JP2020176299A - Method for manufacturing sintered ore - Google Patents

Method for manufacturing sintered ore Download PDF

Info

Publication number
JP2020176299A
JP2020176299A JP2019079181A JP2019079181A JP2020176299A JP 2020176299 A JP2020176299 A JP 2020176299A JP 2019079181 A JP2019079181 A JP 2019079181A JP 2019079181 A JP2019079181 A JP 2019079181A JP 2020176299 A JP2020176299 A JP 2020176299A
Authority
JP
Japan
Prior art keywords
particle size
raw material
limestone
average particle
sinter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019079181A
Other languages
Japanese (ja)
Other versions
JP7205362B2 (en
Inventor
謙一 樋口
Kenichi Higuchi
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019079181A priority Critical patent/JP7205362B2/en
Publication of JP2020176299A publication Critical patent/JP2020176299A/en
Application granted granted Critical
Publication of JP7205362B2 publication Critical patent/JP7205362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for manufacturing sintered ore in which an improvement in the yield of sintered ore is aimed.SOLUTION: A method for manufacturing sintered ore is a method for manufacturing sintered ore in which a sintering raw material, in which iron ore, limestone, MgO-containing auxiliary raw material, carbonaceous material and return ore are compounded, is subjected to granulation treatment, segregation-charged into the pallet of a downward suction type sintering machine, and calcined, and in which, characterized, the average particle size (MSC) of the carbonaceous material is more than 2.0 mm and 2.8 mm or less, and the ratio of the average particle size of limestone (MSL) to the average particle size of carbonaceous material (MSC) is 0.94≤MSL/MSC≤1.2.SELECTED DRAWING: Figure 3

Description

本発明は、焼結鉱の製造方法に関する。 The present invention relates to a method for producing a sinter.

現在、日本の高炉用原料は、主に焼結鉱である。焼結鉱は、主原料である鉄鉱石等の含鉄原料粉、副原料、炭材および返鉱が配合されて作られる。 Currently, the raw material for blast furnaces in Japan is mainly sinter. Sintered ore is made by blending iron-containing raw material powder such as iron ore, which is the main raw material, auxiliary raw materials, charcoal, and return ore.

焼結鉱は、通常、次のように製造される。まず、主原料である鉄鉱石等の含鉄原料粉に対し、副原料、炭材および返鉱を所定の割合で混合し、さらに混合物に適当な水分を加えて造粒して配合原料(以下、焼結原料ともいう)とする。 Sintered ore is usually produced as follows. First, an auxiliary raw material, a charcoal material, and a return ore are mixed at a predetermined ratio with an iron-containing raw material powder such as iron ore, which is the main raw material, and then appropriate water is added to the mixture to granulate and blend the raw material (hereinafter referred to as “blended material”). It is also called a sintered raw material).

次に、この焼結原料を、下方吸引式のドワイトロイド(DL)式焼結機(以下、焼結機ともいう)に装入する。具体的には、焼結原料は、焼結機直上のホッパより原料切出装置により定量が切出され、装入シュートを介してパレット上に装入、載置されて原料充填層を形成する。形成された原料充填層中の上層(表層)の炭材に、点火炉によって点火する。そして、パレットを連続的に移動させながらパレットの下方から空気を吸引することにより酸素を供給し、原料充填層内の炭材の燃焼を上層から下層に向けて進行させる。炭材の燃焼熱により、原料充填層を上層側から下層側に順次焼結させる。得られた焼結部(シンターケーキ)は、所定の粒度に粉砕、篩分けにより整粒され、一定の粒径以上のものが高炉用原料である焼結鉱となる。なお、一定粒径未満のもの(通常は−5mm)は、返鉱として回収され、焼結原料の一部として再使用される。 Next, this sintering raw material is charged into a downward suction type Dwightroid (DL) type sintering machine (hereinafter, also referred to as a sintering machine). Specifically, the sintered raw material is quantified by a raw material cutting device from a hopper directly above the sintering machine, and is charged and placed on a pallet via a charging chute to form a raw material filling layer. .. The upper layer (surface layer) of the formed raw material filling layer is ignited by an ignition furnace. Then, oxygen is supplied by sucking air from the lower part of the pallet while continuously moving the pallet, and the combustion of the carbonaceous material in the raw material filling layer proceeds from the upper layer to the lower layer. The raw material filling layer is sequentially sintered from the upper layer side to the lower layer side by the combustion heat of the carbonaceous material. The obtained sintered portion (sinter cake) is pulverized and sieved to a predetermined particle size, and a sinter having a certain particle size or more is used as a raw material for a blast furnace. Those having a particle size smaller than a certain size (usually −5 mm) are recovered as returned ore and reused as a part of the sintering raw material.

ここで、焼結原料は、装入シュートの傾斜面を介してパレット上に装入される。そのため、装入された焼結原料はパレット上に載置される際に斜面を形成し、この斜面において転動分級作用が起こる。この転動分級作用により、原料充填層の層厚(層高)方向に粒度偏析が起き、焼結原料は粒度が小さいものが原料充填層の上層側に、粒度が大きいものが原料充填層の下層側に装入されやすくなる。 Here, the sintered raw material is charged onto the pallet via the inclined surface of the charging chute. Therefore, the charged sintered raw material forms a slope when placed on the pallet, and a rolling classification action occurs on this slope. Due to this rolling classification action, particle size segregation occurs in the layer thickness (layer height) direction of the raw material packing layer, and the sintered raw material has a smaller particle size on the upper layer side of the raw material packing layer and a larger particle size on the raw material packing layer. It becomes easier to charge to the lower layer side.

