JP2004204332A - Method for producing sintering material - Google Patents

Method for producing sintering material Download PDF

Info

Publication number
JP2004204332A
JP2004204332A JP2002377800A JP2002377800A JP2004204332A JP 2004204332 A JP2004204332 A JP 2004204332A JP 2002377800 A JP2002377800 A JP 2002377800A JP 2002377800 A JP2002377800 A JP 2002377800A JP 2004204332 A JP2004204332 A JP 2004204332A
Authority
JP
Japan
Prior art keywords
raw material
solid fuel
granulation
sintering
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002377800A
Other languages
Japanese (ja)
Other versions
JP4228694B2 (en
Inventor
Nobuyuki Oyama
伸幸 大山
Noribumi Fujii
紀文 藤井
Shinichi Masumoto
愼一 益本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002377800A priority Critical patent/JP4228694B2/en
Publication of JP2004204332A publication Critical patent/JP2004204332A/en
Application granted granted Critical
Publication of JP4228694B2 publication Critical patent/JP4228694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a sintering material, which improves the effect of adhesion of a solid fuel type powdery raw material to pseudoparticles of the sintering material, can increase the diameters of the pseudoparticles, and can realize still greater improvement in a production rate, a yield, a sintering time, and the diameters of pseudoparticles. <P>SOLUTION: The sintering material except the solid fuel type powdery raw material 4 is fed from the feed inlet of a drum mixer 5, and granulation moisture (granulation water a) added for granulation is added in such a weight ratio that the weight ratio to the total amount of water added is larger than the weight ratio of the added sintering material to the total amount of the sintering material to granulate the sintering material. The solid fuel type powdery raw material 4 is added to the zone set in the mid of the downstream side where the residence time taken until the sintering material reaches the exit of the drum mixer 5 is in the range of 10 to 120 sec. During the addition of the solid fuel type powdery raw material 4, the residual granulation moisture (granulation water b) is added to adhere and form the solid fuel type powdery raw material around the sintering material before it reaches the exit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造する際に用いる焼結用原料の製造方法に関するものである。
【0002】
【従来の技術】
高炉用原料として用いられる焼結鉱は、一般的に次のような焼結原料の処理方法を経て製造されている。図1に示すように、まず、粒径が10mm以下の鉄鉱石1、珪石、蛇紋岩、またはニッケルスラグなどからなるSiO2 含有原料2、石灰石などのCaOを含有する石灰石系粉原料3、および粉コークスまたは無煙炭などの熱源となる固体燃料系粉原料4をドラムミキサー5を用いて、これに適当量の水分を添加して混合、造粒して擬似粒子と呼ばれる造粒物を形成する。この造粒物からなる配合原料は、ドワイトロイド式焼結機のパレット上に適当な厚さ例えば500〜700mmになるように装入して表層部の固体燃料に着火し、着火後は下方に向けて空気を吸引しながら固体燃料を燃焼させ、その燃焼熱によって配合した焼結原料を焼結させて焼結ケーキとする。この焼結ケーキは破砕、整粒され、一定の粒径以上の焼結鉱を得る。一方、それ未満の粒径を有するものは返鉱となり、焼結原料として再利用される。本発明において、焼結用原料の鉄鉱石とは、鉄鉱石粉および再び焼結原料として利用される返鉱を当然のことながら含むものであり、これを総称して鉄鉱石として以下本発明を説明する。
【0003】
ここで、焼結鉱は、原料中のコークスを層内を通過する空気によって燃焼させて製造しているので、その生産性は、パレット上での擬似粒子の充填層の通過風量(通気性)によって決定される。その結果、図2に示すように、ドラムミキサーで造粒される擬似粒子の粒径が大きくなるほど、通気性が向上し、生産率が向上することが良く知られており、これまでに擬似粒子径を大きくしようという多くの試みがなされてきた。
【0004】
ドラムミキサーでの造粒は、水を架橋にして擬似粒子を付着させているため、その原料の水との濡れ性が大きな影響を及ぼすことが良く知られている。水との濡れ性が良い原料の場合、擬似粒子径は大きくでき、図3は、各種の鉄鉱石の接触角と擬似粒子充填層の通気性との関係を調査したものである。これより、水との接触角が大きく、水に濡れ難いほど、造粒後の擬似粒子充填層の通気性が低い(擬似粒子径が小さい)ことが分かる。
【0005】
発明者は鉄鉱石の他に焼結原料として使用される原料に着目して水との接触角を調査した。すなわち図4に示すように、表面を研磨した試料6に注射器で水滴7を与えて、側面から観察して接触角θを測定した。その結果、コークスの接触角θの平均値は41°(測定回数:20回)、石灰石の接触角θの平均値は23°(測定回数:13回)、鉄鉱石の接触角θの平均値は16°(測定回数:14回)であり、コークスの濡れ性が最も劣っている。
【0006】
さらに発明者は、各種原料の粉体を円筒状(外径25mm、長さ250mm)のガラス管に充填して水の浸透高さを測定して、それぞれの濡れ性を評価した。すなわち図5に示すように、円柱状のガラス管8下端の開口部をガーゼ9で覆い、次いでガラス管8内に各種原料の粉体10(粒径0.10〜0.25mm)を充填した後、ガラス管8下端から2mmの位置まで水11中に浸漬した。このようにして水11が、ガラス管8内に充填された粉体10の間隙に浸透して上昇する高さ(以下、浸透高さという)を測定した。粉体10が水11に濡れ難いほど、浸透高さは低くなる。
【0007】
その結果、浸透高さは、コークス、石灰石、鉄鉱石の順に徐々に高くなり、コークスの濡れ性が最も劣っていることがわかった。
この結果から、発明者は、擬似粒子充填層の通気性を向上する(擬似粒子径を大きくする)ために、焼結原料中から固体燃料系粉原料である粉コークスを除いて造粒する必要があることに着目したものである。
【0008】
従来、固体燃料系粉原料である粉コークスを焼結原料から分離して添加する技術としては以下のものがある。
まず、焼結原料から固体燃料系粉原料である粉コークスの全量又は一部を分離して、造粒後の擬似粒子に粉コークスを添加する技術として特許文献1及び特許文献2があり、特許文献1では、粉コークスをドラムミキサーの供給側と排出側から添加する技術が提案され、特許文献2では、粉コークスの全量又は一部をドラムミキサー排出側から気流搬送によって添加する技術が提案されている。
【0009】
しかしながら、特許文献1に開示された技術では、ドラムミキサーの供給端と排出端から粉コークスを添加するため、焼結原料の擬似粒子化進行中に固体燃料系粉原料である粉コークスが内装化されるという問題があった。また、特許文献2に開示された技術では、ドラムミキサーの排出端から粉コークスを添加するものの、ドラムミキサーの入口側に粉コークスの微粒部分を、排出端では粉コークスの粗粒部分が存在するコークス粉の分布形態になるように気流搬送により添加することが行われるため、焼結原料の擬似粒子化進行中にコークス粉が内装化するという問題があった。
【0010】
すなわち、焼結原料から粉コークスを分離して造粒しても固体燃料系粉原料である粉コークスを添加して造粒する際に、焼結原料中に内装化され、内装化により焼結原料の擬似粒子の成長が進まないという問題があった。
また、特許文献3には、粉コークスを配合せずペレットフイードを配合した焼結原料を1次ミキサーで調湿造粒し、次いでこの調湿造粒物に粉コークスを添加して2次ミキサーで転動造粒することを特徴とする焼結原料の事前処理方法が開示されている。この技術によれば、ペレットフイードを配合した焼結原料を調湿造粒するに際し、2次ミキサー側で添加することにより従来の1次ミキサーで全量混合造粒したものに比べて大幅に造粒性、通気性、生産性が改善できるとしている。
【0011】
【特許文献1】
特開昭52−141402号公報
【特許文献2】
特開昭58−11746号公報
【特許文献3】
特開昭62−163220号公報
【0012】
【発明が解決しようとする課題】
しかしながら、特許文献3に開示された技術で得られた焼結原料も必ずしも造粒性の向上に結びつかず、いまだ成功した例はない。
なお、特許文献1及び特許文献3に開示されているように、造粒に際し、1次ミキサー、2次ミキサーを使用して混合・造粒を行なう焼結原料の予備処理方法あるいは焼結原料の造粒方法では、基本的には1次ミキサー側で焼結原料の混合を主体とする混合・造粒を行ない、その後、2次ミキサー側で造粒を主体とする、いわゆる転動造粒が行われる。このように1次ミキサーと2次ミキサーを有する(合計2台のミキサーを有する)場合、一般的には、焼結原料の1次ミキサーにおける混合・造粒時間は120秒程度を確保しており、2次ミキサーにおける造粒時間は180秒程度を確保して造粒することが通常行われる。
【0013】
また、特許文献2に開示されているように、造粒に際し、単一のミキサーを使用して混合・造粒を行う焼結原料の予備処理方法あるいは焼結原料の造粒方法では、前記した1次ミキサー・2次ミキサーの合計の造粒時間を確保できるミキサー長として造粒することが通常行われる。
前記した、焼結原料から固体燃料系粉原料である粉コークスを分離して造粒しても、粉コークスを添加した際に、焼結原料中に内装化され、内装化により焼結原料の擬似粒子の増加が進まないという問題に対し、本出願人は、特願2002−40197号で、焼結鉱を製造するプロセスの事前処理として膨大な設備を必要とせず、鉄鉱石、SiO2 含有原料、石灰石系原料を、固体燃料系原料から分離して段階的に擬似粒子にすることにより、焼結用原料の造粒の際、造粒される擬似粒子の粒径を増加させ、固体燃料系原料の添加に際しては、擬似粒子の表層部に粉コークスなどの固体燃料系粉原料を適切に外装することができる焼結原料の造粒方法を提案し、これにより、粗粒焼結原料を核としてその周囲に細粒原料を付着させた擬似粒子表面に、内装化されず固体燃料系粉原料を付着させることに成功し、前記内装化による焼結原料の擬似粒子径増加阻害問題の解決を図ることができた。
【0014】
本発明は、前記特願2002−40197号の焼結原料の造粒方法にさらに改良を加え、固体燃料系粉原料の焼結原料の擬似粒子への付着効果をさらに高めるとともに、さらに擬似粒子径を増大させることができ、生産率、歩留、焼結時間、擬似粒子径のより一層の向上が実現できる焼結用原料の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明のうち請求項1に係る焼結用原料の製造方法は、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する造粒用水分をその全添加水分量に対する重量比が前記装入する焼結原料量の全添加焼結原料量に対する重量比よりも大きい重量比で添加して焼結原料を造粒し、該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、該固体燃料系粉原料の添加時に、残余の造粒用水分を添加して、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することを特徴としている。
【0016】
また、本発明のうち請求項2に係る焼結用原料の製造方法は、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する全造粒用水分を添加して焼結原料を造粒し、該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することを特徴としている。
【0017】
本発明のうち請求項3に係る焼結用原料の製造方法は、請求項1又は2記載の発明において、前記焼結原料がドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で添加する前記固体燃料系粉原料を、乾燥状態で添加することを特徴としている。
本発明のうち請求項4に係る焼結用原料の製造方法は、請求項1乃至3のうちいずれか一項に記載の発明において、前記造粒用水分の添加のために使用する造粒水が、ミルスケール・圧延循環水スラッジを含むスラリー水であることを特徴としている。
【0018】
また、本発明のうち請求項5に係る焼結用原料の製造方法は、請求項1乃至4のうちいずれか一項に記載の発明において、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーを複数に分割したドラムミキサーとして、最終のドラムミキサーを装入口から排出口に到達するまでの滞留時間が10〜120秒範囲に設定されたドラムミキサー長さとして、該最終のドラムミキサー装入側で固体燃料系粉原料を添加することを特徴としている。
