein in the method for producing a sintered raw material containing a carbonaceous material, a carbonaceous material having a volatile content of 10 mass% or less is used as the carbonaceous material. A method for producing a sintered raw material for producing sintered ore, comprising adding the carbonaceous material during granulation of a sintered raw material or after granulating a sintered raw material other than the carbonaceous material. 前記炭材として褐炭の揮発分を10mass%以下まで低減させた石炭チャーを用いることを特徴とする請求項1に記載の焼結鉱製造用焼結原料の製造方法。   2. The method for producing a sintered raw material for producing sintered ore according to claim 1, wherein a coal char in which a volatile content of lignite is reduced to 10 mass% or less is used as the carbon material. 前記炭材の添加時期を、前記炭材以外の焼結原料の全造粒時間(100%)に対し、前記炭材の添加後造粒時間が60%以下となるようにすることを特徴とする請求項1または2に記載の焼結鉱製造用焼結原料の製造方法。   The addition time of the carbon material is characterized in that the granulation time after addition of the carbon material is 60% or less with respect to the total granulation time (100%) of the sintering raw material other than the carbon material. The manufacturing method of the sintering raw material for sintered ore manufacture of Claim 1 or 2 to do. 前記炭材の添加時期を、前記炭材以外の焼結原料の全造粒時間(100%)に対し、前記炭材の添加後造粒時間が20〜40%となるようにすることを特徴とする請求項3に記載の焼結鉱製造用焼結原料の製造方法。   The addition time of the carbon material is such that the granulation time after addition of the carbon material is 20 to 40% with respect to the total granulation time (100%) of the sintering raw material other than the carbon material. The manufacturing method of the sintering raw material for sinter ore manufacture of Claim 3.
JP2016129842A 2016-06-30 2016-06-30 Method of producing sintering material for producing sintered ore Active JP6521259B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016129842A JP6521259B2 (en) 2016-06-30 2016-06-30 Method of producing sintering material for producing sintered ore
PCT/JP2017/022975 WO2018003648A1 (en) 2016-06-30 2017-06-22 Method for producing sintering feedstock for producing sintered ore
PH12018550208A PH12018550208A1 (en) 2016-06-30 2018-12-20 Method for manufacturing sintering material for manufacture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016129842A JP6521259B2 (en) 2016-06-30 2016-06-30 Method of producing sintering material for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2018003081A true JP2018003081A (en) 2018-01-11
JP6521259B2 JP6521259B2 (en) 2019-05-29

Family

ID=60786895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016129842A Active JP6521259B2 (en) 2016-06-30 2016-06-30 Method of producing sintering material for producing sintered ore

Country Status (3)

Country Link
JP (1) JP6521259B2 (en)
PH (1) PH12018550208A1 (en)
WO (1) WO2018003648A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
WO2007063603A1 (en) * 2005-12-02 2007-06-07 Kyouzai Kogyo Co., Ltd. Method of granulating sintering raw material and process for producing sintered ore
JP2012219182A (en) * 2011-04-08 2012-11-12 Nippon Steel Corp Method for decomposing tar in coal gas
JP2014133937A (en) * 2013-01-11 2014-07-24 Nippon Steel & Sumitomo Metal Method for producing sintered ore
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
WO2007063603A1 (en) * 2005-12-02 2007-06-07 Kyouzai Kogyo Co., Ltd. Method of granulating sintering raw material and process for producing sintered ore
JP2012219182A (en) * 2011-04-08 2012-11-12 Nippon Steel Corp Method for decomposing tar in coal gas
JP2014133937A (en) * 2013-01-11 2014-07-24 Nippon Steel & Sumitomo Metal Method for producing sintered ore
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
PH12018550208A1 (en) 2019-09-30
JP6521259B2 (en) 2019-05-29
WO2018003648A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP4893136B2 (en) Blast furnace operation method using woody biomass
KR101405480B1 (en) Method for manufacturinfg coal briquettes
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
JP4837799B2 (en) Method for producing sintered ore
JP5857618B2 (en) Method for producing sintered ore
JP6142765B2 (en) Method for producing sintered ore
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP6044353B2 (en) Method for producing sintered ore
US20100037729A1 (en) Blast furnace metallurgical coal substitute products and method
KR101296887B1 (en) Carbonaceous material for sintering iron ore
WO2018003648A1 (en) Method for producing sintering feedstock for producing sintered ore
JP4842410B2 (en) Method for producing solid fuel for sintering, solid fuel for sintering, and method for producing sintered ore using the same
JP6167851B2 (en) Method for producing coconut shell charcoal
JP7143714B2 (en) Method for producing carbon material for sintering, method for selecting raw material for carbon material for sintering, and method for producing sintered ore
JP7469622B2 (en) Manufacturing method of carbonaceous material for sintering and manufacturing method of sintered ore
KR101623271B1 (en) Method for manufacturing sintered ore by using low-quality coal
KR101561279B1 (en) Method and apparatus for manufacturing molten iron
JP2018131549A (en) Method for producing coke
JP5532574B2 (en) Method for producing a coagulation material for sinter production
KR101634071B1 (en) Coal briquettes and method for manufacturing the same
KR101676227B1 (en) The method for preparing molten iron by recycling by-product emitted from coal-based iron making process
KR20150118564A (en) The method for preparing molten iron by recycling by-product emitted from coal-based iron making process
CN116917509A (en) Method for producing baked pellets in a pellet furnace
JPH05230557A (en) Production of fuel for sintering iron ore
JPH03220291A (en) Manufacture of coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6521259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250