また、下方吸引式の焼結機による焼結過程においては、下方から空気を吸引するため、原料充填層の層厚方向により、原料が受ける熱量が異なる。上層側では、吸引される低温の空気により熱量が不足しがちであるのに対し、下層側では、上層側での燃焼の余熱により熱量過剰となる。 Further, in the sintering process by the downward suction type sintering machine, since air is sucked from below, the amount of heat received by the raw material differs depending on the layer thickness direction of the raw material filling layer. On the upper layer side, the amount of heat tends to be insufficient due to the low temperature air sucked, while on the lower layer side, the amount of heat becomes excessive due to the residual heat of combustion on the upper layer side.

このような層厚方向における焼結原料の粒度偏析および層厚方向における受ける熱量の違いによって、層厚方向に主原料である鉄鉱石の融液の量の偏りが生じ、層厚方向で焼成される焼結鉱の歩留や品質が異なってくる。その結果、全体としての歩留が低下してしまうことがあるが、それを防ぐために、焼結原料の層厚方向の分布や融点を左右する成分の濃度を制御する技術が開示されている。 Due to the particle size segregation of the sintered raw material in the layer thickness direction and the difference in the amount of heat received in the layer thickness direction, the amount of the melt of iron ore, which is the main raw material, is uneven in the layer thickness direction, and the calcination is fired in the layer thickness direction. The yield and quality of sinter will differ. As a result, the yield as a whole may decrease, but in order to prevent this, a technique for controlling the distribution of the sintered raw material in the layer thickness direction and the concentration of components that influence the melting point is disclosed.

例えば、造粒前の焼結原料に含まれる炭材の粒径を調整したり(特許文献1)、コークスの粒度や石灰石の粒度を調整したり(特許文献2)して、焼結鉱を製造する技術が開示されている。 For example, the particle size of the charcoal material contained in the sinter raw material before granulation is adjusted (Patent Document 1), and the particle size of coke and limestone is adjusted (Patent Document 2) to obtain the sinter. The manufacturing technology is disclosed.

特許文献1,2には、焼結原料に配合するコークスや石灰石の粒度分布を焼成前に調整することにより、ミクロ気孔生成増により高温還元・軟化溶融性状の優れた焼結鉱を製造する技術が開示されている。 Patent Documents 1 and 2 describe a technique for producing a sinter having excellent high-temperature reduction and softening melt properties by increasing the formation of micropores by adjusting the particle size distribution of coke and limestone to be blended in the sinter raw material before firing. Is disclosed.

特開平07−3342号公報Japanese Unexamined Patent Publication No. 07-3342 特開平08−120350号公報Japanese Unexamined Patent Publication No. 08-120350

上記の特許文献1および特許文献2に記載された技術では、炭材および石灰石の粒度をそれぞれ別個に調整することが示されている。しかしながら、炭材と石灰石という二つの原料を、適正な粒度の組み合わせに調整することにより、焼結鉱の歩留向上を可能とする焼結鉱の製造方法については、これまで提案されていなかった。 In the techniques described in Patent Document 1 and Patent Document 2 above, it is shown that the grain sizes of the carbonaceous material and the limestone are adjusted separately. However, a method for producing sinter that can improve the yield of sinter by adjusting the two raw materials, carbonaceous material and limestone, to an appropriate combination of particle sizes has not been proposed so far. ..

本発明の目的は、配合原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、歩留の向上を可能とする焼結鉱の製造方法を提供することである。 An object of the present invention is the production of a sinter that enables improvement in yield in a method for producing a sinter in which a compounded raw material is granulated, charged into a pallet of a downward suction type sinter, and fired. To provide a method.

本発明の要旨とするところは、以下のとおりである。
鉄鉱石、石灰石、MgO含有副原料、炭材および返鉱を配合した焼結原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、
前記炭材の平均粒径(MSC)は2.0mmを超え2.8mm以下であり、
前記石灰石の平均粒径(MSL)と前記炭材の平均粒径(MSC)の比率が、0.94≦MSL/MSC≦1.2であること
を特徴とする焼結鉱の製造方法。
The gist of the present invention is as follows.
In the method for producing sinter, which is obtained by granulating a sinter raw material containing iron ore, limestone, MgO-containing auxiliary raw material, charcoal material, and return ore, charging the sinter into a pallet of a downward suction type sinter, and firing the sinter.
The average particle size (MS C ) of the carbonaceous material is more than 2.0 mm and 2.8 mm or less.
The ratio of the average particle size (MS L ) of the limestone to the average particle size (MS C ) of the carbonaceous material is 0.94 ≤ MS L / MS C ≤ 1.2. Production method.

本発明によれば、炭材と石灰石をこれらの粒径比率に基づいて調整することにより、両原料の粒度偏析を制御して歩留を向上することができる。 According to the present invention, by adjusting the carbonaceous material and limestone based on these particle size ratios, it is possible to control the particle size segregation of both raw materials and improve the yield.