【0019】
【発明の実施の形態】
次に本発明を完成するに至った経緯及び本発明の実施形態を図面を参照して説明する。
本発明者らは、図6に示すように、固体燃料系粉原料であるコークスを含む焼結原料の造粒実験(実験No.1、2)を行った。実験No.1では、鉄鉱石、返鉱、石灰石、生石灰およびコークスをドラムミキサーに装入して造粒(造粒時間:360秒)した。その結果、平均粒径1.52mmの擬似粒子が得られた。実験No.2では、鉄鉱石、返鉱およびコークスをドラムミキサーに装入して造粒(造粒時間:300秒)した後、石灰石、生石灰を添加してさらに造粒(造粒時間:60秒)した。その結果、平均粒径1.46mmの擬似粒子が得られた。
【0020】
一方、図7に示すように、固体燃料系粉原料であるコークスを除く焼結原料(すなわち鉄鉱石、返鉱、石灰石および生石灰)の造粒実験を行ない、造粒開始後の経過時間と擬似粒子の平均粒径の関係を調査した。その結果は、図8に示す通りである。
図8から明らかなように、固体燃料系粉原料(例えば粉コークス)を除く焼結原料の造粒開始後180秒以上経過すれば、擬似粒子の粒径が図6に示した従来法に比較して十分に大きくなることがわかった。ただし本発明では、固体燃料系粉原料を鉄鉱石やSiO2 含有原料、石灰石系粉原料等の他の焼結原料から分離して造粒するので、固体燃料系粉原料を除く焼結原料を造粒して得た擬似粒子に固体燃料系粉原料を内装化させることなく添加する必要がある。
【0021】
そのためには本発明においては、分離した固体燃料系粉原料を造粒の後半の過程で添加して前半の過程で造粒した擬似粒子原料とさらに造粒することで、擬似粒子の外装部分へ固体燃料系粉原料を付着させることにより、終結原料の擬似粒子の粒径を増大させ、焼結層内の通気性を改善し、焼結鉱の生産性を向上することを試行した。
【0022】
しかし、固体燃料系粉原料を焼結原料の外装部に付着・形成させるために添加する時間の設定、すなわち、造粒されつつある焼結原料に固体燃料系粉原料のみを添加した後、該焼結原料がドラムミキサーの排出口に到達するまでの添加後の滞留時間、すなわち、固体燃料系粉原料を焼結原料の外装部に付着・形成させるために添加した後の造粒時間(以降、単に外装時間と呼ぶ)の設定に応じて、大きく効果が異なることを見出した。
【0023】
次に、図9に示すように、固体燃料系粉原料(例えば粉コークス)を除く焼結原料の造粒開始後、300秒経過した後、粉コークスを添加して、さらに造粒を行い、粉コークス添加後の外装時間と擬似粒子の平均粒径との関係を調査した。その結果は図10に示す通りである。
図10から明らかなように、外装時間が長くなるとともに、擬似粒子の粒径が減少することが分かる。擬似粒子の粒径が減少すると、焼結機に装入する際の原料層の通気度が低下するので、外装時間は120秒以下(好ましくは90秒以下、望ましくは60秒以下)が望ましい。
【0024】
すなわち、ドラムミキサー内においては、原料の造粒とともに、破壊も同時に進行しているため、外装時間を120秒(ドラムミキサーの回転数は18回転に相当)を越えて長くすると、ドラムミキサー内で粒子が壊れ、粉コークスが擬似粒子内に取り込まれる。その結果、水と濡れ難く、しかも造粒し難い粉コークスの内装化により擬似粒子径の粒径が減少して、図6に示した固体燃料系粉原料(例えば粉コークス)を含む焼結原料の造粒実験における擬似粒子の粒径と同等の値となっていることが確認された。つまり、外装時間を長くとりすぎると、ドラムミキサー内では、造粒だけでなく、擬似粒子の破壊も同時に進行しているので、外装のために添加した固体燃料系粉原料が擬似粒子の破壊により内部に取り込まれて、内外装ともに存在することになり、固体燃料系粉原料を含む焼結原料の混合・造粒と変わらないことになるのである。
【0025】
また、別の実験より、外装時間が10秒(ドラムミキサーの回転数でいうと、1.5回転に相当)を下回ると、外装時間が不足して、添加した固体燃料系粉原料が原料中の一部分に偏析を起こし、均一な焼結状態が得られないことが分かった。
従って、外装のための固体燃料系粉原料を添加するにあたって、外装時間は10〜120秒にしなければならない。
【0026】
本発明では前記したような外装時間の適正条件を満たすことにより、固体燃料系粉原料も擬似粒子内部に取り込まれることなく、外装化されることになる。
本発明の外装時間の適正範囲を固体燃料系粉原料(例えば粉コークス)の添加に適用する場合、得られる焼結用原料の外装部分は固体燃料系粉原料となったものが得られる。従って、固体燃料系粉原料としての粉コークス等が内装化されないので、造粒し難い粉コークスによる擬似粒子の粒径の減少は生じない。その結果、造粒工程で得られる擬似粒子粒径が増加する効果が得られ、生産性の向上が期待できる。
【0027】
そこで、図11に示すように、固体燃料系粉原料(例えば粉コークス)を除く焼結原料造粒実験(実験No.3、4、5)を行った。実験No.3では、鉄鉱石および返鉱をドラムミキサーに装入して造粒(造粒時間:300秒)した後、石灰石、生石灰、コークスを添加してさらに造粒(造粒時間:60秒)した。その結果、平均粒径1.75mmの擬似粒子が得られた。実験No.4では、鉄鉱石、返鉱および生石灰をドラムミキサーに装入して造粒(造粒時間:300秒)した後、石灰石、コークスを添加してさらに造粒(造粒時間:60秒)した。その結果、平均粒径1.81mmの擬似粒子が得られた。実験No.5では、鉄鉱石、返鉱、生石灰および石灰石をドラムミキサーに装入して造粒(造粒時間:300秒)した後、コークスを添加してさらに造粒(造粒時間:60秒)した。その結果、平均粒径1.74mmの擬似粒子が得られた。
【0028】
つまり、固体燃料系粉原料(例えば粉コークス)を除く焼結原料造粒実験によって得られた擬似粒子の径は、図6に示した固体燃料系粉原料を含む焼結原料の造粒実験における擬似粒子の粒径に比べて、15%以上増大している。
さらに、本発明では、造粒用水分の添加時期及び添加量についても探求した。
通常、造粒には、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料の全重量に対して重量比で5〜8%程度の造粒用水分を加えるが、この造粒用水分の添加時期は、原料の装入時点と一致させるのが定法であった。
【0029】
図12は、造粒用水分の配分効果を見るための実験装置を示し、ドラムミキサー100の装入口入側に一次注水ノズル101を設け、排出口出側に二次注水ノズル102を設け、ドラムミキサー100の装入口及び排出口のそれぞれから造粒用水分調整のための造粒用水分を添加できるようにしたものである。
図12に示す装置において、固体燃料系粉原料を除く焼結原料、即ち、鉄鉱石、SiO2 含有原料、および石灰石系粉原料は、ドラムミキサー100の装入口から装入され、混合・造粒されつつ図中右側に移動して行き、下流側で残余の焼結原料、即ち固体燃料系粉原料が装入されて排出口に至る間に固体燃料系粉原料が焼結原料の外装部に付着・形成されるようになっている。
【0030】
図12に示す装置においては、一例として、固体燃料系粉原料を除く焼結原料は全添加焼結原料量に対して重量比で95%であり、固体燃料系粉原料は全添加焼結原料量に対して重量比で5%であり、それら原料に対して造粒のために一次注水ノズル101及び二次注水ノズル102のそれぞれから造粒用水分調整のための造粒用水分が添加されるようになっている。
【0031】
なお、通常行われる定法においては、造粒のために鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料の全重量に対して重量比で5〜8%程度の造粒用水分を加えるが、この造粒用水分の添加時期は、原料の装入時点と一致させるようになっている。そして、図12の装置における前述の例では、ドラムミキサー100の装入口から装入される固体燃料系粉原料を除く焼結原料は全添加焼結原料量に対して重量比で95%であることから、一次注水ノズル101から造粒用水分をその全添加水分量に対する重量比が前記装入する焼結原料量の全添加焼結原料量に対する重量比95%と同じ重量比95%で添加し、また、二次注水ノズル102から重量比で全添加水分量の残りの5%が固体燃料系粉原料の添加と同時に添加される。これが通常行われる定法である。なお、ドラムミキサーの装入口から焼結原料の全量を装入する場合には造粒用水分の全量をドラムミキサーの装入口から添加するのが定法である。
【0032】
表1には図12に示す装置において一次注水ノズル101及び二次注水ノズル102のそれぞれから添加される造粒用水分の配分(全造粒用水分に対する一次注水及び二次注水の割合)を示し、図13には表1に示す造粒用水分の配分で添加して製造した場合の焼結用原料の生産率、歩留、焼結時間、擬似粒子径の変化の結果を示す。なお、図13のデータは、細粒原料の多いヤンデー(Yandi )鉱石を焼結原料中に80%の配合を行った時の成績である。
【0033】
【表1】

Figure 2004204332
【0034】
図13において、「通常造粒」とは、焼結原料を全量、ドラムミキサー100の装入口から装入して造粒するもので、造粒用水分は全量ドラムミキサー100の装入口から添加されるものである。
図13を参照すると、本発明のいわゆる三層造粒(一層目:粗粒、二層目:細粒、三層目:固体燃料)であって、一次注水ノズル101から造粒用水分をその全添加水分量に対する重量比が装入する焼結原料量の全添加焼結原料量に対する重量比95%と同じ重量比95%で添加し、また、二次注水ノズル102から重量比で全添加水分量の残りの5%を固体燃料系粉原料の添加と同時に添加したものは、通常造粒と比較して、歩留を除く、残り全ての項目に対して有利な効果が得られた。生産率については、1.5t/ hr/ m3 から1.575t/ hr/ m3 に向上し、擬似粒子径については1.76mmから1.85mmに大きくなっている。擬似粒子径が大きくなったことにより、焼結時間も14分15秒から12分45秒に短縮した。歩留については、71.5%から71%に若干の減少となっている。
【0035】
また、これらの成績は造粒用水分の添加時期及び添加量の配分を変更することにより向上する。すなわち、本発明のいわゆる三層造粒であって、一次注水ノズル101から造粒用水分をその全添加水分量に対する重量比が装入する焼結原料量の全添加焼結原料量に対する重量比95%よりも大きい重量比で添加し、また、二次注水ノズル102から全添加水分量の残りを固体燃料系粉原料の添加と同時に添加したものは、前述した造粒より、さらに生産率は向上し、歩留も向上を始め、擬似粒子径もさらに向上する結果、焼結時間も短縮する。
【0036】
さらに、本発明のいわゆる三層造粒であって、一次注水ノズル101から全造粒用水分を添加して造粒したものは、生産率、歩留、擬似粒子径、焼結時間について最高のデータを示した。即ち、生産率については、1.625t/ hr/ m3 に向上し、歩留については72%に向上し、擬似粒子径については1.93mmに大きくなっている。擬似粒子径が大きくなったことにより、焼結時間も12分20秒に短縮した。
【0037】
即ち、本発明の三層造粒になる造粒法では、一層目:粗粒、二層目:細粒、三層目:固体燃料の構成で生産率、擬似粒子径の向上、擬似粒子径の向上に伴う焼結時間の短縮効果が発揮されるが、それに加えて造粒用水分の配分を、固体燃料系粉原料を除く焼結原料を装入する際に、予め過剰に配分して造粒用水分を加えておくことにより、二層目の表面に固体燃料系粉原料を付着しやすくしたものである。
【0038】
即ち、造粒し難い粉コークス等の固体燃料系粉原料以外の原料を用いて造粒すること、固体燃料系粉原料の前記した適性な外装時間を満たすこと、および造粒用水の添加を前記したように過剰に制御することにより、固体燃料系粉原料の付着性を向上させ、かつ擬似粒子内部に固体燃料系粉原料が取り込まれることなく、効率的に外装される。
【0039】
従って、焼結原料をドラムミキサーを用いて造粒するに際し、ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する造粒用水分をその全添加水分量に対する重量比が前記装入する焼結原料量の全添加焼結原料量に対する重量比よりも大きい重量比で添加して焼結原料を造粒し、焼結原料がドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、この固体燃料系粉原料の添加時に、残余の造粒用水分を添加して、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成すると、定法の装入量に従う造粒用水分の配分に比べ、生産率、歩留、焼結時間、擬似粒子径の向上が実現できる。
【0040】
また、焼結原料をドラムミキサーを用いて造粒するに際し、ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する全造粒用水分を添加して焼結原料を造粒し、焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することにより、生産率、歩留、焼結時間、擬似粒子径の向上効果を最大限に発揮させることができる。
【0041】
さらに、焼結原料がドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で添加する固体燃料系粉原料を、乾燥状態で添加すると、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することが容易となり、生産率、歩留、焼結時間、擬似粒子径の向上効果を最大限に発揮させることができる。
【0042】
また、前記造粒用水分の添加時期、添加条件に加えて、造粒用水分の添加のために使用する造粒水についても探求した。まず、造粒用水として工業用水が広く用いられているが、その他、製鉄所の圧延工程で発生するミルスケール、圧延循環水スラッジ等を含む油性のスラリー水を用いることがある。このスラリー水を用いることにより、ミルスケール、圧延循環水スラッジ中の鉄分を焼結原料中に回収できることになり、油分も燃料の一部となり再資源化にとって有利である。
【0043】
図14(a)は工業用水を用いた際の、図14(b)はスラリー水を用いた際の、従来法と本発明法の擬似粒子径および焼結時間の変化を示している。なお、図14(a)、(b)のそれぞれにおけるデータは、細粒原料の多いヤンデー(Yandi )鉱石を焼結原料中に50%の配合を行った時の成績である。
図14(a)の工業用水を用いた場合には、造粒し難い粉コークス等の固体燃料系粉原料を含めて造粒する従来法に比べ、本発明法は擬似粒子径が上昇するとともにこの擬似粒子径の上昇に伴う焼結時間の短縮効果が明確に発揮されている。また、図14(b)のスラリー水を用いた場合も同様傾向があるが、擬似粒子径の上昇効果及び焼結時間の短縮効果がより大きくなっていることが理解される。
【0044】
図14(a)、(b)の従来法同士の比較では、造粒水としてスラリー水を用いる時は工業用水を用いる時よりも若干擬似粒子径が減少した。一方、図14(a)、(b)の本発明法同士の比較では、造粒水としてスラリー水を用いる時は工業用水を用いる時よりも擬似粒子径が上昇するとともに焼結時間が短縮されている。従来法同士の比較で、造粒水としてスラリー水を用いる時に工業用水を用いる時よりも若干擬似粒子径が減少するのは、粉コークス等の固体燃料系粉原料の存在により、疎水性のスラリー水を用いる時、さらに粉コークス等の固体燃料系粉原料が造粒し難くなると推察されるからである。また、本発明法同士の比較で、造粒水としてスラリー水を用いる時に工業用水を用いる時よりも擬似粒子径が上昇するとともに焼結時間が短縮するのは、粉コークス等の固体燃料系粉原料以外の焼結原料を用いて造粒する本発明では、粉コークス等の固体燃料系粉原料による悪影響が解消されているからである。