本実験において使用した篩分け装置を模式的に示す図である。It is a figure which shows typically the sieving apparatus used in this experiment. コークスの平均粒径(MSC)と成品歩留との関係を示す図である。It is a figure which shows the relationship between the average particle diameter (MS C ) of coke and the product yield. コークスの平均粒径(MSC)と石灰石の平均粒径(MSL)との関係を示す図である。It is a figure which shows the relationship between the average particle diameter (MS C ) of coke and the average particle diameter (MS L ) of limestone.

以下に課題を解決した経緯について詳細に説明する。 The process of solving the problem will be explained in detail below.

焼結鉱は、主原料である鉄鉱石等の含鉄原料粉、副原料、炭材および返鉱が配合されて作られる。鉄鉱石は、焼結原料の約70質量%以上85質量%以下を占め、10mm以下の粒度範囲のものが使用されている。通常は5種類から10種類の鉄鉱石銘柄が混合され、その配合割合に応じて、鉄鉱石の平均粒径は1.3mm以上2.5mm以下の範囲とされている。副原料は、石灰石、生石灰などのCaO含有副原料、橄欖岩、ニッケルスラグなどのMgO含有副原料である。炭材は、通常使用されるコークスや無煙炭の他、石炭チャーなど、焼結の発熱源となる炭素成分(フリーカーボン)を主体とする材料である。 Sintered ore is made by blending iron-containing raw material powder such as iron ore, which is the main raw material, auxiliary raw materials, charcoal, and return ore. Iron ore occupies about 70% by mass or more and 85% by mass or less of the sintering raw material, and is used in a particle size range of 10 mm or less. Usually, 5 to 10 types of iron ore brands are mixed, and the average particle size of iron ore is in the range of 1.3 mm or more and 2.5 mm or less depending on the mixing ratio. The auxiliary raw materials are CaO-containing auxiliary raw materials such as limestone and quicklime, and MgO-containing auxiliary raw materials such as peridotite and nickel slag. The carbonaceous material is a material mainly composed of a carbon component (free carbon) that is a heat generating source for sintering, such as coal char, in addition to coke and anthracite that are usually used.

焼結過程において、炭材は、原料充填層内の鉄鉱石の周囲に融液を生成させる熱源となる。石灰石は融液の原料であり、炭材の燃焼により溶融する。石灰石中のCaOが鉄鉱石中のFeと反応して、カルシウムフェライト(CaO・Fe)系融液を生成し、この融液により配合原料(焼結原料)の塊成化が進む。そのため、焼結原料の融液生成(焼結)反応において、石灰石および炭材は、融液の発生量、すなわち、焼成される焼結鉱の強度を左右し、歩留に直結する重要な要素となっている。 In the sintering process, the carbonaceous material becomes a heat source for forming a melt around the iron ore in the raw material packing layer. Limestone is the raw material for the melt and melts when the carbonaceous material burns. CaO in limestone reacts with Fe 2 O 3 in iron ore to form a calcium ferrite (CaO · Fe 2 O 3 ) -based melt, and this melt agglomerates the compounding raw material (sintered raw material). Proceeds. Therefore, in the melt formation (sintering) reaction of the sintered raw material, limestone and carbonaceous material affect the amount of melt generated, that is, the strength of the sintered ore to be calcined, and are important factors directly linked to the yield. It has become.

石灰石は、その粒度が小さいと溶融しやすくなるが、小さすぎるとパレットに装入した際に原料充填層の通気抵抗が上がり、生産性を低下させてしまう。また、石灰石は、その粒度が大きく溶け残った場合には、融液の生成量が減少する。融液の生成量の不足により、シンターケーキ内に未焼結の部分が残り、結果として強度不足により歩留が低下する。ここで、上述した層厚方向における焼結原料の粒度偏析は、焼結原料である炭材や石灰石についても同様であり、粒度の粗いものが下層に、粒度の細かいものが上層に偏ることが知られている。 If the particle size of limestone is small, it is easy to melt, but if it is too small, the aeration resistance of the raw material packing layer increases when it is charged into the pallet, and the productivity is lowered. Further, when the particle size of limestone is large and remains undissolved, the amount of melt produced decreases. Due to the insufficient amount of melt produced, unsintered portions remain in the sintered cake, and as a result, the yield is lowered due to insufficient strength. Here, the particle size segregation of the sintered raw material in the layer thickness direction described above is the same for the carbonic material and limestone which are the sintered raw materials, and the coarse-grained material may be biased to the lower layer and the fine-grained material may be biased to the upper layer. Are known.

本発明者は、上述のような炭材と石灰石の粒度偏析、すなわち、粒度によって層厚方向の賦存量がそれぞれ変化することに着目した。融液生成の熱源となるコークスと融液の原料となる石灰石とを、層厚方向において同様に偏析させることにより、石灰石の溶け残りを防止して焼結に必要な融液を発生させることができると考えた。つまり、炭材の粒度(平均粒径MSC)と石灰石の粒度(平均粒径MS)との両方を粒径比率に基づいて調整することにより、融液を生成させる熱源であるフリーカーボンと、融液の原料となるCaOの両成分の層厚方向における偏析状態が同様になるように制御することができる。その結果として、層厚方向における融液の発生量を制御することができ、焼結鉱の歩留を向上させることが可能であると考えた。 The present inventor has focused on the particle size segregation of carbonaceous material and limestone as described above, that is, the endowment amount in the layer thickness direction changes depending on the particle size. By segregating coke, which is the heat source for melt formation, and limestone, which is the raw material for the melt, in the same manner in the layer thickness direction, it is possible to prevent undissolved limestone and generate the melt required for sintering. I thought I could do it. That is, by adjusting both the particle size of the carbonaceous material (average particle size MS C ) and the particle size of limestone (average particle size MS L ) based on the particle size ratio, free carbon, which is a heat source for generating a melt, is used. , The segregation state of both components of CaO, which is a raw material of the melt, in the layer thickness direction can be controlled to be similar. As a result, it was considered that the amount of melt generated in the layer thickness direction could be controlled and the yield of the sinter could be improved.

そこで、本発明者は、炭材の粒度と石灰石の粒度について、適正な粒径比率の範囲を調べた。具体的には、粒度の異なる炭材、粒度の異なる石灰石を複数用意し、これらをそれぞれ組み合わせて配合した焼結原料について焼結鍋試験を実施し、焼結工程の各歩留を調べた。その結果、従来の粒度(平均粒径1.5mm以上1.8mm以下)よりも粒度の大きい平均粒径が2.0mmを超え2.8mm以下の炭材を用いた場合でも、石灰石の粒度(以下、「石灰石の平均粒径」「MS」ともいう)と炭材の粒度(以下、「炭材の平均粒径」または「MSC」ともいう)との比率とが、「0.94≦MS/MSC≦1.2」となるように調整することにより、焼結鉱の歩留の向上効果が得られることを見出した。ここで、炭材の平均粒径が2.0mm以下であるとパレットの下層部の炭材量が少なくなり、下層部の熱量不足で歩留が低下し、2.8mmよりも大きいとパレットの下層部の炭材量が多くなりすぎ、パレットのグレート面の焼き付きが発生して安定した操業が困難となる可能性がある。また、「MS/MSC」の値が0.94未満であると、石灰石の粒度が小さく原料粒子間の隙間を埋めてしまうため、融液の生成量が多すぎてしまい原料充填層の通気性が悪化して歩留が低下する。「MS/MSC」の値が1.2よりも大きいと、石灰石の粒度が大きくなるため、石灰石の溶けにくくなり、融液の生成量が少なくなり未焼結部分が発生し歩留が低下する。本願は、かかる知見に基づいて発明されたものである。 Therefore, the present inventor investigated the range of an appropriate particle size ratio for the particle size of the carbonaceous material and the particle size of the limestone. Specifically, a plurality of carbon materials having different particle sizes and limestones having different particle sizes were prepared, and a sintering pot test was conducted on a sintered raw material in which these were mixed in combination to examine each yield in the sintering process. As a result, even when a charcoal material having an average particle size larger than the conventional particle size (average particle size of 1.5 mm or more and 1.8 mm or less) of more than 2.0 mm and 2.8 mm or less is used, the particle size of limestone (average particle size) Hereinafter, the ratio of the "average particle size of limestone" (also referred to as "MS L ") to the particle size of the carbonaceous material (hereinafter, also referred to as "average particle size of the carbonaceous material" or "MS C ") is "0.94". It was found that the effect of improving the yield of the sinter can be obtained by adjusting so that ≦ MS L / MS C ≦ 1.2 ”. Here, when the average particle size of the carbonaceous material is 2.0 mm or less, the amount of carbonaceous material in the lower layer of the pallet decreases, and when the average particle size of the carbonaceous material is larger than 2.8 mm, the yield decreases due to insufficient heat in the lower layer of the pallet. The amount of carbonaceous material in the lower layer may become too large, causing seizure on the great surface of the pallet, making stable operation difficult. Further, if the value of "MS L / MS C " is less than 0.94, the particle size of the limestone is small and the gaps between the raw material particles are filled, so that the amount of melt produced is too large and the raw material filling layer Breathability deteriorates and yield decreases. If the value of "MS L / MS C " is larger than 1.2, the grain size of the limestone becomes large, so that the limestone becomes difficult to dissolve, the amount of melt produced decreases, unsintered parts are generated, and the yield is reduced. descend. The present application has been invented based on such findings.