【0045】
本発明になる固体燃料系粉原料である粉コークスを擬似粒子中に内装化させない造粒フロー例(方法A)について説明する。
図15に示すように、ドラムミキサー5の装入側からは、固体燃料系粉原料4である粉コークスを除く焼結原料が装入され、また、外装時間を制御するため、前記粉コークスは、ドラムミキサー5の排出側から添加される。焼結用原料が排出口に到達するまでの滞留時間が10〜120秒範囲となるドラムミキサー5の下流側途中に設定した外装領域に合わせて、下流側排出口からドラムミキサー5内の長手方向に進退自在に配置したベルトコンベア12の先端位置を、例えば10秒〜120秒範囲の中の60秒に相当する外装領域の中間位置に調整する。そして、ベルトコンベア12を介して固体燃料系粉原料4(例えば粉コークス)を所定領域(ここでは外装領域の中間位置)に添加し、ドラムミキサー5内で外装領域に達するまでに造粒により形成された擬似粒子の周囲に、固体燃料系粉原料4を付着・形成させた外装部分を有する擬似粒子を造粒する。固体燃料系粉原料4は、平均粒径が2.0mm以下、好ましくは1.5mm以下とすることにより外装部分に付着し易くなり、その外表面を覆うことができる。
【0046】
この方法Aは、単一のドラムミキサーを使用するケースである。
ここで、ドラムミキサー5の装入口入側に一次注水ノズル5aを設け、排出口出側に二次注水ノズル5bを設け、一次注水ノズル5aから装入口を経て造粒のために添加する造粒用水分(造粒水a)を添加し、二次注水ノズル5bから造粒用水分(造粒水b)を添加するようにしている。造粒水aは、ドラムミキサー5の装入側から固体燃料系粉原料4である粉コークスを除く焼結原料が装入される時に、同時に添加される。この造粒水aの添加量は、全添加水分量に対する重量比が装入する焼結原料の原料量の全添加焼結原料量に対する重量比よりも大きい重量比で添加される。また、造粒水bは、ドラムミキサー5の排出側からの固体燃料系粉原料4が添加される時に残余の造粒用水分が添加される。なお、造粒のために添加する全造粒用水分を、固体燃料系粉原料4である粉コークスを除く焼結原料をドラムミキサー5の装入口から装入するときに、一次注水ノズル5aから装入口を経て添加するようにしてもよい。また、固体燃料系粉原料4を添加するに際して、乾燥状態で添加することが好ましい。
【0047】
また、図16に、別の本発明の望ましい擬似粒子構造を製造するための造粒フロー例(方法B)を示す。本発明の造粒フロー例(方法B)では、前記図15に示すドラムミキサー5を長手方向に複数に分割して使用する例で、本例では2分割タイプを示す。図16(a)では、固体燃料系粉原料4を除く焼結原料を装入して造粒し擬似粒子を得る第一ドラムミキサー51と、第一ドラムミキサー51で造粒された擬似粒子の周囲に固体燃料系粉原料4を付着させた外装部分を有する擬似粒子を造粒する第二ドラムミキサー52とを直列に配置する。第一ドラムミキサー51は、擬似粒子が造粒できる長さに設定され、また、第二ドラムミキサー52は、擬似粒子の外周に固体燃料系粉原料を外装・付着できる長さ、すなわち第二ドラムミキサー52の長さは、装入口から排出口に到達するまでの擬似粒子の滞留時間が、10〜120秒範囲になるような外装領域に相当する寸法に設定される。そして、第一ドラムミキサー51の装入口入側に一次注水ノズル5aを設け、第二ドラムミキサー52の装入口入側に二次注水ノズル5bを設け、一次注水ノズル5aから装入口を経て造粒のために添加する造粒用水分(造粒水a)を添加し、二次注水ノズル5bから造粒用水分(造粒水b)を添加するようにしている。造粒水aは、第一ドラムミキサー51の装入側から固体燃料系粉原料4である粉コークスを除く焼結原料が装入される時に、同時に添加される。この造粒水aの添加量は、全添加水分量に対する重量比が装入する焼結原料の原料量の全添加焼結原料量に対する重量比よりも大きい重量比で添加される。また、造粒水bは、第二ドラムミキサー52の装入口側からの固体燃料系粉原料4が添加される時に残余の造粒用水分が添加される。なお、造粒のために添加する全造粒用水分を、固体燃料系粉原料4である粉コークスを除く焼結原料を第一ドラムミキサー51の装入口から装入するときに、一次注水ノズル5aから装入口を経て添加するようにしてもよい。また、固体燃料系粉原料4を添加するに際して、乾燥状態で添加することが好ましい。
【0048】
図16(a)において、第一ドラムミキサー51の装入口から鉄鉱石とSiO2 含有原料(珪石、蛇紋岩、Niスラグ等のSiO2 を比較的多く含有する原料)、石灰石系粉原料とを装入する。なお、鉄鉱石とは当然のことながら返鉱も含まれる。そして、第一ドラムミキサー51の装入口から排出口に到達するまでの過程で造粒と崩壊を繰り返しながら粗粒の鉄鉱石あついは粗粒の返鉱(以下単に粗粒の鉄鉱石という)を核として、その周囲に細粒の鉄鉱石および細粒の返鉱(以下単に細粒の鉄鉱石という)、SiO2 含有原料2および石灰石系粉原料を付着させた擬似粒子に造粒される。その後、該擬似粒子が第二ドラムミキサー52の装入口に装入される時に、固体燃料系粉原料4を第二ドラムミキサー52の装入口側から供給する。これにより、第二ドラムミキサー52内で擬似粒子の周囲に固体燃料系粉原料4を外装・付着させる造粒が行われる。
【0049】
図16(b)は、既存ドラムミキサーが2分割タイプである場合の本発明の適用例を示したもので、後半部分の第二ドラムミキサー52の長さが、外装時間が120秒に相当する長さより長い場合は、図15の例と同じく後半部分の第二ドラムミキサー52の排出側からベルトコンベア12によって外装領域に固体燃料系粉原料を供給、添加する。そして、第一ドラムミキサー52の装入口入側に一次注水ノズル5aを設け、第二ドラムミキサー52の装入口入側に二次注水ノズル5bを設け、一次注水ノズル5aから装入口を経て造粒のために添加する造粒用水分(造粒水a)をその全添加水分量に対する重量比が装入する焼結原料の原料量の全添加焼結原料量に対する重量比よりも大きい重量比で添加して焼結原料を造粒し、第二ドラムミキサー52の装入口側からの固体燃料系粉原料4の添加時に、二次注水ノズル5bから残余の造粒用水分(造粒水b)を添加するようにしている。なお、図16(b)において、造粒のために添加する全造粒用水分を、固体燃料系粉原料4を除く焼結原料を第一ドラムミキサー51の装入口から装入するときに、一次注水ノズル5aから装入口を経て添加するようにしてもよい。また、固体燃料系粉原料43を添加するに際して、乾燥状態で添加することが好ましい。
【0050】
本発明の(A方法)または(B方法)によれば、粗粒の鉄鉱石1を核として、その周囲に細粒の鉄鉱石、SiO2 含有原料2および石灰石系粉原料が付着し、さらにその周囲の外装部に固体燃料系粉原料4(コークス)を外装部に付着・形成させることができる。
これにより、本発明になる、焼結用原料の製造方法では、熱源となる固体燃料系粉原料を最外装部に付着・形成させることができ、したがって、固体燃料系粉原料としての粉コークス等が内装化されないため、難造粒物である粉コークス等による造粒悪化の影響がなく、造粒過程で得られる擬似粒子径が増加する効果が得られ、生産性の向上が期待でき、さらに添加した固体燃料系粉原料の燃焼性の向上を図ることができる。さらに、造粒のための造粒用水分の配分を、固体燃料系粉原料4を除く焼結原料を装入する際に、予め過剰に配分して造粒用水分を加えておくことにより、細粒の鉄鉱石、SiO2 含有原料、および石灰石系粉原料の表面に固体燃料系粉原料4を付着しやすくすることができ、生産率、歩留、焼結時間、擬似粒子径をさらに向上させることができる。
【0051】
また、焼結原料をドラムミキサーを用いて造粒するに際し、ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する全造粒用水分を添加して焼結原料を造粒し、焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することにより、生産率、歩留、焼結時間、擬似粒子径の向上効果を最大限に発揮させることができる。
【0052】
さらに、焼結原料がドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で添加する固体燃料系粉原料を、乾燥状態で添加することにより、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することが容易となり、生産率、歩留、焼結時間、擬似粒子径の向上効果を最大限に発揮させることができる。
【0053】
【実施例】
(実施例1)
表2に示す配合割合の焼結原料を用いて、図15に示す方法で造粒した擬似粒子をドワイトロイド焼結機に輸送し、パレット上に装入し焼結に供した。これを発明例とする。造粒用水分の添加は、全量ドラムミキサー5の装入側で行った。
【0054】
比較のため鉄鉱石、SiO2 含有原料、石灰石系粉原料、およびコークス粉を同時に混合する方法にて造粒した擬似粒子をドワイトロイド焼結機に輸送し、パレット上に装入し焼結に供した。これを比較例とする。造粒用水分の添加は、全量ドラムミキサー5の装入側で行った。なお、造粒用水分は両者とも工業用水を利用した。
【0055】
発明例と比較例について、焼結機の生産率(ton/hr・m3)、焼結鉱の歩留(%)、および擬似粒子径(mm)を調査した。その結果を表3に示す。
表3を参照すると、焼結機の生産率、焼結鉱の歩留、および擬似粒子径のいずれについても発明例の方が比較例よりも向上していることがわかる。
【0056】
【表2】
Figure 2004204332
【0057】
【表3】
Figure 2004204332
【0058】
(実施例2)
表2に示す配合割合の焼結原料を用いて、図16(b)に示す方法で造粒した擬似粒子をドワイトロイド焼結機に輸送し、パレット上に装入し焼結に供した。これを発明例とする。造粒用水分としてミルスケール・圧延循環水スラッジを含むスラリー水を使用し、添加は全量第一ドラムミキサー51の装入側で行った。
【0059】
比較のため鉄鉱石、SiO2 含有原料、石灰石系粉原料、コークス粉を同時に混合する処理方法にて造粒した擬似粒子をドワイトロイド焼結機に輸送し、パレット上に装入し焼結に供した。造粒用水分としてスラリー水を使用し、添加は全量第一ドラムミキサー51の装入側で行った。これを比較例とする。
発明例と比較例について、焼結機の生産率(ton/hr・m3)、焼結鉱の歩留(%)、および擬似粒子径(mm)を調査した。その結果を表4に示す。
表4を参照すると、焼結機の生産率、焼結鉱の歩留、および擬似粒子径のいずれについても発明例の方が比較例よりも向上していることがわかる。
【0060】
【表4】
Figure 2004204332
【0061】
【発明の効果】
以上説明したように、本発明のうち請求項1に係る焼結用原料の製造方法によれば、ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入して焼結原料を造粒し、該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加して、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成するので、粒径を大きくした擬似粒子の外装部分に固体燃料系粉原料を付着・形成した焼結用擬似粒子原料を製造することができ、焼結鉱製造時の生産性を大きく向上することができる。また、固体燃料系粉原料を除く焼結原料を装入する時に、造粒のために添加する造粒用水分をその全添加水分量に対する重量比が前記装入する焼結原料量の全添加焼結原料量に対する重量比よりも大きい重量比で添加し、固体燃料系粉原料の添加時に、残余の造粒用水分を添加するので、さらに、生産率、歩留、焼結時間、擬似粒子径の向上が実現できる。
【0062】
また、本発明のうち請求項2に係る焼結用原料の製造方法によれば、ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する全造粒用水分を添加して焼結原料を造粒し、該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成するので、粒径を大きくした擬似粒子の外装部分に固体燃料系粉原料を付着・形成した焼結用擬似粒子原料を製造することができ、焼結鉱製造時の生産性を大きく向上することができる他、生産率、歩留、焼結時間、擬似粒子径の向上効果を最大限に発揮させることができる。
【0063】
本発明のうち請求項3に係る焼結用原料の製造方法によれば、請求項1又は2記載の発明において、前記焼結原料がドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で添加する前記固体燃料系粉原料を、乾燥状態で添加するので、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することが容易となり、生産率、歩留、焼結時間、擬似粒子径の向上効果を最大限に発揮させることができる。
【0064】
本発明のうち請求項4に係る焼結用原料の製造方法によれば、請求項1乃至3のうちいずれか一項に記載の発明において、前記造粒用水分の添加のために使用する造粒水が、ミルスケール・圧延循環水スラッジを含むスラリー水としてあり、さらに焼結鉱製造時の生産性を大きく向上することができる。
また、本発明のうち請求項5に係る焼結用原料の製造方法によれば、請求項1乃至4のうちいずれか一項に記載の発明において、下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーを複数に分割したドラムミキサーとして、最終のドラムミキサーを装入口から排出口に到達するまでの滞留時間が10〜120秒範囲に設定されたドラムミキサー長さとして、該最終のドラムミキサー装入側で固体燃料系粉原料を添加することにより、粒径を大きくした擬似粒子の外装部分に固体燃料系粉原料を付着・形成した焼結用擬似粒子原料を製造することができる。
【図面の簡単な説明】
【図1】従来例に係る焼結原料の混合、造粒の系統図である。
【図2】擬似粒子の平均粒径と焼結機の生産率との関係を示すグラフである。
【図3】鉄鉱石の接触角と擬似粒子充填層の通気性との関係を示すグラフである。
【図4】試料、水滴および接触角の関係を模式的に示す側面図である。
【図5】水の浸透高さを測定する装置を模式的に示す断面図である。
【図6】造粒実験の工程を示す系統図である。
【図7】造粒実験の工程を示す系統図である。
【図8】造粒開始後の経過時間と擬似粒子の平均粒径との関係を示すグラフである。
【図9】造粒実験の工程を示す工程図である。
【図10】コークス添加後の外装時間と擬似粒子の平均粒径との関係を示すグラフである。
【図11】造粒実験の工程を示す系統図である。
【図12】造粒用水分の配分効果を見るための実験装置図である。
【図13】表1に示す造粒用水分の配分で添加して製造した場合の焼結用原料の生産率、歩留、焼結時間、擬似粒子径の変化の結果を示す図である。
【図14】(a)は工業用水を用いた際の従来法と本発明法の擬似粒子径および焼結時間の変化を示す図、(b)はスラリー水を用いた際の従来法と本発明法の擬似粒子径および焼結時間の変化を示す図である。
【図15】本発明の造粒フロー(方法A)を示す系統図である。
【図16】本発明の造粒フロー(方法B)を示す系統図である。
【符号の説明】
1 鉄鉱石
2 SiO2 含有原料
3 石灰石系粉原料
4 固体燃料系粉原料
5 ドラムミキサー
5a 一次注水ノズル