本発明では、発明者は、歩留の向上の指標として、炭材の平均粒径に対する石灰石の平均粒径の比(MS/MSC)を採用している。粒度を表す代表指標は種々考えられるが、原料装入時の粒度偏析が支配する現象を扱う上では、特許文献1,2で採用されている粒度構成を用いる表現よりも、後述する平均粒径(MS)の方が適当な粒度指標であると考えたからである。ここで、それぞれの原料充填層における粒度偏析挙動は、主原料である鉄鉱石の粒度(以下、「鉄鉱石の平均粒径」または「MSo」ともいう)に対する粒度の違い、たとえば粒径比率であるMS/MSo、MSC/MSoに支配されると考えるのが妥当である。従って、炭材と石灰石との相対的な偏析挙動は、詳しくは、(MS/MSo)/(MSC/MSo)に支配されることになる。このとき、MSoは分母分子で相殺されるので、結局、本願で採用した指標:MS/MSCとなる。すなわち、本発明における指標である炭材の平均粒径に対する石灰石の平均粒径の比(MS/MSC)は、鉄鉱石の粒度に拠らない普遍性を有している。 In the present invention, the inventor employs the ratio of the average grain size of limestone to the average grain size of the carbonaceous material (MS L / MS C ) as an index for improving the yield. Although various representative indexes representing the particle size can be considered, in dealing with the phenomenon dominated by the particle size segregation at the time of charging the raw material, the average particle size described later is better than the expression using the particle size configuration adopted in Patent Documents 1 and 2. This is because (MS) was considered to be a more appropriate particle size index. Here, the particle size segregation behavior in each raw material packing layer is based on the difference in particle size with respect to the particle size of iron ore as the main raw material (hereinafter, also referred to as “average particle size of iron ore” or “MSo”), for example, the particle size ratio. It is reasonable to think that it is controlled by a certain MS L / MSo and MS C / MSo. Therefore, the relative segregation behavior of the carbonaceous material and the limestone is governed by (MS L / M So) / (MS C / M So) in detail. At this time, since MSo is offset by the denominator numerator, the index adopted in the present application: MS L / MS C is obtained. That is, the ratio of the average particle size of limestone to the average particle size of carbonaceous material (MS L / MS C ), which is an index in the present invention, has universality that does not depend on the particle size of iron ore.

実施例として、石灰石の平均粒径(MS)と炭材の平均粒径(MSC)との比率の好適な範囲を決定した根拠を示す。本実施例は、配合原料の装入状況を再現できる装入実験装置で配合原料充填層を形成し、形成した配合原料充填層を一般的な焼結実験装置(焼結鍋試験)で焼成することで、実際の焼結機を再現する手法を採用した。 As an example, the rationale for determining a suitable range of the ratio of the average particle size of limestone (MS L ) to the average particle size of carbonaceous material (MS C ) is shown. In this embodiment, a compounding raw material filling layer is formed by a charging experimental device capable of reproducing the charging state of the compounding raw material, and the formed compounding raw material filling layer is fired by a general sintering experimental device (sintering pot test). Therefore, we adopted a method to reproduce the actual sintering machine.

(原料の準備)
本発明者が行った試験の内容は以下のようである。
まず、本試験では、配合原料のうち、炭材としてコークスを、CaO含有副原料として石灰石を用いた。コークスおよび石灰石は、表1に示すように、粒度の異なるものを3種類ずつ用意した。
表1は、本試験に用いた石灰石およびコークスの粒度分布と平均粒径を示す。
(Preparation of raw materials)
The contents of the test conducted by the present inventor are as follows.
First, in this test, coke was used as the carbonaceous material and limestone was used as the CaO-containing auxiliary material among the compounding raw materials. As shown in Table 1, three types of coke and limestone having different particle sizes were prepared.
Table 1 shows the particle size distribution and average particle size of limestone and coke used in this test.

Figure 2020176299
Figure 2020176299

表1に示すように、3種類の石灰石(細粒(L1)、中粒(L2)、粗粒(L3))の試料と、3種類のコークス(細粒(C1)、中粒(C2)、粗粒(C3))の試料を用意した。表1に、石灰石(L1、L2、L3)とコークス(C1、C2、C3)試料、それぞれを、篩目(目開き寸法)の異なる6種類の篩を使用して篩分けた際の粒度分布を示す。粒度区分の境界値となる粒径は、表1に示すように、0.25mm、0.5mm、1mm、3mm、5mm、7mmであり、これらの値は分級に使用した篩の篩目である。例えば、粒度区分「1mm−0.5mm」とは、0.5mmの篩目の篩で篩分けた際に篩上であり、1mmの篩目の篩で篩分けた際に篩下である。なお、0.25mm、0.5mm、1mmの篩については、JIS Z 8801で規定されているものを使用している。平均粒度(MS)は、粒度区分の中央値を、粒度区分毎の質量分率で加重して算出した平均値である。なお、算出の際には、粒度毎の比重差はないと仮定している。 As shown in Table 1, three types of limestone (fine grain (L1), medium grain (L2), coarse grain (L3)) samples and three types of coke (fine grain (C1), medium grain (C2)) , Coarse grain (C3)) was prepared. Table 1 shows the particle size distribution of limestone (L1, L2, L3) and coke (C1, C2, C3) samples when they were sieved using six types of sieves with different meshes (opening dimensions). Is shown. As shown in Table 1, the particle sizes that serve as the boundary values for the particle size classification are 0.25 mm, 0.5 mm, 1 mm, 3 mm, 5 mm, and 7 mm, and these values are the sieves of the sieve used for classification. .. For example, the particle size classification "1 mm-0.5 mm" is above the sieve when sieved with a sieve having a mesh size of 0.5 mm and below the sieve when sieved through a sieve having a mesh size of 1 mm. As for the 0.25 mm, 0.5 mm, and 1 mm sieves, those specified in JIS Z 8801 are used. The average particle size (MS) is an average value calculated by weighting the median value of the particle size categories by the mass fraction for each particle size category. In the calculation, it is assumed that there is no difference in specific gravity for each particle size.