5b 二次注水ノズル
6 試料
7 水滴
8 ガラス管
9 ガーゼ
10 粉体
11 水
12 ベルトコンベア
51 第一ドラムミキサー
52 第二ドラムミキサー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a raw material for sintering used in producing a blast furnace sintered ore using a downward suction dwytroid type sintering machine.
[0002]
[Prior art]
Sinter ore used as a blast furnace raw material is generally manufactured through the following processing method of the sintered raw material. As shown in FIG. 1, first, SiO composed of iron ore 1, silica stone, serpentine, nickel slag or the like having a particle size of 10 mm or less. 2 A drum mixer 5 is used to add an appropriate amount of water to the containing raw material 2, the limestone powder raw material 3 containing CaO such as limestone, and the solid fuel powder raw material 4 serving as a heat source such as powdered coke or anthracite. Then, they are mixed and granulated to form a granulated product called pseudo particles. The blended raw material consisting of this granulated material is charged onto a pallet of a Dwytroid type sintering machine so as to have an appropriate thickness, for example, 500 to 700 mm, and ignites the solid fuel in the surface layer portion. The solid fuel is combusted while sucking air toward it, and the sintered raw material blended by the combustion heat is sintered to form a sintered cake. This sintered cake is crushed and sized to obtain a sintered ore having a certain particle size or more. On the other hand, one having a particle size smaller than that is returned to ore and reused as a sintering raw material. In the present invention, the iron ore as a raw material for sintering includes, as a matter of course, iron ore powder and return ore used again as a raw material for sintering, and this will be collectively referred to as iron ore hereinafter. To do.
[0003]
Here, the sintered ore is produced by burning the coke in the raw material with the air passing through the inside of the layer, so the productivity is the passing air volume (breathability) of the packed bed of pseudo particles on the pallet. Determined by. As a result, as shown in FIG. 2, it is well known that the larger the particle size of the pseudo particles granulated by the drum mixer, the better the air permeability and the production rate. Many attempts have been made to increase the diameter.
[0004]
It is well known that granulation with a drum mixer has a significant influence on the wettability of the raw material with water because the pseudo particles are adhered by cross-linking water. In the case of a raw material having good wettability with water, the pseudo particle size can be increased, and FIG. 3 shows the relationship between the contact angle of various iron ores and the air permeability of the pseudo particle packed layer. From this, it can be seen that the greater the contact angle with water and the less wet the water, the lower the permeability of the pseudo-particle packed layer after granulation (the pseudo particle size is small).
[0005]
The inventor investigated the contact angle with water paying attention to the raw material used as a sintering raw material other than an iron ore. That is, as shown in FIG. 4, a water droplet 7 was given to the sample 6 whose surface was polished by a syringe, and the contact angle θ was measured by observing from the side surface. As a result, the average value of the contact angle θ of coke is 41 ° (number of measurements: 20 times), the average value of the contact angle θ of limestone is 23 ° (number of measurements: 13 times), and the average value of the contact angle θ of iron ore. Is 16 ° (number of measurements: 14 times), and the wettability of coke is inferior.
[0006]
Furthermore, the inventor filled various raw material powders into a cylindrical (outer diameter 25 mm, length 250 mm) glass tube, measured the water penetration height, and evaluated each wettability. That is, as shown in FIG. 5, the opening at the lower end of the cylindrical glass tube 8 was covered with gauze 9, and then the raw material powder 10 (particle size 0.10 to 0.25 mm) was filled in the glass tube 8. Then, it was immersed in the water 11 from the lower end of the glass tube 8 to the position of 2 mm. In this way, the height at which the water 11 penetrates into the gap between the powders 10 filled in the glass tube 8 and rises (hereinafter referred to as the penetration height) was measured. The more difficult the powder 10 gets wet with the water 11, the lower the penetration height.
[0007]
As a result, it was found that the penetration height gradually increased in the order of coke, limestone, and iron ore, and the wettability of coke was inferior.
From this result, in order to improve the air permeability of the pseudo particle packed bed (increase the pseudo particle size), the inventor needs to granulate by removing the powder coke which is a solid fuel powder material from the sintered material It is focused on that there is.
[0008]
Conventionally, there are the following techniques for adding powder coke, which is a solid fuel-based powder raw material, separately from the sintered raw material.
First, there are Patent Literature 1 and Patent Literature 2 as technologies for separating the whole or part of the powder coke, which is a solid fuel-based powder raw material, from the sintered raw material and adding the powder coke to the pseudo particles after granulation. Document 1 proposes a technique for adding powder coke from the supply side and discharge side of the drum mixer, and Patent Document 2 proposes a technique for adding all or part of the powder coke from the drum mixer discharge side by airflow conveyance. ing.
[0009]
However, in the technique disclosed in Patent Document 1, since powder coke is added from the supply end and the discharge end of the drum mixer, powder coke, which is a solid fuel-based powder raw material, is incorporated while the pseudo raw material of the sintered raw material is being processed. There was a problem of being. Further, in the technique disclosed in Patent Document 2, although powder coke is added from the discharge end of the drum mixer, there are fine portions of the powder coke on the inlet side of the drum mixer and coarse portions of the powder coke at the discharge end. Since the addition of the coke powder is carried out by air flow so as to obtain a distribution form of the coke powder, there has been a problem that the coke powder is embedded inside the pseudo raw material of the sintering raw material.
[0010]
That is, even if powder coke is separated from the sintered raw material and granulated, the powder coke, which is a solid fuel-based powder raw material, is granulated with the addition of the powdered coke, and sintered by the internalization. There was a problem that the growth of the pseudo particles of the raw material did not progress.
In Patent Document 3, humidity control granulation is performed with a primary mixer on a sintering raw material that does not contain powdered coke but blended with pellet feed. A pretreatment method of a sintering raw material characterized by rolling granulation with a mixer is disclosed. According to this technology, when sintering and granulating a sintered material blended with pellet feed, it is greatly granulated compared to the one that is mixed and granulated by the primary mixer by adding it on the secondary mixer side. Graininess, breathability and productivity can be improved.
[0011]
[Patent Document 1]
JP-A-52-141402
[Patent Document 2]
JP 58-11746 A
[Patent Document 3]
JP-A-62-163220
[0012]
[Problems to be solved by the invention]
However, the sintering raw material obtained by the technique disclosed in Patent Document 3 does not necessarily lead to improvement in granulation property, and there is no successful example yet.
In addition, as disclosed in Patent Document 1 and Patent Document 3, in the case of granulation, a pretreatment method of a sintering raw material in which mixing and granulation are performed using a primary mixer and a secondary mixer or a sintering raw material In the granulation method, the so-called rolling granulation, in which the mixing and granulation is performed mainly on the mixing of the sintering raw material on the primary mixer side, and then the granulation is mainly performed on the secondary mixer side. Done. As described above, when the primary mixer and the secondary mixer are provided (a total of two mixers are provided), generally, the mixing and granulation time of the sintered raw material in the primary mixer is about 120 seconds. Granulation is usually performed with a granulation time of about 180 seconds in the secondary mixer.
[0013]
In addition, as disclosed in Patent Document 2, in the pretreatment method of the sintering raw material or the granulation method of the sintering raw material in which mixing and granulation are performed using a single mixer at the time of granulation, as described above, Granulation is usually performed as a mixer length that can ensure the total granulation time of the primary mixer and the secondary mixer.
Even if the powdered coke that is the solid fuel-based powder raw material is separated from the sintered raw material and granulated, the powdered coke is added to the interior of the sintered raw material. In response to the problem that the increase in the pseudo particles does not proceed, the applicant of Japanese Patent Application No. 2002-40197 does not require an enormous amount of equipment as a pretreatment of a process for manufacturing a sintered ore, and iron ore, SiO 2 By separating the raw material and limestone-based raw material from the solid fuel-based raw material into step-by-step pseudo particles, the particle size of the pseudo particles to be granulated is increased when the raw material for sintering is granulated. When adding fuel-based materials, we proposed a method for granulating sintered raw materials that can properly coat solid fuel-based powder materials such as powdered coke on the surface layer of pseudo particles. Has succeeded in attaching a solid fuel-based powder raw material to the surface of the quasi-particle with the fine-grained material attached to the periphery of the material as a core, and preventing the increase in the quasi-particle size of the sintered raw material due to the internalization. I was able to solve the problem.
[0014]
The present invention further improves the granulation method of the sintering raw material of the aforementioned Japanese Patent Application No. 2002-40197, further enhances the adhesion effect of the solid fuel powder raw material to the pseudo particles of the sintering raw material, and further increases the pseudo particle size. It is an object of the present invention to provide a method for producing a raw material for sintering that can increase the production rate, yield, sintering time, and pseudo particle size.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a raw material for sintering according to claim 1 of the present invention is a pretreatment of a process for producing a blast furnace sintered ore using a downward suction droidoid type sintering machine. , Iron ore, SiO 2 When granulating a sintered raw material comprising a raw material containing, a limestone powder raw material and a solid fuel powder raw material using a drum mixer, the sintered raw material excluding the solid fuel powder raw material is charged from the inlet of the drum mixer. At the same time, the moisture for granulation added for granulation is added at a weight ratio in which the weight ratio with respect to the total amount of added moisture is larger than the weight ratio with respect to the total amount of added sintered raw material. Granulating the raw material, adding the solid fuel-based powder raw material in the region set in the middle of the downstream side where the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 120 seconds, At the time of addition of the solid fuel-based powder raw material, the remaining moisture for granulation is added, and the solid fuel-based powder raw material is adhered to and formed on the exterior portion of the sintered raw material while reaching the discharge port.
[0016]
Moreover, the manufacturing method of the raw material for sintering which concerns on Claim 2 among this invention is an iron ore, SiO as a pre-process of the process which manufactures the sintered ore for blast furnaces using a downward suction | inhalation droidoid type sintering machine. 2 When granulating a sintered raw material comprising a raw material containing, a limestone powder raw material and a solid fuel powder raw material using a drum mixer, the sintered raw material excluding the solid fuel powder raw material is charged from the inlet of the drum mixer. Together with the total granulation moisture added for granulation to granulate the sintered raw material, and the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 120 seconds. The solid fuel-based powder raw material is added in a region set in the middle of the downstream side, and the solid fuel-based powder raw material is adhered to and formed on the outer portion of the sintered raw material while reaching the discharge port.
[0017]
The method for producing a raw material for sintering according to claim 3 of the present invention is the invention according to claim 1 or 2, wherein the residence time until the sintered raw material reaches the discharge port of the drum mixer is 10 to 120 seconds. The solid fuel-based powder raw material to be added in a region set in the middle of the downstream side that is the range is added in a dry state.
The method for producing a raw material for sintering according to claim 4 of the present invention is the granulated water used for adding the moisture for granulation according to any one of claims 1 to 3. Is characterized in that it is slurry water containing mill scale and rolled circulating water sludge.
[0018]
According to a fifth aspect of the present invention, there is provided a method for producing a sintering raw material according to any one of the first to fourth aspects, wherein a blast furnace is used using a downward suction droidoid type sintering machine. As a pre-treatment of the process for producing sintered ore, iron ore, SiO 2 When granulating the sintered raw material comprising the contained raw material, limestone powder raw material and solid fuel powder raw material using a drum mixer, the drum mixer is divided into a plurality of drum mixers, and the final drum mixer is discharged from the inlet. As a drum mixer length in which the residence time until reaching the outlet is set in the range of 10 to 120 seconds, the solid fuel powder material is added on the final drum mixer charging side.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, the background to the completion of the present invention and embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 6, the present inventors conducted a granulation experiment (experiment No. 1 and 2) of a sintered raw material containing coke, which is a solid fuel-based powder raw material. Experiment No. In No. 1, iron ore, return ore, limestone, quicklime and coke were charged into a drum mixer and granulated (granulation time: 360 seconds). As a result, pseudo particles having an average particle diameter of 1.52 mm were obtained. Experiment No. In No. 2, iron ore, return ore and coke were charged into a drum mixer and granulated (granulation time: 300 seconds), then limestone and quicklime were added and further granulated (granulation time: 60 seconds). . As a result, pseudo particles having an average particle diameter of 1.46 mm were obtained.
[0020]
On the other hand, as shown in FIG. 7, a granulation experiment of a sintered raw material (that is, iron ore, return mineral, limestone and quicklime) excluding coke, which is a solid fuel powder raw material, The relationship of the average particle size of the particles was investigated. The result is as shown in FIG.
As is apparent from FIG. 8, when 180 seconds or more have elapsed after the start of granulation of the sintered raw material excluding the solid fuel-based powder raw material (for example, powder coke), the particle size of the pseudo particles is compared with the conventional method shown in FIG. And found it to be large enough. However, in the present invention, the solid fuel powder raw material is made of iron ore or SiO. 2 Since it is granulated separately from other sintering raw materials such as contained raw materials and limestone powder raw materials, solid fuel powder raw materials are embedded in pseudo particles obtained by granulating sintered raw materials excluding solid fuel powder raw materials It is necessary to add without making it.
[0021]
For this purpose, in the present invention, the separated solid fuel-based powder raw material is added in the latter half of the granulation process, and further granulated with the pseudo particle raw material granulated in the first half process, to the exterior part of the pseudo particles. We tried to increase the particle size of the pseudo particles of the termination raw material, improve the air permeability in the sintered layer, and improve the productivity of the sintered ore by attaching the solid fuel powder raw material.
[0022]
However, after setting the time for adding the solid fuel-based powder raw material to adhere to and form the exterior of the sintered raw material, that is, after adding only the solid fuel-based powder raw material to the sintered raw material being granulated, Residence time after the addition of the sintering raw material until it reaches the discharge port of the drum mixer, that is, the granulation time after adding the solid fuel-based powder raw material to adhere to and form the exterior of the sintering raw material It was found that the effect varies greatly depending on the setting of the exterior time.
[0023]
Next, as shown in FIG. 9, after the start of granulation of the sintered raw material excluding the solid fuel-based powder raw material (for example, powder coke), after 300 seconds have elapsed, the powder coke is added, and further granulation is performed. The relationship between the exterior time after adding the powder coke and the average particle size of the pseudo particles was investigated. The result is as shown in FIG.
As is clear from FIG. 10, it can be seen that the exterior time becomes longer and the particle size of the pseudo particles decreases. When the particle size of the pseudo particles is reduced, the air permeability of the raw material layer when being charged into the sintering machine is lowered. Therefore, the exterior time is desirably 120 seconds or less (preferably 90 seconds or less, desirably 60 seconds or less).
[0024]
That is, in the drum mixer, as the raw material is granulated, the destruction progresses at the same time. Therefore, if the exterior time is increased beyond 120 seconds (the rotation speed of the drum mixer is equivalent to 18 rotations), The particles are broken and the powder coke is taken into the pseudo particles. As a result, the powdered coke that is difficult to wet with water and that is difficult to granulate is reduced to reduce the pseudo particle size, and the sintered raw material including the solid fuel-based powder material (for example, powder coke) shown in FIG. It was confirmed that the value was equivalent to the particle size of the pseudo particles in the granulation experiment. In other words, if the exterior time is too long, not only granulation but also destruction of the pseudo particles proceed at the same time in the drum mixer, so the solid fuel powder material added for the exterior is destroyed by the destruction of the pseudo particles. It is taken into the interior and exists both inside and outside, which is the same as mixing and granulation of sintered raw materials including solid fuel powder raw materials.
[0025]
Further, from another experiment, when the exterior time is less than 10 seconds (corresponding to 1.5 revolutions in terms of the number of revolutions of the drum mixer), the exterior time is insufficient, and the added solid fuel powder material is in the raw material. It was found that segregation occurred in a part of the film and a uniform sintered state could not be obtained.
Therefore, when adding the solid fuel powder material for the exterior, the exterior time must be 10 to 120 seconds.
[0026]
In the present invention, by satisfying the appropriate condition of the exterior time as described above, the solid fuel-based powder raw material is also exteriorized without being taken into the pseudo particles.
When the appropriate range of the exterior time of the present invention is applied to the addition of a solid fuel-based powder raw material (for example, powdered coke), the resulting outer portion of the sintering raw material becomes a solid fuel-based powder raw material. Therefore, since the powder coke or the like as the solid fuel-based powder raw material is not built in, there is no decrease in the particle size of the pseudo particles due to the powder coke that is difficult to granulate. As a result, an effect of increasing the pseudo particle size obtained in the granulation step is obtained, and improvement in productivity can be expected.
[0027]
Then, as shown in FIG. 11, the sintering raw material granulation experiment (Experiment No. 3, 4, 5) except solid fuel system powder raw material (for example, powder coke) was conducted. Experiment No. In No. 3, iron ore and return ore were charged into a drum mixer and granulated (granulation time: 300 seconds), then limestone, quicklime and coke were added and further granulated (granulation time: 60 seconds). . As a result, pseudo particles having an average particle diameter of 1.75 mm were obtained. Experiment No. In No. 4, iron ore, return ore and quicklime were charged into a drum mixer and granulated (granulation time: 300 seconds), then limestone and coke were added and further granulated (granulation time: 60 seconds). . As a result, pseudo particles having an average particle diameter of 1.81 mm were obtained. Experiment No. In No. 5, iron ore, return mineral, quick lime and limestone were charged in a drum mixer and granulated (granulation time: 300 seconds), and then coke was added for further granulation (granulation time: 60 seconds). . As a result, pseudo particles having an average particle diameter of 1.74 mm were obtained.