表1に示すように、石灰石の細粒(L1)、中粒(L2)、粗粒(L3)の試料の平均粒径(MS)は、それぞれ、1.61mm、2.08mm、2.41mmである。また、コークスの細粒(C1)、中粒(C2)、粗粒(C3)の試料の平均粒径(MS)は、それぞれ、1.63mm、2.01mm、2.55mmである。 As shown in Table 1, the average grain sizes (MS) of the fine limestone (L1), medium (L2), and coarse (L3) samples are 1.61 mm, 2.08 mm, and 2.41 mm, respectively. Is. The average particle size (MS) of the coke fine grain (C1), medium grain (C2), and coarse grain (C3) samples is 1.63 mm, 2.01 mm, and 2.55 mm, respectively.

(原料の配合と造粒)
表2は、原料の構成を示す。コークスと橄欖岩については、上述の粒度の異なる3種類を組み合わせて配合した9種類の配合原料を用意して、それぞれについて試験を行った。なお、鉄鉱石は平均粒径が1.5mmのものを使用した。
(Ingredient formulation and granulation)
Table 2 shows the composition of raw materials. For coke and peridotite, nine types of compounding raw materials, which were compounded by combining the above three types with different particle sizes, were prepared and tested for each. The iron ore used had an average particle size of 1.5 mm.

Figure 2020176299
Figure 2020176299

表2に示すように、返鉱およびコークスを除いた原料を100質量%として、返鉱とコークスの配合割合を、それぞれ外数で、15.0質量%、3.6質量%とした。これらの配合原料を万能混練機で混合した後、直径1m径のドラム型造粒機を用いて水分7.5質量%を目標にして、所定時間(3分)造粒して、鍋焼成試験用の配合原料(焼結原料)を作製した。 As shown in Table 2, the raw materials excluding the returned ore and coke were taken as 100% by mass, and the blending ratios of the returned ore and coke were 15.0% by mass and 3.6% by mass, respectively. After mixing these compounding raw materials with a universal kneader, granulate for a predetermined time (3 minutes) using a drum-type granulator with a diameter of 1 m with a target of 7.5% by mass of water content, and perform a pan firing test. A compounding raw material (sintered raw material) for use was prepared.

(造粒した焼結原料の分級)
パレットへの装入時に起こる配合原料充填層の層厚方向における粒度偏析を再現するために、スリットバー式配合原料篩分け装置(以下、篩分け装置ともいう)を使用して、造粒した焼結原料を分級した。
(Classification of granulated sintered raw materials)
In order to reproduce the particle size segregation of the compounded raw material filling layer in the layer thickness direction that occurs when the compounded raw material is charged into the pallet, a slit bar type compounded raw material sieving device (hereinafter, also referred to as a sieving device) is used to granulate and bake. The raw materials were classified.

図1は、本実験において使用した篩分け装置1を模式的に示す図である。図1に示すように、この篩分け装置1は、焼結原料2を供給するための供給部3と、供給された焼結原料2を分級するためのスリット5とを備えている。スリット5の下方には、スリット5により分級された焼結原料2を回収する複数の回収ボックス7(本実施例では6個)が並んで配置される。スリット5は、供給部3から下方に傾斜して配置され、焼結原料の移動方向に対して直交して延出し、この移動方向に等間隔に配置されるスリットバー5aを有する。供給された焼結原料2は、図1に示すように、スリットバー5a上を上流側(図の左上)から下流側(図の右下)に向かって移動する。この移動の間に、焼結原料2は粒度(粒径)の小さいものから、順次スリット5を抜けて回収ボックス7へと落下する。このように、焼結原料2は粒径に応じて回収ボックス7に分けられる。具体的には、スリット5の上流側の回収ボックス7には粒度の小さい細粒のものが、下流側の回収ボックス7には粒度の大きい粗粒のものが回収される。回収された回収ボックス7内の焼結原料を、粗粒側から順に後述する焼結鍋に装入して、実機焼結機の原料充填層と同様な粒度偏析、原料成分偏析を再現した(層厚435mm)。なお、スリット5の傾斜角度は事前検討の結果、連続的な偏析が得られた40°とした。 FIG. 1 is a diagram schematically showing a sieving device 1 used in this experiment. As shown in FIG. 1, the sieving apparatus 1 includes a supply unit 3 for supplying the sintered raw material 2 and a slit 5 for classifying the supplied sintered raw material 2. Below the slit 5, a plurality of recovery boxes 7 (6 in this embodiment) for collecting the sintered raw material 2 classified by the slit 5 are arranged side by side. The slits 5 have slit bars 5a that are arranged so as to be inclined downward from the supply unit 3, extend orthogonally to the moving direction of the sintered raw material, and are arranged at equal intervals in the moving direction. As shown in FIG. 1, the supplied sintered raw material 2 moves on the slit bar 5a from the upstream side (upper left in the figure) to the downstream side (lower right in the figure). During this movement, the sintered raw material 2 sequentially passes through the slit 5 and falls into the recovery box 7 from the one having the smallest particle size (particle size). In this way, the sintered raw material 2 is divided into the recovery boxes 7 according to the particle size. Specifically, fine particles having a small particle size are collected in the collection box 7 on the upstream side of the slit 5, and coarse particles having a large particle size are collected in the collection box 7 on the downstream side. The sintered raw material in the recovered recovery box 7 was charged into a sintering pot to be described later in order from the coarse grain side, and the same particle size segregation and raw material component segregation as the raw material packing layer of the actual sintering machine were reproduced ( Layer thickness 435 mm). The inclination angle of the slit 5 was set to 40 °, at which continuous segregation was obtained as a result of preliminary examination.