[0028]
That is, the diameter of the pseudo particles obtained by the sintering raw material granulation experiment excluding the solid fuel-based powder raw material (for example, powdered coke) is the same as that in the sintering raw material granulation experiment including the solid fuel-based powder raw material shown in FIG. Compared to the particle size of the pseudo particles, it is increased by 15% or more.
Furthermore, in the present invention, the timing and amount of addition of granulating water were also sought.
Usually, granulation involves iron ore, SiO 2 About 5-8% of the moisture for granulation is added by weight ratio with respect to the total weight of the sintering raw material consisting of the containing raw material, the limestone powder raw material, and the solid fuel powder raw material. The standard method was to match the raw material charging time.
[0029]
FIG. 12 shows an experimental apparatus for observing the distribution effect of the moisture for granulation, in which a primary water injection nozzle 101 is provided on the inlet side of the drum mixer 100 and a secondary water injection nozzle 102 is provided on the outlet side of the drum mixer 100. Granulation moisture for adjusting the moisture for granulation can be added from each of the inlet and outlet of the mixer 100.
In the apparatus shown in FIG. 12, the sintered raw material excluding the solid fuel powder raw material, that is, iron ore, SiO 2 2 The contained raw material and the limestone powder raw material are charged from the inlet of the drum mixer 100, moved to the right side in the figure while being mixed and granulated, and the remaining sintered raw material, that is, the solid fuel powder, is downstream. During the period from when the raw material is charged to the discharge port, the solid fuel-based powder raw material is attached to and formed on the exterior of the sintered raw material.
[0030]
In the apparatus shown in FIG. 12, as an example, the sintered raw material excluding the solid fuel-based powder raw material is 95% by weight with respect to the total amount of the added sintered raw material, and the solid fuel-based powder raw material is the all-added sintered raw material. It is 5% by weight with respect to the amount, and granulation moisture for adjusting the moisture for granulation is added from each of the primary water injection nozzle 101 and the secondary water injection nozzle 102 for granulation of these raw materials. It has become so.
[0031]
In the usual regular method, iron ore, SiO for granulation 2 About 5-8% of the moisture for granulation is added by weight ratio with respect to the total weight of the sintering raw material consisting of the containing raw material, the limestone powder raw material, and the solid fuel powder raw material. It is made to coincide with the raw material charging time. And in the above-mentioned example in the apparatus of FIG. 12, the sintering raw material except the solid fuel type | system | group powder raw material charged from the charging port of the drum mixer 100 is 95% by weight ratio with respect to the total amount of additional sintering raw materials. Therefore, the water for granulation is added from the primary water injection nozzle 101 at a weight ratio of 95% which is the same as the weight ratio of 95% of the total amount of sintered raw material to be added. Further, the remaining 5% of the total amount of added water is added from the secondary water injection nozzle 102 at the same time as the addition of the solid fuel powder raw material. This is the usual practice. In addition, when the whole amount of the sintering raw material is charged from the inlet of the drum mixer, it is a usual method to add the whole amount of moisture for granulation from the inlet of the drum mixer.
[0032]
Table 1 shows the distribution of granulation water added from each of the primary water injection nozzle 101 and the secondary water injection nozzle 102 in the apparatus shown in FIG. 12 (ratio of primary water injection and secondary water injection to the total water content for granulation). FIG. 13 shows the results of changes in the production rate, yield, sintering time, and pseudo particle size of the raw materials for sintering when added with the distribution of moisture for granulation shown in Table 1. The data shown in FIG. 13 is a result obtained when 80% of Yandi ore containing a large amount of fine-grained raw material is added to the sintered raw material.
[0033]
[Table 1]
Figure 2004204332
[0034]
In FIG. 13, “normal granulation” refers to granulation by charging the entire amount of the sintering raw material from the inlet of the drum mixer 100, and all the moisture for granulation is added from the inlet of the drum mixer 100. Is.
Referring to FIG. 13, the so-called three-layer granulation (first layer: coarse particles, second layer: fine particles, third layer: solid fuel) of the present invention, and the granulating water is supplied from the primary water injection nozzle 101. The weight ratio with respect to the total amount of added moisture is added at a weight ratio of 95% which is the same as the weight ratio of 95% with respect to the total amount of sintered raw material to be added. When the remaining 5% of the moisture content was added at the same time as the addition of the solid fuel-based powder raw material, advantageous effects were obtained for all the remaining items, except for the yield, as compared with normal granulation. About production rate, 1.5t / hr / m Three To 1.575t / hr / m Three The pseudo particle size is increased from 1.76 mm to 1.85 mm. Due to the increase in the pseudo particle size, the sintering time was also shortened from 14 minutes 15 seconds to 12 minutes 45 seconds. The yield is slightly reduced from 71.5% to 71%.
[0035]
In addition, these results can be improved by changing the timing of addition of the moisture for granulation and the distribution of the addition amount. That is, in the so-called three-layer granulation of the present invention, the weight ratio of the amount of sintering raw material charged from the primary water injection nozzle 101 to the amount of water added for granulation is the weight ratio of the amount of sintered raw material to the amount of all added sintered raw material. When the weight ratio is greater than 95% and the remaining amount of water added from the secondary water injection nozzle 102 is added at the same time as the addition of the solid fuel powder raw material, the production rate is further improved than the granulation described above. As a result, the yield is improved and the pseudo particle size is further improved, so that the sintering time is also shortened.
[0036]
Furthermore, the so-called three-layer granulation of the present invention, which is granulated by adding water for total granulation from the primary water injection nozzle 101, has the highest production rate, yield, pseudo particle size, and sintering time. The data is shown. That is, the production rate is 1.625 t / hr / m. Three The yield is improved to 72%, and the pseudo particle size is increased to 1.93 mm. Due to the increased pseudo particle size, the sintering time was also shortened to 12 minutes and 20 seconds.
[0037]
That is, in the granulation method of three-layer granulation according to the present invention, the composition of the first layer: coarse particles, the second layer: fine particles, the third layer: solid fuel is used to improve the production rate, the pseudo particle size, and the pseudo particle size. The effect of shortening the sintering time due to the improvement of the process is demonstrated, but in addition to that, the distribution of the moisture for granulation should be excessively distributed in advance when charging the sintering raw material excluding the solid fuel powder raw material. By adding granulation moisture, the solid fuel-based powder material is easily attached to the surface of the second layer.
[0038]
That is, granulating using a raw material other than the solid fuel-based powder raw material such as powdered coke, which is difficult to granulate, satisfying the appropriate exterior time of the solid fuel-based powder raw material, and adding the water for granulation By controlling excessively as described above, the adhesion of the solid fuel-based powder raw material is improved, and the solid fuel-based powder raw material is not taken into the pseudo particles, and is effectively packaged.
[0039]
Therefore, when granulating the sintered raw material using a drum mixer, the sintering raw material excluding the solid fuel powder raw material is charged from the inlet of the drum mixer and the granulating moisture added for granulation is added. The sintering raw material is granulated by adding the weight ratio of the total amount of added moisture to the weight ratio of the total amount of sintered raw material to be charged is larger than the weight ratio of the total amount of added sintering raw material. The solid fuel-based powder raw material is added in a region set in the middle of the downstream side where the residence time until reaching the discharge port is in the range of 10 to 120 seconds, and when this solid fuel-based powder raw material is added, the remaining moisture for granulation If the solid fuel system powder raw material adheres to and forms on the exterior of the sintered raw material before reaching the outlet, the production rate, yield, Improvement of sintering time and pseudo particle size can be realized.
[0040]
In addition, when granulating the sintered raw material using a drum mixer, the whole raw granulation water added for granulation is introduced while the sintered raw material excluding the solid fuel powder raw material is charged from the inlet of the drum mixer. Add and granulate the sintered raw material, and the solid fuel-based powder raw material in the region set in the downstream side where the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 120 seconds. By adding and forming solid fuel-based powder raw material on the exterior of the sintered raw material while it reaches the discharge port, it maximizes the effect of improving production rate, yield, sintering time, and pseudo particle size Can be made.
[0041]
Furthermore, when the solid fuel-based powder raw material added in the region set in the middle of the downstream side where the residence time until the sintered raw material reaches the drum mixer outlet is in the range of 10 to 120 seconds is added in the dry state, It becomes easy to attach and form solid fuel-based powder raw material on the exterior of the sintered raw material before reaching the outlet, and maximize the effects of improving production rate, yield, sintering time, and pseudo particle size Can do.
[0042]
Further, in addition to the timing and conditions for adding the granulating water, the inventors also searched for the granulating water used for adding the granulating water. First, industrial water is widely used as granulation water, but oil-based slurry water containing mill scale, rolling circulating water sludge and the like generated in the rolling process of an iron mill may be used. By using this slurry water, iron in the mill scale and rolling circulating water sludge can be recovered in the sintered raw material, and the oil becomes part of the fuel, which is advantageous for recycling.
[0043]
FIG. 14 (a) shows changes in the pseudo particle size and sintering time between the conventional method and the present invention method when industrial water is used, and FIG. 14 (b) shows when the slurry water is used. The data in each of FIGS. 14 (a) and 14 (b) are the results when 50% of Yandi ore with a large amount of fine-grained raw material is mixed in the sintered raw material.
When the industrial water of FIG. 14 (a) is used, the method of the present invention increases the pseudo particle size as compared with the conventional method of granulating including solid fuel-based powder raw materials such as powdered coke which is difficult to granulate. The effect of shortening the sintering time accompanying the increase in the pseudo particle diameter is clearly exhibited. Further, when the slurry water of FIG. 14 (b) is used, it is understood that the effect of increasing the pseudo particle diameter and the effect of shortening the sintering time are increased.
[0044]
In comparison between the conventional methods of FIGS. 14A and 14B, the pseudo particle size was slightly reduced when slurry water was used as granulated water than when industrial water was used. On the other hand, in the comparison between the methods of the present invention shown in FIGS. 14 (a) and 14 (b), when slurry water is used as granulated water, the pseudo particle diameter increases and the sintering time is shortened compared to when industrial water is used. ing. Compared with conventional methods, when using slurry water as the granulated water, the pseudo particle size is slightly smaller than when using industrial water because of the presence of solid fuel-based powder raw materials such as powder coke. This is because when water is used, it is presumed that solid fuel-based powder raw materials such as powder coke are difficult to granulate. Also, in comparison between the methods of the present invention, when slurry water is used as granulated water, the pseudo particle diameter is increased and the sintering time is shortened compared to when industrial water is used. This is because in the present invention in which granulation is performed using a sintered raw material other than the raw material, adverse effects due to the solid fuel-based powder raw material such as powder coke are eliminated.
[0045]
A granulation flow example (method A) in which the powder coke which is the solid fuel-based powder raw material according to the present invention is not incorporated into the pseudo particles will be described.
As shown in FIG. 15, from the charging side of the drum mixer 5, a sintered raw material excluding the powder coke that is the solid fuel-based powder raw material 4 is charged, and in order to control the exterior time, the powder coke is , Added from the discharge side of the drum mixer 5. The longitudinal direction in the drum mixer 5 from the downstream discharge port in accordance with the exterior region set in the downstream side of the drum mixer 5 in which the residence time until the sintering raw material reaches the discharge port is in the range of 10 to 120 seconds. For example, the front end position of the belt conveyor 12 disposed so as to be freely advanced and retracted is adjusted to an intermediate position of the exterior region corresponding to 60 seconds in the range of 10 seconds to 120 seconds, for example. Then, the solid fuel-based powder raw material 4 (for example, powder coke) is added to a predetermined region (here, intermediate position of the exterior region) via the belt conveyor 12 and formed by granulation before reaching the exterior region in the drum mixer 5. Pseudo particles having an exterior portion on which the solid fuel-based powder raw material 4 is adhered and formed around the pseudo particles are granulated. By setting the average particle size of the solid fuel-based powder raw material 4 to 2.0 mm or less, preferably 1.5 mm or less, the solid fuel-based powder raw material 4 can easily adhere to the exterior portion and can cover the outer surface.
[0046]
Method A is a case where a single drum mixer is used.
Here, a primary water injection nozzle 5a is provided on the inlet side of the drum mixer 5 and a secondary water nozzle 5b is provided on the outlet side of the drum mixer 5 and is added for granulation from the primary water nozzle 5a via the inlet. Water for granulation (granulated water a) is added, and water for granulation (granulated water b) is added from the secondary water injection nozzle 5b. The granulated water a is added at the same time when the sintered raw material excluding the powder coke which is the solid fuel-based powder raw material 4 is charged from the charging side of the drum mixer 5. The added amount of the granulated water a is added at a weight ratio larger than the weight ratio of the raw material amount of the sintered raw material to be added to the total additive sintered raw material amount. Further, the granulating water b is added with the remaining granulating water when the solid fuel powder raw material 4 from the discharge side of the drum mixer 5 is added. In addition, when the raw material for granulation added for granulation is charged from the inlet of the drum mixer 5 with the sintering raw material excluding the powder coke which is the solid fuel system raw material 4 from the primary water injection nozzle 5a. You may make it add through a charging port. Moreover, when adding the solid fuel type | system | group powder raw material 4, it is preferable to add in a dry state.
[0047]
FIG. 16 shows a granulation flow example (Method B) for producing another desirable pseudo-particle structure of the present invention. The granulation flow example (Method B) of the present invention is an example in which the drum mixer 5 shown in FIG. 15 is divided into a plurality of parts in the longitudinal direction, and in this example, a two-split type is shown. In FIG. 16 (a), a first drum mixer 51 which is charged with a sintered raw material excluding the solid fuel-based powder raw material 4 and granulated to obtain pseudo particles, and pseudo particles granulated by the first drum mixer 51 are shown. A second drum mixer 52 that granulates pseudo particles having an exterior portion with the solid fuel-based powder raw material 4 attached around is arranged in series. The first drum mixer 51 is set to a length that enables pseudo particles to be granulated, and the second drum mixer 52 is a length that allows the solid fuel powder raw material to be externally attached to and adhered to the outer periphery of the pseudo particles, that is, the second drum. The length of the mixer 52 is set to a dimension corresponding to the exterior region such that the residence time of the pseudo particles from the loading port to the discharge port is in the range of 10 to 120 seconds. A primary water injection nozzle 5a is provided on the inlet side of the first drum mixer 51, a secondary water nozzle 5b is provided on the inlet side of the second drum mixer 52, and granulation is performed from the primary water nozzle 5a through the inlet. For this purpose, the water for granulation (granulated water a) is added, and the water for granulation (granulated water b) is added from the secondary water injection nozzle 5b. The granulated water a is added at the same time when the sintering raw material excluding the powder coke which is the solid fuel-based powder raw material 4 is charged from the charging side of the first drum mixer 51. The added amount of the granulated water a is added at a weight ratio larger than the weight ratio of the raw material amount of the sintered raw material to be added to the total additive sintered raw material amount. Further, the granulated water b is added with the remaining granulating water when the solid fuel-based powder raw material 4 from the inlet side of the second drum mixer 52 is added. The primary water injection nozzle is used when all the granulation moisture added for granulation is charged from the inlet of the first drum mixer 51 with the sintering raw material excluding the powder coke which is the solid fuel system powder raw material 4. You may make it add via 5a from 5a. Moreover, when adding the solid fuel type | system | group powder raw material 4, it is preferable to add in a dry state.
[0048]
In FIG. 16 (a), iron ore and SiO are introduced from the inlet of the first drum mixer 51. 2 Containing raw materials (silica, serpentine, Ni slag, etc. SiO 2 ) And a limestone powder raw material. Of course, iron ore includes return ore. Then, while repeating granulation and disintegration in the process from the inlet of the first drum mixer 51 to the outlet, the coarse iron ore and the coarse grain return (hereinafter simply referred to as coarse iron ore) As a nucleus, fine iron ore and fine grain return (hereinafter simply referred to as fine iron ore), SiO 2 It is granulated into pseudo particles to which the containing raw material 2 and the limestone powder raw material are adhered. Thereafter, when the pseudo particles are charged into the charging port of the second drum mixer 52, the solid fuel-based powder raw material 4 is supplied from the charging port side of the second drum mixer 52. As a result, granulation is performed in the second drum mixer 52 so that the solid fuel-based powder raw material 4 is sheathed and adhered around the pseudo particles.
[0049]
FIG. 16B shows an application example of the present invention when the existing drum mixer is a two-split type. The length of the second drum mixer 52 in the latter half corresponds to an exterior time of 120 seconds. When the length is longer than the length, the solid fuel-based powder raw material is supplied and added to the exterior region by the belt conveyor 12 from the discharge side of the second drum mixer 52 in the latter half as in the example of FIG. A primary water injection nozzle 5a is provided on the inlet side of the first drum mixer 52, a secondary water nozzle 5b is provided on the inlet side of the second drum mixer 52, and granulation is performed from the primary water nozzle 5a through the inlet. The weight ratio of the granulation water to be added (granulation water a) to the total amount of added moisture is larger than the weight ratio of the raw material amount of the sintered raw material to be added to the total amount of the additional sintered raw material. Added to granulate the sintered raw material, and when adding the solid fuel-based powder raw material 4 from the inlet side of the second drum mixer 52, the remaining water for granulation (granulated water b) from the secondary water injection nozzle 5b. Is added. In FIG. 16B, when all the granulation moisture to be added for granulation is charged from the inlet of the first drum mixer 51, the sintered raw material excluding the solid fuel powder raw material 4 is charged. You may make it add through the charging port from the primary water injection nozzle 5a. Moreover, when adding the solid fuel type | system | group powder raw material 43, adding in a dry state is preferable.
[0050]
According to (Method A) or (Method B) of the present invention, coarse iron ore 1 is used as a core, and fine iron ore, SiO, around it. 2 The containing raw material 2 and the limestone powder raw material adhere to each other, and the solid fuel-based powder raw material 4 (coke) can be attached to and formed on the outer peripheral portion around the raw material.
Thereby, in the manufacturing method of the raw material for sintering according to the present invention, the solid fuel-based powder raw material serving as a heat source can be attached and formed on the outermost exterior portion, and therefore, the powder coke as the solid fuel-based powder raw material, etc. Because it is not interiorized, there is no effect of granulation deterioration due to powdered coke, etc., which is difficult to granulate, the effect of increasing the pseudo particle size obtained in the granulation process can be obtained, and improvement in productivity can be expected, It is possible to improve the combustibility of the added solid fuel powder material. Furthermore, when charging the granulation moisture for granulation, when charging the sintering raw material excluding the solid fuel system powder raw material 4, by adding excessively the granulation moisture in advance, Fine iron ore, SiO 2 The solid fuel powder raw material 4 can be easily attached to the surface of the containing raw material and the limestone powder raw material, and the production rate, yield, sintering time, and pseudo particle diameter can be further improved.
[0051]
In addition, when granulating the sintered raw material using a drum mixer, the whole raw granulation water added for granulation is introduced while the sintered raw material excluding the solid fuel powder raw material is charged from the inlet of the drum mixer. Add and granulate the sintered raw material, and the solid fuel-based powder raw material in the region set in the downstream side where the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 120 seconds. By adding and forming solid fuel-based powder raw material on the exterior of the sintered raw material while it reaches the discharge port, it maximizes the effect of improving production rate, yield, sintering time, and pseudo particle size Can be made.
[0052]
Furthermore, by adding in a dry state a solid fuel-based powder raw material to be added in a region set in the middle of the downstream side where the residence time until the sintered raw material reaches the drum mixer outlet is in the range of 10 to 120 seconds , It becomes easy to attach and form solid fuel-based powder raw material on the exterior of the sintered raw material before reaching the discharge port, maximizing the effect of improving production rate, yield, sintering time, and pseudo particle size Can be made.
[0053]
【Example】
Example 1
Pseudo particles granulated by the method shown in FIG. 15 were transported to a dwaritroid sintering machine using the sintering raw materials having the blending ratios shown in Table 2, and charged on a pallet for sintering. This is an invention example. The addition of moisture for granulation was performed on the charging side of the entire amount of the drum mixer 5.
[0054]
For comparison, iron ore, SiO 2 The pseudo particles granulated by the method of mixing the containing raw material, the limestone powder raw material, and the coke powder at the same time were transported to a dwaritroid sintering machine, charged on a pallet, and subjected to sintering. This is a comparative example. The addition of moisture for granulation was performed on the charging side of the entire amount of the drum mixer 5. In addition, the water for granulation utilized industrial water for both.
[0055]
For the inventive example and the comparative example, the production rate of the sintering machine (ton / hr · m Three ), The yield (%) of the sintered ore, and the pseudo particle size (mm). The results are shown in Table 3.
Referring to Table 3, it can be seen that the inventive example is improved over the comparative example in terms of the production rate of the sintering machine, the yield of sintered ore, and the pseudo particle size.
[0056]
[Table 2]
Figure 2004204332
[0057]
[Table 3]
Figure 2004204332
[0058]
(Example 2)
Using the sintering raw materials having the blending ratio shown in Table 2, the pseudo particles granulated by the method shown in FIG. 16 (b) were transported to a Dwytroid sintering machine, charged on a pallet, and subjected to sintering. This is an invention example. Slurry water containing mill scale / rolled circulating water sludge was used as the moisture for granulation, and the addition was performed on the charging side of the first drum mixer 51 in total.
[0059]
For comparison, iron ore, SiO 2 The pseudo particles granulated by the processing method of simultaneously mixing the containing raw material, the limestone powder raw material, and the coke powder were transported to a Dwightroid sintering machine, charged on a pallet, and subjected to sintering. Slurry water was used as the moisture for granulation, and the total amount was added on the charging side of the first drum mixer 51. This is a comparative example.
For the inventive example and the comparative example, the production rate of the sintering machine (ton / hr · m Three ), The yield (%) of the sintered ore, and the pseudo particle size (mm). The results are shown in Table 4.
Referring to Table 4, it can be seen that the inventive example is improved over the comparative example in terms of the production rate of the sintering machine, the yield of sintered ore, and the pseudo particle size.
[0060]
[Table 4]
Figure 2004204332
[0061]
【The invention's effect】
As described above, according to the method for producing a sintering raw material according to claim 1 of the present invention, the sintering raw material excluding the solid fuel powder raw material is charged from the charging port of the drum mixer. The solid fuel powder raw material is added in a region set in the middle of the downstream side where the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 120 seconds. Since the solid fuel powder material adheres to and forms on the exterior of the sintered raw material before reaching the outlet, the pseudo fuel particles for sintering with the solid fuel powder material adhered and formed on the exterior of the pseudo particle with a larger particle size A raw material can be manufactured and productivity at the time of manufacturing a sintered ore can be greatly improved. In addition, when charging the sintering raw material excluding the solid fuel-based powder raw material, the weight ratio of the granulation water added for granulation to the total amount of added water is the total addition of the amount of the sintering raw material charged. Since it is added at a weight ratio larger than the weight ratio with respect to the amount of the sintering raw material, and the remaining moisture for granulation is added when adding the solid fuel powder raw material, the production rate, yield, sintering time, and pseudo particles are further added. The diameter can be improved.
[0062]
Moreover, according to the manufacturing method of the raw material for sintering which concerns on Claim 2 among this invention, while inserting the sintering raw material except a solid fuel type powder raw material from the charging port of a drum mixer, it adds for granulation. A region set in the middle of the downstream side in which the residence time until the sintering raw material reaches the discharge port of the drum mixer is within a range of 10 to 120 seconds by adding moisture for total granulation to granulate the sintering raw material In this case, the solid fuel powder material is added to and formed on the exterior of the sintered material while it reaches the discharge port. It is possible to produce pseudo-particle raw materials for sintering with raw materials attached and formed, which can greatly improve the productivity at the time of sinter ore production, as well as the production rate, yield, sintering time, pseudo-particle size The improvement effect can be maximized.