(焼結鍋試験)
表3は、焼結鍋試験に用いた試験装置の仕様と試験条件を示す。焼結鍋試験により実機での原料充填層の焼成過程をシミュレートした。焼結原料の充填後の焼結層の表面に点火し、焼結鍋の下部に設置した風箱からブロワーで空気を吸引して、原料充填層を焼成した。
(Sintered pot test)
Table 3 shows the specifications and test conditions of the test equipment used in the sintering pot test. The firing process of the raw material packing layer in the actual machine was simulated by the sintering pot test. The surface of the sintered layer after the filling of the sintered raw material was ignited, air was sucked from the air box installed at the bottom of the sintering pot with a blower, and the raw material packed layer was fired.

Figure 2020176299
Figure 2020176299

(焼結鉱の成品歩留の測定)
成品歩留は、以下のように測定した。焼成後のシンターケ−キを高さ方向(層厚方向)に3等分に分割し、試料(上層部、中層部、下層部)とした。各試料について、落錘試験(3kgの錘を2mの高さから4回繰り返し試料上に落下させた)後に目開き5mmの篩にかけ、篩に残った焼結鉱の粒子(+5mm粒子)の、シンターケ−キの総質量に対する質量%を、ここでの成品歩留(+5mm%)と定義した。
(Measurement of product yield of sinter)
The product yield was measured as follows. The sinter cake after firing was divided into three equal parts in the height direction (layer thickness direction) to prepare samples (upper layer part, middle layer part, lower layer part). For each sample, after a weight drop test (a 3 kg weight was repeatedly dropped onto the sample from a height of 2 m four times), the sample was sieved with a mesh opening of 5 mm, and the sinter particles (+5 mm particles) remaining on the sieve were determined. The mass% of the total mass of the sintered cake was defined here as the product yield (+ 5 mm%).

(成品歩留の評価)
表4は、上述した9種類の焼結原料から焼成した焼結鉱の成品歩留試験の結果を示す。
実験1〜3、実験4〜6、実験7〜9では、それぞれ、コークスの粒度が、細粒(C1)、中粒(C2)、粗粒(C3)の試料を使用している。また、実験1,4,7、実験2,5,8、実験3,6,9では、それぞれ、石灰石の粒度が、細粒(L1)、中粒(L2)、粗粒(L3)の試料を使用している。なお、石灰石の粒度が粗粒(L3)よりも少し粗く、コークスの粒度が粗粒(C3)のものよりもさらに粗粒(平均粒径3.0mm超え)のコークスを使用した実験も行い、実験10として表4に記載している。なお、この平均粒径は、上述と同様の粒度区分の中央値を質量分率で加重平均したものである。
(Evaluation of product yield)
Table 4 shows the results of the product yield test of the sinter obtained by firing from the above-mentioned nine kinds of sinter raw materials.
In Experiments 1 to 3, Experiments 4 to 6, and Experiments 7 to 9, samples of fine-grained (C1), medium-grained (C2), and coarse-grained (C3) coke particles are used. Further, in Experiments 1, 4, 7, Experiments 2, 5, 8, and Experiments 3, 6, 9, the limestone particles were fine-grained (L1), medium-grained (L2), and coarse-grained (L3), respectively. Is using. An experiment using coke having a grain size of limestone slightly coarser than that of coarse grain (L3) and a grain size of coke having a grain size of coarse grain (over 3.0 mm) than that of coarse grain (C3) was also conducted. It is shown in Table 4 as Experiment 10. The average particle size is a weighted average of the median value of the particle size classification as described above by mass fraction.

Figure 2020176299
Figure 2020176299

表4においては、以下の要件1および要件2を満たすものを実施例とし、それ以外を比較例としている。また、表4の成品歩留は、上層部、中層部、下層部の各試料の歩留(+5mm%)を平均した値である。
要件1:炭材の平均粒径(MSC)が2.0mmを超え2.8mm以下
要件2:石灰石の平均粒径(MS)が炭材の平均粒径(MSC)の0.94倍以上1.2倍以下
In Table 4, those satisfying the following requirements 1 and 2 are examples, and the others are comparative examples. The product yield in Table 4 is a value obtained by averaging the yields (+ 5 mm%) of each sample in the upper layer portion, the middle layer portion, and the lower layer portion.
Requirement 1: Average grain size of carbonaceous material (MS C ) exceeds 2.0 mm and 2.8 mm or less Requirement 2: Average particle size of limestone (MS L ) is 0.94 of average particle size of carbonaceous material (MS C ) More than double 1.2 times or less