[0063]
According to the manufacturing method of the raw material for sintering which concerns on Claim 3 among this invention, in the invention of Claim 1 or 2, the residence time until the said sintered raw material reaches | attains the discharge port of a drum mixer is 10--10. Since the solid fuel-based powder raw material added in the region set in the middle of the downstream side in the range of 120 seconds is added in a dry state, the solid fuel-based powder raw material adheres to the exterior of the sintered raw material while reaching the discharge port -It becomes easy to form, and the effect of improving the production rate, yield, sintering time, and pseudo particle size can be maximized.
[0064]
According to the manufacturing method of the raw material for sintering which concerns on Claim 4 among this invention, in the invention as described in any one of Claims 1 thru | or 3, it is the structure used for the addition of the said moisture for granulation. The granular water is slurry water containing mill scale / rolling circulating water sludge, and the productivity at the time of manufacturing the sintered ore can be greatly improved.
Moreover, according to the manufacturing method of the raw material for sintering which concerns on Claim 5 among this invention, in the invention as described in any one of Claims 1 thru | or 4, a downward suction droidoid type sintering machine is used. As a pre-treatment of the process for producing sintered ore for blast furnace, iron ore, SiO 2 When granulating the sintered raw material comprising the raw material, limestone powder material and solid fuel powder material using a drum mixer, the drum mixer is divided into a plurality of drum mixers, and the final drum mixer is discharged from the inlet. As the drum mixer length set in the range of 10 to 120 seconds until reaching the outlet, the solid fuel system powder raw material is added on the final drum mixer charging side to increase the particle size. A pseudo-particle raw material for sintering in which a solid fuel-based powder raw material is adhered and formed on the outer portion of the particle can be produced.
[Brief description of the drawings]
FIG. 1 is a system diagram of mixing and granulation of sintering raw materials according to a conventional example.
FIG. 2 is a graph showing the relationship between the average particle size of pseudo particles and the production rate of a sintering machine.
FIG. 3 is a graph showing the relationship between the contact angle of iron ore and the air permeability of the pseudo particle packed bed.
FIG. 4 is a side view schematically showing the relationship between a sample, a water droplet, and a contact angle.
FIG. 5 is a cross-sectional view schematically showing an apparatus for measuring the water penetration height.
FIG. 6 is a system diagram showing the steps of a granulation experiment.
FIG. 7 is a system diagram showing the steps of a granulation experiment.
FIG. 8 is a graph showing the relationship between the elapsed time after the start of granulation and the average particle size of pseudo particles.
FIG. 9 is a process diagram showing the steps of a granulation experiment.
FIG. 10 is a graph showing the relationship between the exterior time after coke addition and the average particle size of pseudo particles.
FIG. 11 is a system diagram showing the steps of a granulation experiment.
FIG. 12 is an experimental apparatus diagram for seeing the distribution effect of moisture for granulation.
FIG. 13 is a diagram showing the results of changes in the production rate, yield, sintering time, and pseudo particle size of a raw material for sintering when added with the distribution of moisture for granulation shown in Table 1.
14A is a diagram showing changes in the pseudo particle size and sintering time of the conventional method when using industrial water and the method of the present invention, and FIG. 14B is a diagram showing the conventional method and the present method when using slurry water. It is a figure which shows the change of the pseudo particle diameter of an invention method, and sintering time.
FIG. 15 is a system diagram showing the granulation flow (Method A) of the present invention.
FIG. 16 is a system diagram showing a granulation flow (Method B) of the present invention.
[Explanation of symbols]
1 Iron ore
2 SiO 2 Contained raw materials
3 Limestone powder raw material
4 Solid fuel-based powder raw material
5 Drum mixer
5a Primary water injection nozzle
5b Secondary water injection nozzle
6 samples
7 Water drops
8 Glass tube
9 Gauze
10 Powder
11 Water
12 Belt conveyor
51 1st drum mixer
52 Second Drum Mixer

Claims (5)

下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する造粒用水分をその全添加水分量に対する重量比が前記装入する焼結原料量の全添加焼結原料量に対する重量比よりも大きい重量比で添加して焼結原料を造粒し、該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、該固体燃料系粉原料の添加時に、残余の造粒用水分を添加して、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することを特徴とする焼結用原料の製造方法。As a pre-treatment of the process of producing blast furnace sinter using a downward suction droidoid sintering machine, a sintering raw material consisting of iron ore, SiO 2 -containing raw material, limestone powder raw material and solid fuel powder raw material is used. When granulating using a drum mixer, the sintering raw material excluding the solid fuel-based powder raw material is charged from the inlet of the drum mixer and the granulating water added for granulation is based on the total amount of water added. The sintered raw material is granulated by adding a weight ratio larger than the weight ratio of the amount of the sintered raw material to be charged to the total amount of the additional sintered raw material, and the sintered raw material is fed to the outlet of the drum mixer. The solid fuel system powder raw material is added in the region set in the middle of the downstream side where the residence time until reaching the range is 10 to 120 seconds, and the remaining granulation moisture is added when the solid fuel system powder raw material is added. The solid fuel between the outlet Method for producing a sintering material characterized by adhesion and form a system powder material on the exterior portion of the sintered material. 下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーの装入口から固体燃料系粉原料を除く焼結原料を装入すると共に造粒のために添加する全造粒用水分を添加して焼結原料を造粒し、該焼結原料が前記ドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で固体燃料系粉原料を添加し、排出口に至る間に固体燃料系粉原料を焼結原料の外装部に付着・形成することを特徴とする焼結用原料の製造方法。As a pre-treatment of the process of producing blast furnace sinter using a downward suction droidoid sintering machine, a sintering raw material consisting of iron ore, SiO 2 -containing raw material, limestone powder raw material and solid fuel powder raw material is used. When granulating using a drum mixer, the sintering raw material excluding the solid fuel powder raw material is charged from the inlet of the drum mixer, and all the granulating moisture added for granulation is added and sintered. The raw material is granulated, and the solid fuel powder raw material is added in the region set in the middle of the downstream side where the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 120 seconds. A method for producing a raw material for sintering, characterized in that a solid fuel-based powder raw material is adhered to and formed on an exterior part of the sintered raw material before reaching the outlet. 前記焼結原料がドラムミキサーの排出口に到達するまでの滞留時間が10〜120秒範囲となる下流側途中に設定した領域で添加する前記固体燃料系粉原料を、乾燥状態で添加することを特徴とする請求項1又は2記載の焼結用原料の製造方法。Adding the solid fuel-based powder raw material in a dry state to be added in a region set in the middle of the downstream side where the residence time until the sintered raw material reaches the discharge port of the drum mixer is in the range of 10 to 120 seconds. The method for producing a raw material for sintering according to claim 1 or 2. 前記造粒用水分の添加のために使用する造粒水が、ミルスケール・圧延循環水スラッジを含むスラリー水であることを特徴とする請求項1乃至3のうちいずれか一項に記載の焼結用原料の製造方法。The granulation water used for the addition of the moisture for granulation is slurry water containing mill scale / rolled circulating water sludge. A method for producing a ligation raw material. 下方吸引のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造するプロセスの事前処理として、鉄鉱石、SiO2 含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料をドラムミキサーを用いて造粒するに際し、前記ドラムミキサーを複数に分割したドラムミキサーとして、最終のドラムミキサーを装入口から排出口に到達するまでの滞留時間が10〜120秒範囲に設定されたドラムミキサー長さとして、該最終のドラムミキサー装入側で固体燃料系粉原料を添加することを特徴とする請求項1乃至4のうちいずれか一項に記載の焼結用原料の製造方法。As a pre-process of the process for producing the blast furnace sinter with Dwight Lloyd type sintering machine of downward suction, iron ore, SiO 2 containing material, a sintered material made of limestone-based powder material and a solid fuel based flour ingredients When granulating using a drum mixer, the drum mixer is divided into a plurality of drum mixers, and the residence time until the final drum mixer reaches from the loading port to the discharge port is set in the range of 10 to 120 seconds. The method for producing a sintering raw material according to any one of claims 1 to 4, wherein a solid fuel-based powder raw material is added as a mixer length on the final drum mixer charging side.
JP2002377800A 2002-12-26 2002-12-26 Method for manufacturing raw materials for sintering Expired - Lifetime JP4228694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377800A JP4228694B2 (en) 2002-12-26 2002-12-26 Method for manufacturing raw materials for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377800A JP4228694B2 (en) 2002-12-26 2002-12-26 Method for manufacturing raw materials for sintering

Publications (2)

Publication Number Publication Date
JP2004204332A true JP2004204332A (en) 2004-07-22
JP4228694B2 JP4228694B2 (en) 2009-02-25

Family

ID=32814864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377800A Expired - Lifetime JP4228694B2 (en) 2002-12-26 2002-12-26 Method for manufacturing raw materials for sintering

Country Status (1)

Country Link
JP (1) JP4228694B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015065A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015063A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015066A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015067A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore
JP2018003081A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Manufacturing method of sinter raw material for manufacturing sintered ore
JP2020176299A (en) * 2019-04-18 2020-10-29 日本製鉄株式会社 Method for manufacturing sintered ore

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015065A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015063A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015066A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015067A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
JP2013036050A (en) * 2010-07-30 2013-02-21 Jfe Steel Corp Method of producing raw material for sintering
JP2013036049A (en) * 2010-07-30 2013-02-21 Jfe Steel Corp Method of producing raw material for sintering
JP2013036048A (en) * 2010-07-30 2013-02-21 Jfe Steel Corp Method of producing raw material for sintering
CN103038368A (en) * 2010-07-30 2013-04-10 杰富意钢铁株式会社 Method for producing starting material for sintering
CN103038368B (en) * 2010-07-30 2014-10-15 杰富意钢铁株式会社 Method for producing starting material for sintering
JP2015193930A (en) * 2014-03-27 2015-11-05 新日鐵住金株式会社 Method for producing sintered ore
JP2018003081A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Manufacturing method of sinter raw material for manufacturing sintered ore
JP2020176299A (en) * 2019-04-18 2020-10-29 日本製鉄株式会社 Method for manufacturing sintered ore
JP7205362B2 (en) 2019-04-18 2023-01-17 日本製鉄株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JP4228694B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP2007284744A (en) Method for manufacturing sintered ore
JP3656632B2 (en) Pseudoparticle raw material for sintering and method for producing pseudoparticle raw material for sintering
JP4228694B2 (en) Method for manufacturing raw materials for sintering
RU2675883C2 (en) Method and device for producing granulates
JP5051317B1 (en) Method for manufacturing raw materials for sintering
EP3266884A1 (en) Quasiparticles for sintering and method of producing same
JP2003138319A (en) Method for manufacturing raw material for sintering
JP3794332B2 (en) Granulation method of sintering raw material
WO2012015063A1 (en) Method for producing starting material for sintering
KR20180030596A (en) Method for producing sintered ore
JP2006336064A (en) Method for granulating raw material to be sintered
JP5146573B1 (en) Method for manufacturing raw materials for sintering
JP4228678B2 (en) Method for manufacturing raw materials for sintering
JP5821362B2 (en) Method for manufacturing raw materials for sintering
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP7110830B2 (en) Granulation method of mixed raw materials
US4001007A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JP2000256756A (en) Method for granulating sintering raw material
JP2005171388A (en) Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
CN107674971B (en) Raw material treatment method
JP2000290734A (en) Pretreatment of sintering raw material
JPH0819484B2 (en) Sintered ore manufacturing method
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP3675105B2 (en) Sintering raw material processing method
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Ref document number: 4228694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term