図2は、コークスの平均粒径(MSC)と成品歩留との関係を示す図である。図2に示すように、コークスの平均粒径(MSC)を、2.0mmを超え2.8mm以下として、コークスの平均粒径(MSC)と石灰石の平均粒径(MS)との比率を調整することにより、成品歩留が70質量%以上の高歩留となることがわかった。特に、本発明の実施例である実験5、6,9においては、成品歩留が70質量%以上確保できることがわかった。また、平均粒径(MSC)が2.8mmを超えたコークスを使用した実験10においては、下層部のグレート面に焼き付きが発生して、焼結鍋内の通気が低下して、歩留の低下が著しかった。 FIG. 2 is a diagram showing the relationship between the average particle size of coke (MS C ) and the product yield. As shown in FIG. 2, the average particle size of coke (MS C ) is more than 2.0 mm and 2.8 mm or less, and the average particle size of coke (MS C ) and the average particle size of limestone (MS L ) are It was found that by adjusting the ratio, the product yield became a high yield of 70% by mass or more. In particular, in Experiments 5, 6 and 9, which are examples of the present invention, it was found that a product yield of 70% by mass or more can be secured. Further, in Experiment 10 using coke having an average particle size (MS C ) of more than 2.8 mm, seizure occurred on the great surface of the lower layer, the air permeability in the sintering pot decreased, and the yield was reduced. The decrease was remarkable.

図3は、コークスの平均粒径(MSC)と石灰石の平均粒径(MS)との関係を示す図である。図の直線L1は傾きが1.2の直線を示し、直線L2は傾きが0.94の直線を示す。本発明の実施例である実験5、6,9は、直線L1と直線L2の間に位置する。成品の高歩留を確保するためには、コークスの平均粒径(MSC)を2.0mm超え2.8mm以下として、コークスの平均粒径(MSC)に対する石灰石の平均粒径(MS)の比を、0.94≦MS/MSC≦1.2の範囲とする必要があることが確認された。 FIG. 3 is a diagram showing the relationship between the average particle size of coke (MS C ) and the average particle size of limestone (MS L ). The straight line L1 in the figure shows a straight line having a slope of 1.2, and the straight line L2 shows a straight line having a slope of 0.94. Experiments 5, 6 and 9, which are examples of the present invention, are located between the straight line L1 and the straight line L2. In order to ensure a high yield of the product, the average grain size of coke (MS C ) should be more than 2.0 mm and 2.8 mm or less, and the average grain size of limestone (MS L ) with respect to the average grain size of coke (MS C ). It was confirmed that the ratio of) should be in the range of 0.94 ≤ MS L / MS C ≤ 1.2.

1…スリットバー式配合原料篩分け装置(篩分け装置)、2…焼結原料、3…供給部、5…スリット、5a…スリットバー、7…回収ボックス 1 ... Slit bar type compound raw material sieving device (sieving device), 2 ... Sintered raw material, 3 ... Supply unit, 5 ... Slit, 5a ... Slit bar, 7 ... Recovery box

Claims (1)

鉄鉱石、石灰石、MgO含有副原料、炭材および返鉱を配合した焼結原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、
前記炭材の平均粒径(MSC)は2.0mmを超え2.8mm以下であり、
前記石灰石の平均粒径(MS)と前記炭材の平均粒径(MSC)の比率が、0.94≦MS/MSC≦1.2であること
を特徴とする焼結鉱の製造方法。
In the method for producing sinter, which is obtained by granulating a sinter raw material containing iron ore, limestone, MgO-containing auxiliary raw material, charcoal material, and return ore, charging the sinter into a pallet of a downward suction type sinter, and firing the sinter.
The average particle size (MS C ) of the carbonaceous material is more than 2.0 mm and 2.8 mm or less.
The ratio of the average particle size (MS L ) of the limestone to the average particle size (MS C ) of the carbonaceous material is 0.94 ≤ MS L / MS C ≤ 1.2. Production method.
JP2019079181A 2019-04-18 2019-04-18 Method for producing sintered ore Active JP7205362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079181A JP7205362B2 (en) 2019-04-18 2019-04-18 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079181A JP7205362B2 (en) 2019-04-18 2019-04-18 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2020176299A true JP2020176299A (en) 2020-10-29
JP7205362B2 JP7205362B2 (en) 2023-01-17

Family

ID=72936203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079181A Active JP7205362B2 (en) 2019-04-18 2019-04-18 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP7205362B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2009185356A (en) * 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore
JP2016125125A (en) * 2015-01-08 2016-07-11 Jfeスチール株式会社 Granulated particle for carbonaceous material inner package for sinter ore production and method for production thereof, and method for production of sinter ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2009185356A (en) * 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore
JP2016125125A (en) * 2015-01-08 2016-07-11 Jfeスチール株式会社 Granulated particle for carbonaceous material inner package for sinter ore production and method for production thereof, and method for production of sinter ore

Also Published As

Publication number Publication date
JP7205362B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP6075231B2 (en) Method for producing sintered ore
JP6421666B2 (en) Method for producing sintered ore
JP2009185356A (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
WO2016190023A1 (en) Reduced iron manufacturing method
JP5011955B2 (en) Ferro-coke manufacturing method
JP6102484B2 (en) Method for producing sintered ore
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP4830728B2 (en) Method for producing sintered ore
JP7205362B2 (en) Method for producing sintered ore
JP7180406B2 (en) Method for producing sintered ore
JP2012046828A (en) Method for producing sintered ore
JP5126580B2 (en) Method for producing sintered ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP7339516B2 (en) Method for producing sintered ore
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
KR101486869B1 (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JP7047616B2 (en) How to make coke
JP2009242829A (en) Method for producing sintered ore
JP6477312B2 (en) Method for charging sintered raw material grains
JPH0380849B2 (en)
JP5011637B2 (en) Processing method of ore for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151